]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/sched.c
CRED: Use RCU to access another task's creds and to release a task's own creds
[linux-2.6-omap-h63xx.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83  * Convert user-nice values [ -20 ... 0 ... 19 ]
84  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85  * and back.
86  */
87 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
90
91 /*
92  * 'User priority' is the nice value converted to something we
93  * can work with better when scaling various scheduler parameters,
94  * it's a [ 0 ... 39 ] range.
95  */
96 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
99
100 /*
101  * Helpers for converting nanosecond timing to jiffy resolution
102  */
103 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD             SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
107
108 /*
109  * These are the 'tuning knobs' of the scheduler:
110  *
111  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112  * Timeslices get refilled after they expire.
113  */
114 #define DEF_TIMESLICE           (100 * HZ / 1000)
115
116 /*
117  * single value that denotes runtime == period, ie unlimited time.
118  */
119 #define RUNTIME_INF     ((u64)~0ULL)
120
121 #ifdef CONFIG_SMP
122 /*
123  * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124  * Since cpu_power is a 'constant', we can use a reciprocal divide.
125  */
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127 {
128         return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 }
130
131 /*
132  * Each time a sched group cpu_power is changed,
133  * we must compute its reciprocal value
134  */
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136 {
137         sg->__cpu_power += val;
138         sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139 }
140 #endif
141
142 static inline int rt_policy(int policy)
143 {
144         if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145                 return 1;
146         return 0;
147 }
148
149 static inline int task_has_rt_policy(struct task_struct *p)
150 {
151         return rt_policy(p->policy);
152 }
153
154 /*
155  * This is the priority-queue data structure of the RT scheduling class:
156  */
157 struct rt_prio_array {
158         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159         struct list_head queue[MAX_RT_PRIO];
160 };
161
162 struct rt_bandwidth {
163         /* nests inside the rq lock: */
164         spinlock_t              rt_runtime_lock;
165         ktime_t                 rt_period;
166         u64                     rt_runtime;
167         struct hrtimer          rt_period_timer;
168 };
169
170 static struct rt_bandwidth def_rt_bandwidth;
171
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175 {
176         struct rt_bandwidth *rt_b =
177                 container_of(timer, struct rt_bandwidth, rt_period_timer);
178         ktime_t now;
179         int overrun;
180         int idle = 0;
181
182         for (;;) {
183                 now = hrtimer_cb_get_time(timer);
184                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186                 if (!overrun)
187                         break;
188
189                 idle = do_sched_rt_period_timer(rt_b, overrun);
190         }
191
192         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 }
194
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197 {
198         rt_b->rt_period = ns_to_ktime(period);
199         rt_b->rt_runtime = runtime;
200
201         spin_lock_init(&rt_b->rt_runtime_lock);
202
203         hrtimer_init(&rt_b->rt_period_timer,
204                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205         rt_b->rt_period_timer.function = sched_rt_period_timer;
206         rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 }
208
209 static inline int rt_bandwidth_enabled(void)
210 {
211         return sysctl_sched_rt_runtime >= 0;
212 }
213
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215 {
216         ktime_t now;
217
218         if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219                 return;
220
221         if (hrtimer_active(&rt_b->rt_period_timer))
222                 return;
223
224         spin_lock(&rt_b->rt_runtime_lock);
225         for (;;) {
226                 if (hrtimer_active(&rt_b->rt_period_timer))
227                         break;
228
229                 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230                 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231                 hrtimer_start_expires(&rt_b->rt_period_timer,
232                                 HRTIMER_MODE_ABS);
233         }
234         spin_unlock(&rt_b->rt_runtime_lock);
235 }
236
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239 {
240         hrtimer_cancel(&rt_b->rt_period_timer);
241 }
242 #endif
243
244 /*
245  * sched_domains_mutex serializes calls to arch_init_sched_domains,
246  * detach_destroy_domains and partition_sched_domains.
247  */
248 static DEFINE_MUTEX(sched_domains_mutex);
249
250 #ifdef CONFIG_GROUP_SCHED
251
252 #include <linux/cgroup.h>
253
254 struct cfs_rq;
255
256 static LIST_HEAD(task_groups);
257
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261         struct cgroup_subsys_state css;
262 #endif
263
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265         /* schedulable entities of this group on each cpu */
266         struct sched_entity **se;
267         /* runqueue "owned" by this group on each cpu */
268         struct cfs_rq **cfs_rq;
269         unsigned long shares;
270 #endif
271
272 #ifdef CONFIG_RT_GROUP_SCHED
273         struct sched_rt_entity **rt_se;
274         struct rt_rq **rt_rq;
275
276         struct rt_bandwidth rt_bandwidth;
277 #endif
278
279         struct rcu_head rcu;
280         struct list_head list;
281
282         struct task_group *parent;
283         struct list_head siblings;
284         struct list_head children;
285 };
286
287 #ifdef CONFIG_USER_SCHED
288
289 /*
290  * Root task group.
291  *      Every UID task group (including init_task_group aka UID-0) will
292  *      be a child to this group.
293  */
294 struct task_group root_task_group;
295
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
302
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
310
311 /* task_group_lock serializes add/remove of task groups and also changes to
312  * a task group's cpu shares.
313  */
314 static DEFINE_SPINLOCK(task_group_lock);
315
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD   (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD   NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
322
323 /*
324  * A weight of 0 or 1 can cause arithmetics problems.
325  * A weight of a cfs_rq is the sum of weights of which entities
326  * are queued on this cfs_rq, so a weight of a entity should not be
327  * too large, so as the shares value of a task group.
328  * (The default weight is 1024 - so there's no practical
329  *  limitation from this.)
330  */
331 #define MIN_SHARES      2
332 #define MAX_SHARES      (1UL << 18)
333
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
336
337 /* Default task group.
338  *      Every task in system belong to this group at bootup.
339  */
340 struct task_group init_task_group;
341
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
344 {
345         struct task_group *tg;
346
347 #ifdef CONFIG_USER_SCHED
348         rcu_read_lock();
349         tg = __task_cred(p)->user->tg;
350         rcu_read_unlock();
351 #elif defined(CONFIG_CGROUP_SCHED)
352         tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
353                                 struct task_group, css);
354 #else
355         tg = &init_task_group;
356 #endif
357         return tg;
358 }
359
360 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
361 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
362 {
363 #ifdef CONFIG_FAIR_GROUP_SCHED
364         p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
365         p->se.parent = task_group(p)->se[cpu];
366 #endif
367
368 #ifdef CONFIG_RT_GROUP_SCHED
369         p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
370         p->rt.parent = task_group(p)->rt_se[cpu];
371 #endif
372 }
373
374 #else
375
376 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
377 static inline struct task_group *task_group(struct task_struct *p)
378 {
379         return NULL;
380 }
381
382 #endif  /* CONFIG_GROUP_SCHED */
383
384 /* CFS-related fields in a runqueue */
385 struct cfs_rq {
386         struct load_weight load;
387         unsigned long nr_running;
388
389         u64 exec_clock;
390         u64 min_vruntime;
391
392         struct rb_root tasks_timeline;
393         struct rb_node *rb_leftmost;
394
395         struct list_head tasks;
396         struct list_head *balance_iterator;
397
398         /*
399          * 'curr' points to currently running entity on this cfs_rq.
400          * It is set to NULL otherwise (i.e when none are currently running).
401          */
402         struct sched_entity *curr, *next;
403
404         unsigned long nr_spread_over;
405
406 #ifdef CONFIG_FAIR_GROUP_SCHED
407         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
408
409         /*
410          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
411          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
412          * (like users, containers etc.)
413          *
414          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
415          * list is used during load balance.
416          */
417         struct list_head leaf_cfs_rq_list;
418         struct task_group *tg;  /* group that "owns" this runqueue */
419
420 #ifdef CONFIG_SMP
421         /*
422          * the part of load.weight contributed by tasks
423          */
424         unsigned long task_weight;
425
426         /*
427          *   h_load = weight * f(tg)
428          *
429          * Where f(tg) is the recursive weight fraction assigned to
430          * this group.
431          */
432         unsigned long h_load;
433
434         /*
435          * this cpu's part of tg->shares
436          */
437         unsigned long shares;
438
439         /*
440          * load.weight at the time we set shares
441          */
442         unsigned long rq_weight;
443 #endif
444 #endif
445 };
446
447 /* Real-Time classes' related field in a runqueue: */
448 struct rt_rq {
449         struct rt_prio_array active;
450         unsigned long rt_nr_running;
451 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
452         int highest_prio; /* highest queued rt task prio */
453 #endif
454 #ifdef CONFIG_SMP
455         unsigned long rt_nr_migratory;
456         int overloaded;
457 #endif
458         int rt_throttled;
459         u64 rt_time;
460         u64 rt_runtime;
461         /* Nests inside the rq lock: */
462         spinlock_t rt_runtime_lock;
463
464 #ifdef CONFIG_RT_GROUP_SCHED
465         unsigned long rt_nr_boosted;
466
467         struct rq *rq;
468         struct list_head leaf_rt_rq_list;
469         struct task_group *tg;
470         struct sched_rt_entity *rt_se;
471 #endif
472 };
473
474 #ifdef CONFIG_SMP
475
476 /*
477  * We add the notion of a root-domain which will be used to define per-domain
478  * variables. Each exclusive cpuset essentially defines an island domain by
479  * fully partitioning the member cpus from any other cpuset. Whenever a new
480  * exclusive cpuset is created, we also create and attach a new root-domain
481  * object.
482  *
483  */
484 struct root_domain {
485         atomic_t refcount;
486         cpumask_t span;
487         cpumask_t online;
488
489         /*
490          * The "RT overload" flag: it gets set if a CPU has more than
491          * one runnable RT task.
492          */
493         cpumask_t rto_mask;
494         atomic_t rto_count;
495 #ifdef CONFIG_SMP
496         struct cpupri cpupri;
497 #endif
498 };
499
500 /*
501  * By default the system creates a single root-domain with all cpus as
502  * members (mimicking the global state we have today).
503  */
504 static struct root_domain def_root_domain;
505
506 #endif
507
508 /*
509  * This is the main, per-CPU runqueue data structure.
510  *
511  * Locking rule: those places that want to lock multiple runqueues
512  * (such as the load balancing or the thread migration code), lock
513  * acquire operations must be ordered by ascending &runqueue.
514  */
515 struct rq {
516         /* runqueue lock: */
517         spinlock_t lock;
518
519         /*
520          * nr_running and cpu_load should be in the same cacheline because
521          * remote CPUs use both these fields when doing load calculation.
522          */
523         unsigned long nr_running;
524         #define CPU_LOAD_IDX_MAX 5
525         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
526         unsigned char idle_at_tick;
527 #ifdef CONFIG_NO_HZ
528         unsigned long last_tick_seen;
529         unsigned char in_nohz_recently;
530 #endif
531         /* capture load from *all* tasks on this cpu: */
532         struct load_weight load;
533         unsigned long nr_load_updates;
534         u64 nr_switches;
535
536         struct cfs_rq cfs;
537         struct rt_rq rt;
538
539 #ifdef CONFIG_FAIR_GROUP_SCHED
540         /* list of leaf cfs_rq on this cpu: */
541         struct list_head leaf_cfs_rq_list;
542 #endif
543 #ifdef CONFIG_RT_GROUP_SCHED
544         struct list_head leaf_rt_rq_list;
545 #endif
546
547         /*
548          * This is part of a global counter where only the total sum
549          * over all CPUs matters. A task can increase this counter on
550          * one CPU and if it got migrated afterwards it may decrease
551          * it on another CPU. Always updated under the runqueue lock:
552          */
553         unsigned long nr_uninterruptible;
554
555         struct task_struct *curr, *idle;
556         unsigned long next_balance;
557         struct mm_struct *prev_mm;
558
559         u64 clock;
560
561         atomic_t nr_iowait;
562
563 #ifdef CONFIG_SMP
564         struct root_domain *rd;
565         struct sched_domain *sd;
566
567         /* For active balancing */
568         int active_balance;
569         int push_cpu;
570         /* cpu of this runqueue: */
571         int cpu;
572         int online;
573
574         unsigned long avg_load_per_task;
575
576         struct task_struct *migration_thread;
577         struct list_head migration_queue;
578 #endif
579
580 #ifdef CONFIG_SCHED_HRTICK
581 #ifdef CONFIG_SMP
582         int hrtick_csd_pending;
583         struct call_single_data hrtick_csd;
584 #endif
585         struct hrtimer hrtick_timer;
586 #endif
587
588 #ifdef CONFIG_SCHEDSTATS
589         /* latency stats */
590         struct sched_info rq_sched_info;
591
592         /* sys_sched_yield() stats */
593         unsigned int yld_exp_empty;
594         unsigned int yld_act_empty;
595         unsigned int yld_both_empty;
596         unsigned int yld_count;
597
598         /* schedule() stats */
599         unsigned int sched_switch;
600         unsigned int sched_count;
601         unsigned int sched_goidle;
602
603         /* try_to_wake_up() stats */
604         unsigned int ttwu_count;
605         unsigned int ttwu_local;
606
607         /* BKL stats */
608         unsigned int bkl_count;
609 #endif
610 };
611
612 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
613
614 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
615 {
616         rq->curr->sched_class->check_preempt_curr(rq, p, sync);
617 }
618
619 static inline int cpu_of(struct rq *rq)
620 {
621 #ifdef CONFIG_SMP
622         return rq->cpu;
623 #else
624         return 0;
625 #endif
626 }
627
628 /*
629  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
630  * See detach_destroy_domains: synchronize_sched for details.
631  *
632  * The domain tree of any CPU may only be accessed from within
633  * preempt-disabled sections.
634  */
635 #define for_each_domain(cpu, __sd) \
636         for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
637
638 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
639 #define this_rq()               (&__get_cpu_var(runqueues))
640 #define task_rq(p)              cpu_rq(task_cpu(p))
641 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
642
643 static inline void update_rq_clock(struct rq *rq)
644 {
645         rq->clock = sched_clock_cpu(cpu_of(rq));
646 }
647
648 /*
649  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
650  */
651 #ifdef CONFIG_SCHED_DEBUG
652 # define const_debug __read_mostly
653 #else
654 # define const_debug static const
655 #endif
656
657 /**
658  * runqueue_is_locked
659  *
660  * Returns true if the current cpu runqueue is locked.
661  * This interface allows printk to be called with the runqueue lock
662  * held and know whether or not it is OK to wake up the klogd.
663  */
664 int runqueue_is_locked(void)
665 {
666         int cpu = get_cpu();
667         struct rq *rq = cpu_rq(cpu);
668         int ret;
669
670         ret = spin_is_locked(&rq->lock);
671         put_cpu();
672         return ret;
673 }
674
675 /*
676  * Debugging: various feature bits
677  */
678
679 #define SCHED_FEAT(name, enabled)       \
680         __SCHED_FEAT_##name ,
681
682 enum {
683 #include "sched_features.h"
684 };
685
686 #undef SCHED_FEAT
687
688 #define SCHED_FEAT(name, enabled)       \
689         (1UL << __SCHED_FEAT_##name) * enabled |
690
691 const_debug unsigned int sysctl_sched_features =
692 #include "sched_features.h"
693         0;
694
695 #undef SCHED_FEAT
696
697 #ifdef CONFIG_SCHED_DEBUG
698 #define SCHED_FEAT(name, enabled)       \
699         #name ,
700
701 static __read_mostly char *sched_feat_names[] = {
702 #include "sched_features.h"
703         NULL
704 };
705
706 #undef SCHED_FEAT
707
708 static int sched_feat_open(struct inode *inode, struct file *filp)
709 {
710         filp->private_data = inode->i_private;
711         return 0;
712 }
713
714 static ssize_t
715 sched_feat_read(struct file *filp, char __user *ubuf,
716                 size_t cnt, loff_t *ppos)
717 {
718         char *buf;
719         int r = 0;
720         int len = 0;
721         int i;
722
723         for (i = 0; sched_feat_names[i]; i++) {
724                 len += strlen(sched_feat_names[i]);
725                 len += 4;
726         }
727
728         buf = kmalloc(len + 2, GFP_KERNEL);
729         if (!buf)
730                 return -ENOMEM;
731
732         for (i = 0; sched_feat_names[i]; i++) {
733                 if (sysctl_sched_features & (1UL << i))
734                         r += sprintf(buf + r, "%s ", sched_feat_names[i]);
735                 else
736                         r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
737         }
738
739         r += sprintf(buf + r, "\n");
740         WARN_ON(r >= len + 2);
741
742         r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
743
744         kfree(buf);
745
746         return r;
747 }
748
749 static ssize_t
750 sched_feat_write(struct file *filp, const char __user *ubuf,
751                 size_t cnt, loff_t *ppos)
752 {
753         char buf[64];
754         char *cmp = buf;
755         int neg = 0;
756         int i;
757
758         if (cnt > 63)
759                 cnt = 63;
760
761         if (copy_from_user(&buf, ubuf, cnt))
762                 return -EFAULT;
763
764         buf[cnt] = 0;
765
766         if (strncmp(buf, "NO_", 3) == 0) {
767                 neg = 1;
768                 cmp += 3;
769         }
770
771         for (i = 0; sched_feat_names[i]; i++) {
772                 int len = strlen(sched_feat_names[i]);
773
774                 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
775                         if (neg)
776                                 sysctl_sched_features &= ~(1UL << i);
777                         else
778                                 sysctl_sched_features |= (1UL << i);
779                         break;
780                 }
781         }
782
783         if (!sched_feat_names[i])
784                 return -EINVAL;
785
786         filp->f_pos += cnt;
787
788         return cnt;
789 }
790
791 static struct file_operations sched_feat_fops = {
792         .open   = sched_feat_open,
793         .read   = sched_feat_read,
794         .write  = sched_feat_write,
795 };
796
797 static __init int sched_init_debug(void)
798 {
799         debugfs_create_file("sched_features", 0644, NULL, NULL,
800                         &sched_feat_fops);
801
802         return 0;
803 }
804 late_initcall(sched_init_debug);
805
806 #endif
807
808 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809
810 /*
811  * Number of tasks to iterate in a single balance run.
812  * Limited because this is done with IRQs disabled.
813  */
814 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815
816 /*
817  * ratelimit for updating the group shares.
818  * default: 0.25ms
819  */
820 unsigned int sysctl_sched_shares_ratelimit = 250000;
821
822 /*
823  * Inject some fuzzyness into changing the per-cpu group shares
824  * this avoids remote rq-locks at the expense of fairness.
825  * default: 4
826  */
827 unsigned int sysctl_sched_shares_thresh = 4;
828
829 /*
830  * period over which we measure -rt task cpu usage in us.
831  * default: 1s
832  */
833 unsigned int sysctl_sched_rt_period = 1000000;
834
835 static __read_mostly int scheduler_running;
836
837 /*
838  * part of the period that we allow rt tasks to run in us.
839  * default: 0.95s
840  */
841 int sysctl_sched_rt_runtime = 950000;
842
843 static inline u64 global_rt_period(void)
844 {
845         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
846 }
847
848 static inline u64 global_rt_runtime(void)
849 {
850         if (sysctl_sched_rt_runtime < 0)
851                 return RUNTIME_INF;
852
853         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
854 }
855
856 #ifndef prepare_arch_switch
857 # define prepare_arch_switch(next)      do { } while (0)
858 #endif
859 #ifndef finish_arch_switch
860 # define finish_arch_switch(prev)       do { } while (0)
861 #endif
862
863 static inline int task_current(struct rq *rq, struct task_struct *p)
864 {
865         return rq->curr == p;
866 }
867
868 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
869 static inline int task_running(struct rq *rq, struct task_struct *p)
870 {
871         return task_current(rq, p);
872 }
873
874 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
875 {
876 }
877
878 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
879 {
880 #ifdef CONFIG_DEBUG_SPINLOCK
881         /* this is a valid case when another task releases the spinlock */
882         rq->lock.owner = current;
883 #endif
884         /*
885          * If we are tracking spinlock dependencies then we have to
886          * fix up the runqueue lock - which gets 'carried over' from
887          * prev into current:
888          */
889         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
890
891         spin_unlock_irq(&rq->lock);
892 }
893
894 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
895 static inline int task_running(struct rq *rq, struct task_struct *p)
896 {
897 #ifdef CONFIG_SMP
898         return p->oncpu;
899 #else
900         return task_current(rq, p);
901 #endif
902 }
903
904 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
905 {
906 #ifdef CONFIG_SMP
907         /*
908          * We can optimise this out completely for !SMP, because the
909          * SMP rebalancing from interrupt is the only thing that cares
910          * here.
911          */
912         next->oncpu = 1;
913 #endif
914 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
915         spin_unlock_irq(&rq->lock);
916 #else
917         spin_unlock(&rq->lock);
918 #endif
919 }
920
921 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
922 {
923 #ifdef CONFIG_SMP
924         /*
925          * After ->oncpu is cleared, the task can be moved to a different CPU.
926          * We must ensure this doesn't happen until the switch is completely
927          * finished.
928          */
929         smp_wmb();
930         prev->oncpu = 0;
931 #endif
932 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
933         local_irq_enable();
934 #endif
935 }
936 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
937
938 /*
939  * __task_rq_lock - lock the runqueue a given task resides on.
940  * Must be called interrupts disabled.
941  */
942 static inline struct rq *__task_rq_lock(struct task_struct *p)
943         __acquires(rq->lock)
944 {
945         for (;;) {
946                 struct rq *rq = task_rq(p);
947                 spin_lock(&rq->lock);
948                 if (likely(rq == task_rq(p)))
949                         return rq;
950                 spin_unlock(&rq->lock);
951         }
952 }
953
954 /*
955  * task_rq_lock - lock the runqueue a given task resides on and disable
956  * interrupts. Note the ordering: we can safely lookup the task_rq without
957  * explicitly disabling preemption.
958  */
959 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
960         __acquires(rq->lock)
961 {
962         struct rq *rq;
963
964         for (;;) {
965                 local_irq_save(*flags);
966                 rq = task_rq(p);
967                 spin_lock(&rq->lock);
968                 if (likely(rq == task_rq(p)))
969                         return rq;
970                 spin_unlock_irqrestore(&rq->lock, *flags);
971         }
972 }
973
974 static void __task_rq_unlock(struct rq *rq)
975         __releases(rq->lock)
976 {
977         spin_unlock(&rq->lock);
978 }
979
980 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
981         __releases(rq->lock)
982 {
983         spin_unlock_irqrestore(&rq->lock, *flags);
984 }
985
986 /*
987  * this_rq_lock - lock this runqueue and disable interrupts.
988  */
989 static struct rq *this_rq_lock(void)
990         __acquires(rq->lock)
991 {
992         struct rq *rq;
993
994         local_irq_disable();
995         rq = this_rq();
996         spin_lock(&rq->lock);
997
998         return rq;
999 }
1000
1001 #ifdef CONFIG_SCHED_HRTICK
1002 /*
1003  * Use HR-timers to deliver accurate preemption points.
1004  *
1005  * Its all a bit involved since we cannot program an hrt while holding the
1006  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1007  * reschedule event.
1008  *
1009  * When we get rescheduled we reprogram the hrtick_timer outside of the
1010  * rq->lock.
1011  */
1012
1013 /*
1014  * Use hrtick when:
1015  *  - enabled by features
1016  *  - hrtimer is actually high res
1017  */
1018 static inline int hrtick_enabled(struct rq *rq)
1019 {
1020         if (!sched_feat(HRTICK))
1021                 return 0;
1022         if (!cpu_active(cpu_of(rq)))
1023                 return 0;
1024         return hrtimer_is_hres_active(&rq->hrtick_timer);
1025 }
1026
1027 static void hrtick_clear(struct rq *rq)
1028 {
1029         if (hrtimer_active(&rq->hrtick_timer))
1030                 hrtimer_cancel(&rq->hrtick_timer);
1031 }
1032
1033 /*
1034  * High-resolution timer tick.
1035  * Runs from hardirq context with interrupts disabled.
1036  */
1037 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038 {
1039         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040
1041         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042
1043         spin_lock(&rq->lock);
1044         update_rq_clock(rq);
1045         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1046         spin_unlock(&rq->lock);
1047
1048         return HRTIMER_NORESTART;
1049 }
1050
1051 #ifdef CONFIG_SMP
1052 /*
1053  * called from hardirq (IPI) context
1054  */
1055 static void __hrtick_start(void *arg)
1056 {
1057         struct rq *rq = arg;
1058
1059         spin_lock(&rq->lock);
1060         hrtimer_restart(&rq->hrtick_timer);
1061         rq->hrtick_csd_pending = 0;
1062         spin_unlock(&rq->lock);
1063 }
1064
1065 /*
1066  * Called to set the hrtick timer state.
1067  *
1068  * called with rq->lock held and irqs disabled
1069  */
1070 static void hrtick_start(struct rq *rq, u64 delay)
1071 {
1072         struct hrtimer *timer = &rq->hrtick_timer;
1073         ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1074
1075         hrtimer_set_expires(timer, time);
1076
1077         if (rq == this_rq()) {
1078                 hrtimer_restart(timer);
1079         } else if (!rq->hrtick_csd_pending) {
1080                 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1081                 rq->hrtick_csd_pending = 1;
1082         }
1083 }
1084
1085 static int
1086 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 {
1088         int cpu = (int)(long)hcpu;
1089
1090         switch (action) {
1091         case CPU_UP_CANCELED:
1092         case CPU_UP_CANCELED_FROZEN:
1093         case CPU_DOWN_PREPARE:
1094         case CPU_DOWN_PREPARE_FROZEN:
1095         case CPU_DEAD:
1096         case CPU_DEAD_FROZEN:
1097                 hrtick_clear(cpu_rq(cpu));
1098                 return NOTIFY_OK;
1099         }
1100
1101         return NOTIFY_DONE;
1102 }
1103
1104 static __init void init_hrtick(void)
1105 {
1106         hotcpu_notifier(hotplug_hrtick, 0);
1107 }
1108 #else
1109 /*
1110  * Called to set the hrtick timer state.
1111  *
1112  * called with rq->lock held and irqs disabled
1113  */
1114 static void hrtick_start(struct rq *rq, u64 delay)
1115 {
1116         hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1117 }
1118
1119 static inline void init_hrtick(void)
1120 {
1121 }
1122 #endif /* CONFIG_SMP */
1123
1124 static void init_rq_hrtick(struct rq *rq)
1125 {
1126 #ifdef CONFIG_SMP
1127         rq->hrtick_csd_pending = 0;
1128
1129         rq->hrtick_csd.flags = 0;
1130         rq->hrtick_csd.func = __hrtick_start;
1131         rq->hrtick_csd.info = rq;
1132 #endif
1133
1134         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135         rq->hrtick_timer.function = hrtick;
1136         rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1137 }
1138 #else   /* CONFIG_SCHED_HRTICK */
1139 static inline void hrtick_clear(struct rq *rq)
1140 {
1141 }
1142
1143 static inline void init_rq_hrtick(struct rq *rq)
1144 {
1145 }
1146
1147 static inline void init_hrtick(void)
1148 {
1149 }
1150 #endif  /* CONFIG_SCHED_HRTICK */
1151
1152 /*
1153  * resched_task - mark a task 'to be rescheduled now'.
1154  *
1155  * On UP this means the setting of the need_resched flag, on SMP it
1156  * might also involve a cross-CPU call to trigger the scheduler on
1157  * the target CPU.
1158  */
1159 #ifdef CONFIG_SMP
1160
1161 #ifndef tsk_is_polling
1162 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163 #endif
1164
1165 static void resched_task(struct task_struct *p)
1166 {
1167         int cpu;
1168
1169         assert_spin_locked(&task_rq(p)->lock);
1170
1171         if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1172                 return;
1173
1174         set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1175
1176         cpu = task_cpu(p);
1177         if (cpu == smp_processor_id())
1178                 return;
1179
1180         /* NEED_RESCHED must be visible before we test polling */
1181         smp_mb();
1182         if (!tsk_is_polling(p))
1183                 smp_send_reschedule(cpu);
1184 }
1185
1186 static void resched_cpu(int cpu)
1187 {
1188         struct rq *rq = cpu_rq(cpu);
1189         unsigned long flags;
1190
1191         if (!spin_trylock_irqsave(&rq->lock, flags))
1192                 return;
1193         resched_task(cpu_curr(cpu));
1194         spin_unlock_irqrestore(&rq->lock, flags);
1195 }
1196
1197 #ifdef CONFIG_NO_HZ
1198 /*
1199  * When add_timer_on() enqueues a timer into the timer wheel of an
1200  * idle CPU then this timer might expire before the next timer event
1201  * which is scheduled to wake up that CPU. In case of a completely
1202  * idle system the next event might even be infinite time into the
1203  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1204  * leaves the inner idle loop so the newly added timer is taken into
1205  * account when the CPU goes back to idle and evaluates the timer
1206  * wheel for the next timer event.
1207  */
1208 void wake_up_idle_cpu(int cpu)
1209 {
1210         struct rq *rq = cpu_rq(cpu);
1211
1212         if (cpu == smp_processor_id())
1213                 return;
1214
1215         /*
1216          * This is safe, as this function is called with the timer
1217          * wheel base lock of (cpu) held. When the CPU is on the way
1218          * to idle and has not yet set rq->curr to idle then it will
1219          * be serialized on the timer wheel base lock and take the new
1220          * timer into account automatically.
1221          */
1222         if (rq->curr != rq->idle)
1223                 return;
1224
1225         /*
1226          * We can set TIF_RESCHED on the idle task of the other CPU
1227          * lockless. The worst case is that the other CPU runs the
1228          * idle task through an additional NOOP schedule()
1229          */
1230         set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1231
1232         /* NEED_RESCHED must be visible before we test polling */
1233         smp_mb();
1234         if (!tsk_is_polling(rq->idle))
1235                 smp_send_reschedule(cpu);
1236 }
1237 #endif /* CONFIG_NO_HZ */
1238
1239 #else /* !CONFIG_SMP */
1240 static void resched_task(struct task_struct *p)
1241 {
1242         assert_spin_locked(&task_rq(p)->lock);
1243         set_tsk_need_resched(p);
1244 }
1245 #endif /* CONFIG_SMP */
1246
1247 #if BITS_PER_LONG == 32
1248 # define WMULT_CONST    (~0UL)
1249 #else
1250 # define WMULT_CONST    (1UL << 32)
1251 #endif
1252
1253 #define WMULT_SHIFT     32
1254
1255 /*
1256  * Shift right and round:
1257  */
1258 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1259
1260 /*
1261  * delta *= weight / lw
1262  */
1263 static unsigned long
1264 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1265                 struct load_weight *lw)
1266 {
1267         u64 tmp;
1268
1269         if (!lw->inv_weight) {
1270                 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1271                         lw->inv_weight = 1;
1272                 else
1273                         lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1274                                 / (lw->weight+1);
1275         }
1276
1277         tmp = (u64)delta_exec * weight;
1278         /*
1279          * Check whether we'd overflow the 64-bit multiplication:
1280          */
1281         if (unlikely(tmp > WMULT_CONST))
1282                 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1283                         WMULT_SHIFT/2);
1284         else
1285                 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1286
1287         return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1288 }
1289
1290 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1291 {
1292         lw->weight += inc;
1293         lw->inv_weight = 0;
1294 }
1295
1296 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1297 {
1298         lw->weight -= dec;
1299         lw->inv_weight = 0;
1300 }
1301
1302 /*
1303  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1304  * of tasks with abnormal "nice" values across CPUs the contribution that
1305  * each task makes to its run queue's load is weighted according to its
1306  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1307  * scaled version of the new time slice allocation that they receive on time
1308  * slice expiry etc.
1309  */
1310
1311 #define WEIGHT_IDLEPRIO         2
1312 #define WMULT_IDLEPRIO          (1 << 31)
1313
1314 /*
1315  * Nice levels are multiplicative, with a gentle 10% change for every
1316  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1317  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1318  * that remained on nice 0.
1319  *
1320  * The "10% effect" is relative and cumulative: from _any_ nice level,
1321  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1322  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1323  * If a task goes up by ~10% and another task goes down by ~10% then
1324  * the relative distance between them is ~25%.)
1325  */
1326 static const int prio_to_weight[40] = {
1327  /* -20 */     88761,     71755,     56483,     46273,     36291,
1328  /* -15 */     29154,     23254,     18705,     14949,     11916,
1329  /* -10 */      9548,      7620,      6100,      4904,      3906,
1330  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1331  /*   0 */      1024,       820,       655,       526,       423,
1332  /*   5 */       335,       272,       215,       172,       137,
1333  /*  10 */       110,        87,        70,        56,        45,
1334  /*  15 */        36,        29,        23,        18,        15,
1335 };
1336
1337 /*
1338  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1339  *
1340  * In cases where the weight does not change often, we can use the
1341  * precalculated inverse to speed up arithmetics by turning divisions
1342  * into multiplications:
1343  */
1344 static const u32 prio_to_wmult[40] = {
1345  /* -20 */     48388,     59856,     76040,     92818,    118348,
1346  /* -15 */    147320,    184698,    229616,    287308,    360437,
1347  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1348  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1349  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1350  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1351  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1352  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1353 };
1354
1355 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1356
1357 /*
1358  * runqueue iterator, to support SMP load-balancing between different
1359  * scheduling classes, without having to expose their internal data
1360  * structures to the load-balancing proper:
1361  */
1362 struct rq_iterator {
1363         void *arg;
1364         struct task_struct *(*start)(void *);
1365         struct task_struct *(*next)(void *);
1366 };
1367
1368 #ifdef CONFIG_SMP
1369 static unsigned long
1370 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1371               unsigned long max_load_move, struct sched_domain *sd,
1372               enum cpu_idle_type idle, int *all_pinned,
1373               int *this_best_prio, struct rq_iterator *iterator);
1374
1375 static int
1376 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377                    struct sched_domain *sd, enum cpu_idle_type idle,
1378                    struct rq_iterator *iterator);
1379 #endif
1380
1381 #ifdef CONFIG_CGROUP_CPUACCT
1382 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1383 #else
1384 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1385 #endif
1386
1387 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1388 {
1389         update_load_add(&rq->load, load);
1390 }
1391
1392 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1393 {
1394         update_load_sub(&rq->load, load);
1395 }
1396
1397 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1398 typedef int (*tg_visitor)(struct task_group *, void *);
1399
1400 /*
1401  * Iterate the full tree, calling @down when first entering a node and @up when
1402  * leaving it for the final time.
1403  */
1404 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1405 {
1406         struct task_group *parent, *child;
1407         int ret;
1408
1409         rcu_read_lock();
1410         parent = &root_task_group;
1411 down:
1412         ret = (*down)(parent, data);
1413         if (ret)
1414                 goto out_unlock;
1415         list_for_each_entry_rcu(child, &parent->children, siblings) {
1416                 parent = child;
1417                 goto down;
1418
1419 up:
1420                 continue;
1421         }
1422         ret = (*up)(parent, data);
1423         if (ret)
1424                 goto out_unlock;
1425
1426         child = parent;
1427         parent = parent->parent;
1428         if (parent)
1429                 goto up;
1430 out_unlock:
1431         rcu_read_unlock();
1432
1433         return ret;
1434 }
1435
1436 static int tg_nop(struct task_group *tg, void *data)
1437 {
1438         return 0;
1439 }
1440 #endif
1441
1442 #ifdef CONFIG_SMP
1443 static unsigned long source_load(int cpu, int type);
1444 static unsigned long target_load(int cpu, int type);
1445 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1446
1447 static unsigned long cpu_avg_load_per_task(int cpu)
1448 {
1449         struct rq *rq = cpu_rq(cpu);
1450
1451         if (rq->nr_running)
1452                 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1453
1454         return rq->avg_load_per_task;
1455 }
1456
1457 #ifdef CONFIG_FAIR_GROUP_SCHED
1458
1459 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1460
1461 /*
1462  * Calculate and set the cpu's group shares.
1463  */
1464 static void
1465 update_group_shares_cpu(struct task_group *tg, int cpu,
1466                         unsigned long sd_shares, unsigned long sd_rq_weight)
1467 {
1468         int boost = 0;
1469         unsigned long shares;
1470         unsigned long rq_weight;
1471
1472         if (!tg->se[cpu])
1473                 return;
1474
1475         rq_weight = tg->cfs_rq[cpu]->load.weight;
1476
1477         /*
1478          * If there are currently no tasks on the cpu pretend there is one of
1479          * average load so that when a new task gets to run here it will not
1480          * get delayed by group starvation.
1481          */
1482         if (!rq_weight) {
1483                 boost = 1;
1484                 rq_weight = NICE_0_LOAD;
1485         }
1486
1487         if (unlikely(rq_weight > sd_rq_weight))
1488                 rq_weight = sd_rq_weight;
1489
1490         /*
1491          *           \Sum shares * rq_weight
1492          * shares =  -----------------------
1493          *               \Sum rq_weight
1494          *
1495          */
1496         shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1497         shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1498
1499         if (abs(shares - tg->se[cpu]->load.weight) >
1500                         sysctl_sched_shares_thresh) {
1501                 struct rq *rq = cpu_rq(cpu);
1502                 unsigned long flags;
1503
1504                 spin_lock_irqsave(&rq->lock, flags);
1505                 /*
1506                  * record the actual number of shares, not the boosted amount.
1507                  */
1508                 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1509                 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1510
1511                 __set_se_shares(tg->se[cpu], shares);
1512                 spin_unlock_irqrestore(&rq->lock, flags);
1513         }
1514 }
1515
1516 /*
1517  * Re-compute the task group their per cpu shares over the given domain.
1518  * This needs to be done in a bottom-up fashion because the rq weight of a
1519  * parent group depends on the shares of its child groups.
1520  */
1521 static int tg_shares_up(struct task_group *tg, void *data)
1522 {
1523         unsigned long rq_weight = 0;
1524         unsigned long shares = 0;
1525         struct sched_domain *sd = data;
1526         int i;
1527
1528         for_each_cpu_mask(i, sd->span) {
1529                 rq_weight += tg->cfs_rq[i]->load.weight;
1530                 shares += tg->cfs_rq[i]->shares;
1531         }
1532
1533         if ((!shares && rq_weight) || shares > tg->shares)
1534                 shares = tg->shares;
1535
1536         if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1537                 shares = tg->shares;
1538
1539         if (!rq_weight)
1540                 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1541
1542         for_each_cpu_mask(i, sd->span)
1543                 update_group_shares_cpu(tg, i, shares, rq_weight);
1544
1545         return 0;
1546 }
1547
1548 /*
1549  * Compute the cpu's hierarchical load factor for each task group.
1550  * This needs to be done in a top-down fashion because the load of a child
1551  * group is a fraction of its parents load.
1552  */
1553 static int tg_load_down(struct task_group *tg, void *data)
1554 {
1555         unsigned long load;
1556         long cpu = (long)data;
1557
1558         if (!tg->parent) {
1559                 load = cpu_rq(cpu)->load.weight;
1560         } else {
1561                 load = tg->parent->cfs_rq[cpu]->h_load;
1562                 load *= tg->cfs_rq[cpu]->shares;
1563                 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1564         }
1565
1566         tg->cfs_rq[cpu]->h_load = load;
1567
1568         return 0;
1569 }
1570
1571 static void update_shares(struct sched_domain *sd)
1572 {
1573         u64 now = cpu_clock(raw_smp_processor_id());
1574         s64 elapsed = now - sd->last_update;
1575
1576         if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1577                 sd->last_update = now;
1578                 walk_tg_tree(tg_nop, tg_shares_up, sd);
1579         }
1580 }
1581
1582 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1583 {
1584         spin_unlock(&rq->lock);
1585         update_shares(sd);
1586         spin_lock(&rq->lock);
1587 }
1588
1589 static void update_h_load(long cpu)
1590 {
1591         walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1592 }
1593
1594 #else
1595
1596 static inline void update_shares(struct sched_domain *sd)
1597 {
1598 }
1599
1600 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1601 {
1602 }
1603
1604 #endif
1605
1606 #endif
1607
1608 #ifdef CONFIG_FAIR_GROUP_SCHED
1609 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1610 {
1611 #ifdef CONFIG_SMP
1612         cfs_rq->shares = shares;
1613 #endif
1614 }
1615 #endif
1616
1617 #include "sched_stats.h"
1618 #include "sched_idletask.c"
1619 #include "sched_fair.c"
1620 #include "sched_rt.c"
1621 #ifdef CONFIG_SCHED_DEBUG
1622 # include "sched_debug.c"
1623 #endif
1624
1625 #define sched_class_highest (&rt_sched_class)
1626 #define for_each_class(class) \
1627    for (class = sched_class_highest; class; class = class->next)
1628
1629 static void inc_nr_running(struct rq *rq)
1630 {
1631         rq->nr_running++;
1632 }
1633
1634 static void dec_nr_running(struct rq *rq)
1635 {
1636         rq->nr_running--;
1637 }
1638
1639 static void set_load_weight(struct task_struct *p)
1640 {
1641         if (task_has_rt_policy(p)) {
1642                 p->se.load.weight = prio_to_weight[0] * 2;
1643                 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1644                 return;
1645         }
1646
1647         /*
1648          * SCHED_IDLE tasks get minimal weight:
1649          */
1650         if (p->policy == SCHED_IDLE) {
1651                 p->se.load.weight = WEIGHT_IDLEPRIO;
1652                 p->se.load.inv_weight = WMULT_IDLEPRIO;
1653                 return;
1654         }
1655
1656         p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1657         p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1658 }
1659
1660 static void update_avg(u64 *avg, u64 sample)
1661 {
1662         s64 diff = sample - *avg;
1663         *avg += diff >> 3;
1664 }
1665
1666 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1667 {
1668         sched_info_queued(p);
1669         p->sched_class->enqueue_task(rq, p, wakeup);
1670         p->se.on_rq = 1;
1671 }
1672
1673 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1674 {
1675         if (sleep && p->se.last_wakeup) {
1676                 update_avg(&p->se.avg_overlap,
1677                            p->se.sum_exec_runtime - p->se.last_wakeup);
1678                 p->se.last_wakeup = 0;
1679         }
1680
1681         sched_info_dequeued(p);
1682         p->sched_class->dequeue_task(rq, p, sleep);
1683         p->se.on_rq = 0;
1684 }
1685
1686 /*
1687  * __normal_prio - return the priority that is based on the static prio
1688  */
1689 static inline int __normal_prio(struct task_struct *p)
1690 {
1691         return p->static_prio;
1692 }
1693
1694 /*
1695  * Calculate the expected normal priority: i.e. priority
1696  * without taking RT-inheritance into account. Might be
1697  * boosted by interactivity modifiers. Changes upon fork,
1698  * setprio syscalls, and whenever the interactivity
1699  * estimator recalculates.
1700  */
1701 static inline int normal_prio(struct task_struct *p)
1702 {
1703         int prio;
1704
1705         if (task_has_rt_policy(p))
1706                 prio = MAX_RT_PRIO-1 - p->rt_priority;
1707         else
1708                 prio = __normal_prio(p);
1709         return prio;
1710 }
1711
1712 /*
1713  * Calculate the current priority, i.e. the priority
1714  * taken into account by the scheduler. This value might
1715  * be boosted by RT tasks, or might be boosted by
1716  * interactivity modifiers. Will be RT if the task got
1717  * RT-boosted. If not then it returns p->normal_prio.
1718  */
1719 static int effective_prio(struct task_struct *p)
1720 {
1721         p->normal_prio = normal_prio(p);
1722         /*
1723          * If we are RT tasks or we were boosted to RT priority,
1724          * keep the priority unchanged. Otherwise, update priority
1725          * to the normal priority:
1726          */
1727         if (!rt_prio(p->prio))
1728                 return p->normal_prio;
1729         return p->prio;
1730 }
1731
1732 /*
1733  * activate_task - move a task to the runqueue.
1734  */
1735 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1736 {
1737         if (task_contributes_to_load(p))
1738                 rq->nr_uninterruptible--;
1739
1740         enqueue_task(rq, p, wakeup);
1741         inc_nr_running(rq);
1742 }
1743
1744 /*
1745  * deactivate_task - remove a task from the runqueue.
1746  */
1747 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1748 {
1749         if (task_contributes_to_load(p))
1750                 rq->nr_uninterruptible++;
1751
1752         dequeue_task(rq, p, sleep);
1753         dec_nr_running(rq);
1754 }
1755
1756 /**
1757  * task_curr - is this task currently executing on a CPU?
1758  * @p: the task in question.
1759  */
1760 inline int task_curr(const struct task_struct *p)
1761 {
1762         return cpu_curr(task_cpu(p)) == p;
1763 }
1764
1765 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1766 {
1767         set_task_rq(p, cpu);
1768 #ifdef CONFIG_SMP
1769         /*
1770          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1771          * successfuly executed on another CPU. We must ensure that updates of
1772          * per-task data have been completed by this moment.
1773          */
1774         smp_wmb();
1775         task_thread_info(p)->cpu = cpu;
1776 #endif
1777 }
1778
1779 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1780                                        const struct sched_class *prev_class,
1781                                        int oldprio, int running)
1782 {
1783         if (prev_class != p->sched_class) {
1784                 if (prev_class->switched_from)
1785                         prev_class->switched_from(rq, p, running);
1786                 p->sched_class->switched_to(rq, p, running);
1787         } else
1788                 p->sched_class->prio_changed(rq, p, oldprio, running);
1789 }
1790
1791 #ifdef CONFIG_SMP
1792
1793 /* Used instead of source_load when we know the type == 0 */
1794 static unsigned long weighted_cpuload(const int cpu)
1795 {
1796         return cpu_rq(cpu)->load.weight;
1797 }
1798
1799 /*
1800  * Is this task likely cache-hot:
1801  */
1802 static int
1803 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1804 {
1805         s64 delta;
1806
1807         /*
1808          * Buddy candidates are cache hot:
1809          */
1810         if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1811                 return 1;
1812
1813         if (p->sched_class != &fair_sched_class)
1814                 return 0;
1815
1816         if (sysctl_sched_migration_cost == -1)
1817                 return 1;
1818         if (sysctl_sched_migration_cost == 0)
1819                 return 0;
1820
1821         delta = now - p->se.exec_start;
1822
1823         return delta < (s64)sysctl_sched_migration_cost;
1824 }
1825
1826
1827 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1828 {
1829         int old_cpu = task_cpu(p);
1830         struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1831         struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1832                       *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1833         u64 clock_offset;
1834
1835         clock_offset = old_rq->clock - new_rq->clock;
1836
1837 #ifdef CONFIG_SCHEDSTATS
1838         if (p->se.wait_start)
1839                 p->se.wait_start -= clock_offset;
1840         if (p->se.sleep_start)
1841                 p->se.sleep_start -= clock_offset;
1842         if (p->se.block_start)
1843                 p->se.block_start -= clock_offset;
1844         if (old_cpu != new_cpu) {
1845                 schedstat_inc(p, se.nr_migrations);
1846                 if (task_hot(p, old_rq->clock, NULL))
1847                         schedstat_inc(p, se.nr_forced2_migrations);
1848         }
1849 #endif
1850         p->se.vruntime -= old_cfsrq->min_vruntime -
1851                                          new_cfsrq->min_vruntime;
1852
1853         __set_task_cpu(p, new_cpu);
1854 }
1855
1856 struct migration_req {
1857         struct list_head list;
1858
1859         struct task_struct *task;
1860         int dest_cpu;
1861
1862         struct completion done;
1863 };
1864
1865 /*
1866  * The task's runqueue lock must be held.
1867  * Returns true if you have to wait for migration thread.
1868  */
1869 static int
1870 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1871 {
1872         struct rq *rq = task_rq(p);
1873
1874         /*
1875          * If the task is not on a runqueue (and not running), then
1876          * it is sufficient to simply update the task's cpu field.
1877          */
1878         if (!p->se.on_rq && !task_running(rq, p)) {
1879                 set_task_cpu(p, dest_cpu);
1880                 return 0;
1881         }
1882
1883         init_completion(&req->done);
1884         req->task = p;
1885         req->dest_cpu = dest_cpu;
1886         list_add(&req->list, &rq->migration_queue);
1887
1888         return 1;
1889 }
1890
1891 /*
1892  * wait_task_inactive - wait for a thread to unschedule.
1893  *
1894  * If @match_state is nonzero, it's the @p->state value just checked and
1895  * not expected to change.  If it changes, i.e. @p might have woken up,
1896  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1897  * we return a positive number (its total switch count).  If a second call
1898  * a short while later returns the same number, the caller can be sure that
1899  * @p has remained unscheduled the whole time.
1900  *
1901  * The caller must ensure that the task *will* unschedule sometime soon,
1902  * else this function might spin for a *long* time. This function can't
1903  * be called with interrupts off, or it may introduce deadlock with
1904  * smp_call_function() if an IPI is sent by the same process we are
1905  * waiting to become inactive.
1906  */
1907 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1908 {
1909         unsigned long flags;
1910         int running, on_rq;
1911         unsigned long ncsw;
1912         struct rq *rq;
1913
1914         for (;;) {
1915                 /*
1916                  * We do the initial early heuristics without holding
1917                  * any task-queue locks at all. We'll only try to get
1918                  * the runqueue lock when things look like they will
1919                  * work out!
1920                  */
1921                 rq = task_rq(p);
1922
1923                 /*
1924                  * If the task is actively running on another CPU
1925                  * still, just relax and busy-wait without holding
1926                  * any locks.
1927                  *
1928                  * NOTE! Since we don't hold any locks, it's not
1929                  * even sure that "rq" stays as the right runqueue!
1930                  * But we don't care, since "task_running()" will
1931                  * return false if the runqueue has changed and p
1932                  * is actually now running somewhere else!
1933                  */
1934                 while (task_running(rq, p)) {
1935                         if (match_state && unlikely(p->state != match_state))
1936                                 return 0;
1937                         cpu_relax();
1938                 }
1939
1940                 /*
1941                  * Ok, time to look more closely! We need the rq
1942                  * lock now, to be *sure*. If we're wrong, we'll
1943                  * just go back and repeat.
1944                  */
1945                 rq = task_rq_lock(p, &flags);
1946                 trace_sched_wait_task(rq, p);
1947                 running = task_running(rq, p);
1948                 on_rq = p->se.on_rq;
1949                 ncsw = 0;
1950                 if (!match_state || p->state == match_state)
1951                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1952                 task_rq_unlock(rq, &flags);
1953
1954                 /*
1955                  * If it changed from the expected state, bail out now.
1956                  */
1957                 if (unlikely(!ncsw))
1958                         break;
1959
1960                 /*
1961                  * Was it really running after all now that we
1962                  * checked with the proper locks actually held?
1963                  *
1964                  * Oops. Go back and try again..
1965                  */
1966                 if (unlikely(running)) {
1967                         cpu_relax();
1968                         continue;
1969                 }
1970
1971                 /*
1972                  * It's not enough that it's not actively running,
1973                  * it must be off the runqueue _entirely_, and not
1974                  * preempted!
1975                  *
1976                  * So if it wa still runnable (but just not actively
1977                  * running right now), it's preempted, and we should
1978                  * yield - it could be a while.
1979                  */
1980                 if (unlikely(on_rq)) {
1981                         schedule_timeout_uninterruptible(1);
1982                         continue;
1983                 }
1984
1985                 /*
1986                  * Ahh, all good. It wasn't running, and it wasn't
1987                  * runnable, which means that it will never become
1988                  * running in the future either. We're all done!
1989                  */
1990                 break;
1991         }
1992
1993         return ncsw;
1994 }
1995
1996 /***
1997  * kick_process - kick a running thread to enter/exit the kernel
1998  * @p: the to-be-kicked thread
1999  *
2000  * Cause a process which is running on another CPU to enter
2001  * kernel-mode, without any delay. (to get signals handled.)
2002  *
2003  * NOTE: this function doesnt have to take the runqueue lock,
2004  * because all it wants to ensure is that the remote task enters
2005  * the kernel. If the IPI races and the task has been migrated
2006  * to another CPU then no harm is done and the purpose has been
2007  * achieved as well.
2008  */
2009 void kick_process(struct task_struct *p)
2010 {
2011         int cpu;
2012
2013         preempt_disable();
2014         cpu = task_cpu(p);
2015         if ((cpu != smp_processor_id()) && task_curr(p))
2016                 smp_send_reschedule(cpu);
2017         preempt_enable();
2018 }
2019
2020 /*
2021  * Return a low guess at the load of a migration-source cpu weighted
2022  * according to the scheduling class and "nice" value.
2023  *
2024  * We want to under-estimate the load of migration sources, to
2025  * balance conservatively.
2026  */
2027 static unsigned long source_load(int cpu, int type)
2028 {
2029         struct rq *rq = cpu_rq(cpu);
2030         unsigned long total = weighted_cpuload(cpu);
2031
2032         if (type == 0 || !sched_feat(LB_BIAS))
2033                 return total;
2034
2035         return min(rq->cpu_load[type-1], total);
2036 }
2037
2038 /*
2039  * Return a high guess at the load of a migration-target cpu weighted
2040  * according to the scheduling class and "nice" value.
2041  */
2042 static unsigned long target_load(int cpu, int type)
2043 {
2044         struct rq *rq = cpu_rq(cpu);
2045         unsigned long total = weighted_cpuload(cpu);
2046
2047         if (type == 0 || !sched_feat(LB_BIAS))
2048                 return total;
2049
2050         return max(rq->cpu_load[type-1], total);
2051 }
2052
2053 /*
2054  * find_idlest_group finds and returns the least busy CPU group within the
2055  * domain.
2056  */
2057 static struct sched_group *
2058 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2059 {
2060         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2061         unsigned long min_load = ULONG_MAX, this_load = 0;
2062         int load_idx = sd->forkexec_idx;
2063         int imbalance = 100 + (sd->imbalance_pct-100)/2;
2064
2065         do {
2066                 unsigned long load, avg_load;
2067                 int local_group;
2068                 int i;
2069
2070                 /* Skip over this group if it has no CPUs allowed */
2071                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2072                         continue;
2073
2074                 local_group = cpu_isset(this_cpu, group->cpumask);
2075
2076                 /* Tally up the load of all CPUs in the group */
2077                 avg_load = 0;
2078
2079                 for_each_cpu_mask_nr(i, group->cpumask) {
2080                         /* Bias balancing toward cpus of our domain */
2081                         if (local_group)
2082                                 load = source_load(i, load_idx);
2083                         else
2084                                 load = target_load(i, load_idx);
2085
2086                         avg_load += load;
2087                 }
2088
2089                 /* Adjust by relative CPU power of the group */
2090                 avg_load = sg_div_cpu_power(group,
2091                                 avg_load * SCHED_LOAD_SCALE);
2092
2093                 if (local_group) {
2094                         this_load = avg_load;
2095                         this = group;
2096                 } else if (avg_load < min_load) {
2097                         min_load = avg_load;
2098                         idlest = group;
2099                 }
2100         } while (group = group->next, group != sd->groups);
2101
2102         if (!idlest || 100*this_load < imbalance*min_load)
2103                 return NULL;
2104         return idlest;
2105 }
2106
2107 /*
2108  * find_idlest_cpu - find the idlest cpu among the cpus in group.
2109  */
2110 static int
2111 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2112                 cpumask_t *tmp)
2113 {
2114         unsigned long load, min_load = ULONG_MAX;
2115         int idlest = -1;
2116         int i;
2117
2118         /* Traverse only the allowed CPUs */
2119         cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2120
2121         for_each_cpu_mask_nr(i, *tmp) {
2122                 load = weighted_cpuload(i);
2123
2124                 if (load < min_load || (load == min_load && i == this_cpu)) {
2125                         min_load = load;
2126                         idlest = i;
2127                 }
2128         }
2129
2130         return idlest;
2131 }
2132
2133 /*
2134  * sched_balance_self: balance the current task (running on cpu) in domains
2135  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2136  * SD_BALANCE_EXEC.
2137  *
2138  * Balance, ie. select the least loaded group.
2139  *
2140  * Returns the target CPU number, or the same CPU if no balancing is needed.
2141  *
2142  * preempt must be disabled.
2143  */
2144 static int sched_balance_self(int cpu, int flag)
2145 {
2146         struct task_struct *t = current;
2147         struct sched_domain *tmp, *sd = NULL;
2148
2149         for_each_domain(cpu, tmp) {
2150                 /*
2151                  * If power savings logic is enabled for a domain, stop there.
2152                  */
2153                 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2154                         break;
2155                 if (tmp->flags & flag)
2156                         sd = tmp;
2157         }
2158
2159         if (sd)
2160                 update_shares(sd);
2161
2162         while (sd) {
2163                 cpumask_t span, tmpmask;
2164                 struct sched_group *group;
2165                 int new_cpu, weight;
2166
2167                 if (!(sd->flags & flag)) {
2168                         sd = sd->child;
2169                         continue;
2170                 }
2171
2172                 span = sd->span;
2173                 group = find_idlest_group(sd, t, cpu);
2174                 if (!group) {
2175                         sd = sd->child;
2176                         continue;
2177                 }
2178
2179                 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2180                 if (new_cpu == -1 || new_cpu == cpu) {
2181                         /* Now try balancing at a lower domain level of cpu */
2182                         sd = sd->child;
2183                         continue;
2184                 }
2185
2186                 /* Now try balancing at a lower domain level of new_cpu */
2187                 cpu = new_cpu;
2188                 sd = NULL;
2189                 weight = cpus_weight(span);
2190                 for_each_domain(cpu, tmp) {
2191                         if (weight <= cpus_weight(tmp->span))
2192                                 break;
2193                         if (tmp->flags & flag)
2194                                 sd = tmp;
2195                 }
2196                 /* while loop will break here if sd == NULL */
2197         }
2198
2199         return cpu;
2200 }
2201
2202 #endif /* CONFIG_SMP */
2203
2204 /***
2205  * try_to_wake_up - wake up a thread
2206  * @p: the to-be-woken-up thread
2207  * @state: the mask of task states that can be woken
2208  * @sync: do a synchronous wakeup?
2209  *
2210  * Put it on the run-queue if it's not already there. The "current"
2211  * thread is always on the run-queue (except when the actual
2212  * re-schedule is in progress), and as such you're allowed to do
2213  * the simpler "current->state = TASK_RUNNING" to mark yourself
2214  * runnable without the overhead of this.
2215  *
2216  * returns failure only if the task is already active.
2217  */
2218 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2219 {
2220         int cpu, orig_cpu, this_cpu, success = 0;
2221         unsigned long flags;
2222         long old_state;
2223         struct rq *rq;
2224
2225         if (!sched_feat(SYNC_WAKEUPS))
2226                 sync = 0;
2227
2228 #ifdef CONFIG_SMP
2229         if (sched_feat(LB_WAKEUP_UPDATE)) {
2230                 struct sched_domain *sd;
2231
2232                 this_cpu = raw_smp_processor_id();
2233                 cpu = task_cpu(p);
2234
2235                 for_each_domain(this_cpu, sd) {
2236                         if (cpu_isset(cpu, sd->span)) {
2237                                 update_shares(sd);
2238                                 break;
2239                         }
2240                 }
2241         }
2242 #endif
2243
2244         smp_wmb();
2245         rq = task_rq_lock(p, &flags);
2246         old_state = p->state;
2247         if (!(old_state & state))
2248                 goto out;
2249
2250         if (p->se.on_rq)
2251                 goto out_running;
2252
2253         cpu = task_cpu(p);
2254         orig_cpu = cpu;
2255         this_cpu = smp_processor_id();
2256
2257 #ifdef CONFIG_SMP
2258         if (unlikely(task_running(rq, p)))
2259                 goto out_activate;
2260
2261         cpu = p->sched_class->select_task_rq(p, sync);
2262         if (cpu != orig_cpu) {
2263                 set_task_cpu(p, cpu);
2264                 task_rq_unlock(rq, &flags);
2265                 /* might preempt at this point */
2266                 rq = task_rq_lock(p, &flags);
2267                 old_state = p->state;
2268                 if (!(old_state & state))
2269                         goto out;
2270                 if (p->se.on_rq)
2271                         goto out_running;
2272
2273                 this_cpu = smp_processor_id();
2274                 cpu = task_cpu(p);
2275         }
2276
2277 #ifdef CONFIG_SCHEDSTATS
2278         schedstat_inc(rq, ttwu_count);
2279         if (cpu == this_cpu)
2280                 schedstat_inc(rq, ttwu_local);
2281         else {
2282                 struct sched_domain *sd;
2283                 for_each_domain(this_cpu, sd) {
2284                         if (cpu_isset(cpu, sd->span)) {
2285                                 schedstat_inc(sd, ttwu_wake_remote);
2286                                 break;
2287                         }
2288                 }
2289         }
2290 #endif /* CONFIG_SCHEDSTATS */
2291
2292 out_activate:
2293 #endif /* CONFIG_SMP */
2294         schedstat_inc(p, se.nr_wakeups);
2295         if (sync)
2296                 schedstat_inc(p, se.nr_wakeups_sync);
2297         if (orig_cpu != cpu)
2298                 schedstat_inc(p, se.nr_wakeups_migrate);
2299         if (cpu == this_cpu)
2300                 schedstat_inc(p, se.nr_wakeups_local);
2301         else
2302                 schedstat_inc(p, se.nr_wakeups_remote);
2303         update_rq_clock(rq);
2304         activate_task(rq, p, 1);
2305         success = 1;
2306
2307 out_running:
2308         trace_sched_wakeup(rq, p);
2309         check_preempt_curr(rq, p, sync);
2310
2311         p->state = TASK_RUNNING;
2312 #ifdef CONFIG_SMP
2313         if (p->sched_class->task_wake_up)
2314                 p->sched_class->task_wake_up(rq, p);
2315 #endif
2316 out:
2317         current->se.last_wakeup = current->se.sum_exec_runtime;
2318
2319         task_rq_unlock(rq, &flags);
2320
2321         return success;
2322 }
2323
2324 int wake_up_process(struct task_struct *p)
2325 {
2326         return try_to_wake_up(p, TASK_ALL, 0);
2327 }
2328 EXPORT_SYMBOL(wake_up_process);
2329
2330 int wake_up_state(struct task_struct *p, unsigned int state)
2331 {
2332         return try_to_wake_up(p, state, 0);
2333 }
2334
2335 /*
2336  * Perform scheduler related setup for a newly forked process p.
2337  * p is forked by current.
2338  *
2339  * __sched_fork() is basic setup used by init_idle() too:
2340  */
2341 static void __sched_fork(struct task_struct *p)
2342 {
2343         p->se.exec_start                = 0;
2344         p->se.sum_exec_runtime          = 0;
2345         p->se.prev_sum_exec_runtime     = 0;
2346         p->se.last_wakeup               = 0;
2347         p->se.avg_overlap               = 0;
2348
2349 #ifdef CONFIG_SCHEDSTATS
2350         p->se.wait_start                = 0;
2351         p->se.sum_sleep_runtime         = 0;
2352         p->se.sleep_start               = 0;
2353         p->se.block_start               = 0;
2354         p->se.sleep_max                 = 0;
2355         p->se.block_max                 = 0;
2356         p->se.exec_max                  = 0;
2357         p->se.slice_max                 = 0;
2358         p->se.wait_max                  = 0;
2359 #endif
2360
2361         INIT_LIST_HEAD(&p->rt.run_list);
2362         p->se.on_rq = 0;
2363         INIT_LIST_HEAD(&p->se.group_node);
2364
2365 #ifdef CONFIG_PREEMPT_NOTIFIERS
2366         INIT_HLIST_HEAD(&p->preempt_notifiers);
2367 #endif
2368
2369         /*
2370          * We mark the process as running here, but have not actually
2371          * inserted it onto the runqueue yet. This guarantees that
2372          * nobody will actually run it, and a signal or other external
2373          * event cannot wake it up and insert it on the runqueue either.
2374          */
2375         p->state = TASK_RUNNING;
2376 }
2377
2378 /*
2379  * fork()/clone()-time setup:
2380  */
2381 void sched_fork(struct task_struct *p, int clone_flags)
2382 {
2383         int cpu = get_cpu();
2384
2385         __sched_fork(p);
2386
2387 #ifdef CONFIG_SMP
2388         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2389 #endif
2390         set_task_cpu(p, cpu);
2391
2392         /*
2393          * Make sure we do not leak PI boosting priority to the child:
2394          */
2395         p->prio = current->normal_prio;
2396         if (!rt_prio(p->prio))
2397                 p->sched_class = &fair_sched_class;
2398
2399 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2400         if (likely(sched_info_on()))
2401                 memset(&p->sched_info, 0, sizeof(p->sched_info));
2402 #endif
2403 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2404         p->oncpu = 0;
2405 #endif
2406 #ifdef CONFIG_PREEMPT
2407         /* Want to start with kernel preemption disabled. */
2408         task_thread_info(p)->preempt_count = 1;
2409 #endif
2410         put_cpu();
2411 }
2412
2413 /*
2414  * wake_up_new_task - wake up a newly created task for the first time.
2415  *
2416  * This function will do some initial scheduler statistics housekeeping
2417  * that must be done for every newly created context, then puts the task
2418  * on the runqueue and wakes it.
2419  */
2420 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2421 {
2422         unsigned long flags;
2423         struct rq *rq;
2424
2425         rq = task_rq_lock(p, &flags);
2426         BUG_ON(p->state != TASK_RUNNING);
2427         update_rq_clock(rq);
2428
2429         p->prio = effective_prio(p);
2430
2431         if (!p->sched_class->task_new || !current->se.on_rq) {
2432                 activate_task(rq, p, 0);
2433         } else {
2434                 /*
2435                  * Let the scheduling class do new task startup
2436                  * management (if any):
2437                  */
2438                 p->sched_class->task_new(rq, p);
2439                 inc_nr_running(rq);
2440         }
2441         trace_sched_wakeup_new(rq, p);
2442         check_preempt_curr(rq, p, 0);
2443 #ifdef CONFIG_SMP
2444         if (p->sched_class->task_wake_up)
2445                 p->sched_class->task_wake_up(rq, p);
2446 #endif
2447         task_rq_unlock(rq, &flags);
2448 }
2449
2450 #ifdef CONFIG_PREEMPT_NOTIFIERS
2451
2452 /**
2453  * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2454  * @notifier: notifier struct to register
2455  */
2456 void preempt_notifier_register(struct preempt_notifier *notifier)
2457 {
2458         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2459 }
2460 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2461
2462 /**
2463  * preempt_notifier_unregister - no longer interested in preemption notifications
2464  * @notifier: notifier struct to unregister
2465  *
2466  * This is safe to call from within a preemption notifier.
2467  */
2468 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2469 {
2470         hlist_del(&notifier->link);
2471 }
2472 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2473
2474 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2475 {
2476         struct preempt_notifier *notifier;
2477         struct hlist_node *node;
2478
2479         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2480                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2481 }
2482
2483 static void
2484 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2485                                  struct task_struct *next)
2486 {
2487         struct preempt_notifier *notifier;
2488         struct hlist_node *node;
2489
2490         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2491                 notifier->ops->sched_out(notifier, next);
2492 }
2493
2494 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2495
2496 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2497 {
2498 }
2499
2500 static void
2501 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502                                  struct task_struct *next)
2503 {
2504 }
2505
2506 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2507
2508 /**
2509  * prepare_task_switch - prepare to switch tasks
2510  * @rq: the runqueue preparing to switch
2511  * @prev: the current task that is being switched out
2512  * @next: the task we are going to switch to.
2513  *
2514  * This is called with the rq lock held and interrupts off. It must
2515  * be paired with a subsequent finish_task_switch after the context
2516  * switch.
2517  *
2518  * prepare_task_switch sets up locking and calls architecture specific
2519  * hooks.
2520  */
2521 static inline void
2522 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2523                     struct task_struct *next)
2524 {
2525         fire_sched_out_preempt_notifiers(prev, next);
2526         prepare_lock_switch(rq, next);
2527         prepare_arch_switch(next);
2528 }
2529
2530 /**
2531  * finish_task_switch - clean up after a task-switch
2532  * @rq: runqueue associated with task-switch
2533  * @prev: the thread we just switched away from.
2534  *
2535  * finish_task_switch must be called after the context switch, paired
2536  * with a prepare_task_switch call before the context switch.
2537  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2538  * and do any other architecture-specific cleanup actions.
2539  *
2540  * Note that we may have delayed dropping an mm in context_switch(). If
2541  * so, we finish that here outside of the runqueue lock. (Doing it
2542  * with the lock held can cause deadlocks; see schedule() for
2543  * details.)
2544  */
2545 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2546         __releases(rq->lock)
2547 {
2548         struct mm_struct *mm = rq->prev_mm;
2549         long prev_state;
2550
2551         rq->prev_mm = NULL;
2552
2553         /*
2554          * A task struct has one reference for the use as "current".
2555          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2556          * schedule one last time. The schedule call will never return, and
2557          * the scheduled task must drop that reference.
2558          * The test for TASK_DEAD must occur while the runqueue locks are
2559          * still held, otherwise prev could be scheduled on another cpu, die
2560          * there before we look at prev->state, and then the reference would
2561          * be dropped twice.
2562          *              Manfred Spraul <manfred@colorfullife.com>
2563          */
2564         prev_state = prev->state;
2565         finish_arch_switch(prev);
2566         finish_lock_switch(rq, prev);
2567 #ifdef CONFIG_SMP
2568         if (current->sched_class->post_schedule)
2569                 current->sched_class->post_schedule(rq);
2570 #endif
2571
2572         fire_sched_in_preempt_notifiers(current);
2573         if (mm)
2574                 mmdrop(mm);
2575         if (unlikely(prev_state == TASK_DEAD)) {
2576                 /*
2577                  * Remove function-return probe instances associated with this
2578                  * task and put them back on the free list.
2579                  */
2580                 kprobe_flush_task(prev);
2581                 put_task_struct(prev);
2582         }
2583 }
2584
2585 /**
2586  * schedule_tail - first thing a freshly forked thread must call.
2587  * @prev: the thread we just switched away from.
2588  */
2589 asmlinkage void schedule_tail(struct task_struct *prev)
2590         __releases(rq->lock)
2591 {
2592         struct rq *rq = this_rq();
2593
2594         finish_task_switch(rq, prev);
2595 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2596         /* In this case, finish_task_switch does not reenable preemption */
2597         preempt_enable();
2598 #endif
2599         if (current->set_child_tid)
2600                 put_user(task_pid_vnr(current), current->set_child_tid);
2601 }
2602
2603 /*
2604  * context_switch - switch to the new MM and the new
2605  * thread's register state.
2606  */
2607 static inline void
2608 context_switch(struct rq *rq, struct task_struct *prev,
2609                struct task_struct *next)
2610 {
2611         struct mm_struct *mm, *oldmm;
2612
2613         prepare_task_switch(rq, prev, next);
2614         trace_sched_switch(rq, prev, next);
2615         mm = next->mm;
2616         oldmm = prev->active_mm;
2617         /*
2618          * For paravirt, this is coupled with an exit in switch_to to
2619          * combine the page table reload and the switch backend into
2620          * one hypercall.
2621          */
2622         arch_enter_lazy_cpu_mode();
2623
2624         if (unlikely(!mm)) {
2625                 next->active_mm = oldmm;
2626                 atomic_inc(&oldmm->mm_count);
2627                 enter_lazy_tlb(oldmm, next);
2628         } else
2629                 switch_mm(oldmm, mm, next);
2630
2631         if (unlikely(!prev->mm)) {
2632                 prev->active_mm = NULL;
2633                 rq->prev_mm = oldmm;
2634         }
2635         /*
2636          * Since the runqueue lock will be released by the next
2637          * task (which is an invalid locking op but in the case
2638          * of the scheduler it's an obvious special-case), so we
2639          * do an early lockdep release here:
2640          */
2641 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2642         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2643 #endif
2644
2645         /* Here we just switch the register state and the stack. */
2646         switch_to(prev, next, prev);
2647
2648         barrier();
2649         /*
2650          * this_rq must be evaluated again because prev may have moved
2651          * CPUs since it called schedule(), thus the 'rq' on its stack
2652          * frame will be invalid.
2653          */
2654         finish_task_switch(this_rq(), prev);
2655 }
2656
2657 /*
2658  * nr_running, nr_uninterruptible and nr_context_switches:
2659  *
2660  * externally visible scheduler statistics: current number of runnable
2661  * threads, current number of uninterruptible-sleeping threads, total
2662  * number of context switches performed since bootup.
2663  */
2664 unsigned long nr_running(void)
2665 {
2666         unsigned long i, sum = 0;
2667
2668         for_each_online_cpu(i)
2669                 sum += cpu_rq(i)->nr_running;
2670
2671         return sum;
2672 }
2673
2674 unsigned long nr_uninterruptible(void)
2675 {
2676         unsigned long i, sum = 0;
2677
2678         for_each_possible_cpu(i)
2679                 sum += cpu_rq(i)->nr_uninterruptible;
2680
2681         /*
2682          * Since we read the counters lockless, it might be slightly
2683          * inaccurate. Do not allow it to go below zero though:
2684          */
2685         if (unlikely((long)sum < 0))
2686                 sum = 0;
2687
2688         return sum;
2689 }
2690
2691 unsigned long long nr_context_switches(void)
2692 {
2693         int i;
2694         unsigned long long sum = 0;
2695
2696         for_each_possible_cpu(i)
2697                 sum += cpu_rq(i)->nr_switches;
2698
2699         return sum;
2700 }
2701
2702 unsigned long nr_iowait(void)
2703 {
2704         unsigned long i, sum = 0;
2705
2706         for_each_possible_cpu(i)
2707                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2708
2709         return sum;
2710 }
2711
2712 unsigned long nr_active(void)
2713 {
2714         unsigned long i, running = 0, uninterruptible = 0;
2715
2716         for_each_online_cpu(i) {
2717                 running += cpu_rq(i)->nr_running;
2718                 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2719         }
2720
2721         if (unlikely((long)uninterruptible < 0))
2722                 uninterruptible = 0;
2723
2724         return running + uninterruptible;
2725 }
2726
2727 /*
2728  * Update rq->cpu_load[] statistics. This function is usually called every
2729  * scheduler tick (TICK_NSEC).
2730  */
2731 static void update_cpu_load(struct rq *this_rq)
2732 {
2733         unsigned long this_load = this_rq->load.weight;
2734         int i, scale;
2735
2736         this_rq->nr_load_updates++;
2737
2738         /* Update our load: */
2739         for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2740                 unsigned long old_load, new_load;
2741
2742                 /* scale is effectively 1 << i now, and >> i divides by scale */
2743
2744                 old_load = this_rq->cpu_load[i];
2745                 new_load = this_load;
2746                 /*
2747                  * Round up the averaging division if load is increasing. This
2748                  * prevents us from getting stuck on 9 if the load is 10, for
2749                  * example.
2750                  */
2751                 if (new_load > old_load)
2752                         new_load += scale-1;
2753                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2754         }
2755 }
2756
2757 #ifdef CONFIG_SMP
2758
2759 /*
2760  * double_rq_lock - safely lock two runqueues
2761  *
2762  * Note this does not disable interrupts like task_rq_lock,
2763  * you need to do so manually before calling.
2764  */
2765 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2766         __acquires(rq1->lock)
2767         __acquires(rq2->lock)
2768 {
2769         BUG_ON(!irqs_disabled());
2770         if (rq1 == rq2) {
2771                 spin_lock(&rq1->lock);
2772                 __acquire(rq2->lock);   /* Fake it out ;) */
2773         } else {
2774                 if (rq1 < rq2) {
2775                         spin_lock(&rq1->lock);
2776                         spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2777                 } else {
2778                         spin_lock(&rq2->lock);
2779                         spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2780                 }
2781         }
2782         update_rq_clock(rq1);
2783         update_rq_clock(rq2);
2784 }
2785
2786 /*
2787  * double_rq_unlock - safely unlock two runqueues
2788  *
2789  * Note this does not restore interrupts like task_rq_unlock,
2790  * you need to do so manually after calling.
2791  */
2792 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2793         __releases(rq1->lock)
2794         __releases(rq2->lock)
2795 {
2796         spin_unlock(&rq1->lock);
2797         if (rq1 != rq2)
2798                 spin_unlock(&rq2->lock);
2799         else
2800                 __release(rq2->lock);
2801 }
2802
2803 /*
2804  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2805  */
2806 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2807         __releases(this_rq->lock)
2808         __acquires(busiest->lock)
2809         __acquires(this_rq->lock)
2810 {
2811         int ret = 0;
2812
2813         if (unlikely(!irqs_disabled())) {
2814                 /* printk() doesn't work good under rq->lock */
2815                 spin_unlock(&this_rq->lock);
2816                 BUG_ON(1);
2817         }
2818         if (unlikely(!spin_trylock(&busiest->lock))) {
2819                 if (busiest < this_rq) {
2820                         spin_unlock(&this_rq->lock);
2821                         spin_lock(&busiest->lock);
2822                         spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2823                         ret = 1;
2824                 } else
2825                         spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2826         }
2827         return ret;
2828 }
2829
2830 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2831         __releases(busiest->lock)
2832 {
2833         spin_unlock(&busiest->lock);
2834         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2835 }
2836
2837 /*
2838  * If dest_cpu is allowed for this process, migrate the task to it.
2839  * This is accomplished by forcing the cpu_allowed mask to only
2840  * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2841  * the cpu_allowed mask is restored.
2842  */
2843 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2844 {
2845         struct migration_req req;
2846         unsigned long flags;
2847         struct rq *rq;
2848
2849         rq = task_rq_lock(p, &flags);
2850         if (!cpu_isset(dest_cpu, p->cpus_allowed)
2851             || unlikely(!cpu_active(dest_cpu)))
2852                 goto out;
2853
2854         trace_sched_migrate_task(rq, p, dest_cpu);
2855         /* force the process onto the specified CPU */
2856         if (migrate_task(p, dest_cpu, &req)) {
2857                 /* Need to wait for migration thread (might exit: take ref). */
2858                 struct task_struct *mt = rq->migration_thread;
2859
2860                 get_task_struct(mt);
2861                 task_rq_unlock(rq, &flags);
2862                 wake_up_process(mt);
2863                 put_task_struct(mt);
2864                 wait_for_completion(&req.done);
2865
2866                 return;
2867         }
2868 out:
2869         task_rq_unlock(rq, &flags);
2870 }
2871
2872 /*
2873  * sched_exec - execve() is a valuable balancing opportunity, because at
2874  * this point the task has the smallest effective memory and cache footprint.
2875  */
2876 void sched_exec(void)
2877 {
2878         int new_cpu, this_cpu = get_cpu();
2879         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2880         put_cpu();
2881         if (new_cpu != this_cpu)
2882                 sched_migrate_task(current, new_cpu);
2883 }
2884
2885 /*
2886  * pull_task - move a task from a remote runqueue to the local runqueue.
2887  * Both runqueues must be locked.
2888  */
2889 static void pull_task(struct rq *src_rq, struct task_struct *p,
2890                       struct rq *this_rq, int this_cpu)
2891 {
2892         deactivate_task(src_rq, p, 0);
2893         set_task_cpu(p, this_cpu);
2894         activate_task(this_rq, p, 0);
2895         /*
2896          * Note that idle threads have a prio of MAX_PRIO, for this test
2897          * to be always true for them.
2898          */
2899         check_preempt_curr(this_rq, p, 0);
2900 }
2901
2902 /*
2903  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2904  */
2905 static
2906 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2907                      struct sched_domain *sd, enum cpu_idle_type idle,
2908                      int *all_pinned)
2909 {
2910         /*
2911          * We do not migrate tasks that are:
2912          * 1) running (obviously), or
2913          * 2) cannot be migrated to this CPU due to cpus_allowed, or
2914          * 3) are cache-hot on their current CPU.
2915          */
2916         if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2917                 schedstat_inc(p, se.nr_failed_migrations_affine);
2918                 return 0;
2919         }
2920         *all_pinned = 0;
2921
2922         if (task_running(rq, p)) {
2923                 schedstat_inc(p, se.nr_failed_migrations_running);
2924                 return 0;
2925         }
2926
2927         /*
2928          * Aggressive migration if:
2929          * 1) task is cache cold, or
2930          * 2) too many balance attempts have failed.
2931          */
2932
2933         if (!task_hot(p, rq->clock, sd) ||
2934                         sd->nr_balance_failed > sd->cache_nice_tries) {
2935 #ifdef CONFIG_SCHEDSTATS
2936                 if (task_hot(p, rq->clock, sd)) {
2937                         schedstat_inc(sd, lb_hot_gained[idle]);
2938                         schedstat_inc(p, se.nr_forced_migrations);
2939                 }
2940 #endif
2941                 return 1;
2942         }
2943
2944         if (task_hot(p, rq->clock, sd)) {
2945                 schedstat_inc(p, se.nr_failed_migrations_hot);
2946                 return 0;
2947         }
2948         return 1;
2949 }
2950
2951 static unsigned long
2952 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2953               unsigned long max_load_move, struct sched_domain *sd,
2954               enum cpu_idle_type idle, int *all_pinned,
2955               int *this_best_prio, struct rq_iterator *iterator)
2956 {
2957         int loops = 0, pulled = 0, pinned = 0;
2958         struct task_struct *p;
2959         long rem_load_move = max_load_move;
2960
2961         if (max_load_move == 0)
2962                 goto out;
2963
2964         pinned = 1;
2965
2966         /*
2967          * Start the load-balancing iterator:
2968          */
2969         p = iterator->start(iterator->arg);
2970 next:
2971         if (!p || loops++ > sysctl_sched_nr_migrate)
2972                 goto out;
2973
2974         if ((p->se.load.weight >> 1) > rem_load_move ||
2975             !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2976                 p = iterator->next(iterator->arg);
2977                 goto next;
2978         }
2979
2980         pull_task(busiest, p, this_rq, this_cpu);
2981         pulled++;
2982         rem_load_move -= p->se.load.weight;
2983
2984         /*
2985          * We only want to steal up to the prescribed amount of weighted load.
2986          */
2987         if (rem_load_move > 0) {
2988                 if (p->prio < *this_best_prio)
2989                         *this_best_prio = p->prio;
2990                 p = iterator->next(iterator->arg);
2991                 goto next;
2992         }
2993 out:
2994         /*
2995          * Right now, this is one of only two places pull_task() is called,
2996          * so we can safely collect pull_task() stats here rather than
2997          * inside pull_task().
2998          */
2999         schedstat_add(sd, lb_gained[idle], pulled);
3000
3001         if (all_pinned)
3002                 *all_pinned = pinned;
3003
3004         return max_load_move - rem_load_move;
3005 }
3006
3007 /*
3008  * move_tasks tries to move up to max_load_move weighted load from busiest to
3009  * this_rq, as part of a balancing operation within domain "sd".
3010  * Returns 1 if successful and 0 otherwise.
3011  *
3012  * Called with both runqueues locked.
3013  */
3014 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3015                       unsigned long max_load_move,
3016                       struct sched_domain *sd, enum cpu_idle_type idle,
3017                       int *all_pinned)
3018 {
3019         const struct sched_class *class = sched_class_highest;
3020         unsigned long total_load_moved = 0;
3021         int this_best_prio = this_rq->curr->prio;
3022
3023         do {
3024                 total_load_moved +=
3025                         class->load_balance(this_rq, this_cpu, busiest,
3026                                 max_load_move - total_load_moved,
3027                                 sd, idle, all_pinned, &this_best_prio);
3028                 class = class->next;
3029
3030                 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3031                         break;
3032
3033         } while (class && max_load_move > total_load_moved);
3034
3035         return total_load_moved > 0;
3036 }
3037
3038 static int
3039 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3040                    struct sched_domain *sd, enum cpu_idle_type idle,
3041                    struct rq_iterator *iterator)
3042 {
3043         struct task_struct *p = iterator->start(iterator->arg);
3044         int pinned = 0;
3045
3046         while (p) {
3047                 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3048                         pull_task(busiest, p, this_rq, this_cpu);
3049                         /*
3050                          * Right now, this is only the second place pull_task()
3051                          * is called, so we can safely collect pull_task()
3052                          * stats here rather than inside pull_task().
3053                          */
3054                         schedstat_inc(sd, lb_gained[idle]);
3055
3056                         return 1;
3057                 }
3058                 p = iterator->next(iterator->arg);
3059         }
3060
3061         return 0;
3062 }
3063
3064 /*
3065  * move_one_task tries to move exactly one task from busiest to this_rq, as
3066  * part of active balancing operations within "domain".
3067  * Returns 1 if successful and 0 otherwise.
3068  *
3069  * Called with both runqueues locked.
3070  */
3071 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3072                          struct sched_domain *sd, enum cpu_idle_type idle)
3073 {
3074         const struct sched_class *class;
3075
3076         for (class = sched_class_highest; class; class = class->next)
3077                 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3078                         return 1;
3079
3080         return 0;
3081 }
3082
3083 /*
3084  * find_busiest_group finds and returns the busiest CPU group within the
3085  * domain. It calculates and returns the amount of weighted load which
3086  * should be moved to restore balance via the imbalance parameter.
3087  */
3088 static struct sched_group *
3089 find_busiest_group(struct sched_domain *sd, int this_cpu,
3090                    unsigned long *imbalance, enum cpu_idle_type idle,
3091                    int *sd_idle, const cpumask_t *cpus, int *balance)
3092 {
3093         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3094         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3095         unsigned long max_pull;
3096         unsigned long busiest_load_per_task, busiest_nr_running;
3097         unsigned long this_load_per_task, this_nr_running;
3098         int load_idx, group_imb = 0;
3099 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3100         int power_savings_balance = 1;
3101         unsigned long leader_nr_running = 0, min_load_per_task = 0;
3102         unsigned long min_nr_running = ULONG_MAX;
3103         struct sched_group *group_min = NULL, *group_leader = NULL;
3104 #endif
3105
3106         max_load = this_load = total_load = total_pwr = 0;
3107         busiest_load_per_task = busiest_nr_running = 0;
3108         this_load_per_task = this_nr_running = 0;
3109
3110         if (idle == CPU_NOT_IDLE)
3111                 load_idx = sd->busy_idx;
3112         else if (idle == CPU_NEWLY_IDLE)
3113                 load_idx = sd->newidle_idx;
3114         else
3115                 load_idx = sd->idle_idx;
3116
3117         do {
3118                 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3119                 int local_group;
3120                 int i;
3121                 int __group_imb = 0;
3122                 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3123                 unsigned long sum_nr_running, sum_weighted_load;
3124                 unsigned long sum_avg_load_per_task;
3125                 unsigned long avg_load_per_task;
3126
3127                 local_group = cpu_isset(this_cpu, group->cpumask);
3128
3129                 if (local_group)
3130                         balance_cpu = first_cpu(group->cpumask);
3131
3132                 /* Tally up the load of all CPUs in the group */
3133                 sum_weighted_load = sum_nr_running = avg_load = 0;
3134                 sum_avg_load_per_task = avg_load_per_task = 0;
3135
3136                 max_cpu_load = 0;
3137                 min_cpu_load = ~0UL;
3138
3139                 for_each_cpu_mask_nr(i, group->cpumask) {
3140                         struct rq *rq;
3141
3142                         if (!cpu_isset(i, *cpus))
3143                                 continue;
3144
3145                         rq = cpu_rq(i);
3146
3147                         if (*sd_idle && rq->nr_running)
3148                                 *sd_idle = 0;
3149
3150                         /* Bias balancing toward cpus of our domain */
3151                         if (local_group) {
3152                                 if (idle_cpu(i) && !first_idle_cpu) {
3153                                         first_idle_cpu = 1;
3154                                         balance_cpu = i;
3155                                 }
3156
3157                                 load = target_load(i, load_idx);
3158                         } else {
3159                                 load = source_load(i, load_idx);
3160                                 if (load > max_cpu_load)
3161                                         max_cpu_load = load;
3162                                 if (min_cpu_load > load)
3163                                         min_cpu_load = load;
3164                         }
3165
3166                         avg_load += load;
3167                         sum_nr_running += rq->nr_running;
3168                         sum_weighted_load += weighted_cpuload(i);
3169
3170                         sum_avg_load_per_task += cpu_avg_load_per_task(i);
3171                 }
3172
3173                 /*
3174                  * First idle cpu or the first cpu(busiest) in this sched group
3175                  * is eligible for doing load balancing at this and above
3176                  * domains. In the newly idle case, we will allow all the cpu's
3177                  * to do the newly idle load balance.
3178                  */
3179                 if (idle != CPU_NEWLY_IDLE && local_group &&
3180                     balance_cpu != this_cpu && balance) {
3181                         *balance = 0;
3182                         goto ret;
3183                 }
3184
3185                 total_load += avg_load;
3186                 total_pwr += group->__cpu_power;
3187
3188                 /* Adjust by relative CPU power of the group */
3189                 avg_load = sg_div_cpu_power(group,
3190                                 avg_load * SCHED_LOAD_SCALE);
3191
3192
3193                 /*
3194                  * Consider the group unbalanced when the imbalance is larger
3195                  * than the average weight of two tasks.
3196                  *
3197                  * APZ: with cgroup the avg task weight can vary wildly and
3198                  *      might not be a suitable number - should we keep a
3199                  *      normalized nr_running number somewhere that negates
3200                  *      the hierarchy?
3201                  */
3202                 avg_load_per_task = sg_div_cpu_power(group,
3203                                 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3204
3205                 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3206                         __group_imb = 1;
3207
3208                 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3209
3210                 if (local_group) {
3211                         this_load = avg_load;
3212                         this = group;
3213                         this_nr_running = sum_nr_running;
3214                         this_load_per_task = sum_weighted_load;
3215                 } else if (avg_load > max_load &&
3216                            (sum_nr_running > group_capacity || __group_imb)) {
3217                         max_load = avg_load;
3218                         busiest = group;
3219                         busiest_nr_running = sum_nr_running;
3220                         busiest_load_per_task = sum_weighted_load;
3221                         group_imb = __group_imb;
3222                 }
3223
3224 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3225                 /*
3226                  * Busy processors will not participate in power savings
3227                  * balance.
3228                  */
3229                 if (idle == CPU_NOT_IDLE ||
3230                                 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3231                         goto group_next;
3232
3233                 /*
3234                  * If the local group is idle or completely loaded
3235                  * no need to do power savings balance at this domain
3236                  */
3237                 if (local_group && (this_nr_running >= group_capacity ||
3238                                     !this_nr_running))
3239                         power_savings_balance = 0;
3240
3241                 /*
3242                  * If a group is already running at full capacity or idle,
3243                  * don't include that group in power savings calculations
3244                  */
3245                 if (!power_savings_balance || sum_nr_running >= group_capacity
3246                     || !sum_nr_running)
3247                         goto group_next;
3248
3249                 /*
3250                  * Calculate the group which has the least non-idle load.
3251                  * This is the group from where we need to pick up the load
3252                  * for saving power
3253                  */
3254                 if ((sum_nr_running < min_nr_running) ||
3255                     (sum_nr_running == min_nr_running &&
3256                      first_cpu(group->cpumask) <
3257                      first_cpu(group_min->cpumask))) {
3258                         group_min = group;
3259                         min_nr_running = sum_nr_running;
3260                         min_load_per_task = sum_weighted_load /
3261                                                 sum_nr_running;
3262                 }
3263
3264                 /*
3265                  * Calculate the group which is almost near its
3266                  * capacity but still has some space to pick up some load
3267                  * from other group and save more power
3268                  */
3269                 if (sum_nr_running <= group_capacity - 1) {
3270                         if (sum_nr_running > leader_nr_running ||
3271                             (sum_nr_running == leader_nr_running &&
3272                              first_cpu(group->cpumask) >
3273                               first_cpu(group_leader->cpumask))) {
3274                                 group_leader = group;
3275                                 leader_nr_running = sum_nr_running;
3276                         }
3277                 }
3278 group_next:
3279 #endif
3280                 group = group->next;
3281         } while (group != sd->groups);
3282
3283         if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3284                 goto out_balanced;
3285
3286         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3287
3288         if (this_load >= avg_load ||
3289                         100*max_load <= sd->imbalance_pct*this_load)
3290                 goto out_balanced;
3291
3292         busiest_load_per_task /= busiest_nr_running;
3293         if (group_imb)
3294                 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3295
3296         /*
3297          * We're trying to get all the cpus to the average_load, so we don't
3298          * want to push ourselves above the average load, nor do we wish to
3299          * reduce the max loaded cpu below the average load, as either of these
3300          * actions would just result in more rebalancing later, and ping-pong
3301          * tasks around. Thus we look for the minimum possible imbalance.
3302          * Negative imbalances (*we* are more loaded than anyone else) will
3303          * be counted as no imbalance for these purposes -- we can't fix that
3304          * by pulling tasks to us. Be careful of negative numbers as they'll
3305          * appear as very large values with unsigned longs.
3306          */
3307         if (max_load <= busiest_load_per_task)
3308                 goto out_balanced;
3309
3310         /*
3311          * In the presence of smp nice balancing, certain scenarios can have
3312          * max load less than avg load(as we skip the groups at or below
3313          * its cpu_power, while calculating max_load..)
3314          */
3315         if (max_load < avg_load) {
3316                 *imbalance = 0;
3317                 goto small_imbalance;
3318         }
3319
3320         /* Don't want to pull so many tasks that a group would go idle */
3321         max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3322
3323         /* How much load to actually move to equalise the imbalance */
3324         *imbalance = min(max_pull * busiest->__cpu_power,
3325                                 (avg_load - this_load) * this->__cpu_power)
3326                         / SCHED_LOAD_SCALE;
3327
3328         /*
3329          * if *imbalance is less than the average load per runnable task
3330          * there is no gaurantee that any tasks will be moved so we'll have
3331          * a think about bumping its value to force at least one task to be
3332          * moved
3333          */
3334         if (*imbalance < busiest_load_per_task) {
3335                 unsigned long tmp, pwr_now, pwr_move;
3336                 unsigned int imbn;
3337
3338 small_imbalance:
3339                 pwr_move = pwr_now = 0;
3340                 imbn = 2;
3341                 if (this_nr_running) {
3342                         this_load_per_task /= this_nr_running;
3343                         if (busiest_load_per_task > this_load_per_task)
3344                                 imbn = 1;
3345                 } else
3346                         this_load_per_task = cpu_avg_load_per_task(this_cpu);
3347
3348                 if (max_load - this_load + busiest_load_per_task >=
3349                                         busiest_load_per_task * imbn) {
3350                         *imbalance = busiest_load_per_task;
3351                         return busiest;
3352                 }
3353
3354                 /*
3355                  * OK, we don't have enough imbalance to justify moving tasks,
3356                  * however we may be able to increase total CPU power used by
3357                  * moving them.
3358                  */
3359
3360                 pwr_now += busiest->__cpu_power *
3361                                 min(busiest_load_per_task, max_load);
3362                 pwr_now += this->__cpu_power *
3363                                 min(this_load_per_task, this_load);
3364                 pwr_now /= SCHED_LOAD_SCALE;
3365
3366                 /* Amount of load we'd subtract */
3367                 tmp = sg_div_cpu_power(busiest,
3368                                 busiest_load_per_task * SCHED_LOAD_SCALE);
3369                 if (max_load > tmp)
3370                         pwr_move += busiest->__cpu_power *
3371                                 min(busiest_load_per_task, max_load - tmp);
3372
3373                 /* Amount of load we'd add */
3374                 if (max_load * busiest->__cpu_power <
3375                                 busiest_load_per_task * SCHED_LOAD_SCALE)
3376                         tmp = sg_div_cpu_power(this,
3377                                         max_load * busiest->__cpu_power);
3378                 else
3379                         tmp = sg_div_cpu_power(this,
3380                                 busiest_load_per_task * SCHED_LOAD_SCALE);
3381                 pwr_move += this->__cpu_power *
3382                                 min(this_load_per_task, this_load + tmp);
3383                 pwr_move /= SCHED_LOAD_SCALE;
3384
3385                 /* Move if we gain throughput */
3386                 if (pwr_move > pwr_now)
3387                         *imbalance = busiest_load_per_task;
3388         }
3389
3390         return busiest;
3391
3392 out_balanced:
3393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3394         if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3395                 goto ret;
3396
3397         if (this == group_leader && group_leader != group_min) {
3398                 *imbalance = min_load_per_task;
3399                 return group_min;
3400         }
3401 #endif
3402 ret:
3403         *imbalance = 0;
3404         return NULL;
3405 }
3406
3407 /*
3408  * find_busiest_queue - find the busiest runqueue among the cpus in group.
3409  */
3410 static struct rq *
3411 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3412                    unsigned long imbalance, const cpumask_t *cpus)
3413 {
3414         struct rq *busiest = NULL, *rq;
3415         unsigned long max_load = 0;
3416         int i;
3417
3418         for_each_cpu_mask_nr(i, group->cpumask) {
3419                 unsigned long wl;
3420
3421                 if (!cpu_isset(i, *cpus))
3422                         continue;
3423
3424                 rq = cpu_rq(i);
3425                 wl = weighted_cpuload(i);
3426
3427                 if (rq->nr_running == 1 && wl > imbalance)
3428                         continue;
3429
3430                 if (wl > max_load) {
3431                         max_load = wl;
3432                         busiest = rq;
3433                 }
3434         }
3435
3436         return busiest;
3437 }
3438
3439 /*
3440  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3441  * so long as it is large enough.
3442  */
3443 #define MAX_PINNED_INTERVAL     512
3444
3445 /*
3446  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3447  * tasks if there is an imbalance.
3448  */
3449 static int load_balance(int this_cpu, struct rq *this_rq,
3450                         struct sched_domain *sd, enum cpu_idle_type idle,
3451                         int *balance, cpumask_t *cpus)
3452 {
3453         int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3454         struct sched_group *group;
3455         unsigned long imbalance;
3456         struct rq *busiest;
3457         unsigned long flags;
3458
3459         cpus_setall(*cpus);
3460
3461         /*
3462          * When power savings policy is enabled for the parent domain, idle
3463          * sibling can pick up load irrespective of busy siblings. In this case,
3464          * let the state of idle sibling percolate up as CPU_IDLE, instead of
3465          * portraying it as CPU_NOT_IDLE.
3466          */
3467         if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3468             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3469                 sd_idle = 1;
3470
3471         schedstat_inc(sd, lb_count[idle]);
3472
3473 redo:
3474         update_shares(sd);
3475         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3476                                    cpus, balance);
3477
3478         if (*balance == 0)
3479                 goto out_balanced;
3480
3481         if (!group) {
3482                 schedstat_inc(sd, lb_nobusyg[idle]);
3483                 goto out_balanced;
3484         }
3485
3486         busiest = find_busiest_queue(group, idle, imbalance, cpus);
3487         if (!busiest) {
3488                 schedstat_inc(sd, lb_nobusyq[idle]);
3489                 goto out_balanced;
3490         }
3491
3492         BUG_ON(busiest == this_rq);
3493
3494         schedstat_add(sd, lb_imbalance[idle], imbalance);
3495
3496         ld_moved = 0;
3497         if (busiest->nr_running > 1) {
3498                 /*
3499                  * Attempt to move tasks. If find_busiest_group has found
3500                  * an imbalance but busiest->nr_running <= 1, the group is
3501                  * still unbalanced. ld_moved simply stays zero, so it is
3502                  * correctly treated as an imbalance.
3503                  */
3504                 local_irq_save(flags);
3505                 double_rq_lock(this_rq, busiest);
3506                 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3507                                       imbalance, sd, idle, &all_pinned);
3508                 double_rq_unlock(this_rq, busiest);
3509                 local_irq_restore(flags);
3510
3511                 /*
3512                  * some other cpu did the load balance for us.
3513                  */
3514                 if (ld_moved && this_cpu != smp_processor_id())
3515                         resched_cpu(this_cpu);
3516
3517                 /* All tasks on this runqueue were pinned by CPU affinity */
3518                 if (unlikely(all_pinned)) {
3519                         cpu_clear(cpu_of(busiest), *cpus);
3520                         if (!cpus_empty(*cpus))
3521                                 goto redo;
3522                         goto out_balanced;
3523                 }
3524         }
3525
3526         if (!ld_moved) {
3527                 schedstat_inc(sd, lb_failed[idle]);
3528                 sd->nr_balance_failed++;
3529
3530                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3531
3532                         spin_lock_irqsave(&busiest->lock, flags);
3533
3534                         /* don't kick the migration_thread, if the curr
3535                          * task on busiest cpu can't be moved to this_cpu
3536                          */
3537                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3538                                 spin_unlock_irqrestore(&busiest->lock, flags);
3539                                 all_pinned = 1;
3540                                 goto out_one_pinned;
3541                         }
3542
3543                         if (!busiest->active_balance) {
3544                                 busiest->active_balance = 1;
3545                                 busiest->push_cpu = this_cpu;
3546                                 active_balance = 1;
3547                         }
3548                         spin_unlock_irqrestore(&busiest->lock, flags);
3549                         if (active_balance)
3550                                 wake_up_process(busiest->migration_thread);
3551
3552                         /*
3553                          * We've kicked active balancing, reset the failure
3554                          * counter.
3555                          */
3556                         sd->nr_balance_failed = sd->cache_nice_tries+1;
3557                 }
3558         } else
3559                 sd->nr_balance_failed = 0;
3560
3561         if (likely(!active_balance)) {
3562                 /* We were unbalanced, so reset the balancing interval */
3563                 sd->balance_interval = sd->min_interval;
3564         } else {
3565                 /*
3566                  * If we've begun active balancing, start to back off. This
3567                  * case may not be covered by the all_pinned logic if there
3568                  * is only 1 task on the busy runqueue (because we don't call
3569                  * move_tasks).
3570                  */
3571                 if (sd->balance_interval < sd->max_interval)
3572                         sd->balance_interval *= 2;
3573         }
3574
3575         if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3576             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3577                 ld_moved = -1;
3578
3579         goto out;
3580
3581 out_balanced:
3582         schedstat_inc(sd, lb_balanced[idle]);
3583
3584         sd->nr_balance_failed = 0;
3585
3586 out_one_pinned:
3587         /* tune up the balancing interval */
3588         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3589                         (sd->balance_interval < sd->max_interval))
3590                 sd->balance_interval *= 2;
3591
3592         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3593             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3594                 ld_moved = -1;
3595         else
3596                 ld_moved = 0;
3597 out:
3598         if (ld_moved)
3599                 update_shares(sd);
3600         return ld_moved;
3601 }
3602
3603 /*
3604  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3605  * tasks if there is an imbalance.
3606  *
3607  * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3608  * this_rq is locked.
3609  */
3610 static int
3611 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3612                         cpumask_t *cpus)
3613 {
3614         struct sched_group *group;
3615         struct rq *busiest = NULL;
3616         unsigned long imbalance;
3617         int ld_moved = 0;
3618         int sd_idle = 0;
3619         int all_pinned = 0;
3620
3621         cpus_setall(*cpus);
3622
3623         /*
3624          * When power savings policy is enabled for the parent domain, idle
3625          * sibling can pick up load irrespective of busy siblings. In this case,
3626          * let the state of idle sibling percolate up as IDLE, instead of
3627          * portraying it as CPU_NOT_IDLE.
3628          */
3629         if (sd->flags & SD_SHARE_CPUPOWER &&
3630             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3631                 sd_idle = 1;
3632
3633         schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3634 redo:
3635         update_shares_locked(this_rq, sd);
3636         group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3637                                    &sd_idle, cpus, NULL);
3638         if (!group) {
3639                 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3640                 goto out_balanced;
3641         }
3642
3643         busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3644         if (!busiest) {
3645                 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3646                 goto out_balanced;
3647         }
3648
3649         BUG_ON(busiest == this_rq);
3650
3651         schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3652
3653         ld_moved = 0;
3654         if (busiest->nr_running > 1) {
3655                 /* Attempt to move tasks */
3656                 double_lock_balance(this_rq, busiest);
3657                 /* this_rq->clock is already updated */
3658                 update_rq_clock(busiest);
3659                 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3660                                         imbalance, sd, CPU_NEWLY_IDLE,
3661                                         &all_pinned);
3662                 double_unlock_balance(this_rq, busiest);
3663
3664                 if (unlikely(all_pinned)) {
3665                         cpu_clear(cpu_of(busiest), *cpus);
3666                         if (!cpus_empty(*cpus))
3667                                 goto redo;
3668                 }
3669         }
3670
3671         if (!ld_moved) {
3672                 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3673                 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3674                     !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3675                         return -1;
3676         } else
3677                 sd->nr_balance_failed = 0;
3678
3679         update_shares_locked(this_rq, sd);
3680         return ld_moved;
3681
3682 out_balanced:
3683         schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3684         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3685             !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3686                 return -1;
3687         sd->nr_balance_failed = 0;
3688
3689         return 0;
3690 }
3691
3692 /*
3693  * idle_balance is called by schedule() if this_cpu is about to become
3694  * idle. Attempts to pull tasks from other CPUs.
3695  */
3696 static void idle_balance(int this_cpu, struct rq *this_rq)
3697 {
3698         struct sched_domain *sd;
3699         int pulled_task = -1;
3700         unsigned long next_balance = jiffies + HZ;
3701         cpumask_t tmpmask;
3702
3703         for_each_domain(this_cpu, sd) {
3704                 unsigned long interval;
3705
3706                 if (!(sd->flags & SD_LOAD_BALANCE))
3707                         continue;
3708
3709                 if (sd->flags & SD_BALANCE_NEWIDLE)
3710                         /* If we've pulled tasks over stop searching: */
3711                         pulled_task = load_balance_newidle(this_cpu, this_rq,
3712                                                            sd, &tmpmask);
3713
3714                 interval = msecs_to_jiffies(sd->balance_interval);
3715                 if (time_after(next_balance, sd->last_balance + interval))
3716                         next_balance = sd->last_balance + interval;
3717                 if (pulled_task)
3718                         break;
3719         }
3720         if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3721                 /*
3722                  * We are going idle. next_balance may be set based on
3723                  * a busy processor. So reset next_balance.
3724                  */
3725                 this_rq->next_balance = next_balance;
3726         }
3727 }
3728
3729 /*
3730  * active_load_balance is run by migration threads. It pushes running tasks
3731  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3732  * running on each physical CPU where possible, and avoids physical /
3733  * logical imbalances.
3734  *
3735  * Called with busiest_rq locked.
3736  */
3737 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3738 {
3739         int target_cpu = busiest_rq->push_cpu;
3740         struct sched_domain *sd;
3741         struct rq *target_rq;
3742
3743         /* Is there any task to move? */
3744         if (busiest_rq->nr_running <= 1)
3745                 return;
3746
3747         target_rq = cpu_rq(target_cpu);
3748
3749         /*
3750          * This condition is "impossible", if it occurs
3751          * we need to fix it. Originally reported by
3752          * Bjorn Helgaas on a 128-cpu setup.
3753          */
3754         BUG_ON(busiest_rq == target_rq);
3755
3756         /* move a task from busiest_rq to target_rq */
3757         double_lock_balance(busiest_rq, target_rq);
3758         update_rq_clock(busiest_rq);
3759         update_rq_clock(target_rq);
3760
3761         /* Search for an sd spanning us and the target CPU. */
3762         for_each_domain(target_cpu, sd) {
3763                 if ((sd->flags & SD_LOAD_BALANCE) &&
3764                     cpu_isset(busiest_cpu, sd->span))
3765                                 break;
3766         }
3767
3768         if (likely(sd)) {
3769                 schedstat_inc(sd, alb_count);
3770
3771                 if (move_one_task(target_rq, target_cpu, busiest_rq,
3772                                   sd, CPU_IDLE))
3773                         schedstat_inc(sd, alb_pushed);
3774                 else
3775                         schedstat_inc(sd, alb_failed);
3776         }
3777         double_unlock_balance(busiest_rq, target_rq);
3778 }
3779
3780 #ifdef CONFIG_NO_HZ
3781 static struct {
3782         atomic_t load_balancer;
3783         cpumask_t cpu_mask;
3784 } nohz ____cacheline_aligned = {
3785         .load_balancer = ATOMIC_INIT(-1),
3786         .cpu_mask = CPU_MASK_NONE,
3787 };
3788
3789 /*
3790  * This routine will try to nominate the ilb (idle load balancing)
3791  * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3792  * load balancing on behalf of all those cpus. If all the cpus in the system
3793  * go into this tickless mode, then there will be no ilb owner (as there is
3794  * no need for one) and all the cpus will sleep till the next wakeup event
3795  * arrives...
3796  *
3797  * For the ilb owner, tick is not stopped. And this tick will be used
3798  * for idle load balancing. ilb owner will still be part of
3799  * nohz.cpu_mask..
3800  *
3801  * While stopping the tick, this cpu will become the ilb owner if there
3802  * is no other owner. And will be the owner till that cpu becomes busy
3803  * or if all cpus in the system stop their ticks at which point
3804  * there is no need for ilb owner.
3805  *
3806  * When the ilb owner becomes busy, it nominates another owner, during the
3807  * next busy scheduler_tick()
3808  */
3809 int select_nohz_load_balancer(int stop_tick)
3810 {
3811         int cpu = smp_processor_id();
3812
3813         if (stop_tick) {
3814                 cpu_set(cpu, nohz.cpu_mask);
3815                 cpu_rq(cpu)->in_nohz_recently = 1;
3816
3817                 /*
3818                  * If we are going offline and still the leader, give up!
3819                  */
3820                 if (!cpu_active(cpu) &&
3821                     atomic_read(&nohz.load_balancer) == cpu) {
3822                         if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3823                                 BUG();
3824                         return 0;
3825                 }
3826
3827                 /* time for ilb owner also to sleep */
3828                 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3829                         if (atomic_read(&nohz.load_balancer) == cpu)
3830                                 atomic_set(&nohz.load_balancer, -1);
3831                         return 0;
3832                 }
3833
3834                 if (atomic_read(&nohz.load_balancer) == -1) {
3835                         /* make me the ilb owner */
3836                         if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3837                                 return 1;
3838                 } else if (atomic_read(&nohz.load_balancer) == cpu)
3839                         return 1;
3840         } else {
3841                 if (!cpu_isset(cpu, nohz.cpu_mask))
3842                         return 0;
3843
3844                 cpu_clear(cpu, nohz.cpu_mask);
3845
3846                 if (atomic_read(&nohz.load_balancer) == cpu)
3847                         if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3848                                 BUG();
3849         }
3850         return 0;
3851 }
3852 #endif
3853
3854 static DEFINE_SPINLOCK(balancing);
3855
3856 /*
3857  * It checks each scheduling domain to see if it is due to be balanced,
3858  * and initiates a balancing operation if so.
3859  *
3860  * Balancing parameters are set up in arch_init_sched_domains.
3861  */
3862 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3863 {
3864         int balance = 1;
3865         struct rq *rq = cpu_rq(cpu);
3866         unsigned long interval;
3867         struct sched_domain *sd;
3868         /* Earliest time when we have to do rebalance again */
3869         unsigned long next_balance = jiffies + 60*HZ;
3870         int update_next_balance = 0;
3871         int need_serialize;
3872         cpumask_t tmp;
3873
3874         for_each_domain(cpu, sd) {
3875                 if (!(sd->flags & SD_LOAD_BALANCE))
3876                         continue;
3877
3878                 interval = sd->balance_interval;
3879                 if (idle != CPU_IDLE)
3880                         interval *= sd->busy_factor;
3881
3882                 /* scale ms to jiffies */
3883                 interval = msecs_to_jiffies(interval);
3884                 if (unlikely(!interval))
3885                         interval = 1;
3886                 if (interval > HZ*NR_CPUS/10)
3887                         interval = HZ*NR_CPUS/10;
3888
3889                 need_serialize = sd->flags & SD_SERIALIZE;
3890
3891                 if (need_serialize) {
3892                         if (!spin_trylock(&balancing))
3893                                 goto out;
3894                 }
3895
3896                 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3897                         if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3898                                 /*
3899                                  * We've pulled tasks over so either we're no
3900                                  * longer idle, or one of our SMT siblings is
3901                                  * not idle.
3902                                  */
3903                                 idle = CPU_NOT_IDLE;
3904                         }
3905                         sd->last_balance = jiffies;
3906                 }
3907                 if (need_serialize)
3908                         spin_unlock(&balancing);
3909 out:
3910                 if (time_after(next_balance, sd->last_balance + interval)) {
3911                         next_balance = sd->last_balance + interval;
3912                         update_next_balance = 1;
3913                 }
3914
3915                 /*
3916                  * Stop the load balance at this level. There is another
3917                  * CPU in our sched group which is doing load balancing more
3918                  * actively.
3919                  */
3920                 if (!balance)
3921                         break;
3922         }
3923
3924         /*
3925          * next_balance will be updated only when there is a need.
3926          * When the cpu is attached to null domain for ex, it will not be
3927          * updated.
3928          */
3929         if (likely(update_next_balance))
3930                 rq->next_balance = next_balance;
3931 }
3932
3933 /*
3934  * run_rebalance_domains is triggered when needed from the scheduler tick.
3935  * In CONFIG_NO_HZ case, the idle load balance owner will do the
3936  * rebalancing for all the cpus for whom scheduler ticks are stopped.
3937  */
3938 static void run_rebalance_domains(struct softirq_action *h)
3939 {
3940         int this_cpu = smp_processor_id();
3941         struct rq *this_rq = cpu_rq(this_cpu);
3942         enum cpu_idle_type idle = this_rq->idle_at_tick ?
3943                                                 CPU_IDLE : CPU_NOT_IDLE;
3944
3945         rebalance_domains(this_cpu, idle);
3946
3947 #ifdef CONFIG_NO_HZ
3948         /*
3949          * If this cpu is the owner for idle load balancing, then do the
3950          * balancing on behalf of the other idle cpus whose ticks are
3951          * stopped.
3952          */
3953         if (this_rq->idle_at_tick &&
3954             atomic_read(&nohz.load_balancer) == this_cpu) {
3955                 cpumask_t cpus = nohz.cpu_mask;
3956                 struct rq *rq;
3957                 int balance_cpu;
3958
3959                 cpu_clear(this_cpu, cpus);
3960                 for_each_cpu_mask_nr(balance_cpu, cpus) {
3961                         /*
3962                          * If this cpu gets work to do, stop the load balancing
3963                          * work being done for other cpus. Next load
3964                          * balancing owner will pick it up.
3965                          */
3966                         if (need_resched())
3967                                 break;
3968
3969                         rebalance_domains(balance_cpu, CPU_IDLE);
3970
3971                         rq = cpu_rq(balance_cpu);
3972                         if (time_after(this_rq->next_balance, rq->next_balance))
3973                                 this_rq->next_balance = rq->next_balance;
3974                 }
3975         }
3976 #endif
3977 }
3978
3979 /*
3980  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3981  *
3982  * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3983  * idle load balancing owner or decide to stop the periodic load balancing,
3984  * if the whole system is idle.
3985  */
3986 static inline void trigger_load_balance(struct rq *rq, int cpu)
3987 {
3988 #ifdef CONFIG_NO_HZ
3989         /*
3990          * If we were in the nohz mode recently and busy at the current
3991          * scheduler tick, then check if we need to nominate new idle
3992          * load balancer.
3993          */
3994         if (rq->in_nohz_recently && !rq->idle_at_tick) {
3995                 rq->in_nohz_recently = 0;
3996
3997                 if (atomic_read(&nohz.load_balancer) == cpu) {
3998                         cpu_clear(cpu, nohz.cpu_mask);
3999                         atomic_set(&nohz.load_balancer, -1);
4000                 }
4001
4002                 if (atomic_read(&nohz.load_balancer) == -1) {
4003                         /*
4004                          * simple selection for now: Nominate the
4005                          * first cpu in the nohz list to be the next
4006                          * ilb owner.
4007                          *
4008                          * TBD: Traverse the sched domains and nominate
4009                          * the nearest cpu in the nohz.cpu_mask.
4010                          */
4011                         int ilb = first_cpu(nohz.cpu_mask);
4012
4013                         if (ilb < nr_cpu_ids)
4014                                 resched_cpu(ilb);
4015                 }
4016         }
4017
4018         /*
4019          * If this cpu is idle and doing idle load balancing for all the
4020          * cpus with ticks stopped, is it time for that to stop?
4021          */
4022         if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4023             cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4024                 resched_cpu(cpu);
4025                 return;
4026         }
4027
4028         /*
4029          * If this cpu is idle and the idle load balancing is done by
4030          * someone else, then no need raise the SCHED_SOFTIRQ
4031          */
4032         if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4033             cpu_isset(cpu, nohz.cpu_mask))
4034                 return;
4035 #endif
4036         if (time_after_eq(jiffies, rq->next_balance))
4037                 raise_softirq(SCHED_SOFTIRQ);
4038 }
4039
4040 #else   /* CONFIG_SMP */
4041
4042 /*
4043  * on UP we do not need to balance between CPUs:
4044  */
4045 static inline void idle_balance(int cpu, struct rq *rq)
4046 {
4047 }
4048
4049 #endif
4050
4051 DEFINE_PER_CPU(struct kernel_stat, kstat);
4052
4053 EXPORT_PER_CPU_SYMBOL(kstat);
4054
4055 /*
4056  * Return any ns on the sched_clock that have not yet been banked in
4057  * @p in case that task is currently running.
4058  */
4059 unsigned long long task_delta_exec(struct task_struct *p)
4060 {
4061         unsigned long flags;
4062         struct rq *rq;
4063         u64 ns = 0;
4064
4065         rq = task_rq_lock(p, &flags);
4066
4067         if (task_current(rq, p)) {
4068                 u64 delta_exec;
4069
4070                 update_rq_clock(rq);
4071                 delta_exec = rq->clock - p->se.exec_start;
4072                 if ((s64)delta_exec > 0)
4073                         ns = delta_exec;
4074         }
4075
4076         task_rq_unlock(rq, &flags);
4077
4078         return ns;
4079 }
4080
4081 /*
4082  * Account user cpu time to a process.
4083  * @p: the process that the cpu time gets accounted to
4084  * @cputime: the cpu time spent in user space since the last update
4085  */
4086 void account_user_time(struct task_struct *p, cputime_t cputime)
4087 {
4088         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4089         cputime64_t tmp;
4090
4091         p->utime = cputime_add(p->utime, cputime);
4092         account_group_user_time(p, cputime);
4093
4094         /* Add user time to cpustat. */
4095         tmp = cputime_to_cputime64(cputime);
4096         if (TASK_NICE(p) > 0)
4097                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4098         else
4099                 cpustat->user = cputime64_add(cpustat->user, tmp);
4100         /* Account for user time used */
4101         acct_update_integrals(p);
4102 }
4103
4104 /*
4105  * Account guest cpu time to a process.
4106  * @p: the process that the cpu time gets accounted to
4107  * @cputime: the cpu time spent in virtual machine since the last update
4108  */
4109 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4110 {
4111         cputime64_t tmp;
4112         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4113
4114         tmp = cputime_to_cputime64(cputime);
4115
4116         p->utime = cputime_add(p->utime, cputime);
4117         account_group_user_time(p, cputime);
4118         p->gtime = cputime_add(p->gtime, cputime);
4119
4120         cpustat->user = cputime64_add(cpustat->user, tmp);
4121         cpustat->guest = cputime64_add(cpustat->guest, tmp);
4122 }
4123
4124 /*
4125  * Account scaled user cpu time to a process.
4126  * @p: the process that the cpu time gets accounted to
4127  * @cputime: the cpu time spent in user space since the last update
4128  */
4129 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4130 {
4131         p->utimescaled = cputime_add(p->utimescaled, cputime);
4132 }
4133
4134 /*
4135  * Account system cpu time to a process.
4136  * @p: the process that the cpu time gets accounted to
4137  * @hardirq_offset: the offset to subtract from hardirq_count()
4138  * @cputime: the cpu time spent in kernel space since the last update
4139  */
4140 void account_system_time(struct task_struct *p, int hardirq_offset,
4141                          cputime_t cputime)
4142 {
4143         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4144         struct rq *rq = this_rq();
4145         cputime64_t tmp;
4146
4147         if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4148                 account_guest_time(p, cputime);
4149                 return;
4150         }
4151
4152         p->stime = cputime_add(p->stime, cputime);
4153         account_group_system_time(p, cputime);
4154
4155         /* Add system time to cpustat. */
4156         tmp = cputime_to_cputime64(cputime);
4157         if (hardirq_count() - hardirq_offset)
4158                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4159         else if (softirq_count())
4160                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4161         else if (p != rq->idle)
4162                 cpustat->system = cputime64_add(cpustat->system, tmp);
4163         else if (atomic_read(&rq->nr_iowait) > 0)
4164                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4165         else
4166                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4167         /* Account for system time used */
4168         acct_update_integrals(p);
4169 }
4170
4171 /*
4172  * Account scaled system cpu time to a process.
4173  * @p: the process that the cpu time gets accounted to
4174  * @hardirq_offset: the offset to subtract from hardirq_count()
4175  * @cputime: the cpu time spent in kernel space since the last update
4176  */
4177 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4178 {
4179         p->stimescaled = cputime_add(p->stimescaled, cputime);
4180 }
4181
4182 /*
4183  * Account for involuntary wait time.
4184  * @p: the process from which the cpu time has been stolen
4185  * @steal: the cpu time spent in involuntary wait
4186  */
4187 void account_steal_time(struct task_struct *p, cputime_t steal)
4188 {
4189         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4190         cputime64_t tmp = cputime_to_cputime64(steal);
4191         struct rq *rq = this_rq();
4192
4193         if (p == rq->idle) {
4194                 p->stime = cputime_add(p->stime, steal);
4195                 account_group_system_time(p, steal);
4196                 if (atomic_read(&rq->nr_iowait) > 0)
4197                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4198                 else
4199                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
4200         } else
4201                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4202 }
4203
4204 /*
4205  * Use precise platform statistics if available:
4206  */
4207 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4208 cputime_t task_utime(struct task_struct *p)
4209 {
4210         return p->utime;
4211 }
4212
4213 cputime_t task_stime(struct task_struct *p)
4214 {
4215         return p->stime;
4216 }
4217 #else
4218 cputime_t task_utime(struct task_struct *p)
4219 {
4220         clock_t utime = cputime_to_clock_t(p->utime),
4221                 total = utime + cputime_to_clock_t(p->stime);
4222         u64 temp;
4223
4224         /*
4225          * Use CFS's precise accounting:
4226          */
4227         temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4228
4229         if (total) {
4230                 temp *= utime;
4231                 do_div(temp, total);
4232         }
4233         utime = (clock_t)temp;
4234
4235         p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4236         return p->prev_utime;
4237 }
4238
4239 cputime_t task_stime(struct task_struct *p)
4240 {
4241         clock_t stime;
4242
4243         /*
4244          * Use CFS's precise accounting. (we subtract utime from
4245          * the total, to make sure the total observed by userspace
4246          * grows monotonically - apps rely on that):
4247          */
4248         stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4249                         cputime_to_clock_t(task_utime(p));
4250
4251         if (stime >= 0)
4252                 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4253
4254         return p->prev_stime;
4255 }
4256 #endif
4257
4258 inline cputime_t task_gtime(struct task_struct *p)
4259 {
4260         return p->gtime;
4261 }
4262
4263 /*
4264  * This function gets called by the timer code, with HZ frequency.
4265  * We call it with interrupts disabled.
4266  *
4267  * It also gets called by the fork code, when changing the parent's
4268  * timeslices.
4269  */
4270 void scheduler_tick(void)
4271 {
4272         int cpu = smp_processor_id();
4273         struct rq *rq = cpu_rq(cpu);
4274         struct task_struct *curr = rq->curr;
4275
4276         sched_clock_tick();
4277
4278         spin_lock(&rq->lock);
4279         update_rq_clock(rq);
4280         update_cpu_load(rq);
4281         curr->sched_class->task_tick(rq, curr, 0);
4282         spin_unlock(&rq->lock);
4283
4284 #ifdef CONFIG_SMP
4285         rq->idle_at_tick = idle_cpu(cpu);
4286         trigger_load_balance(rq, cpu);
4287 #endif
4288 }
4289
4290 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4291                                 defined(CONFIG_PREEMPT_TRACER))
4292
4293 static inline unsigned long get_parent_ip(unsigned long addr)
4294 {
4295         if (in_lock_functions(addr)) {
4296                 addr = CALLER_ADDR2;
4297                 if (in_lock_functions(addr))
4298                         addr = CALLER_ADDR3;
4299         }
4300         return addr;
4301 }
4302
4303 void __kprobes add_preempt_count(int val)
4304 {
4305 #ifdef CONFIG_DEBUG_PREEMPT
4306         /*
4307          * Underflow?
4308          */
4309         if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4310                 return;
4311 #endif
4312         preempt_count() += val;
4313 #ifdef CONFIG_DEBUG_PREEMPT
4314         /*
4315          * Spinlock count overflowing soon?
4316          */
4317         DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4318                                 PREEMPT_MASK - 10);
4319 #endif
4320         if (preempt_count() == val)
4321                 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4322 }
4323 EXPORT_SYMBOL(add_preempt_count);
4324
4325 void __kprobes sub_preempt_count(int val)
4326 {
4327 #ifdef CONFIG_DEBUG_PREEMPT
4328         /*
4329          * Underflow?
4330          */
4331         if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4332                 return;
4333         /*
4334          * Is the spinlock portion underflowing?
4335          */
4336         if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4337                         !(preempt_count() & PREEMPT_MASK)))
4338                 return;
4339 #endif
4340
4341         if (preempt_count() == val)
4342                 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4343         preempt_count() -= val;
4344 }
4345 EXPORT_SYMBOL(sub_preempt_count);
4346
4347 #endif
4348
4349 /*
4350  * Print scheduling while atomic bug:
4351  */
4352 static noinline void __schedule_bug(struct task_struct *prev)
4353 {
4354         struct pt_regs *regs = get_irq_regs();
4355
4356         printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4357                 prev->comm, prev->pid, preempt_count());
4358
4359         debug_show_held_locks(prev);
4360         print_modules();
4361         if (irqs_disabled())
4362                 print_irqtrace_events(prev);
4363
4364         if (regs)
4365                 show_regs(regs);
4366         else
4367                 dump_stack();
4368 }
4369
4370 /*
4371  * Various schedule()-time debugging checks and statistics:
4372  */
4373 static inline void schedule_debug(struct task_struct *prev)
4374 {
4375         /*
4376          * Test if we are atomic. Since do_exit() needs to call into
4377          * schedule() atomically, we ignore that path for now.
4378          * Otherwise, whine if we are scheduling when we should not be.
4379          */
4380         if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4381                 __schedule_bug(prev);
4382
4383         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4384
4385         schedstat_inc(this_rq(), sched_count);
4386 #ifdef CONFIG_SCHEDSTATS
4387         if (unlikely(prev->lock_depth >= 0)) {
4388                 schedstat_inc(this_rq(), bkl_count);
4389                 schedstat_inc(prev, sched_info.bkl_count);
4390         }
4391 #endif
4392 }
4393
4394 /*
4395  * Pick up the highest-prio task:
4396  */
4397 static inline struct task_struct *
4398 pick_next_task(struct rq *rq, struct task_struct *prev)
4399 {
4400         const struct sched_class *class;
4401         struct task_struct *p;
4402
4403         /*
4404          * Optimization: we know that if all tasks are in
4405          * the fair class we can call that function directly:
4406          */
4407         if (likely(rq->nr_running == rq->cfs.nr_running)) {
4408                 p = fair_sched_class.pick_next_task(rq);
4409                 if (likely(p))
4410                         return p;
4411         }
4412
4413         class = sched_class_highest;
4414         for ( ; ; ) {
4415                 p = class->pick_next_task(rq);
4416                 if (p)
4417                         return p;
4418                 /*
4419                  * Will never be NULL as the idle class always
4420                  * returns a non-NULL p:
4421                  */
4422                 class = class->next;
4423         }
4424 }
4425
4426 /*
4427  * schedule() is the main scheduler function.
4428  */
4429 asmlinkage void __sched schedule(void)
4430 {
4431         struct task_struct *prev, *next;
4432         unsigned long *switch_count;
4433         struct rq *rq;
4434         int cpu;
4435
4436 need_resched:
4437         preempt_disable();
4438         cpu = smp_processor_id();
4439         rq = cpu_rq(cpu);
4440         rcu_qsctr_inc(cpu);
4441         prev = rq->curr;
4442         switch_count = &prev->nivcsw;
4443
4444         release_kernel_lock(prev);
4445 need_resched_nonpreemptible:
4446
4447         schedule_debug(prev);
4448
4449         if (sched_feat(HRTICK))
4450                 hrtick_clear(rq);
4451
4452         spin_lock_irq(&rq->lock);
4453         update_rq_clock(rq);
4454         clear_tsk_need_resched(prev);
4455
4456         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4457                 if (unlikely(signal_pending_state(prev->state, prev)))
4458                         prev->state = TASK_RUNNING;
4459                 else
4460                         deactivate_task(rq, prev, 1);
4461                 switch_count = &prev->nvcsw;
4462         }
4463
4464 #ifdef CONFIG_SMP
4465         if (prev->sched_class->pre_schedule)
4466                 prev->sched_class->pre_schedule(rq, prev);
4467 #endif
4468
4469         if (unlikely(!rq->nr_running))
4470                 idle_balance(cpu, rq);
4471
4472         prev->sched_class->put_prev_task(rq, prev);
4473         next = pick_next_task(rq, prev);
4474
4475         if (likely(prev != next)) {
4476                 sched_info_switch(prev, next);
4477
4478                 rq->nr_switches++;
4479                 rq->curr = next;
4480                 ++*switch_count;
4481
4482                 context_switch(rq, prev, next); /* unlocks the rq */
4483                 /*
4484                  * the context switch might have flipped the stack from under
4485                  * us, hence refresh the local variables.
4486                  */
4487                 cpu = smp_processor_id();
4488                 rq = cpu_rq(cpu);
4489         } else
4490                 spin_unlock_irq(&rq->lock);
4491
4492         if (unlikely(reacquire_kernel_lock(current) < 0))
4493                 goto need_resched_nonpreemptible;
4494
4495         preempt_enable_no_resched();
4496         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4497                 goto need_resched;
4498 }
4499 EXPORT_SYMBOL(schedule);
4500
4501 #ifdef CONFIG_PREEMPT
4502 /*
4503  * this is the entry point to schedule() from in-kernel preemption
4504  * off of preempt_enable. Kernel preemptions off return from interrupt
4505  * occur there and call schedule directly.
4506  */
4507 asmlinkage void __sched preempt_schedule(void)
4508 {
4509         struct thread_info *ti = current_thread_info();
4510
4511         /*
4512          * If there is a non-zero preempt_count or interrupts are disabled,
4513          * we do not want to preempt the current task. Just return..
4514          */
4515         if (likely(ti->preempt_count || irqs_disabled()))
4516                 return;
4517
4518         do {
4519                 add_preempt_count(PREEMPT_ACTIVE);
4520                 schedule();
4521                 sub_preempt_count(PREEMPT_ACTIVE);
4522
4523                 /*
4524                  * Check again in case we missed a preemption opportunity
4525                  * between schedule and now.
4526                  */
4527                 barrier();
4528         } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4529 }
4530 EXPORT_SYMBOL(preempt_schedule);
4531
4532 /*
4533  * this is the entry point to schedule() from kernel preemption
4534  * off of irq context.
4535  * Note, that this is called and return with irqs disabled. This will
4536  * protect us against recursive calling from irq.
4537  */
4538 asmlinkage void __sched preempt_schedule_irq(void)
4539 {
4540         struct thread_info *ti = current_thread_info();
4541
4542         /* Catch callers which need to be fixed */
4543         BUG_ON(ti->preempt_count || !irqs_disabled());
4544
4545         do {
4546                 add_preempt_count(PREEMPT_ACTIVE);
4547                 local_irq_enable();
4548                 schedule();
4549                 local_irq_disable();
4550                 sub_preempt_count(PREEMPT_ACTIVE);
4551
4552                 /*
4553                  * Check again in case we missed a preemption opportunity
4554                  * between schedule and now.
4555                  */
4556                 barrier();
4557         } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4558 }
4559
4560 #endif /* CONFIG_PREEMPT */
4561
4562 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4563                           void *key)
4564 {
4565         return try_to_wake_up(curr->private, mode, sync);
4566 }
4567 EXPORT_SYMBOL(default_wake_function);
4568
4569 /*
4570  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4571  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4572  * number) then we wake all the non-exclusive tasks and one exclusive task.
4573  *
4574  * There are circumstances in which we can try to wake a task which has already
4575  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4576  * zero in this (rare) case, and we handle it by continuing to scan the queue.
4577  */
4578 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4579                              int nr_exclusive, int sync, void *key)
4580 {
4581         wait_queue_t *curr, *next;
4582
4583         list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4584                 unsigned flags = curr->flags;
4585
4586                 if (curr->func(curr, mode, sync, key) &&
4587                                 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4588                         break;
4589         }
4590 }
4591
4592 /**
4593  * __wake_up - wake up threads blocked on a waitqueue.
4594  * @q: the waitqueue
4595  * @mode: which threads
4596  * @nr_exclusive: how many wake-one or wake-many threads to wake up
4597  * @key: is directly passed to the wakeup function
4598  */
4599 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4600                         int nr_exclusive, void *key)
4601 {
4602         unsigned long flags;
4603
4604         spin_lock_irqsave(&q->lock, flags);
4605         __wake_up_common(q, mode, nr_exclusive, 0, key);
4606         spin_unlock_irqrestore(&q->lock, flags);
4607 }
4608 EXPORT_SYMBOL(__wake_up);
4609
4610 /*
4611  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4612  */
4613 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4614 {
4615         __wake_up_common(q, mode, 1, 0, NULL);
4616 }
4617
4618 /**
4619  * __wake_up_sync - wake up threads blocked on a waitqueue.
4620  * @q: the waitqueue
4621  * @mode: which threads
4622  * @nr_exclusive: how many wake-one or wake-many threads to wake up
4623  *
4624  * The sync wakeup differs that the waker knows that it will schedule
4625  * away soon, so while the target thread will be woken up, it will not
4626  * be migrated to another CPU - ie. the two threads are 'synchronized'
4627  * with each other. This can prevent needless bouncing between CPUs.
4628  *
4629  * On UP it can prevent extra preemption.
4630  */
4631 void
4632 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4633 {
4634         unsigned long flags;
4635         int sync = 1;
4636
4637         if (unlikely(!q))
4638                 return;
4639
4640         if (unlikely(!nr_exclusive))
4641                 sync = 0;
4642
4643         spin_lock_irqsave(&q->lock, flags);
4644         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4645         spin_unlock_irqrestore(&q->lock, flags);
4646 }
4647 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
4648
4649 /**
4650  * complete: - signals a single thread waiting on this completion
4651  * @x:  holds the state of this particular completion
4652  *
4653  * This will wake up a single thread waiting on this completion. Threads will be
4654  * awakened in the same order in which they were queued.
4655  *
4656  * See also complete_all(), wait_for_completion() and related routines.
4657  */
4658 void complete(struct completion *x)
4659 {
4660         unsigned long flags;
4661
4662         spin_lock_irqsave(&x->wait.lock, flags);
4663         x->done++;
4664         __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4665         spin_unlock_irqrestore(&x->wait.lock, flags);
4666 }
4667 EXPORT_SYMBOL(complete);
4668
4669 /**
4670  * complete_all: - signals all threads waiting on this completion
4671  * @x:  holds the state of this particular completion
4672  *
4673  * This will wake up all threads waiting on this particular completion event.
4674  */
4675 void complete_all(struct completion *x)
4676 {
4677         unsigned long flags;
4678
4679         spin_lock_irqsave(&x->wait.lock, flags);
4680         x->done += UINT_MAX/2;
4681         __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4682         spin_unlock_irqrestore(&x->wait.lock, flags);
4683 }
4684 EXPORT_SYMBOL(complete_all);
4685
4686 static inline long __sched
4687 do_wait_for_common(struct completion *x, long timeout, int state)
4688 {
4689         if (!x->done) {
4690                 DECLARE_WAITQUEUE(wait, current);
4691
4692                 wait.flags |= WQ_FLAG_EXCLUSIVE;
4693                 __add_wait_queue_tail(&x->wait, &wait);
4694                 do {
4695                         if (signal_pending_state(state, current)) {
4696                                 timeout = -ERESTARTSYS;
4697                                 break;
4698                         }
4699                         __set_current_state(state);
4700                         spin_unlock_irq(&x->wait.lock);
4701                         timeout = schedule_timeout(timeout);
4702                         spin_lock_irq(&x->wait.lock);
4703                 } while (!x->done && timeout);
4704                 __remove_wait_queue(&x->wait, &wait);
4705                 if (!x->done)
4706                         return timeout;
4707         }
4708         x->done--;
4709         return timeout ?: 1;
4710 }
4711
4712 static long __sched
4713 wait_for_common(struct completion *x, long timeout, int state)
4714 {
4715         might_sleep();
4716
4717         spin_lock_irq(&x->wait.lock);
4718         timeout = do_wait_for_common(x, timeout, state);
4719         spin_unlock_irq(&x->wait.lock);
4720         return timeout;
4721 }
4722
4723 /**
4724  * wait_for_completion: - waits for completion of a task
4725  * @x:  holds the state of this particular completion
4726  *
4727  * This waits to be signaled for completion of a specific task. It is NOT
4728  * interruptible and there is no timeout.
4729  *
4730  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4731  * and interrupt capability. Also see complete().
4732  */
4733 void __sched wait_for_completion(struct completion *x)
4734 {
4735         wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4736 }
4737 EXPORT_SYMBOL(wait_for_completion);
4738
4739 /**
4740  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4741  * @x:  holds the state of this particular completion
4742  * @timeout:  timeout value in jiffies
4743  *
4744  * This waits for either a completion of a specific task to be signaled or for a
4745  * specified timeout to expire. The timeout is in jiffies. It is not
4746  * interruptible.
4747  */
4748 unsigned long __sched
4749 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4750 {
4751         return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4752 }
4753 EXPORT_SYMBOL(wait_for_completion_timeout);
4754
4755 /**
4756  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4757  * @x:  holds the state of this particular completion
4758  *
4759  * This waits for completion of a specific task to be signaled. It is
4760  * interruptible.
4761  */
4762 int __sched wait_for_completion_interruptible(struct completion *x)
4763 {
4764         long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4765         if (t == -ERESTARTSYS)
4766                 return t;
4767         return 0;
4768 }
4769 EXPORT_SYMBOL(wait_for_completion_interruptible);
4770
4771 /**
4772  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4773  * @x:  holds the state of this particular completion
4774  * @timeout:  timeout value in jiffies
4775  *
4776  * This waits for either a completion of a specific task to be signaled or for a
4777  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4778  */
4779 unsigned long __sched
4780 wait_for_completion_interruptible_timeout(struct completion *x,
4781                                           unsigned long timeout)
4782 {
4783         return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4784 }
4785 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4786
4787 /**
4788  * wait_for_completion_killable: - waits for completion of a task (killable)
4789  * @x:  holds the state of this particular completion
4790  *
4791  * This waits to be signaled for completion of a specific task. It can be
4792  * interrupted by a kill signal.
4793  */
4794 int __sched wait_for_completion_killable(struct completion *x)
4795 {
4796         long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4797         if (t == -ERESTARTSYS)
4798                 return t;
4799         return 0;
4800 }
4801 EXPORT_SYMBOL(wait_for_completion_killable);
4802
4803 /**
4804  *      try_wait_for_completion - try to decrement a completion without blocking
4805  *      @x:     completion structure
4806  *
4807  *      Returns: 0 if a decrement cannot be done without blocking
4808  *               1 if a decrement succeeded.
4809  *
4810  *      If a completion is being used as a counting completion,
4811  *      attempt to decrement the counter without blocking. This
4812  *      enables us to avoid waiting if the resource the completion
4813  *      is protecting is not available.
4814  */
4815 bool try_wait_for_completion(struct completion *x)
4816 {
4817         int ret = 1;
4818
4819         spin_lock_irq(&x->wait.lock);
4820         if (!x->done)
4821                 ret = 0;
4822         else
4823                 x->done--;
4824         spin_unlock_irq(&x->wait.lock);
4825         return ret;
4826 }
4827 EXPORT_SYMBOL(try_wait_for_completion);
4828
4829 /**
4830  *      completion_done - Test to see if a completion has any waiters
4831  *      @x:     completion structure
4832  *
4833  *      Returns: 0 if there are waiters (wait_for_completion() in progress)
4834  *               1 if there are no waiters.
4835  *
4836  */
4837 bool completion_done(struct completion *x)
4838 {
4839         int ret = 1;
4840
4841         spin_lock_irq(&x->wait.lock);
4842         if (!x->done)
4843                 ret = 0;
4844         spin_unlock_irq(&x->wait.lock);
4845         return ret;
4846 }
4847 EXPORT_SYMBOL(completion_done);
4848
4849 static long __sched
4850 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4851 {
4852         unsigned long flags;
4853         wait_queue_t wait;
4854
4855         init_waitqueue_entry(&wait, current);
4856
4857         __set_current_state(state);
4858
4859         spin_lock_irqsave(&q->lock, flags);
4860         __add_wait_queue(q, &wait);
4861         spin_unlock(&q->lock);
4862         timeout = schedule_timeout(timeout);
4863         spin_lock_irq(&q->lock);
4864         __remove_wait_queue(q, &wait);
4865         spin_unlock_irqrestore(&q->lock, flags);
4866
4867         return timeout;
4868 }
4869
4870 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4871 {
4872         sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4873 }
4874 EXPORT_SYMBOL(interruptible_sleep_on);
4875
4876 long __sched
4877 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4878 {
4879         return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4880 }
4881 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4882
4883 void __sched sleep_on(wait_queue_head_t *q)
4884 {
4885         sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4886 }
4887 EXPORT_SYMBOL(sleep_on);
4888
4889 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4890 {
4891         return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4892 }
4893 EXPORT_SYMBOL(sleep_on_timeout);
4894
4895 #ifdef CONFIG_RT_MUTEXES
4896
4897 /*
4898  * rt_mutex_setprio - set the current priority of a task
4899  * @p: task
4900  * @prio: prio value (kernel-internal form)
4901  *
4902  * This function changes the 'effective' priority of a task. It does
4903  * not touch ->normal_prio like __setscheduler().
4904  *
4905  * Used by the rt_mutex code to implement priority inheritance logic.
4906  */
4907 void rt_mutex_setprio(struct task_struct *p, int prio)
4908 {
4909         unsigned long flags;
4910         int oldprio, on_rq, running;
4911         struct rq *rq;
4912         const struct sched_class *prev_class = p->sched_class;
4913
4914         BUG_ON(prio < 0 || prio > MAX_PRIO);
4915
4916         rq = task_rq_lock(p, &flags);
4917         update_rq_clock(rq);
4918
4919         oldprio = p->prio;
4920         on_rq = p->se.on_rq;
4921         running = task_current(rq, p);
4922         if (on_rq)
4923                 dequeue_task(rq, p, 0);
4924         if (running)
4925                 p->sched_class->put_prev_task(rq, p);
4926
4927         if (rt_prio(prio))
4928                 p->sched_class = &rt_sched_class;
4929         else
4930                 p->sched_class = &fair_sched_class;
4931
4932         p->prio = prio;
4933
4934         if (running)
4935                 p->sched_class->set_curr_task(rq);
4936         if (on_rq) {
4937                 enqueue_task(rq, p, 0);
4938
4939                 check_class_changed(rq, p, prev_class, oldprio, running);
4940         }
4941         task_rq_unlock(rq, &flags);
4942 }
4943
4944 #endif
4945
4946 void set_user_nice(struct task_struct *p, long nice)
4947 {
4948         int old_prio, delta, on_rq;
4949         unsigned long flags;
4950         struct rq *rq;
4951
4952         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4953                 return;
4954         /*
4955          * We have to be careful, if called from sys_setpriority(),
4956          * the task might be in the middle of scheduling on another CPU.
4957          */
4958         rq = task_rq_lock(p, &flags);
4959         update_rq_clock(rq);
4960         /*
4961          * The RT priorities are set via sched_setscheduler(), but we still
4962          * allow the 'normal' nice value to be set - but as expected
4963          * it wont have any effect on scheduling until the task is
4964          * SCHED_FIFO/SCHED_RR:
4965          */
4966         if (task_has_rt_policy(p)) {
4967                 p->static_prio = NICE_TO_PRIO(nice);
4968                 goto out_unlock;
4969         }
4970         on_rq = p->se.on_rq;
4971         if (on_rq)
4972                 dequeue_task(rq, p, 0);
4973
4974         p->static_prio = NICE_TO_PRIO(nice);
4975         set_load_weight(p);
4976         old_prio = p->prio;
4977         p->prio = effective_prio(p);
4978         delta = p->prio - old_prio;
4979
4980         if (on_rq) {
4981                 enqueue_task(rq, p, 0);
4982                 /*
4983                  * If the task increased its priority or is running and
4984                  * lowered its priority, then reschedule its CPU:
4985                  */
4986                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4987                         resched_task(rq->curr);
4988         }
4989 out_unlock:
4990         task_rq_unlock(rq, &flags);
4991 }
4992 EXPORT_SYMBOL(set_user_nice);
4993
4994 /*
4995  * can_nice - check if a task can reduce its nice value
4996  * @p: task
4997  * @nice: nice value
4998  */
4999 int can_nice(const struct task_struct *p, const int nice)
5000 {
5001         /* convert nice value [19,-20] to rlimit style value [1,40] */
5002         int nice_rlim = 20 - nice;
5003
5004         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5005                 capable(CAP_SYS_NICE));
5006 }
5007
5008 #ifdef __ARCH_WANT_SYS_NICE
5009
5010 /*
5011  * sys_nice - change the priority of the current process.
5012  * @increment: priority increment
5013  *
5014  * sys_setpriority is a more generic, but much slower function that
5015  * does similar things.
5016  */
5017 asmlinkage long sys_nice(int increment)
5018 {
5019         long nice, retval;
5020
5021         /*
5022          * Setpriority might change our priority at the same moment.
5023          * We don't have to worry. Conceptually one call occurs first
5024          * and we have a single winner.
5025          */
5026         if (increment < -40)
5027                 increment = -40;
5028         if (increment > 40)
5029                 increment = 40;
5030
5031         nice = PRIO_TO_NICE(current->static_prio) + increment;
5032         if (nice < -20)
5033                 nice = -20;
5034         if (nice > 19)
5035                 nice = 19;
5036
5037         if (increment < 0 && !can_nice(current, nice))
5038                 return -EPERM;
5039
5040         retval = security_task_setnice(current, nice);
5041         if (retval)
5042                 return retval;
5043
5044         set_user_nice(current, nice);
5045         return 0;
5046 }
5047
5048 #endif
5049
5050 /**
5051  * task_prio - return the priority value of a given task.
5052  * @p: the task in question.
5053  *
5054  * This is the priority value as seen by users in /proc.
5055  * RT tasks are offset by -200. Normal tasks are centered
5056  * around 0, value goes from -16 to +15.
5057  */
5058 int task_prio(const struct task_struct *p)
5059 {
5060         return p->prio - MAX_RT_PRIO;
5061 }
5062
5063 /**
5064  * task_nice - return the nice value of a given task.
5065  * @p: the task in question.
5066  */
5067 int task_nice(const struct task_struct *p)
5068 {
5069         return TASK_NICE(p);
5070 }
5071 EXPORT_SYMBOL(task_nice);
5072
5073 /**
5074  * idle_cpu - is a given cpu idle currently?
5075  * @cpu: the processor in question.
5076  */
5077 int idle_cpu(int cpu)
5078 {
5079         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5080 }
5081
5082 /**
5083  * idle_task - return the idle task for a given cpu.
5084  * @cpu: the processor in question.
5085  */
5086 struct task_struct *idle_task(int cpu)
5087 {
5088         return cpu_rq(cpu)->idle;
5089 }
5090
5091 /**
5092  * find_process_by_pid - find a process with a matching PID value.
5093  * @pid: the pid in question.
5094  */
5095 static struct task_struct *find_process_by_pid(pid_t pid)
5096 {
5097         return pid ? find_task_by_vpid(pid) : current;
5098 }
5099
5100 /* Actually do priority change: must hold rq lock. */
5101 static void
5102 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5103 {
5104         BUG_ON(p->se.on_rq);
5105
5106         p->policy = policy;
5107         switch (p->policy) {
5108         case SCHED_NORMAL:
5109         case SCHED_BATCH:
5110         case SCHED_IDLE:
5111                 p->sched_class = &fair_sched_class;
5112                 break;
5113         case SCHED_FIFO:
5114         case SCHED_RR:
5115                 p->sched_class = &rt_sched_class;
5116                 break;
5117         }
5118
5119         p->rt_priority = prio;
5120         p->normal_prio = normal_prio(p);
5121         /* we are holding p->pi_lock already */
5122         p->prio = rt_mutex_getprio(p);
5123         set_load_weight(p);
5124 }
5125
5126 /*
5127  * check the target process has a UID that matches the current process's
5128  */
5129 static bool check_same_owner(struct task_struct *p)
5130 {
5131         const struct cred *cred = current_cred(), *pcred;
5132         bool match;
5133
5134         rcu_read_lock();
5135         pcred = __task_cred(p);
5136         match = (cred->euid == pcred->euid ||
5137                  cred->euid == pcred->uid);
5138         rcu_read_unlock();
5139         return match;
5140 }
5141
5142 static int __sched_setscheduler(struct task_struct *p, int policy,
5143                                 struct sched_param *param, bool user)
5144 {
5145         int retval, oldprio, oldpolicy = -1, on_rq, running;
5146         unsigned long flags;
5147         const struct sched_class *prev_class = p->sched_class;
5148         struct rq *rq;
5149
5150         /* may grab non-irq protected spin_locks */
5151         BUG_ON(in_interrupt());
5152 recheck:
5153         /* double check policy once rq lock held */
5154         if (policy < 0)
5155                 policy = oldpolicy = p->policy;
5156         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5157                         policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5158                         policy != SCHED_IDLE)
5159                 return -EINVAL;
5160         /*
5161          * Valid priorities for SCHED_FIFO and SCHED_RR are
5162          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5163          * SCHED_BATCH and SCHED_IDLE is 0.
5164          */
5165         if (param->sched_priority < 0 ||
5166             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5167             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5168                 return -EINVAL;
5169         if (rt_policy(policy) != (param->sched_priority != 0))
5170                 return -EINVAL;
5171
5172         /*
5173          * Allow unprivileged RT tasks to decrease priority:
5174          */
5175         if (user && !capable(CAP_SYS_NICE)) {
5176                 if (rt_policy(policy)) {
5177                         unsigned long rlim_rtprio;
5178
5179                         if (!lock_task_sighand(p, &flags))
5180                                 return -ESRCH;
5181                         rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5182                         unlock_task_sighand(p, &flags);
5183
5184                         /* can't set/change the rt policy */
5185                         if (policy != p->policy && !rlim_rtprio)
5186                                 return -EPERM;
5187
5188                         /* can't increase priority */
5189                         if (param->sched_priority > p->rt_priority &&
5190                             param->sched_priority > rlim_rtprio)
5191                                 return -EPERM;
5192                 }
5193                 /*
5194                  * Like positive nice levels, dont allow tasks to
5195                  * move out of SCHED_IDLE either:
5196                  */
5197                 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5198                         return -EPERM;
5199
5200                 /* can't change other user's priorities */
5201                 if (!check_same_owner(p))
5202                         return -EPERM;
5203         }
5204
5205         if (user) {
5206 #ifdef CONFIG_RT_GROUP_SCHED
5207                 /*
5208                  * Do not allow realtime tasks into groups that have no runtime
5209                  * assigned.
5210                  */
5211                 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5212                                 task_group(p)->rt_bandwidth.rt_runtime == 0)
5213                         return -EPERM;
5214 #endif
5215
5216                 retval = security_task_setscheduler(p, policy, param);
5217                 if (retval)
5218                         return retval;
5219         }
5220
5221         /*
5222          * make sure no PI-waiters arrive (or leave) while we are
5223          * changing the priority of the task:
5224          */
5225         spin_lock_irqsave(&p->pi_lock, flags);
5226         /*
5227          * To be able to change p->policy safely, the apropriate
5228          * runqueue lock must be held.
5229          */
5230         rq = __task_rq_lock(p);
5231         /* recheck policy now with rq lock held */
5232         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5233                 policy = oldpolicy = -1;
5234                 __task_rq_unlock(rq);
5235                 spin_unlock_irqrestore(&p->pi_lock, flags);
5236                 goto recheck;
5237         }
5238         update_rq_clock(rq);
5239         on_rq = p->se.on_rq;
5240         running = task_current(rq, p);
5241         if (on_rq)
5242                 deactivate_task(rq, p, 0);
5243         if (running)
5244                 p->sched_class->put_prev_task(rq, p);
5245
5246         oldprio = p->prio;
5247         __setscheduler(rq, p, policy, param->sched_priority);
5248
5249         if (running)
5250                 p->sched_class->set_curr_task(rq);
5251         if (on_rq) {
5252                 activate_task(rq, p, 0);
5253
5254                 check_class_changed(rq, p, prev_class, oldprio, running);
5255         }
5256         __task_rq_unlock(rq);
5257         spin_unlock_irqrestore(&p->pi_lock, flags);
5258
5259         rt_mutex_adjust_pi(p);
5260
5261         return 0;
5262 }
5263
5264 /**
5265  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5266  * @p: the task in question.
5267  * @policy: new policy.
5268  * @param: structure containing the new RT priority.
5269  *
5270  * NOTE that the task may be already dead.
5271  */
5272 int sched_setscheduler(struct task_struct *p, int policy,
5273                        struct sched_param *param)
5274 {
5275         return __sched_setscheduler(p, policy, param, true);
5276 }
5277 EXPORT_SYMBOL_GPL(sched_setscheduler);
5278
5279 /**
5280  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5281  * @p: the task in question.
5282  * @policy: new policy.
5283  * @param: structure containing the new RT priority.
5284  *
5285  * Just like sched_setscheduler, only don't bother checking if the
5286  * current context has permission.  For example, this is needed in
5287  * stop_machine(): we create temporary high priority worker threads,
5288  * but our caller might not have that capability.
5289  */
5290 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5291                                struct sched_param *param)
5292 {
5293         return __sched_setscheduler(p, policy, param, false);
5294 }
5295
5296 static int
5297 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5298 {
5299         struct sched_param lparam;
5300         struct task_struct *p;
5301         int retval;
5302
5303         if (!param || pid < 0)
5304                 return -EINVAL;
5305         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5306                 return -EFAULT;
5307
5308         rcu_read_lock();
5309         retval = -ESRCH;
5310         p = find_process_by_pid(pid);
5311         if (p != NULL)
5312                 retval = sched_setscheduler(p, policy, &lparam);
5313         rcu_read_unlock();
5314
5315         return retval;
5316 }
5317
5318 /**
5319  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5320  * @pid: the pid in question.
5321  * @policy: new policy.
5322  * @param: structure containing the new RT priority.
5323  */
5324 asmlinkage long
5325 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5326 {
5327         /* negative values for policy are not valid */
5328         if (policy < 0)
5329                 return -EINVAL;
5330
5331         return do_sched_setscheduler(pid, policy, param);
5332 }
5333
5334 /**
5335  * sys_sched_setparam - set/change the RT priority of a thread
5336  * @pid: the pid in question.
5337  * @param: structure containing the new RT priority.
5338  */
5339 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5340 {
5341         return do_sched_setscheduler(pid, -1, param);
5342 }
5343
5344 /**
5345  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5346  * @pid: the pid in question.
5347  */
5348 asmlinkage long sys_sched_getscheduler(pid_t pid)
5349 {
5350         struct task_struct *p;
5351         int retval;
5352
5353         if (pid < 0)
5354                 return -EINVAL;
5355
5356         retval = -ESRCH;
5357         read_lock(&tasklist_lock);
5358         p = find_process_by_pid(pid);
5359         if (p) {
5360                 retval = security_task_getscheduler(p);
5361                 if (!retval)
5362                         retval = p->policy;
5363         }
5364         read_unlock(&tasklist_lock);
5365         return retval;
5366 }
5367
5368 /**
5369  * sys_sched_getscheduler - get the RT priority of a thread
5370  * @pid: the pid in question.
5371  * @param: structure containing the RT priority.
5372  */
5373 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5374 {
5375         struct sched_param lp;
5376         struct task_struct *p;
5377         int retval;
5378
5379         if (!param || pid < 0)
5380                 return -EINVAL;
5381
5382         read_lock(&tasklist_lock);
5383         p = find_process_by_pid(pid);
5384         retval = -ESRCH;
5385         if (!p)
5386                 goto out_unlock;
5387
5388         retval = security_task_getscheduler(p);
5389         if (retval)
5390                 goto out_unlock;
5391
5392         lp.sched_priority = p->rt_priority;
5393         read_unlock(&tasklist_lock);
5394
5395         /*
5396          * This one might sleep, we cannot do it with a spinlock held ...
5397          */
5398         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5399
5400         return retval;
5401
5402 out_unlock:
5403         read_unlock(&tasklist_lock);
5404         return retval;
5405 }
5406
5407 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5408 {
5409         cpumask_t cpus_allowed;
5410         cpumask_t new_mask = *in_mask;
5411         struct task_struct *p;
5412         int retval;
5413
5414         get_online_cpus();
5415         read_lock(&tasklist_lock);
5416
5417         p = find_process_by_pid(pid);
5418         if (!p) {
5419                 read_unlock(&tasklist_lock);
5420                 put_online_cpus();
5421                 return -ESRCH;
5422         }
5423
5424         /*
5425          * It is not safe to call set_cpus_allowed with the
5426          * tasklist_lock held. We will bump the task_struct's
5427          * usage count and then drop tasklist_lock.
5428          */
5429         get_task_struct(p);
5430         read_unlock(&tasklist_lock);
5431
5432         retval = -EPERM;
5433         if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5434                 goto out_unlock;
5435
5436         retval = security_task_setscheduler(p, 0, NULL);
5437         if (retval)
5438                 goto out_unlock;
5439
5440         cpuset_cpus_allowed(p, &cpus_allowed);
5441         cpus_and(new_mask, new_mask, cpus_allowed);
5442  again:
5443         retval = set_cpus_allowed_ptr(p, &new_mask);
5444
5445         if (!retval) {
5446                 cpuset_cpus_allowed(p, &cpus_allowed);
5447                 if (!cpus_subset(new_mask, cpus_allowed)) {
5448                         /*
5449                          * We must have raced with a concurrent cpuset
5450                          * update. Just reset the cpus_allowed to the
5451                          * cpuset's cpus_allowed
5452                          */
5453                         new_mask = cpus_allowed;
5454                         goto again;
5455                 }
5456         }
5457 out_unlock:
5458         put_task_struct(p);
5459         put_online_cpus();
5460         return retval;
5461 }
5462
5463 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5464                              cpumask_t *new_mask)
5465 {
5466         if (len < sizeof(cpumask_t)) {
5467                 memset(new_mask, 0, sizeof(cpumask_t));
5468         } else if (len > sizeof(cpumask_t)) {
5469                 len = sizeof(cpumask_t);
5470         }
5471         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5472 }
5473
5474 /**
5475  * sys_sched_setaffinity - set the cpu affinity of a process
5476  * @pid: pid of the process
5477  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5478  * @user_mask_ptr: user-space pointer to the new cpu mask
5479  */
5480 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5481                                       unsigned long __user *user_mask_ptr)
5482 {
5483         cpumask_t new_mask;
5484         int retval;
5485
5486         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5487         if (retval)
5488                 return retval;
5489
5490         return sched_setaffinity(pid, &new_mask);
5491 }
5492
5493 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5494 {
5495         struct task_struct *p;
5496         int retval;
5497
5498         get_online_cpus();
5499         read_lock(&tasklist_lock);
5500
5501         retval = -ESRCH;
5502         p = find_process_by_pid(pid);
5503         if (!p)
5504                 goto out_unlock;
5505
5506         retval = security_task_getscheduler(p);
5507         if (retval)
5508                 goto out_unlock;
5509
5510         cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5511
5512 out_unlock:
5513         read_unlock(&tasklist_lock);
5514         put_online_cpus();
5515
5516         return retval;
5517 }
5518
5519 /**
5520  * sys_sched_getaffinity - get the cpu affinity of a process
5521  * @pid: pid of the process
5522  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5523  * @user_mask_ptr: user-space pointer to hold the current cpu mask
5524  */
5525 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5526                                       unsigned long __user *user_mask_ptr)
5527 {
5528         int ret;
5529         cpumask_t mask;
5530
5531         if (len < sizeof(cpumask_t))
5532                 return -EINVAL;
5533
5534         ret = sched_getaffinity(pid, &mask);
5535         if (ret < 0)
5536                 return ret;
5537
5538         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5539                 return -EFAULT;
5540
5541         return sizeof(cpumask_t);
5542 }
5543
5544 /**
5545  * sys_sched_yield - yield the current processor to other threads.
5546  *
5547  * This function yields the current CPU to other tasks. If there are no
5548  * other threads running on this CPU then this function will return.
5549  */
5550 asmlinkage long sys_sched_yield(void)
5551 {
5552         struct rq *rq = this_rq_lock();
5553
5554         schedstat_inc(rq, yld_count);
5555         current->sched_class->yield_task(rq);
5556
5557         /*
5558          * Since we are going to call schedule() anyway, there's
5559          * no need to preempt or enable interrupts:
5560          */
5561         __release(rq->lock);
5562         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5563         _raw_spin_unlock(&rq->lock);
5564         preempt_enable_no_resched();
5565
5566         schedule();
5567
5568         return 0;
5569 }
5570
5571 static void __cond_resched(void)
5572 {
5573 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5574         __might_sleep(__FILE__, __LINE__);
5575 #endif
5576         /*
5577          * The BKS might be reacquired before we have dropped
5578          * PREEMPT_ACTIVE, which could trigger a second
5579          * cond_resched() call.
5580          */
5581         do {
5582                 add_preempt_count(PREEMPT_ACTIVE);
5583                 schedule();
5584                 sub_preempt_count(PREEMPT_ACTIVE);
5585         } while (need_resched());
5586 }
5587
5588 int __sched _cond_resched(void)
5589 {
5590         if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5591                                         system_state == SYSTEM_RUNNING) {
5592                 __cond_resched();
5593                 return 1;
5594         }
5595         return 0;
5596 }
5597 EXPORT_SYMBOL(_cond_resched);
5598
5599 /*
5600  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5601  * call schedule, and on return reacquire the lock.
5602  *
5603  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5604  * operations here to prevent schedule() from being called twice (once via
5605  * spin_unlock(), once by hand).
5606  */
5607 int cond_resched_lock(spinlock_t *lock)
5608 {
5609         int resched = need_resched() && system_state == SYSTEM_RUNNING;
5610         int ret = 0;
5611
5612         if (spin_needbreak(lock) || resched) {
5613                 spin_unlock(lock);
5614                 if (resched && need_resched())
5615                         __cond_resched();
5616                 else
5617                         cpu_relax();
5618                 ret = 1;
5619                 spin_lock(lock);
5620         }
5621         return ret;
5622 }
5623 EXPORT_SYMBOL(cond_resched_lock);
5624
5625 int __sched cond_resched_softirq(void)
5626 {
5627         BUG_ON(!in_softirq());
5628
5629         if (need_resched() && system_state == SYSTEM_RUNNING) {
5630                 local_bh_enable();
5631                 __cond_resched();
5632                 local_bh_disable();
5633                 return 1;
5634         }
5635         return 0;
5636 }
5637 EXPORT_SYMBOL(cond_resched_softirq);
5638
5639 /**
5640  * yield - yield the current processor to other threads.
5641  *
5642  * This is a shortcut for kernel-space yielding - it marks the
5643  * thread runnable and calls sys_sched_yield().
5644  */
5645 void __sched yield(void)
5646 {
5647         set_current_state(TASK_RUNNING);
5648         sys_sched_yield();
5649 }
5650 EXPORT_SYMBOL(yield);
5651
5652 /*
5653  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5654  * that process accounting knows that this is a task in IO wait state.
5655  *
5656  * But don't do that if it is a deliberate, throttling IO wait (this task
5657  * has set its backing_dev_info: the queue against which it should throttle)
5658  */
5659 void __sched io_schedule(void)
5660 {
5661         struct rq *rq = &__raw_get_cpu_var(runqueues);
5662
5663         delayacct_blkio_start();
5664         atomic_inc(&rq->nr_iowait);
5665         schedule();
5666         atomic_dec(&rq->nr_iowait);
5667         delayacct_blkio_end();
5668 }
5669 EXPORT_SYMBOL(io_schedule);
5670
5671 long __sched io_schedule_timeout(long timeout)
5672 {
5673         struct rq *rq = &__raw_get_cpu_var(runqueues);
5674         long ret;
5675
5676         delayacct_blkio_start();
5677         atomic_inc(&rq->nr_iowait);
5678         ret = schedule_timeout(timeout);
5679         atomic_dec(&rq->nr_iowait);
5680         delayacct_blkio_end();
5681         return ret;
5682 }
5683
5684 /**
5685  * sys_sched_get_priority_max - return maximum RT priority.
5686  * @policy: scheduling class.
5687  *
5688  * this syscall returns the maximum rt_priority that can be used
5689  * by a given scheduling class.
5690  */
5691 asmlinkage long sys_sched_get_priority_max(int policy)
5692 {
5693         int ret = -EINVAL;
5694
5695         switch (policy) {
5696         case SCHED_FIFO:
5697         case SCHED_RR:
5698                 ret = MAX_USER_RT_PRIO-1;
5699                 break;
5700         case SCHED_NORMAL:
5701         case SCHED_BATCH:
5702         case SCHED_IDLE:
5703                 ret = 0;
5704                 break;
5705         }
5706         return ret;
5707 }
5708
5709 /**
5710  * sys_sched_get_priority_min - return minimum RT priority.
5711  * @policy: scheduling class.
5712  *
5713  * this syscall returns the minimum rt_priority that can be used
5714  * by a given scheduling class.
5715  */
5716 asmlinkage long sys_sched_get_priority_min(int policy)
5717 {
5718         int ret = -EINVAL;
5719
5720         switch (policy) {
5721         case SCHED_FIFO:
5722         case SCHED_RR:
5723                 ret = 1;
5724                 break;
5725         case SCHED_NORMAL:
5726         case SCHED_BATCH:
5727         case SCHED_IDLE:
5728                 ret = 0;
5729         }
5730         return ret;
5731 }
5732
5733 /**
5734  * sys_sched_rr_get_interval - return the default timeslice of a process.
5735  * @pid: pid of the process.
5736  * @interval: userspace pointer to the timeslice value.
5737  *
5738  * this syscall writes the default timeslice value of a given process
5739  * into the user-space timespec buffer. A value of '0' means infinity.
5740  */
5741 asmlinkage
5742 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5743 {
5744         struct task_struct *p;
5745         unsigned int time_slice;
5746         int retval;
5747         struct timespec t;
5748
5749         if (pid < 0)
5750                 return -EINVAL;
5751
5752         retval = -ESRCH;
5753         read_lock(&tasklist_lock);
5754         p = find_process_by_pid(pid);
5755         if (!p)
5756                 goto out_unlock;
5757
5758         retval = security_task_getscheduler(p);
5759         if (retval)
5760                 goto out_unlock;
5761
5762         /*
5763          * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5764          * tasks that are on an otherwise idle runqueue:
5765          */
5766         time_slice = 0;
5767         if (p->policy == SCHED_RR) {
5768                 time_slice = DEF_TIMESLICE;
5769         } else if (p->policy != SCHED_FIFO) {
5770                 struct sched_entity *se = &p->se;
5771                 unsigned long flags;
5772                 struct rq *rq;
5773
5774                 rq = task_rq_lock(p, &flags);
5775                 if (rq->cfs.load.weight)
5776                         time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5777                 task_rq_unlock(rq, &flags);
5778         }
5779         read_unlock(&tasklist_lock);
5780         jiffies_to_timespec(time_slice, &t);
5781         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5782         return retval;
5783
5784 out_unlock:
5785         read_unlock(&tasklist_lock);
5786         return retval;
5787 }
5788
5789 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5790
5791 void sched_show_task(struct task_struct *p)
5792 {
5793         unsigned long free = 0;
5794         unsigned state;
5795
5796         state = p->state ? __ffs(p->state) + 1 : 0;
5797         printk(KERN_INFO "%-13.13s %c", p->comm,
5798                 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5799 #if BITS_PER_LONG == 32
5800         if (state == TASK_RUNNING)
5801                 printk(KERN_CONT " running  ");
5802         else
5803                 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5804 #else
5805         if (state == TASK_RUNNING)
5806                 printk(KERN_CONT "  running task    ");
5807         else
5808                 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5809 #endif
5810 #ifdef CONFIG_DEBUG_STACK_USAGE
5811         {
5812                 unsigned long *n = end_of_stack(p);
5813                 while (!*n)
5814                         n++;
5815                 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5816         }
5817 #endif
5818         printk(KERN_CONT "%5lu %5d %6d\n", free,
5819                 task_pid_nr(p), task_pid_nr(p->real_parent));
5820
5821         show_stack(p, NULL);
5822 }
5823
5824 void show_state_filter(unsigned long state_filter)
5825 {
5826         struct task_struct *g, *p;
5827
5828 #if BITS_PER_LONG == 32
5829         printk(KERN_INFO
5830                 "  task                PC stack   pid father\n");
5831 #else
5832         printk(KERN_INFO
5833                 "  task                        PC stack   pid father\n");
5834 #endif
5835         read_lock(&tasklist_lock);
5836         do_each_thread(g, p) {
5837                 /*
5838                  * reset the NMI-timeout, listing all files on a slow
5839                  * console might take alot of time:
5840                  */
5841                 touch_nmi_watchdog();
5842                 if (!state_filter || (p->state & state_filter))
5843                         sched_show_task(p);
5844         } while_each_thread(g, p);
5845
5846         touch_all_softlockup_watchdogs();
5847
5848 #ifdef CONFIG_SCHED_DEBUG
5849         sysrq_sched_debug_show();
5850 #endif
5851         read_unlock(&tasklist_lock);
5852         /*
5853          * Only show locks if all tasks are dumped:
5854          */
5855         if (state_filter == -1)
5856                 debug_show_all_locks();
5857 }
5858
5859 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5860 {
5861         idle->sched_class = &idle_sched_class;
5862 }
5863
5864 /**
5865  * init_idle - set up an idle thread for a given CPU
5866  * @idle: task in question
5867  * @cpu: cpu the idle task belongs to
5868  *
5869  * NOTE: this function does not set the idle thread's NEED_RESCHED
5870  * flag, to make booting more robust.
5871  */
5872 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5873 {
5874         struct rq *rq = cpu_rq(cpu);
5875         unsigned long flags;
5876
5877         __sched_fork(idle);
5878         idle->se.exec_start = sched_clock();
5879
5880         idle->prio = idle->normal_prio = MAX_PRIO;
5881         idle->cpus_allowed = cpumask_of_cpu(cpu);
5882         __set_task_cpu(idle, cpu);
5883
5884         spin_lock_irqsave(&rq->lock, flags);
5885         rq->curr = rq->idle = idle;
5886 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5887         idle->oncpu = 1;
5888 #endif
5889         spin_unlock_irqrestore(&rq->lock, flags);
5890
5891         /* Set the preempt count _outside_ the spinlocks! */
5892 #if defined(CONFIG_PREEMPT)
5893         task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5894 #else
5895         task_thread_info(idle)->preempt_count = 0;
5896 #endif
5897         /*
5898          * The idle tasks have their own, simple scheduling class:
5899          */
5900         idle->sched_class = &idle_sched_class;
5901 }
5902
5903 /*
5904  * In a system that switches off the HZ timer nohz_cpu_mask
5905  * indicates which cpus entered this state. This is used
5906  * in the rcu update to wait only for active cpus. For system
5907  * which do not switch off the HZ timer nohz_cpu_mask should
5908  * always be CPU_MASK_NONE.
5909  */
5910 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5911
5912 /*
5913  * Increase the granularity value when there are more CPUs,
5914  * because with more CPUs the 'effective latency' as visible
5915  * to users decreases. But the relationship is not linear,
5916  * so pick a second-best guess by going with the log2 of the
5917  * number of CPUs.
5918  *
5919  * This idea comes from the SD scheduler of Con Kolivas:
5920  */
5921 static inline void sched_init_granularity(void)
5922 {
5923         unsigned int factor = 1 + ilog2(num_online_cpus());
5924         const unsigned long limit = 200000000;
5925
5926         sysctl_sched_min_granularity *= factor;
5927         if (sysctl_sched_min_granularity > limit)
5928                 sysctl_sched_min_granularity = limit;
5929
5930         sysctl_sched_latency *= factor;
5931         if (sysctl_sched_latency > limit)
5932                 sysctl_sched_latency = limit;
5933
5934         sysctl_sched_wakeup_granularity *= factor;
5935
5936         sysctl_sched_shares_ratelimit *= factor;
5937 }
5938
5939 #ifdef CONFIG_SMP
5940 /*
5941  * This is how migration works:
5942  *
5943  * 1) we queue a struct migration_req structure in the source CPU's
5944  *    runqueue and wake up that CPU's migration thread.
5945  * 2) we down() the locked semaphore => thread blocks.
5946  * 3) migration thread wakes up (implicitly it forces the migrated
5947  *    thread off the CPU)
5948  * 4) it gets the migration request and checks whether the migrated
5949  *    task is still in the wrong runqueue.
5950  * 5) if it's in the wrong runqueue then the migration thread removes
5951  *    it and puts it into the right queue.
5952  * 6) migration thread up()s the semaphore.
5953  * 7) we wake up and the migration is done.
5954  */
5955
5956 /*
5957  * Change a given task's CPU affinity. Migrate the thread to a
5958  * proper CPU and schedule it away if the CPU it's executing on
5959  * is removed from the allowed bitmask.
5960  *
5961  * NOTE: the caller must have a valid reference to the task, the
5962  * task must not exit() & deallocate itself prematurely. The
5963  * call is not atomic; no spinlocks may be held.
5964  */
5965 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5966 {
5967         struct migration_req req;
5968         unsigned long flags;
5969         struct rq *rq;
5970         int ret = 0;
5971
5972         rq = task_rq_lock(p, &flags);
5973         if (!cpus_intersects(*new_mask, cpu_online_map)) {
5974                 ret = -EINVAL;
5975                 goto out;
5976         }
5977
5978         if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5979                      !cpus_equal(p->cpus_allowed, *new_mask))) {
5980                 ret = -EINVAL;
5981                 goto out;
5982         }
5983
5984         if (p->sched_class->set_cpus_allowed)
5985                 p->sched_class->set_cpus_allowed(p, new_mask);
5986         else {
5987                 p->cpus_allowed = *new_mask;
5988                 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5989         }
5990
5991         /* Can the task run on the task's current CPU? If so, we're done */
5992         if (cpu_isset(task_cpu(p), *new_mask))
5993                 goto out;
5994
5995         if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5996                 /* Need help from migration thread: drop lock and wait. */
5997                 task_rq_unlock(rq, &flags);
5998                 wake_up_process(rq->migration_thread);
5999                 wait_for_completion(&req.done);
6000                 tlb_migrate_finish(p->mm);
6001                 return 0;
6002         }
6003 out:
6004         task_rq_unlock(rq, &flags);
6005
6006         return ret;
6007 }
6008 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6009
6010 /*
6011  * Move (not current) task off this cpu, onto dest cpu. We're doing
6012  * this because either it can't run here any more (set_cpus_allowed()
6013  * away from this CPU, or CPU going down), or because we're
6014  * attempting to rebalance this task on exec (sched_exec).
6015  *
6016  * So we race with normal scheduler movements, but that's OK, as long
6017  * as the task is no longer on this CPU.
6018  *
6019  * Returns non-zero if task was successfully migrated.
6020  */
6021 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6022 {
6023         struct rq *rq_dest, *rq_src;
6024         int ret = 0, on_rq;
6025
6026         if (unlikely(!cpu_active(dest_cpu)))
6027                 return ret;
6028
6029         rq_src = cpu_rq(src_cpu);
6030         rq_dest = cpu_rq(dest_cpu);
6031
6032         double_rq_lock(rq_src, rq_dest);
6033         /* Already moved. */
6034         if (task_cpu(p) != src_cpu)
6035                 goto done;
6036         /* Affinity changed (again). */
6037         if (!cpu_isset(dest_cpu, p->cpus_allowed))
6038                 goto fail;
6039
6040         on_rq = p->se.on_rq;
6041         if (on_rq)
6042                 deactivate_task(rq_src, p, 0);
6043
6044         set_task_cpu(p, dest_cpu);
6045         if (on_rq) {
6046                 activate_task(rq_dest, p, 0);
6047                 check_preempt_curr(rq_dest, p, 0);
6048         }
6049 done:
6050         ret = 1;
6051 fail:
6052         double_rq_unlock(rq_src, rq_dest);
6053         return ret;
6054 }
6055
6056 /*
6057  * migration_thread - this is a highprio system thread that performs
6058  * thread migration by bumping thread off CPU then 'pushing' onto
6059  * another runqueue.
6060  */
6061 static int migration_thread(void *data)
6062 {
6063         int cpu = (long)data;
6064         struct rq *rq;
6065
6066         rq = cpu_rq(cpu);
6067         BUG_ON(rq->migration_thread != current);
6068
6069         set_current_state(TASK_INTERRUPTIBLE);
6070         while (!kthread_should_stop()) {
6071                 struct migration_req *req;
6072                 struct list_head *head;
6073
6074                 spin_lock_irq(&rq->lock);
6075
6076                 if (cpu_is_offline(cpu)) {
6077                         spin_unlock_irq(&rq->lock);
6078                         goto wait_to_die;
6079                 }
6080
6081                 if (rq->active_balance) {
6082                         active_load_balance(rq, cpu);
6083                         rq->active_balance = 0;
6084                 }
6085
6086                 head = &rq->migration_queue;
6087
6088                 if (list_empty(head)) {
6089                         spin_unlock_irq(&rq->lock);
6090                         schedule();
6091                         set_current_state(TASK_INTERRUPTIBLE);
6092                         continue;
6093                 }
6094                 req = list_entry(head->next, struct migration_req, list);
6095                 list_del_init(head->next);
6096
6097                 spin_unlock(&rq->lock);
6098                 __migrate_task(req->task, cpu, req->dest_cpu);
6099                 local_irq_enable();
6100
6101                 complete(&req->done);
6102         }
6103         __set_current_state(TASK_RUNNING);
6104         return 0;
6105
6106 wait_to_die:
6107         /* Wait for kthread_stop */
6108         set_current_state(TASK_INTERRUPTIBLE);
6109         while (!kthread_should_stop()) {
6110                 schedule();
6111                 set_current_state(TASK_INTERRUPTIBLE);
6112         }
6113         __set_current_state(TASK_RUNNING);
6114         return 0;
6115 }
6116
6117 #ifdef CONFIG_HOTPLUG_CPU
6118
6119 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6120 {
6121         int ret;
6122
6123         local_irq_disable();
6124         ret = __migrate_task(p, src_cpu, dest_cpu);
6125         local_irq_enable();
6126         return ret;
6127 }
6128
6129 /*
6130  * Figure out where task on dead CPU should go, use force if necessary.
6131  * NOTE: interrupts should be disabled by the caller
6132  */
6133 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6134 {
6135         unsigned long flags;
6136         cpumask_t mask;
6137         struct rq *rq;
6138         int dest_cpu;
6139
6140         do {
6141                 /* On same node? */
6142                 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6143                 cpus_and(mask, mask, p->cpus_allowed);
6144                 dest_cpu = any_online_cpu(mask);
6145
6146                 /* On any allowed CPU? */
6147                 if (dest_cpu >= nr_cpu_ids)
6148                         dest_cpu = any_online_cpu(p->cpus_allowed);
6149
6150                 /* No more Mr. Nice Guy. */
6151                 if (dest_cpu >= nr_cpu_ids) {
6152                         cpumask_t cpus_allowed;
6153
6154                         cpuset_cpus_allowed_locked(p, &cpus_allowed);
6155                         /*
6156                          * Try to stay on the same cpuset, where the
6157                          * current cpuset may be a subset of all cpus.
6158                          * The cpuset_cpus_allowed_locked() variant of
6159                          * cpuset_cpus_allowed() will not block. It must be
6160                          * called within calls to cpuset_lock/cpuset_unlock.
6161                          */
6162                         rq = task_rq_lock(p, &flags);
6163                         p->cpus_allowed = cpus_allowed;
6164                         dest_cpu = any_online_cpu(p->cpus_allowed);
6165                         task_rq_unlock(rq, &flags);
6166
6167                         /*
6168                          * Don't tell them about moving exiting tasks or
6169                          * kernel threads (both mm NULL), since they never
6170                          * leave kernel.
6171                          */
6172                         if (p->mm && printk_ratelimit()) {
6173                                 printk(KERN_INFO "process %d (%s) no "
6174                                        "longer affine to cpu%d\n",
6175                                         task_pid_nr(p), p->comm, dead_cpu);
6176                         }
6177                 }
6178         } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6179 }
6180
6181 /*
6182  * While a dead CPU has no uninterruptible tasks queued at this point,
6183  * it might still have a nonzero ->nr_uninterruptible counter, because
6184  * for performance reasons the counter is not stricly tracking tasks to
6185  * their home CPUs. So we just add the counter to another CPU's counter,
6186  * to keep the global sum constant after CPU-down:
6187  */
6188 static void migrate_nr_uninterruptible(struct rq *rq_src)
6189 {
6190         struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6191         unsigned long flags;
6192
6193         local_irq_save(flags);
6194         double_rq_lock(rq_src, rq_dest);
6195         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6196         rq_src->nr_uninterruptible = 0;
6197         double_rq_unlock(rq_src, rq_dest);
6198         local_irq_restore(flags);
6199 }
6200
6201 /* Run through task list and migrate tasks from the dead cpu. */
6202 static void migrate_live_tasks(int src_cpu)
6203 {
6204         struct task_struct *p, *t;
6205
6206         read_lock(&tasklist_lock);
6207
6208         do_each_thread(t, p) {
6209                 if (p == current)
6210                         continue;
6211
6212                 if (task_cpu(p) == src_cpu)
6213                         move_task_off_dead_cpu(src_cpu, p);
6214         } while_each_thread(t, p);
6215
6216         read_unlock(&tasklist_lock);
6217 }
6218
6219 /*
6220  * Schedules idle task to be the next runnable task on current CPU.
6221  * It does so by boosting its priority to highest possible.
6222  * Used by CPU offline code.
6223  */
6224 void sched_idle_next(void)
6225 {
6226         int this_cpu = smp_processor_id();
6227         struct rq *rq = cpu_rq(this_cpu);
6228         struct task_struct *p = rq->idle;
6229         unsigned long flags;
6230
6231         /* cpu has to be offline */
6232         BUG_ON(cpu_online(this_cpu));
6233
6234         /*
6235          * Strictly not necessary since rest of the CPUs are stopped by now
6236          * and interrupts disabled on the current cpu.
6237          */
6238         spin_lock_irqsave(&rq->lock, flags);
6239
6240         __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6241
6242         update_rq_clock(rq);
6243         activate_task(rq, p, 0);
6244
6245         spin_unlock_irqrestore(&rq->lock, flags);
6246 }
6247
6248 /*
6249  * Ensures that the idle task is using init_mm right before its cpu goes
6250  * offline.
6251  */
6252 void idle_task_exit(void)
6253 {
6254         struct mm_struct *mm = current->active_mm;
6255
6256         BUG_ON(cpu_online(smp_processor_id()));
6257
6258         if (mm != &init_mm)
6259                 switch_mm(mm, &init_mm, current);
6260         mmdrop(mm);
6261 }
6262
6263 /* called under rq->lock with disabled interrupts */
6264 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6265 {
6266         struct rq *rq = cpu_rq(dead_cpu);
6267
6268         /* Must be exiting, otherwise would be on tasklist. */
6269         BUG_ON(!p->exit_state);
6270
6271         /* Cannot have done final schedule yet: would have vanished. */
6272         BUG_ON(p->state == TASK_DEAD);
6273
6274         get_task_struct(p);
6275
6276         /*
6277          * Drop lock around migration; if someone else moves it,
6278          * that's OK. No task can be added to this CPU, so iteration is
6279          * fine.
6280          */
6281         spin_unlock_irq(&rq->lock);
6282         move_task_off_dead_cpu(dead_cpu, p);
6283         spin_lock_irq(&rq->lock);
6284
6285         put_task_struct(p);
6286 }
6287
6288 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6289 static void migrate_dead_tasks(unsigned int dead_cpu)
6290 {
6291         struct rq *rq = cpu_rq(dead_cpu);
6292         struct task_struct *next;
6293
6294         for ( ; ; ) {
6295                 if (!rq->nr_running)
6296                         break;
6297                 update_rq_clock(rq);
6298                 next = pick_next_task(rq, rq->curr);
6299                 if (!next)
6300                         break;
6301                 next->sched_class->put_prev_task(rq, next);
6302                 migrate_dead(dead_cpu, next);
6303
6304         }
6305 }
6306 #endif /* CONFIG_HOTPLUG_CPU */
6307
6308 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6309
6310 static struct ctl_table sd_ctl_dir[] = {
6311         {
6312                 .procname       = "sched_domain",
6313                 .mode           = 0555,
6314         },
6315         {0, },
6316 };
6317
6318 static struct ctl_table sd_ctl_root[] = {
6319         {
6320                 .ctl_name       = CTL_KERN,
6321                 .procname       = "kernel",
6322                 .mode           = 0555,
6323                 .child          = sd_ctl_dir,
6324         },
6325         {0, },
6326 };
6327
6328 static struct ctl_table *sd_alloc_ctl_entry(int n)
6329 {
6330         struct ctl_table *entry =
6331                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6332
6333         return entry;
6334 }
6335
6336 static void sd_free_ctl_entry(struct ctl_table **tablep)
6337 {
6338         struct ctl_table *entry;
6339
6340         /*
6341          * In the intermediate directories, both the child directory and
6342          * procname are dynamically allocated and could fail but the mode
6343          * will always be set. In the lowest directory the names are
6344          * static strings and all have proc handlers.
6345          */
6346         for (entry = *tablep; entry->mode; entry++) {
6347                 if (entry->child)
6348                         sd_free_ctl_entry(&entry->child);
6349                 if (entry->proc_handler == NULL)
6350                         kfree(entry->procname);
6351         }
6352
6353         kfree(*tablep);
6354         *tablep = NULL;
6355 }
6356
6357 static void
6358 set_table_entry(struct ctl_table *entry,
6359                 const char *procname, void *data, int maxlen,
6360                 mode_t mode, proc_handler *proc_handler)
6361 {
6362         entry->procname = procname;
6363         entry->data = data;
6364         entry->maxlen = maxlen;
6365         entry->mode = mode;
6366         entry->proc_handler = proc_handler;
6367 }
6368
6369 static struct ctl_table *
6370 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6371 {
6372         struct ctl_table *table = sd_alloc_ctl_entry(13);
6373
6374         if (table == NULL)
6375                 return NULL;
6376
6377         set_table_entry(&table[0], "min_interval", &sd->min_interval,
6378                 sizeof(long), 0644, proc_doulongvec_minmax);
6379         set_table_entry(&table[1], "max_interval", &sd->max_interval,
6380                 sizeof(long), 0644, proc_doulongvec_minmax);
6381         set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6382                 sizeof(int), 0644, proc_dointvec_minmax);
6383         set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6384                 sizeof(int), 0644, proc_dointvec_minmax);
6385         set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6386                 sizeof(int), 0644, proc_dointvec_minmax);
6387         set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6388                 sizeof(int), 0644, proc_dointvec_minmax);
6389         set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6390                 sizeof(int), 0644, proc_dointvec_minmax);
6391         set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6392                 sizeof(int), 0644, proc_dointvec_minmax);
6393         set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6394                 sizeof(int), 0644, proc_dointvec_minmax);
6395         set_table_entry(&table[9], "cache_nice_tries",
6396                 &sd->cache_nice_tries,
6397                 sizeof(int), 0644, proc_dointvec_minmax);
6398         set_table_entry(&table[10], "flags", &sd->flags,
6399                 sizeof(int), 0644, proc_dointvec_minmax);
6400         set_table_entry(&table[11], "name", sd->name,
6401                 CORENAME_MAX_SIZE, 0444, proc_dostring);
6402         /* &table[12] is terminator */
6403
6404         return table;
6405 }
6406
6407 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6408 {
6409         struct ctl_table *entry, *table;
6410         struct sched_domain *sd;
6411         int domain_num = 0, i;
6412         char buf[32];
6413
6414         for_each_domain(cpu, sd)
6415                 domain_num++;
6416         entry = table = sd_alloc_ctl_entry(domain_num + 1);
6417         if (table == NULL)
6418                 return NULL;
6419
6420         i = 0;
6421         for_each_domain(cpu, sd) {
6422                 snprintf(buf, 32, "domain%d", i);
6423                 entry->procname = kstrdup(buf, GFP_KERNEL);
6424                 entry->mode = 0555;
6425                 entry->child = sd_alloc_ctl_domain_table(sd);
6426                 entry++;
6427                 i++;
6428         }
6429         return table;
6430 }
6431
6432 static struct ctl_table_header *sd_sysctl_header;
6433 static void register_sched_domain_sysctl(void)
6434 {
6435         int i, cpu_num = num_online_cpus();
6436         struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6437         char buf[32];
6438
6439         WARN_ON(sd_ctl_dir[0].child);
6440         sd_ctl_dir[0].child = entry;
6441
6442         if (entry == NULL)
6443                 return;
6444
6445         for_each_online_cpu(i) {
6446                 snprintf(buf, 32, "cpu%d", i);
6447                 entry->procname = kstrdup(buf, GFP_KERNEL);
6448                 entry->mode = 0555;
6449                 entry->child = sd_alloc_ctl_cpu_table(i);
6450                 entry++;
6451         }
6452
6453         WARN_ON(sd_sysctl_header);
6454         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6455 }
6456
6457 /* may be called multiple times per register */
6458 static void unregister_sched_domain_sysctl(void)
6459 {
6460         if (sd_sysctl_header)
6461                 unregister_sysctl_table(sd_sysctl_header);
6462         sd_sysctl_header = NULL;
6463         if (sd_ctl_dir[0].child)
6464                 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6465 }
6466 #else
6467 static void register_sched_domain_sysctl(void)
6468 {
6469 }
6470 static void unregister_sched_domain_sysctl(void)
6471 {
6472 }
6473 #endif
6474
6475 static void set_rq_online(struct rq *rq)
6476 {
6477         if (!rq->online) {
6478                 const struct sched_class *class;
6479
6480                 cpu_set(rq->cpu, rq->rd->online);
6481                 rq->online = 1;
6482
6483                 for_each_class(class) {
6484                         if (class->rq_online)
6485                                 class->rq_online(rq);
6486                 }
6487         }
6488 }
6489
6490 static void set_rq_offline(struct rq *rq)
6491 {
6492         if (rq->online) {
6493                 const struct sched_class *class;
6494
6495                 for_each_class(class) {
6496                         if (class->rq_offline)
6497                                 class->rq_offline(rq);
6498                 }
6499
6500                 cpu_clear(rq->cpu, rq->rd->online);
6501                 rq->online = 0;
6502         }
6503 }
6504
6505 /*
6506  * migration_call - callback that gets triggered when a CPU is added.
6507  * Here we can start up the necessary migration thread for the new CPU.
6508  */
6509 static int __cpuinit
6510 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6511 {
6512         struct task_struct *p;
6513         int cpu = (long)hcpu;
6514         unsigned long flags;
6515         struct rq *rq;
6516
6517         switch (action) {
6518
6519         case CPU_UP_PREPARE:
6520         case CPU_UP_PREPARE_FROZEN:
6521                 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6522                 if (IS_ERR(p))
6523                         return NOTIFY_BAD;
6524                 kthread_bind(p, cpu);
6525                 /* Must be high prio: stop_machine expects to yield to it. */
6526                 rq = task_rq_lock(p, &flags);
6527                 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6528                 task_rq_unlock(rq, &flags);
6529                 cpu_rq(cpu)->migration_thread = p;
6530                 break;
6531
6532         case CPU_ONLINE:
6533         case CPU_ONLINE_FROZEN:
6534                 /* Strictly unnecessary, as first user will wake it. */
6535                 wake_up_process(cpu_rq(cpu)->migration_thread);
6536
6537                 /* Update our root-domain */
6538                 rq = cpu_rq(cpu);
6539                 spin_lock_irqsave(&rq->lock, flags);
6540                 if (rq->rd) {
6541                         BUG_ON(!cpu_isset(cpu, rq->rd->span));
6542
6543                         set_rq_online(rq);
6544                 }
6545                 spin_unlock_irqrestore(&rq->lock, flags);
6546                 break;
6547
6548 #ifdef CONFIG_HOTPLUG_CPU
6549         case CPU_UP_CANCELED:
6550         case CPU_UP_CANCELED_FROZEN:
6551                 if (!cpu_rq(cpu)->migration_thread)
6552                         break;
6553                 /* Unbind it from offline cpu so it can run. Fall thru. */
6554                 kthread_bind(cpu_rq(cpu)->migration_thread,
6555                              any_online_cpu(cpu_online_map));
6556                 kthread_stop(cpu_rq(cpu)->migration_thread);
6557                 cpu_rq(cpu)->migration_thread = NULL;
6558                 break;
6559
6560         case CPU_DEAD:
6561         case CPU_DEAD_FROZEN:
6562                 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6563                 migrate_live_tasks(cpu);
6564                 rq = cpu_rq(cpu);
6565                 kthread_stop(rq->migration_thread);
6566                 rq->migration_thread = NULL;
6567                 /* Idle task back to normal (off runqueue, low prio) */
6568                 spin_lock_irq(&rq->lock);
6569                 update_rq_clock(rq);
6570                 deactivate_task(rq, rq->idle, 0);
6571                 rq->idle->static_prio = MAX_PRIO;
6572                 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6573                 rq->idle->sched_class = &idle_sched_class;
6574                 migrate_dead_tasks(cpu);
6575                 spin_unlock_irq(&rq->lock);
6576                 cpuset_unlock();
6577                 migrate_nr_uninterruptible(rq);
6578                 BUG_ON(rq->nr_running != 0);
6579
6580                 /*
6581                  * No need to migrate the tasks: it was best-effort if
6582                  * they didn't take sched_hotcpu_mutex. Just wake up
6583                  * the requestors.
6584                  */
6585                 spin_lock_irq(&rq->lock);
6586                 while (!list_empty(&rq->migration_queue)) {
6587                         struct migration_req *req;
6588
6589                         req = list_entry(rq->migration_queue.next,
6590                                          struct migration_req, list);
6591                         list_del_init(&req->list);
6592                         complete(&req->done);
6593                 }
6594                 spin_unlock_irq(&rq->lock);
6595                 break;
6596
6597         case CPU_DYING:
6598         case CPU_DYING_FROZEN:
6599                 /* Update our root-domain */
6600                 rq = cpu_rq(cpu);
6601                 spin_lock_irqsave(&rq->lock, flags);
6602                 if (rq->rd) {
6603                         BUG_ON(!cpu_isset(cpu, rq->rd->span));
6604                         set_rq_offline(rq);
6605                 }
6606                 spin_unlock_irqrestore(&rq->lock, flags);
6607                 break;
6608 #endif
6609         }
6610         return NOTIFY_OK;
6611 }
6612
6613 /* Register at highest priority so that task migration (migrate_all_tasks)
6614  * happens before everything else.
6615  */
6616 static struct notifier_block __cpuinitdata migration_notifier = {
6617         .notifier_call = migration_call,
6618         .priority = 10
6619 };
6620
6621 static int __init migration_init(void)
6622 {
6623         void *cpu = (void *)(long)smp_processor_id();
6624         int err;
6625
6626         /* Start one for the boot CPU: */
6627         err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6628         BUG_ON(err == NOTIFY_BAD);
6629         migration_call(&migration_notifier, CPU_ONLINE, cpu);
6630         register_cpu_notifier(&migration_notifier);
6631
6632         return err;
6633 }
6634 early_initcall(migration_init);
6635 #endif
6636
6637 #ifdef CONFIG_SMP
6638
6639 #ifdef CONFIG_SCHED_DEBUG
6640
6641 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6642 {
6643         switch (lvl) {
6644         case SD_LV_NONE:
6645                         return "NONE";
6646         case SD_LV_SIBLING:
6647                         return "SIBLING";
6648         case SD_LV_MC:
6649                         return "MC";
6650         case SD_LV_CPU:
6651                         return "CPU";
6652         case SD_LV_NODE:
6653                         return "NODE";
6654         case SD_LV_ALLNODES:
6655                         return "ALLNODES";
6656         case SD_LV_MAX:
6657                         return "MAX";
6658
6659         }
6660         return "MAX";
6661 }
6662
6663 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6664                                   cpumask_t *groupmask)
6665 {
6666         struct sched_group *group = sd->groups;
6667         char str[256];
6668
6669         cpulist_scnprintf(str, sizeof(str), sd->span);
6670         cpus_clear(*groupmask);
6671
6672         printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6673
6674         if (!(sd->flags & SD_LOAD_BALANCE)) {
6675                 printk("does not load-balance\n");
6676                 if (sd->parent)
6677                         printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6678                                         " has parent");
6679                 return -1;
6680         }
6681
6682         printk(KERN_CONT "span %s level %s\n",
6683                 str, sd_level_to_string(sd->level));
6684
6685         if (!cpu_isset(cpu, sd->span)) {
6686                 printk(KERN_ERR "ERROR: domain->span does not contain "
6687                                 "CPU%d\n", cpu);
6688         }
6689         if (!cpu_isset(cpu, group->cpumask)) {
6690                 printk(KERN_ERR "ERROR: domain->groups does not contain"
6691                                 " CPU%d\n", cpu);
6692         }
6693
6694         printk(KERN_DEBUG "%*s groups:", level + 1, "");
6695         do {
6696                 if (!group) {
6697                         printk("\n");
6698                         printk(KERN_ERR "ERROR: group is NULL\n");
6699                         break;
6700                 }
6701
6702                 if (!group->__cpu_power) {
6703                         printk(KERN_CONT "\n");
6704                         printk(KERN_ERR "ERROR: domain->cpu_power not "
6705                                         "set\n");
6706                         break;
6707                 }
6708
6709                 if (!cpus_weight(group->cpumask)) {
6710                         printk(KERN_CONT "\n");
6711                         printk(KERN_ERR "ERROR: empty group\n");
6712                         break;
6713                 }
6714
6715                 if (cpus_intersects(*groupmask, group->cpumask)) {
6716                         printk(KERN_CONT "\n");
6717                         printk(KERN_ERR "ERROR: repeated CPUs\n");
6718                         break;
6719                 }
6720
6721                 cpus_or(*groupmask, *groupmask, group->cpumask);
6722
6723                 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6724                 printk(KERN_CONT " %s", str);
6725
6726                 group = group->next;
6727         } while (group != sd->groups);
6728         printk(KERN_CONT "\n");
6729
6730         if (!cpus_equal(sd->span, *groupmask))
6731                 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6732
6733         if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6734                 printk(KERN_ERR "ERROR: parent span is not a superset "
6735                         "of domain->span\n");
6736         return 0;
6737 }
6738
6739 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6740 {
6741         cpumask_t *groupmask;
6742         int level = 0;
6743
6744         if (!sd) {
6745                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6746                 return;
6747         }
6748
6749         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6750
6751         groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6752         if (!groupmask) {
6753                 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6754                 return;
6755         }
6756
6757         for (;;) {
6758                 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6759                         break;
6760                 level++;
6761                 sd = sd->parent;
6762                 if (!sd)
6763                         break;
6764         }
6765         kfree(groupmask);
6766 }
6767 #else /* !CONFIG_SCHED_DEBUG */
6768 # define sched_domain_debug(sd, cpu) do { } while (0)
6769 #endif /* CONFIG_SCHED_DEBUG */
6770
6771 static int sd_degenerate(struct sched_domain *sd)
6772 {
6773         if (cpus_weight(sd->span) == 1)
6774                 return 1;
6775
6776         /* Following flags need at least 2 groups */
6777         if (sd->flags & (SD_LOAD_BALANCE |
6778                          SD_BALANCE_NEWIDLE |
6779                          SD_BALANCE_FORK |
6780                          SD_BALANCE_EXEC |
6781                          SD_SHARE_CPUPOWER |
6782                          SD_SHARE_PKG_RESOURCES)) {
6783                 if (sd->groups != sd->groups->next)
6784                         return 0;
6785         }
6786
6787         /* Following flags don't use groups */
6788         if (sd->flags & (SD_WAKE_IDLE |
6789                          SD_WAKE_AFFINE |
6790                          SD_WAKE_BALANCE))
6791                 return 0;
6792
6793         return 1;
6794 }
6795
6796 static int
6797 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6798 {
6799         unsigned long cflags = sd->flags, pflags = parent->flags;
6800
6801         if (sd_degenerate(parent))
6802                 return 1;
6803
6804         if (!cpus_equal(sd->span, parent->span))
6805                 return 0;
6806
6807         /* Does parent contain flags not in child? */
6808         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6809         if (cflags & SD_WAKE_AFFINE)
6810                 pflags &= ~SD_WAKE_BALANCE;
6811         /* Flags needing groups don't count if only 1 group in parent */
6812         if (parent->groups == parent->groups->next) {
6813                 pflags &= ~(SD_LOAD_BALANCE |
6814                                 SD_BALANCE_NEWIDLE |
6815                                 SD_BALANCE_FORK |
6816                                 SD_BALANCE_EXEC |
6817                                 SD_SHARE_CPUPOWER |
6818                                 SD_SHARE_PKG_RESOURCES);
6819         }
6820         if (~cflags & pflags)
6821                 return 0;
6822
6823         return 1;
6824 }
6825
6826 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6827 {
6828         unsigned long flags;
6829
6830         spin_lock_irqsave(&rq->lock, flags);
6831
6832         if (rq->rd) {
6833                 struct root_domain *old_rd = rq->rd;
6834
6835                 if (cpu_isset(rq->cpu, old_rd->online))
6836                         set_rq_offline(rq);
6837
6838                 cpu_clear(rq->cpu, old_rd->span);
6839
6840                 if (atomic_dec_and_test(&old_rd->refcount))
6841                         kfree(old_rd);
6842         }
6843
6844         atomic_inc(&rd->refcount);
6845         rq->rd = rd;
6846
6847         cpu_set(rq->cpu, rd->span);
6848         if (cpu_isset(rq->cpu, cpu_online_map))
6849                 set_rq_online(rq);
6850
6851         spin_unlock_irqrestore(&rq->lock, flags);
6852 }
6853
6854 static void init_rootdomain(struct root_domain *rd)
6855 {
6856         memset(rd, 0, sizeof(*rd));
6857
6858         cpus_clear(rd->span);
6859         cpus_clear(rd->online);
6860
6861         cpupri_init(&rd->cpupri);
6862 }
6863
6864 static void init_defrootdomain(void)
6865 {
6866         init_rootdomain(&def_root_domain);
6867         atomic_set(&def_root_domain.refcount, 1);
6868 }
6869
6870 static struct root_domain *alloc_rootdomain(void)
6871 {
6872         struct root_domain *rd;
6873
6874         rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6875         if (!rd)
6876                 return NULL;
6877
6878         init_rootdomain(rd);
6879
6880         return rd;
6881 }
6882
6883 /*
6884  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6885  * hold the hotplug lock.
6886  */
6887 static void
6888 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6889 {
6890         struct rq *rq = cpu_rq(cpu);
6891         struct sched_domain *tmp;
6892
6893         /* Remove the sched domains which do not contribute to scheduling. */
6894         for (tmp = sd; tmp; tmp = tmp->parent) {
6895                 struct sched_domain *parent = tmp->parent;
6896                 if (!parent)
6897                         break;
6898                 if (sd_parent_degenerate(tmp, parent)) {
6899                         tmp->parent = parent->parent;
6900                         if (parent->parent)
6901                                 parent->parent->child = tmp;
6902                 }
6903         }
6904
6905         if (sd && sd_degenerate(sd)) {
6906                 sd = sd->parent;
6907                 if (sd)
6908                         sd->child = NULL;
6909         }
6910
6911         sched_domain_debug(sd, cpu);
6912
6913         rq_attach_root(rq, rd);
6914         rcu_assign_pointer(rq->sd, sd);
6915 }
6916
6917 /* cpus with isolated domains */
6918 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6919
6920 /* Setup the mask of cpus configured for isolated domains */
6921 static int __init isolated_cpu_setup(char *str)
6922 {
6923         static int __initdata ints[NR_CPUS];
6924         int i;
6925
6926         str = get_options(str, ARRAY_SIZE(ints), ints);
6927         cpus_clear(cpu_isolated_map);
6928         for (i = 1; i <= ints[0]; i++)
6929                 if (ints[i] < NR_CPUS)
6930                         cpu_set(ints[i], cpu_isolated_map);
6931         return 1;
6932 }
6933
6934 __setup("isolcpus=", isolated_cpu_setup);
6935
6936 /*
6937  * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6938  * to a function which identifies what group(along with sched group) a CPU
6939  * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6940  * (due to the fact that we keep track of groups covered with a cpumask_t).
6941  *
6942  * init_sched_build_groups will build a circular linked list of the groups
6943  * covered by the given span, and will set each group's ->cpumask correctly,
6944  * and ->cpu_power to 0.
6945  */
6946 static void
6947 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6948                         int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6949                                         struct sched_group **sg,
6950                                         cpumask_t *tmpmask),
6951                         cpumask_t *covered, cpumask_t *tmpmask)
6952 {
6953         struct sched_group *first = NULL, *last = NULL;
6954         int i;
6955
6956         cpus_clear(*covered);
6957
6958         for_each_cpu_mask_nr(i, *span) {
6959                 struct sched_group *sg;
6960                 int group = group_fn(i, cpu_map, &sg, tmpmask);
6961                 int j;
6962
6963                 if (cpu_isset(i, *covered))
6964                         continue;
6965
6966                 cpus_clear(sg->cpumask);
6967                 sg->__cpu_power = 0;
6968
6969                 for_each_cpu_mask_nr(j, *span) {
6970                         if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6971                                 continue;
6972
6973                         cpu_set(j, *covered);
6974                         cpu_set(j, sg->cpumask);
6975                 }
6976                 if (!first)
6977                         first = sg;
6978                 if (last)
6979                         last->next = sg;
6980                 last = sg;
6981         }
6982         last->next = first;
6983 }
6984
6985 #define SD_NODES_PER_DOMAIN 16
6986
6987 #ifdef CONFIG_NUMA
6988
6989 /**
6990  * find_next_best_node - find the next node to include in a sched_domain
6991  * @node: node whose sched_domain we're building
6992  * @used_nodes: nodes already in the sched_domain
6993  *
6994  * Find the next node to include in a given scheduling domain. Simply
6995  * finds the closest node not already in the @used_nodes map.
6996  *
6997  * Should use nodemask_t.
6998  */
6999 static int find_next_best_node(int node, nodemask_t *used_nodes)
7000 {
7001         int i, n, val, min_val, best_node = 0;
7002
7003         min_val = INT_MAX;
7004
7005         for (i = 0; i < nr_node_ids; i++) {
7006                 /* Start at @node */
7007                 n = (node + i) % nr_node_ids;
7008
7009                 if (!nr_cpus_node(n))
7010                         continue;
7011
7012                 /* Skip already used nodes */
7013                 if (node_isset(n, *used_nodes))
7014                         continue;
7015
7016                 /* Simple min distance search */
7017                 val = node_distance(node, n);
7018
7019                 if (val < min_val) {
7020                         min_val = val;
7021                         best_node = n;
7022                 }
7023         }
7024
7025         node_set(best_node, *used_nodes);
7026         return best_node;
7027 }
7028
7029 /**
7030  * sched_domain_node_span - get a cpumask for a node's sched_domain
7031  * @node: node whose cpumask we're constructing
7032  * @span: resulting cpumask
7033  *
7034  * Given a node, construct a good cpumask for its sched_domain to span. It
7035  * should be one that prevents unnecessary balancing, but also spreads tasks
7036  * out optimally.
7037  */
7038 static void sched_domain_node_span(int node, cpumask_t *span)
7039 {
7040         nodemask_t used_nodes;
7041         node_to_cpumask_ptr(nodemask, node);
7042         int i;
7043
7044         cpus_clear(*span);
7045         nodes_clear(used_nodes);
7046
7047         cpus_or(*span, *span, *nodemask);
7048         node_set(node, used_nodes);
7049
7050         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7051                 int next_node = find_next_best_node(node, &used_nodes);
7052
7053                 node_to_cpumask_ptr_next(nodemask, next_node);
7054                 cpus_or(*span, *span, *nodemask);
7055         }
7056 }
7057 #endif /* CONFIG_NUMA */
7058
7059 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7060
7061 /*
7062  * SMT sched-domains:
7063  */
7064 #ifdef CONFIG_SCHED_SMT
7065 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7066 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7067
7068 static int
7069 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7070                  cpumask_t *unused)
7071 {
7072         if (sg)
7073                 *sg = &per_cpu(sched_group_cpus, cpu);
7074         return cpu;
7075 }
7076 #endif /* CONFIG_SCHED_SMT */
7077
7078 /*
7079  * multi-core sched-domains:
7080  */
7081 #ifdef CONFIG_SCHED_MC
7082 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7083 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7084 #endif /* CONFIG_SCHED_MC */
7085
7086 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7087 static int
7088 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7089                   cpumask_t *mask)
7090 {
7091         int group;
7092
7093         *mask = per_cpu(cpu_sibling_map, cpu);
7094         cpus_and(*mask, *mask, *cpu_map);
7095         group = first_cpu(*mask);
7096         if (sg)
7097                 *sg = &per_cpu(sched_group_core, group);
7098         return group;
7099 }
7100 #elif defined(CONFIG_SCHED_MC)
7101 static int
7102 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7103                   cpumask_t *unused)
7104 {
7105         if (sg)
7106                 *sg = &per_cpu(sched_group_core, cpu);
7107         return cpu;
7108 }
7109 #endif
7110
7111 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7112 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7113
7114 static int
7115 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7116                   cpumask_t *mask)
7117 {
7118         int group;
7119 #ifdef CONFIG_SCHED_MC
7120         *mask = cpu_coregroup_map(cpu);
7121         cpus_and(*mask, *mask, *cpu_map);
7122         group = first_cpu(*mask);
7123 #elif defined(CONFIG_SCHED_SMT)
7124         *mask = per_cpu(cpu_sibling_map, cpu);
7125         cpus_and(*mask, *mask, *cpu_map);
7126         group = first_cpu(*mask);
7127 #else
7128         group = cpu;
7129 #endif
7130         if (sg)
7131                 *sg = &per_cpu(sched_group_phys, group);
7132         return group;
7133 }
7134
7135 #ifdef CONFIG_NUMA
7136 /*
7137  * The init_sched_build_groups can't handle what we want to do with node
7138  * groups, so roll our own. Now each node has its own list of groups which
7139  * gets dynamically allocated.
7140  */
7141 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7142 static struct sched_group ***sched_group_nodes_bycpu;
7143
7144 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7145 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7146
7147 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7148                                  struct sched_group **sg, cpumask_t *nodemask)
7149 {
7150         int group;
7151
7152         *nodemask = node_to_cpumask(cpu_to_node(cpu));
7153         cpus_and(*nodemask, *nodemask, *cpu_map);
7154         group = first_cpu(*nodemask);
7155
7156         if (sg)
7157                 *sg = &per_cpu(sched_group_allnodes, group);
7158         return group;
7159 }
7160
7161 static void init_numa_sched_groups_power(struct sched_group *group_head)
7162 {
7163         struct sched_group *sg = group_head;
7164         int j;
7165
7166         if (!sg)
7167                 return;
7168         do {
7169                 for_each_cpu_mask_nr(j, sg->cpumask) {
7170                         struct sched_domain *sd;
7171
7172                         sd = &per_cpu(phys_domains, j);
7173                         if (j != first_cpu(sd->groups->cpumask)) {
7174                                 /*
7175                                  * Only add "power" once for each
7176                                  * physical package.
7177                                  */
7178                                 continue;
7179                         }
7180
7181                         sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7182                 }
7183                 sg = sg->next;
7184         } while (sg != group_head);
7185 }
7186 #endif /* CONFIG_NUMA */
7187
7188 #ifdef CONFIG_NUMA
7189 /* Free memory allocated for various sched_group structures */
7190 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7191 {
7192         int cpu, i;
7193
7194         for_each_cpu_mask_nr(cpu, *cpu_map) {
7195                 struct sched_group **sched_group_nodes
7196                         = sched_group_nodes_bycpu[cpu];
7197
7198                 if (!sched_group_nodes)
7199                         continue;
7200
7201                 for (i = 0; i < nr_node_ids; i++) {
7202                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
7203
7204                         *nodemask = node_to_cpumask(i);
7205                         cpus_and(*nodemask, *nodemask, *cpu_map);
7206                         if (cpus_empty(*nodemask))
7207                                 continue;
7208
7209                         if (sg == NULL)
7210                                 continue;
7211                         sg = sg->next;
7212 next_sg:
7213                         oldsg = sg;
7214                         sg = sg->next;
7215                         kfree(oldsg);
7216                         if (oldsg != sched_group_nodes[i])
7217                                 goto next_sg;
7218                 }
7219                 kfree(sched_group_nodes);
7220                 sched_group_nodes_bycpu[cpu] = NULL;
7221         }
7222 }
7223 #else /* !CONFIG_NUMA */
7224 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7225 {
7226 }
7227 #endif /* CONFIG_NUMA */
7228
7229 /*
7230  * Initialize sched groups cpu_power.
7231  *
7232  * cpu_power indicates the capacity of sched group, which is used while
7233  * distributing the load between different sched groups in a sched domain.
7234  * Typically cpu_power for all the groups in a sched domain will be same unless
7235  * there are asymmetries in the topology. If there are asymmetries, group
7236  * having more cpu_power will pickup more load compared to the group having
7237  * less cpu_power.
7238  *
7239  * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7240  * the maximum number of tasks a group can handle in the presence of other idle
7241  * or lightly loaded groups in the same sched domain.
7242  */
7243 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7244 {
7245         struct sched_domain *child;
7246         struct sched_group *group;
7247
7248         WARN_ON(!sd || !sd->groups);
7249
7250         if (cpu != first_cpu(sd->groups->cpumask))
7251                 return;
7252
7253         child = sd->child;
7254
7255         sd->groups->__cpu_power = 0;
7256
7257         /*
7258          * For perf policy, if the groups in child domain share resources
7259          * (for example cores sharing some portions of the cache hierarchy
7260          * or SMT), then set this domain groups cpu_power such that each group
7261          * can handle only one task, when there are other idle groups in the
7262          * same sched domain.
7263          */
7264         if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7265                        (child->flags &
7266                         (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7267                 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7268                 return;
7269         }
7270
7271         /*
7272          * add cpu_power of each child group to this groups cpu_power
7273          */
7274         group = child->groups;
7275         do {
7276                 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7277                 group = group->next;
7278         } while (group != child->groups);
7279 }
7280
7281 /*
7282  * Initializers for schedule domains
7283  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7284  */
7285
7286 #ifdef CONFIG_SCHED_DEBUG
7287 # define SD_INIT_NAME(sd, type)         sd->name = #type
7288 #else
7289 # define SD_INIT_NAME(sd, type)         do { } while (0)
7290 #endif
7291
7292 #define SD_INIT(sd, type)       sd_init_##type(sd)
7293
7294 #define SD_INIT_FUNC(type)      \
7295 static noinline void sd_init_##type(struct sched_domain *sd)    \
7296 {                                                               \
7297         memset(sd, 0, sizeof(*sd));                             \
7298         *sd = SD_##type##_INIT;                                 \
7299         sd->level = SD_LV_##type;                               \
7300         SD_INIT_NAME(sd, type);                                 \
7301 }
7302
7303 SD_INIT_FUNC(CPU)
7304 #ifdef CONFIG_NUMA
7305  SD_INIT_FUNC(ALLNODES)
7306  SD_INIT_FUNC(NODE)
7307 #endif
7308 #ifdef CONFIG_SCHED_SMT
7309  SD_INIT_FUNC(SIBLING)
7310 #endif
7311 #ifdef CONFIG_SCHED_MC
7312  SD_INIT_FUNC(MC)
7313 #endif
7314
7315 /*
7316  * To minimize stack usage kmalloc room for cpumasks and share the
7317  * space as the usage in build_sched_domains() dictates.  Used only
7318  * if the amount of space is significant.
7319  */
7320 struct allmasks {
7321         cpumask_t tmpmask;                      /* make this one first */
7322         union {
7323                 cpumask_t nodemask;
7324                 cpumask_t this_sibling_map;
7325                 cpumask_t this_core_map;
7326         };
7327         cpumask_t send_covered;
7328
7329 #ifdef CONFIG_NUMA
7330         cpumask_t domainspan;
7331         cpumask_t covered;
7332         cpumask_t notcovered;
7333 #endif
7334 };
7335
7336 #if     NR_CPUS > 128
7337 #define SCHED_CPUMASK_ALLOC             1
7338 #define SCHED_CPUMASK_FREE(v)           kfree(v)
7339 #define SCHED_CPUMASK_DECLARE(v)        struct allmasks *v
7340 #else
7341 #define SCHED_CPUMASK_ALLOC             0
7342 #define SCHED_CPUMASK_FREE(v)
7343 #define SCHED_CPUMASK_DECLARE(v)        struct allmasks _v, *v = &_v
7344 #endif
7345
7346 #define SCHED_CPUMASK_VAR(v, a)         cpumask_t *v = (cpumask_t *) \
7347                         ((unsigned long)(a) + offsetof(struct allmasks, v))
7348
7349 static int default_relax_domain_level = -1;
7350
7351 static int __init setup_relax_domain_level(char *str)
7352 {
7353         unsigned long val;
7354
7355         val = simple_strtoul(str, NULL, 0);
7356         if (val < SD_LV_MAX)
7357                 default_relax_domain_level = val;
7358
7359         return 1;
7360 }
7361 __setup("relax_domain_level=", setup_relax_domain_level);
7362
7363 static void set_domain_attribute(struct sched_domain *sd,
7364                                  struct sched_domain_attr *attr)
7365 {
7366         int request;
7367
7368         if (!attr || attr->relax_domain_level < 0) {
7369                 if (default_relax_domain_level < 0)
7370                         return;
7371                 else
7372                         request = default_relax_domain_level;
7373         } else
7374                 request = attr->relax_domain_level;
7375         if (request < sd->level) {
7376                 /* turn off idle balance on this domain */
7377                 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7378         } else {
7379                 /* turn on idle balance on this domain */
7380                 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7381         }
7382 }
7383
7384 /*
7385  * Build sched domains for a given set of cpus and attach the sched domains
7386  * to the individual cpus
7387  */
7388 static int __build_sched_domains(const cpumask_t *cpu_map,
7389                                  struct sched_domain_attr *attr)
7390 {
7391         int i;
7392         struct root_domain *rd;
7393         SCHED_CPUMASK_DECLARE(allmasks);
7394         cpumask_t *tmpmask;
7395 #ifdef CONFIG_NUMA
7396         struct sched_group **sched_group_nodes = NULL;
7397         int sd_allnodes = 0;
7398
7399         /*
7400          * Allocate the per-node list of sched groups
7401          */
7402         sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7403                                     GFP_KERNEL);
7404         if (!sched_group_nodes) {
7405                 printk(KERN_WARNING "Can not alloc sched group node list\n");
7406                 return -ENOMEM;
7407         }
7408 #endif
7409
7410         rd = alloc_rootdomain();
7411         if (!rd) {
7412                 printk(KERN_WARNING "Cannot alloc root domain\n");
7413 #ifdef CONFIG_NUMA
7414                 kfree(sched_group_nodes);
7415 #endif
7416                 return -ENOMEM;
7417         }
7418
7419 #if SCHED_CPUMASK_ALLOC
7420         /* get space for all scratch cpumask variables */
7421         allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7422         if (!allmasks) {
7423                 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7424                 kfree(rd);
7425 #ifdef CONFIG_NUMA
7426                 kfree(sched_group_nodes);
7427 #endif
7428                 return -ENOMEM;
7429         }
7430 #endif
7431         tmpmask = (cpumask_t *)allmasks;
7432
7433
7434 #ifdef CONFIG_NUMA
7435         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7436 #endif
7437
7438         /*
7439          * Set up domains for cpus specified by the cpu_map.
7440          */
7441         for_each_cpu_mask_nr(i, *cpu_map) {
7442                 struct sched_domain *sd = NULL, *p;
7443                 SCHED_CPUMASK_VAR(nodemask, allmasks);
7444
7445                 *nodemask = node_to_cpumask(cpu_to_node(i));
7446                 cpus_and(*nodemask, *nodemask, *cpu_map);
7447
7448 #ifdef CONFIG_NUMA
7449                 if (cpus_weight(*cpu_map) >
7450                                 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7451                         sd = &per_cpu(allnodes_domains, i);
7452                         SD_INIT(sd, ALLNODES);
7453                         set_domain_attribute(sd, attr);
7454                         sd->span = *cpu_map;
7455                         cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7456                         p = sd;
7457                         sd_allnodes = 1;
7458                 } else
7459                         p = NULL;
7460
7461                 sd = &per_cpu(node_domains, i);
7462                 SD_INIT(sd, NODE);
7463                 set_domain_attribute(sd, attr);
7464                 sched_domain_node_span(cpu_to_node(i), &sd->span);
7465                 sd->parent = p;
7466                 if (p)
7467                         p->child = sd;
7468                 cpus_and(sd->span, sd->span, *cpu_map);
7469 #endif
7470
7471                 p = sd;
7472                 sd = &per_cpu(phys_domains, i);
7473                 SD_INIT(sd, CPU);
7474                 set_domain_attribute(sd, attr);
7475                 sd->span = *nodemask;
7476                 sd->parent = p;
7477                 if (p)
7478                         p->child = sd;
7479                 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7480
7481 #ifdef CONFIG_SCHED_MC
7482                 p = sd;
7483                 sd = &per_cpu(core_domains, i);
7484                 SD_INIT(sd, MC);
7485                 set_domain_attribute(sd, attr);
7486                 sd->span = cpu_coregroup_map(i);
7487                 cpus_and(sd->span, sd->span, *cpu_map);
7488                 sd->parent = p;
7489                 p->child = sd;
7490                 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7491 #endif
7492
7493 #ifdef CONFIG_SCHED_SMT
7494                 p = sd;
7495                 sd = &per_cpu(cpu_domains, i);
7496                 SD_INIT(sd, SIBLING);
7497                 set_domain_attribute(sd, attr);
7498                 sd->span = per_cpu(cpu_sibling_map, i);
7499                 cpus_and(sd->span, sd->span, *cpu_map);
7500                 sd->parent = p;
7501                 p->child = sd;
7502                 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7503 #endif
7504         }
7505
7506 #ifdef CONFIG_SCHED_SMT
7507         /* Set up CPU (sibling) groups */
7508         for_each_cpu_mask_nr(i, *cpu_map) {
7509                 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7510                 SCHED_CPUMASK_VAR(send_covered, allmasks);
7511
7512                 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7513                 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7514                 if (i != first_cpu(*this_sibling_map))
7515                         continue;
7516
7517                 init_sched_build_groups(this_sibling_map, cpu_map,
7518                                         &cpu_to_cpu_group,
7519                                         send_covered, tmpmask);
7520         }
7521 #endif
7522
7523 #ifdef CONFIG_SCHED_MC
7524         /* Set up multi-core groups */
7525         for_each_cpu_mask_nr(i, *cpu_map) {
7526                 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7527                 SCHED_CPUMASK_VAR(send_covered, allmasks);
7528
7529                 *this_core_map = cpu_coregroup_map(i);
7530                 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7531                 if (i != first_cpu(*this_core_map))
7532                         continue;
7533
7534                 init_sched_build_groups(this_core_map, cpu_map,
7535                                         &cpu_to_core_group,
7536                                         send_covered, tmpmask);
7537         }
7538 #endif
7539
7540         /* Set up physical groups */
7541         for (i = 0; i < nr_node_ids; i++) {
7542                 SCHED_CPUMASK_VAR(nodemask, allmasks);
7543                 SCHED_CPUMASK_VAR(send_covered, allmasks);
7544
7545                 *nodemask = node_to_cpumask(i);
7546                 cpus_and(*nodemask, *nodemask, *cpu_map);
7547                 if (cpus_empty(*nodemask))
7548                         continue;
7549
7550                 init_sched_build_groups(nodemask, cpu_map,
7551                                         &cpu_to_phys_group,
7552                                         send_covered, tmpmask);
7553         }
7554
7555 #ifdef CONFIG_NUMA
7556         /* Set up node groups */
7557         if (sd_allnodes) {
7558                 SCHED_CPUMASK_VAR(send_covered, allmasks);
7559
7560                 init_sched_build_groups(cpu_map, cpu_map,
7561                                         &cpu_to_allnodes_group,
7562                                         send_covered, tmpmask);
7563         }
7564
7565         for (i = 0; i < nr_node_ids; i++) {
7566                 /* Set up node groups */
7567                 struct sched_group *sg, *prev;
7568                 SCHED_CPUMASK_VAR(nodemask, allmasks);
7569                 SCHED_CPUMASK_VAR(domainspan, allmasks);
7570                 SCHED_CPUMASK_VAR(covered, allmasks);
7571                 int j;
7572
7573                 *nodemask = node_to_cpumask(i);
7574                 cpus_clear(*covered);
7575
7576                 cpus_and(*nodemask, *nodemask, *cpu_map);
7577                 if (cpus_empty(*nodemask)) {
7578                         sched_group_nodes[i] = NULL;
7579                         continue;
7580                 }
7581
7582                 sched_domain_node_span(i, domainspan);
7583                 cpus_and(*domainspan, *domainspan, *cpu_map);
7584
7585                 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7586                 if (!sg) {
7587                         printk(KERN_WARNING "Can not alloc domain group for "
7588                                 "node %d\n", i);
7589                         goto error;
7590                 }
7591                 sched_group_nodes[i] = sg;
7592                 for_each_cpu_mask_nr(j, *nodemask) {
7593                         struct sched_domain *sd;
7594
7595                         sd = &per_cpu(node_domains, j);
7596                         sd->groups = sg;
7597                 }
7598                 sg->__cpu_power = 0;
7599                 sg->cpumask = *nodemask;
7600                 sg->next = sg;
7601                 cpus_or(*covered, *covered, *nodemask);
7602                 prev = sg;
7603
7604                 for (j = 0; j < nr_node_ids; j++) {
7605                         SCHED_CPUMASK_VAR(notcovered, allmasks);
7606                         int n = (i + j) % nr_node_ids;
7607                         node_to_cpumask_ptr(pnodemask, n);
7608
7609                         cpus_complement(*notcovered, *covered);
7610                         cpus_and(*tmpmask, *notcovered, *cpu_map);
7611                         cpus_and(*tmpmask, *tmpmask, *domainspan);
7612                         if (cpus_empty(*tmpmask))
7613                                 break;
7614
7615                         cpus_and(*tmpmask, *tmpmask, *pnodemask);
7616                         if (cpus_empty(*tmpmask))
7617                                 continue;
7618
7619                         sg = kmalloc_node(sizeof(struct sched_group),
7620                                           GFP_KERNEL, i);
7621                         if (!sg) {
7622                                 printk(KERN_WARNING
7623                                 "Can not alloc domain group for node %d\n", j);
7624                                 goto error;
7625                         }
7626                         sg->__cpu_power = 0;
7627                         sg->cpumask = *tmpmask;
7628                         sg->next = prev->next;
7629                         cpus_or(*covered, *covered, *tmpmask);
7630                         prev->next = sg;
7631                         prev = sg;
7632                 }
7633         }
7634 #endif
7635
7636         /* Calculate CPU power for physical packages and nodes */
7637 #ifdef CONFIG_SCHED_SMT
7638         for_each_cpu_mask_nr(i, *cpu_map) {
7639                 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7640
7641                 init_sched_groups_power(i, sd);
7642         }
7643 #endif
7644 #ifdef CONFIG_SCHED_MC
7645         for_each_cpu_mask_nr(i, *cpu_map) {
7646                 struct sched_domain *sd = &per_cpu(core_domains, i);
7647
7648                 init_sched_groups_power(i, sd);
7649         }
7650 #endif
7651
7652         for_each_cpu_mask_nr(i, *cpu_map) {
7653                 struct sched_domain *sd = &per_cpu(phys_domains, i);
7654
7655                 init_sched_groups_power(i, sd);
7656         }
7657
7658 #ifdef CONFIG_NUMA
7659         for (i = 0; i < nr_node_ids; i++)
7660                 init_numa_sched_groups_power(sched_group_nodes[i]);
7661
7662         if (sd_allnodes) {
7663                 struct sched_group *sg;
7664
7665                 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7666                                                                 tmpmask);
7667                 init_numa_sched_groups_power(sg);
7668         }
7669 #endif
7670
7671         /* Attach the domains */
7672         for_each_cpu_mask_nr(i, *cpu_map) {
7673                 struct sched_domain *sd;
7674 #ifdef CONFIG_SCHED_SMT
7675                 sd = &per_cpu(cpu_domains, i);
7676 #elif defined(CONFIG_SCHED_MC)
7677                 sd = &per_cpu(core_domains, i);
7678 #else
7679                 sd = &per_cpu(phys_domains, i);
7680 #endif
7681                 cpu_attach_domain(sd, rd, i);
7682         }
7683
7684         SCHED_CPUMASK_FREE((void *)allmasks);
7685         return 0;
7686
7687 #ifdef CONFIG_NUMA
7688 error:
7689         free_sched_groups(cpu_map, tmpmask);
7690         SCHED_CPUMASK_FREE((void *)allmasks);
7691         return -ENOMEM;
7692 #endif
7693 }
7694
7695 static int build_sched_domains(const cpumask_t *cpu_map)
7696 {
7697         return __build_sched_domains(cpu_map, NULL);
7698 }
7699
7700 static cpumask_t *doms_cur;     /* current sched domains */
7701 static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
7702 static struct sched_domain_attr *dattr_cur;
7703                                 /* attribues of custom domains in 'doms_cur' */
7704
7705 /*
7706  * Special case: If a kmalloc of a doms_cur partition (array of
7707  * cpumask_t) fails, then fallback to a single sched domain,
7708  * as determined by the single cpumask_t fallback_doms.
7709  */
7710 static cpumask_t fallback_doms;
7711
7712 void __attribute__((weak)) arch_update_cpu_topology(void)
7713 {
7714 }
7715
7716 /*
7717  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7718  * For now this just excludes isolated cpus, but could be used to
7719  * exclude other special cases in the future.
7720  */
7721 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7722 {
7723         int err;
7724
7725         arch_update_cpu_topology();
7726         ndoms_cur = 1;
7727         doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7728         if (!doms_cur)
7729                 doms_cur = &fallback_doms;
7730         cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7731         dattr_cur = NULL;
7732         err = build_sched_domains(doms_cur);
7733         register_sched_domain_sysctl();
7734
7735         return err;
7736 }
7737
7738 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7739                                        cpumask_t *tmpmask)
7740 {
7741         free_sched_groups(cpu_map, tmpmask);
7742 }
7743
7744 /*
7745  * Detach sched domains from a group of cpus specified in cpu_map
7746  * These cpus will now be attached to the NULL domain
7747  */
7748 static void detach_destroy_domains(const cpumask_t *cpu_map)
7749 {
7750         cpumask_t tmpmask;
7751         int i;
7752
7753         unregister_sched_domain_sysctl();
7754
7755         for_each_cpu_mask_nr(i, *cpu_map)
7756                 cpu_attach_domain(NULL, &def_root_domain, i);
7757         synchronize_sched();
7758         arch_destroy_sched_domains(cpu_map, &tmpmask);
7759 }
7760
7761 /* handle null as "default" */
7762 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7763                         struct sched_domain_attr *new, int idx_new)
7764 {
7765         struct sched_domain_attr tmp;
7766
7767         /* fast path */
7768         if (!new && !cur)
7769                 return 1;
7770
7771         tmp = SD_ATTR_INIT;
7772         return !memcmp(cur ? (cur + idx_cur) : &tmp,
7773                         new ? (new + idx_new) : &tmp,
7774                         sizeof(struct sched_domain_attr));
7775 }
7776
7777 /*
7778  * Partition sched domains as specified by the 'ndoms_new'
7779  * cpumasks in the array doms_new[] of cpumasks. This compares
7780  * doms_new[] to the current sched domain partitioning, doms_cur[].
7781  * It destroys each deleted domain and builds each new domain.
7782  *
7783  * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7784  * The masks don't intersect (don't overlap.) We should setup one
7785  * sched domain for each mask. CPUs not in any of the cpumasks will
7786  * not be load balanced. If the same cpumask appears both in the
7787  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7788  * it as it is.
7789  *
7790  * The passed in 'doms_new' should be kmalloc'd. This routine takes
7791  * ownership of it and will kfree it when done with it. If the caller
7792  * failed the kmalloc call, then it can pass in doms_new == NULL,
7793  * and partition_sched_domains() will fallback to the single partition
7794  * 'fallback_doms', it also forces the domains to be rebuilt.
7795  *
7796  * If doms_new==NULL it will be replaced with cpu_online_map.
7797  * ndoms_new==0 is a special case for destroying existing domains.
7798  * It will not create the default domain.
7799  *
7800  * Call with hotplug lock held
7801  */
7802 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7803                              struct sched_domain_attr *dattr_new)
7804 {
7805         int i, j, n;
7806
7807         mutex_lock(&sched_domains_mutex);
7808
7809         /* always unregister in case we don't destroy any domains */
7810         unregister_sched_domain_sysctl();
7811
7812         n = doms_new ? ndoms_new : 0;
7813
7814         /* Destroy deleted domains */
7815         for (i = 0; i < ndoms_cur; i++) {
7816                 for (j = 0; j < n; j++) {
7817                         if (cpus_equal(doms_cur[i], doms_new[j])
7818                             && dattrs_equal(dattr_cur, i, dattr_new, j))
7819                                 goto match1;
7820                 }
7821                 /* no match - a current sched domain not in new doms_new[] */
7822                 detach_destroy_domains(doms_cur + i);
7823 match1:
7824                 ;
7825         }
7826
7827         if (doms_new == NULL) {
7828                 ndoms_cur = 0;
7829                 doms_new = &fallback_doms;
7830                 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7831                 dattr_new = NULL;
7832         }
7833
7834         /* Build new domains */
7835         for (i = 0; i < ndoms_new; i++) {
7836                 for (j = 0; j < ndoms_cur; j++) {
7837                         if (cpus_equal(doms_new[i], doms_cur[j])
7838                             && dattrs_equal(dattr_new, i, dattr_cur, j))
7839                                 goto match2;
7840                 }
7841                 /* no match - add a new doms_new */
7842                 __build_sched_domains(doms_new + i,
7843                                         dattr_new ? dattr_new + i : NULL);
7844 match2:
7845                 ;
7846         }
7847
7848         /* Remember the new sched domains */
7849         if (doms_cur != &fallback_doms)
7850                 kfree(doms_cur);
7851         kfree(dattr_cur);       /* kfree(NULL) is safe */
7852         doms_cur = doms_new;
7853         dattr_cur = dattr_new;
7854         ndoms_cur = ndoms_new;
7855
7856         register_sched_domain_sysctl();
7857
7858         mutex_unlock(&sched_domains_mutex);
7859 }
7860
7861 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7862 int arch_reinit_sched_domains(void)
7863 {
7864         get_online_cpus();
7865
7866         /* Destroy domains first to force the rebuild */
7867         partition_sched_domains(0, NULL, NULL);
7868
7869         rebuild_sched_domains();
7870         put_online_cpus();
7871
7872         return 0;
7873 }
7874
7875 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7876 {
7877         int ret;
7878
7879         if (buf[0] != '0' && buf[0] != '1')
7880                 return -EINVAL;
7881
7882         if (smt)
7883                 sched_smt_power_savings = (buf[0] == '1');
7884         else
7885                 sched_mc_power_savings = (buf[0] == '1');
7886
7887         ret = arch_reinit_sched_domains();
7888
7889         return ret ? ret : count;
7890 }
7891
7892 #ifdef CONFIG_SCHED_MC
7893 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7894                                            char *page)
7895 {
7896         return sprintf(page, "%u\n", sched_mc_power_savings);
7897 }
7898 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7899                                             const char *buf, size_t count)
7900 {
7901         return sched_power_savings_store(buf, count, 0);
7902 }
7903 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7904                          sched_mc_power_savings_show,
7905                          sched_mc_power_savings_store);
7906 #endif
7907
7908 #ifdef CONFIG_SCHED_SMT
7909 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7910                                             char *page)
7911 {
7912         return sprintf(page, "%u\n", sched_smt_power_savings);
7913 }
7914 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7915                                              const char *buf, size_t count)
7916 {
7917         return sched_power_savings_store(buf, count, 1);
7918 }
7919 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7920                    sched_smt_power_savings_show,
7921                    sched_smt_power_savings_store);
7922 #endif
7923
7924 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7925 {
7926         int err = 0;
7927
7928 #ifdef CONFIG_SCHED_SMT
7929         if (smt_capable())
7930                 err = sysfs_create_file(&cls->kset.kobj,
7931                                         &attr_sched_smt_power_savings.attr);
7932 #endif
7933 #ifdef CONFIG_SCHED_MC
7934         if (!err && mc_capable())
7935                 err = sysfs_create_file(&cls->kset.kobj,
7936                                         &attr_sched_mc_power_savings.attr);
7937 #endif
7938         return err;
7939 }
7940 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7941
7942 #ifndef CONFIG_CPUSETS
7943 /*
7944  * Add online and remove offline CPUs from the scheduler domains.
7945  * When cpusets are enabled they take over this function.
7946  */
7947 static int update_sched_domains(struct notifier_block *nfb,
7948                                 unsigned long action, void *hcpu)
7949 {
7950         switch (action) {
7951         case CPU_ONLINE:
7952         case CPU_ONLINE_FROZEN:
7953         case CPU_DEAD:
7954         case CPU_DEAD_FROZEN:
7955                 partition_sched_domains(1, NULL, NULL);
7956                 return NOTIFY_OK;
7957
7958         default:
7959                 return NOTIFY_DONE;
7960         }
7961 }
7962 #endif
7963
7964 static int update_runtime(struct notifier_block *nfb,
7965                                 unsigned long action, void *hcpu)
7966 {
7967         int cpu = (int)(long)hcpu;
7968
7969         switch (action) {
7970         case CPU_DOWN_PREPARE:
7971         case CPU_DOWN_PREPARE_FROZEN:
7972                 disable_runtime(cpu_rq(cpu));
7973                 return NOTIFY_OK;
7974
7975         case CPU_DOWN_FAILED:
7976         case CPU_DOWN_FAILED_FROZEN:
7977         case CPU_ONLINE:
7978         case CPU_ONLINE_FROZEN:
7979                 enable_runtime(cpu_rq(cpu));
7980                 return NOTIFY_OK;
7981
7982         default:
7983                 return NOTIFY_DONE;
7984         }
7985 }
7986
7987 void __init sched_init_smp(void)
7988 {
7989         cpumask_t non_isolated_cpus;
7990
7991 #if defined(CONFIG_NUMA)
7992         sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7993                                                                 GFP_KERNEL);
7994         BUG_ON(sched_group_nodes_bycpu == NULL);
7995 #endif
7996         get_online_cpus();
7997         mutex_lock(&sched_domains_mutex);
7998         arch_init_sched_domains(&cpu_online_map);
7999         cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8000         if (cpus_empty(non_isolated_cpus))
8001                 cpu_set(smp_processor_id(), non_isolated_cpus);
8002         mutex_unlock(&sched_domains_mutex);
8003         put_online_cpus();
8004
8005 #ifndef CONFIG_CPUSETS
8006         /* XXX: Theoretical race here - CPU may be hotplugged now */
8007         hotcpu_notifier(update_sched_domains, 0);
8008 #endif
8009
8010         /* RT runtime code needs to handle some hotplug events */
8011         hotcpu_notifier(update_runtime, 0);
8012
8013         init_hrtick();
8014
8015         /* Move init over to a non-isolated CPU */
8016         if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8017                 BUG();
8018         sched_init_granularity();
8019 }
8020 #else
8021 void __init sched_init_smp(void)
8022 {
8023         sched_init_granularity();
8024 }
8025 #endif /* CONFIG_SMP */
8026
8027 int in_sched_functions(unsigned long addr)
8028 {
8029         return in_lock_functions(addr) ||
8030                 (addr >= (unsigned long)__sched_text_start
8031                 && addr < (unsigned long)__sched_text_end);
8032 }
8033
8034 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8035 {
8036         cfs_rq->tasks_timeline = RB_ROOT;
8037         INIT_LIST_HEAD(&cfs_rq->tasks);
8038 #ifdef CONFIG_FAIR_GROUP_SCHED
8039         cfs_rq->rq = rq;
8040 #endif
8041         cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8042 }
8043
8044 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8045 {
8046         struct rt_prio_array *array;
8047         int i;
8048
8049         array = &rt_rq->active;
8050         for (i = 0; i < MAX_RT_PRIO; i++) {
8051                 INIT_LIST_HEAD(array->queue + i);
8052                 __clear_bit(i, array->bitmap);
8053         }
8054         /* delimiter for bitsearch: */
8055         __set_bit(MAX_RT_PRIO, array->bitmap);
8056
8057 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8058         rt_rq->highest_prio = MAX_RT_PRIO;
8059 #endif
8060 #ifdef CONFIG_SMP
8061         rt_rq->rt_nr_migratory = 0;
8062         rt_rq->overloaded = 0;
8063 #endif
8064
8065         rt_rq->rt_time = 0;
8066         rt_rq->rt_throttled = 0;
8067         rt_rq->rt_runtime = 0;
8068         spin_lock_init(&rt_rq->rt_runtime_lock);
8069
8070 #ifdef CONFIG_RT_GROUP_SCHED
8071         rt_rq->rt_nr_boosted = 0;
8072         rt_rq->rq = rq;
8073 #endif
8074 }
8075
8076 #ifdef CONFIG_FAIR_GROUP_SCHED
8077 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8078                                 struct sched_entity *se, int cpu, int add,
8079                                 struct sched_entity *parent)
8080 {
8081         struct rq *rq = cpu_rq(cpu);
8082         tg->cfs_rq[cpu] = cfs_rq;
8083         init_cfs_rq(cfs_rq, rq);
8084         cfs_rq->tg = tg;
8085         if (add)
8086                 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8087
8088         tg->se[cpu] = se;
8089         /* se could be NULL for init_task_group */
8090         if (!se)
8091                 return;
8092
8093         if (!parent)
8094                 se->cfs_rq = &rq->cfs;
8095         else
8096                 se->cfs_rq = parent->my_q;
8097
8098         se->my_q = cfs_rq;
8099         se->load.weight = tg->shares;
8100         se->load.inv_weight = 0;
8101         se->parent = parent;
8102 }
8103 #endif
8104
8105 #ifdef CONFIG_RT_GROUP_SCHED
8106 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8107                 struct sched_rt_entity *rt_se, int cpu, int add,
8108                 struct sched_rt_entity *parent)
8109 {
8110         struct rq *rq = cpu_rq(cpu);
8111
8112         tg->rt_rq[cpu] = rt_rq;
8113         init_rt_rq(rt_rq, rq);
8114         rt_rq->tg = tg;
8115         rt_rq->rt_se = rt_se;
8116         rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8117         if (add)
8118                 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8119
8120         tg->rt_se[cpu] = rt_se;
8121         if (!rt_se)
8122                 return;
8123
8124         if (!parent)
8125                 rt_se->rt_rq = &rq->rt;
8126         else
8127                 rt_se->rt_rq = parent->my_q;
8128
8129         rt_se->my_q = rt_rq;
8130         rt_se->parent = parent;
8131         INIT_LIST_HEAD(&rt_se->run_list);
8132 }
8133 #endif
8134
8135 void __init sched_init(void)
8136 {
8137         int i, j;
8138         unsigned long alloc_size = 0, ptr;
8139
8140 #ifdef CONFIG_FAIR_GROUP_SCHED
8141         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8142 #endif
8143 #ifdef CONFIG_RT_GROUP_SCHED
8144         alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8145 #endif
8146 #ifdef CONFIG_USER_SCHED
8147         alloc_size *= 2;
8148 #endif
8149         /*
8150          * As sched_init() is called before page_alloc is setup,
8151          * we use alloc_bootmem().
8152          */
8153         if (alloc_size) {
8154                 ptr = (unsigned long)alloc_bootmem(alloc_size);
8155
8156 #ifdef CONFIG_FAIR_GROUP_SCHED
8157                 init_task_group.se = (struct sched_entity **)ptr;
8158                 ptr += nr_cpu_ids * sizeof(void **);
8159
8160                 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8161                 ptr += nr_cpu_ids * sizeof(void **);
8162
8163 #ifdef CONFIG_USER_SCHED
8164                 root_task_group.se = (struct sched_entity **)ptr;
8165                 ptr += nr_cpu_ids * sizeof(void **);
8166
8167                 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8168                 ptr += nr_cpu_ids * sizeof(void **);
8169 #endif /* CONFIG_USER_SCHED */
8170 #endif /* CONFIG_FAIR_GROUP_SCHED */
8171 #ifdef CONFIG_RT_GROUP_SCHED
8172                 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8173                 ptr += nr_cpu_ids * sizeof(void **);
8174
8175                 init_task_group.rt_rq = (struct rt_rq **)ptr;
8176                 ptr += nr_cpu_ids * sizeof(void **);
8177
8178 #ifdef CONFIG_USER_SCHED
8179                 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8180                 ptr += nr_cpu_ids * sizeof(void **);
8181
8182                 root_task_group.rt_rq = (struct rt_rq **)ptr;
8183                 ptr += nr_cpu_ids * sizeof(void **);
8184 #endif /* CONFIG_USER_SCHED */
8185 #endif /* CONFIG_RT_GROUP_SCHED */
8186         }
8187
8188 #ifdef CONFIG_SMP
8189         init_defrootdomain();
8190 #endif
8191
8192         init_rt_bandwidth(&def_rt_bandwidth,
8193                         global_rt_period(), global_rt_runtime());
8194
8195 #ifdef CONFIG_RT_GROUP_SCHED
8196         init_rt_bandwidth(&init_task_group.rt_bandwidth,
8197                         global_rt_period(), global_rt_runtime());
8198 #ifdef CONFIG_USER_SCHED
8199         init_rt_bandwidth(&root_task_group.rt_bandwidth,
8200                         global_rt_period(), RUNTIME_INF);
8201 #endif /* CONFIG_USER_SCHED */
8202 #endif /* CONFIG_RT_GROUP_SCHED */
8203
8204 #ifdef CONFIG_GROUP_SCHED
8205         list_add(&init_task_group.list, &task_groups);
8206         INIT_LIST_HEAD(&init_task_group.children);
8207
8208 #ifdef CONFIG_USER_SCHED
8209         INIT_LIST_HEAD(&root_task_group.children);
8210         init_task_group.parent = &root_task_group;
8211         list_add(&init_task_group.siblings, &root_task_group.children);
8212 #endif /* CONFIG_USER_SCHED */
8213 #endif /* CONFIG_GROUP_SCHED */
8214
8215         for_each_possible_cpu(i) {
8216                 struct rq *rq;
8217
8218                 rq = cpu_rq(i);
8219                 spin_lock_init(&rq->lock);
8220                 rq->nr_running = 0;
8221                 init_cfs_rq(&rq->cfs, rq);
8222                 init_rt_rq(&rq->rt, rq);
8223 #ifdef CONFIG_FAIR_GROUP_SCHED
8224                 init_task_group.shares = init_task_group_load;
8225                 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8226 #ifdef CONFIG_CGROUP_SCHED
8227                 /*
8228                  * How much cpu bandwidth does init_task_group get?
8229                  *
8230                  * In case of task-groups formed thr' the cgroup filesystem, it
8231                  * gets 100% of the cpu resources in the system. This overall
8232                  * system cpu resource is divided among the tasks of
8233                  * init_task_group and its child task-groups in a fair manner,
8234                  * based on each entity's (task or task-group's) weight
8235                  * (se->load.weight).
8236                  *
8237                  * In other words, if init_task_group has 10 tasks of weight
8238                  * 1024) and two child groups A0 and A1 (of weight 1024 each),
8239                  * then A0's share of the cpu resource is:
8240                  *
8241                  *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8242                  *
8243                  * We achieve this by letting init_task_group's tasks sit
8244                  * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8245                  */
8246                 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8247 #elif defined CONFIG_USER_SCHED
8248                 root_task_group.shares = NICE_0_LOAD;
8249                 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8250                 /*
8251                  * In case of task-groups formed thr' the user id of tasks,
8252                  * init_task_group represents tasks belonging to root user.
8253                  * Hence it forms a sibling of all subsequent groups formed.
8254                  * In this case, init_task_group gets only a fraction of overall
8255                  * system cpu resource, based on the weight assigned to root
8256                  * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8257                  * by letting tasks of init_task_group sit in a separate cfs_rq
8258                  * (init_cfs_rq) and having one entity represent this group of
8259                  * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8260                  */
8261                 init_tg_cfs_entry(&init_task_group,
8262                                 &per_cpu(init_cfs_rq, i),
8263                                 &per_cpu(init_sched_entity, i), i, 1,
8264                                 root_task_group.se[i]);
8265
8266 #endif
8267 #endif /* CONFIG_FAIR_GROUP_SCHED */
8268
8269                 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8270 #ifdef CONFIG_RT_GROUP_SCHED
8271                 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8272 #ifdef CONFIG_CGROUP_SCHED
8273                 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8274 #elif defined CONFIG_USER_SCHED
8275                 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8276                 init_tg_rt_entry(&init_task_group,
8277                                 &per_cpu(init_rt_rq, i),
8278                                 &per_cpu(init_sched_rt_entity, i), i, 1,
8279                                 root_task_group.rt_se[i]);
8280 #endif
8281 #endif
8282
8283                 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8284                         rq->cpu_load[j] = 0;
8285 #ifdef CONFIG_SMP
8286                 rq->sd = NULL;
8287                 rq->rd = NULL;
8288                 rq->active_balance = 0;
8289                 rq->next_balance = jiffies;
8290                 rq->push_cpu = 0;
8291                 rq->cpu = i;
8292                 rq->online = 0;
8293                 rq->migration_thread = NULL;
8294                 INIT_LIST_HEAD(&rq->migration_queue);
8295                 rq_attach_root(rq, &def_root_domain);
8296 #endif
8297                 init_rq_hrtick(rq);
8298                 atomic_set(&rq->nr_iowait, 0);
8299         }
8300
8301         set_load_weight(&init_task);
8302
8303 #ifdef CONFIG_PREEMPT_NOTIFIERS
8304         INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8305 #endif
8306
8307 #ifdef CONFIG_SMP
8308         open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8309 #endif
8310
8311 #ifdef CONFIG_RT_MUTEXES
8312         plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8313 #endif
8314
8315         /*
8316          * The boot idle thread does lazy MMU switching as well:
8317          */
8318         atomic_inc(&init_mm.mm_count);
8319         enter_lazy_tlb(&init_mm, current);
8320
8321         /*
8322          * Make us the idle thread. Technically, schedule() should not be
8323          * called from this thread, however somewhere below it might be,
8324          * but because we are the idle thread, we just pick up running again
8325          * when this runqueue becomes "idle".
8326          */
8327         init_idle(current, smp_processor_id());
8328         /*
8329          * During early bootup we pretend to be a normal task:
8330          */
8331         current->sched_class = &fair_sched_class;
8332
8333         scheduler_running = 1;
8334 }
8335
8336 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8337 void __might_sleep(char *file, int line)
8338 {
8339 #ifdef in_atomic
8340         static unsigned long prev_jiffy;        /* ratelimiting */
8341
8342         if ((!in_atomic() && !irqs_disabled()) ||
8343                     system_state != SYSTEM_RUNNING || oops_in_progress)
8344                 return;
8345         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8346                 return;
8347         prev_jiffy = jiffies;
8348
8349         printk(KERN_ERR
8350                 "BUG: sleeping function called from invalid context at %s:%d\n",
8351                         file, line);
8352         printk(KERN_ERR
8353                 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8354                         in_atomic(), irqs_disabled(),
8355                         current->pid, current->comm);
8356
8357         debug_show_held_locks(current);
8358         if (irqs_disabled())
8359                 print_irqtrace_events(current);
8360         dump_stack();
8361 #endif
8362 }
8363 EXPORT_SYMBOL(__might_sleep);
8364 #endif
8365
8366 #ifdef CONFIG_MAGIC_SYSRQ
8367 static void normalize_task(struct rq *rq, struct task_struct *p)
8368 {
8369         int on_rq;
8370
8371         update_rq_clock(rq);
8372         on_rq = p->se.on_rq;
8373         if (on_rq)
8374                 deactivate_task(rq, p, 0);
8375         __setscheduler(rq, p, SCHED_NORMAL, 0);
8376         if (on_rq) {
8377                 activate_task(rq, p, 0);
8378                 resched_task(rq->curr);
8379         }
8380 }
8381
8382 void normalize_rt_tasks(void)
8383 {
8384         struct task_struct *g, *p;
8385         unsigned long flags;
8386         struct rq *rq;
8387
8388         read_lock_irqsave(&tasklist_lock, flags);
8389         do_each_thread(g, p) {
8390                 /*
8391                  * Only normalize user tasks:
8392                  */
8393                 if (!p->mm)
8394                         continue;
8395
8396                 p->se.exec_start                = 0;
8397 #ifdef CONFIG_SCHEDSTATS
8398                 p->se.wait_start                = 0;
8399                 p->se.sleep_start               = 0;
8400                 p->se.block_start               = 0;
8401 #endif
8402
8403                 if (!rt_task(p)) {
8404                         /*
8405                          * Renice negative nice level userspace
8406                          * tasks back to 0:
8407                          */
8408                         if (TASK_NICE(p) < 0 && p->mm)
8409                                 set_user_nice(p, 0);
8410                         continue;
8411                 }
8412
8413                 spin_lock(&p->pi_lock);
8414                 rq = __task_rq_lock(p);
8415
8416                 normalize_task(rq, p);
8417
8418                 __task_rq_unlock(rq);
8419                 spin_unlock(&p->pi_lock);
8420         } while_each_thread(g, p);
8421
8422         read_unlock_irqrestore(&tasklist_lock, flags);
8423 }
8424
8425 #endif /* CONFIG_MAGIC_SYSRQ */
8426
8427 #ifdef CONFIG_IA64
8428 /*
8429  * These functions are only useful for the IA64 MCA handling.
8430  *
8431  * They can only be called when the whole system has been
8432  * stopped - every CPU needs to be quiescent, and no scheduling
8433  * activity can take place. Using them for anything else would
8434  * be a serious bug, and as a result, they aren't even visible
8435  * under any other configuration.
8436  */
8437
8438 /**
8439  * curr_task - return the current task for a given cpu.
8440  * @cpu: the processor in question.
8441  *
8442  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8443  */
8444 struct task_struct *curr_task(int cpu)
8445 {
8446         return cpu_curr(cpu);
8447 }
8448
8449 /**
8450  * set_curr_task - set the current task for a given cpu.
8451  * @cpu: the processor in question.
8452  * @p: the task pointer to set.
8453  *
8454  * Description: This function must only be used when non-maskable interrupts
8455  * are serviced on a separate stack. It allows the architecture to switch the
8456  * notion of the current task on a cpu in a non-blocking manner. This function
8457  * must be called with all CPU's synchronized, and interrupts disabled, the
8458  * and caller must save the original value of the current task (see
8459  * curr_task() above) and restore that value before reenabling interrupts and
8460  * re-starting the system.
8461  *
8462  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8463  */
8464 void set_curr_task(int cpu, struct task_struct *p)
8465 {
8466         cpu_curr(cpu) = p;
8467 }
8468
8469 #endif
8470
8471 #ifdef CONFIG_FAIR_GROUP_SCHED
8472 static void free_fair_sched_group(struct task_group *tg)
8473 {
8474         int i;
8475
8476         for_each_possible_cpu(i) {
8477                 if (tg->cfs_rq)
8478                         kfree(tg->cfs_rq[i]);
8479                 if (tg->se)
8480                         kfree(tg->se[i]);
8481         }
8482
8483         kfree(tg->cfs_rq);
8484         kfree(tg->se);
8485 }
8486
8487 static
8488 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8489 {
8490         struct cfs_rq *cfs_rq;
8491         struct sched_entity *se, *parent_se;
8492         struct rq *rq;
8493         int i;
8494
8495         tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8496         if (!tg->cfs_rq)
8497                 goto err;
8498         tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8499         if (!tg->se)
8500                 goto err;
8501
8502         tg->shares = NICE_0_LOAD;
8503
8504         for_each_possible_cpu(i) {
8505                 rq = cpu_rq(i);
8506
8507                 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8508                                 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8509                 if (!cfs_rq)
8510                         goto err;
8511
8512                 se = kmalloc_node(sizeof(struct sched_entity),
8513                                 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8514                 if (!se)
8515                         goto err;
8516
8517                 parent_se = parent ? parent->se[i] : NULL;
8518                 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8519         }
8520
8521         return 1;
8522
8523  err:
8524         return 0;
8525 }
8526
8527 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8528 {
8529         list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8530                         &cpu_rq(cpu)->leaf_cfs_rq_list);
8531 }
8532
8533 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8534 {
8535         list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8536 }
8537 #else /* !CONFG_FAIR_GROUP_SCHED */
8538 static inline void free_fair_sched_group(struct task_group *tg)
8539 {
8540 }
8541
8542 static inline
8543 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8544 {
8545         return 1;
8546 }
8547
8548 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8549 {
8550 }
8551
8552 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8553 {
8554 }
8555 #endif /* CONFIG_FAIR_GROUP_SCHED */
8556
8557 #ifdef CONFIG_RT_GROUP_SCHED
8558 static void free_rt_sched_group(struct task_group *tg)
8559 {
8560         int i;
8561
8562         destroy_rt_bandwidth(&tg->rt_bandwidth);
8563
8564         for_each_possible_cpu(i) {
8565                 if (tg->rt_rq)
8566                         kfree(tg->rt_rq[i]);
8567                 if (tg->rt_se)
8568                         kfree(tg->rt_se[i]);
8569         }
8570
8571         kfree(tg->rt_rq);
8572         kfree(tg->rt_se);
8573 }
8574
8575 static
8576 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8577 {
8578         struct rt_rq *rt_rq;
8579         struct sched_rt_entity *rt_se, *parent_se;
8580         struct rq *rq;
8581         int i;
8582
8583         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8584         if (!tg->rt_rq)
8585                 goto err;
8586         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8587         if (!tg->rt_se)
8588                 goto err;
8589
8590         init_rt_bandwidth(&tg->rt_bandwidth,
8591                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8592
8593         for_each_possible_cpu(i) {
8594                 rq = cpu_rq(i);
8595
8596                 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8597                                 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8598                 if (!rt_rq)
8599                         goto err;
8600
8601                 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8602                                 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8603                 if (!rt_se)
8604                         goto err;
8605
8606                 parent_se = parent ? parent->rt_se[i] : NULL;
8607                 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8608         }
8609
8610         return 1;
8611
8612  err:
8613         return 0;
8614 }
8615
8616 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8617 {
8618         list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8619                         &cpu_rq(cpu)->leaf_rt_rq_list);
8620 }
8621
8622 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8623 {
8624         list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8625 }
8626 #else /* !CONFIG_RT_GROUP_SCHED */
8627 static inline void free_rt_sched_group(struct task_group *tg)
8628 {
8629 }
8630
8631 static inline
8632 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8633 {
8634         return 1;
8635 }
8636
8637 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8638 {
8639 }
8640
8641 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8642 {
8643 }
8644 #endif /* CONFIG_RT_GROUP_SCHED */
8645
8646 #ifdef CONFIG_GROUP_SCHED
8647 static void free_sched_group(struct task_group *tg)
8648 {
8649         free_fair_sched_group(tg);
8650         free_rt_sched_group(tg);
8651         kfree(tg);
8652 }
8653
8654 /* allocate runqueue etc for a new task group */
8655 struct task_group *sched_create_group(struct task_group *parent)
8656 {
8657         struct task_group *tg;
8658         unsigned long flags;
8659         int i;
8660
8661         tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8662         if (!tg)
8663                 return ERR_PTR(-ENOMEM);
8664
8665         if (!alloc_fair_sched_group(tg, parent))
8666                 goto err;
8667
8668         if (!alloc_rt_sched_group(tg, parent))
8669                 goto err;
8670
8671         spin_lock_irqsave(&task_group_lock, flags);
8672         for_each_possible_cpu(i) {
8673                 register_fair_sched_group(tg, i);
8674                 register_rt_sched_group(tg, i);
8675         }
8676         list_add_rcu(&tg->list, &task_groups);
8677
8678         WARN_ON(!parent); /* root should already exist */
8679
8680         tg->parent = parent;
8681         INIT_LIST_HEAD(&tg->children);
8682         list_add_rcu(&tg->siblings, &parent->children);
8683         spin_unlock_irqrestore(&task_group_lock, flags);
8684
8685         return tg;
8686
8687 err:
8688         free_sched_group(tg);
8689         return ERR_PTR(-ENOMEM);
8690 }
8691
8692 /* rcu callback to free various structures associated with a task group */
8693 static void free_sched_group_rcu(struct rcu_head *rhp)
8694 {
8695         /* now it should be safe to free those cfs_rqs */
8696         free_sched_group(container_of(rhp, struct task_group, rcu));
8697 }
8698
8699 /* Destroy runqueue etc associated with a task group */
8700 void sched_destroy_group(struct task_group *tg)
8701 {
8702         unsigned long flags;
8703         int i;
8704
8705         spin_lock_irqsave(&task_group_lock, flags);
8706         for_each_possible_cpu(i) {
8707                 unregister_fair_sched_group(tg, i);
8708                 unregister_rt_sched_group(tg, i);
8709         }
8710         list_del_rcu(&tg->list);
8711         list_del_rcu(&tg->siblings);
8712         spin_unlock_irqrestore(&task_group_lock, flags);
8713
8714         /* wait for possible concurrent references to cfs_rqs complete */
8715         call_rcu(&tg->rcu, free_sched_group_rcu);
8716 }
8717
8718 /* change task's runqueue when it moves between groups.
8719  *      The caller of this function should have put the task in its new group
8720  *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8721  *      reflect its new group.
8722  */
8723 void sched_move_task(struct task_struct *tsk)
8724 {
8725         int on_rq, running;
8726         unsigned long flags;
8727         struct rq *rq;
8728
8729         rq = task_rq_lock(tsk, &flags);
8730
8731         update_rq_clock(rq);
8732
8733         running = task_current(rq, tsk);
8734         on_rq = tsk->se.on_rq;
8735
8736         if (on_rq)
8737                 dequeue_task(rq, tsk, 0);
8738         if (unlikely(running))
8739                 tsk->sched_class->put_prev_task(rq, tsk);
8740
8741         set_task_rq(tsk, task_cpu(tsk));
8742
8743 #ifdef CONFIG_FAIR_GROUP_SCHED
8744         if (tsk->sched_class->moved_group)
8745                 tsk->sched_class->moved_group(tsk);
8746 #endif
8747
8748         if (unlikely(running))
8749                 tsk->sched_class->set_curr_task(rq);
8750         if (on_rq)
8751                 enqueue_task(rq, tsk, 0);
8752
8753         task_rq_unlock(rq, &flags);
8754 }
8755 #endif /* CONFIG_GROUP_SCHED */
8756
8757 #ifdef CONFIG_FAIR_GROUP_SCHED
8758 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8759 {
8760         struct cfs_rq *cfs_rq = se->cfs_rq;
8761         int on_rq;
8762
8763         on_rq = se->on_rq;
8764         if (on_rq)
8765                 dequeue_entity(cfs_rq, se, 0);
8766
8767         se->load.weight = shares;
8768         se->load.inv_weight = 0;
8769
8770         if (on_rq)
8771                 enqueue_entity(cfs_rq, se, 0);
8772 }
8773
8774 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8775 {
8776         struct cfs_rq *cfs_rq = se->cfs_rq;
8777         struct rq *rq = cfs_rq->rq;
8778         unsigned long flags;
8779
8780         spin_lock_irqsave(&rq->lock, flags);
8781         __set_se_shares(se, shares);
8782         spin_unlock_irqrestore(&rq->lock, flags);
8783 }
8784
8785 static DEFINE_MUTEX(shares_mutex);
8786
8787 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8788 {
8789         int i;
8790         unsigned long flags;
8791
8792         /*
8793          * We can't change the weight of the root cgroup.
8794          */
8795         if (!tg->se[0])
8796                 return -EINVAL;
8797
8798         if (shares < MIN_SHARES)
8799                 shares = MIN_SHARES;
8800         else if (shares > MAX_SHARES)
8801                 shares = MAX_SHARES;
8802
8803         mutex_lock(&shares_mutex);
8804         if (tg->shares == shares)
8805                 goto done;
8806
8807         spin_lock_irqsave(&task_group_lock, flags);
8808         for_each_possible_cpu(i)
8809                 unregister_fair_sched_group(tg, i);
8810         list_del_rcu(&tg->siblings);
8811         spin_unlock_irqrestore(&task_group_lock, flags);
8812
8813         /* wait for any ongoing reference to this group to finish */
8814         synchronize_sched();
8815
8816         /*
8817          * Now we are free to modify the group's share on each cpu
8818          * w/o tripping rebalance_share or load_balance_fair.
8819          */
8820         tg->shares = shares;
8821         for_each_possible_cpu(i) {
8822                 /*
8823                  * force a rebalance
8824                  */
8825                 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8826                 set_se_shares(tg->se[i], shares);
8827         }
8828
8829         /*
8830          * Enable load balance activity on this group, by inserting it back on
8831          * each cpu's rq->leaf_cfs_rq_list.
8832          */
8833         spin_lock_irqsave(&task_group_lock, flags);
8834         for_each_possible_cpu(i)
8835                 register_fair_sched_group(tg, i);
8836         list_add_rcu(&tg->siblings, &tg->parent->children);
8837         spin_unlock_irqrestore(&task_group_lock, flags);
8838 done:
8839         mutex_unlock(&shares_mutex);
8840         return 0;
8841 }
8842
8843 unsigned long sched_group_shares(struct task_group *tg)
8844 {
8845         return tg->shares;
8846 }
8847 #endif
8848
8849 #ifdef CONFIG_RT_GROUP_SCHED
8850 /*
8851  * Ensure that the real time constraints are schedulable.
8852  */
8853 static DEFINE_MUTEX(rt_constraints_mutex);
8854
8855 static unsigned long to_ratio(u64 period, u64 runtime)
8856 {
8857         if (runtime == RUNTIME_INF)
8858                 return 1ULL << 20;
8859
8860         return div64_u64(runtime << 20, period);
8861 }
8862
8863 /* Must be called with tasklist_lock held */
8864 static inline int tg_has_rt_tasks(struct task_group *tg)
8865 {
8866         struct task_struct *g, *p;
8867
8868         do_each_thread(g, p) {
8869                 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8870                         return 1;
8871         } while_each_thread(g, p);
8872
8873         return 0;
8874 }
8875
8876 struct rt_schedulable_data {
8877         struct task_group *tg;
8878         u64 rt_period;
8879         u64 rt_runtime;
8880 };
8881
8882 static int tg_schedulable(struct task_group *tg, void *data)
8883 {
8884         struct rt_schedulable_data *d = data;
8885         struct task_group *child;
8886         unsigned long total, sum = 0;
8887         u64 period, runtime;
8888
8889         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8890         runtime = tg->rt_bandwidth.rt_runtime;
8891
8892         if (tg == d->tg) {
8893                 period = d->rt_period;
8894                 runtime = d->rt_runtime;
8895         }
8896
8897         /*
8898          * Cannot have more runtime than the period.
8899          */
8900         if (runtime > period && runtime != RUNTIME_INF)
8901                 return -EINVAL;
8902
8903         /*
8904          * Ensure we don't starve existing RT tasks.
8905          */
8906         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8907                 return -EBUSY;
8908
8909         total = to_ratio(period, runtime);
8910
8911         /*
8912          * Nobody can have more than the global setting allows.
8913          */
8914         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8915                 return -EINVAL;
8916
8917         /*
8918          * The sum of our children's runtime should not exceed our own.
8919          */
8920         list_for_each_entry_rcu(child, &tg->children, siblings) {
8921                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8922                 runtime = child->rt_bandwidth.rt_runtime;
8923
8924                 if (child == d->tg) {
8925                         period = d->rt_period;
8926                         runtime = d->rt_runtime;
8927                 }
8928
8929                 sum += to_ratio(period, runtime);
8930         }
8931
8932         if (sum > total)
8933                 return -EINVAL;
8934
8935         return 0;
8936 }
8937
8938 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8939 {
8940         struct rt_schedulable_data data = {
8941                 .tg = tg,
8942                 .rt_period = period,
8943                 .rt_runtime = runtime,
8944         };
8945
8946         return walk_tg_tree(tg_schedulable, tg_nop, &data);
8947 }
8948
8949 static int tg_set_bandwidth(struct task_group *tg,
8950                 u64 rt_period, u64 rt_runtime)
8951 {
8952         int i, err = 0;
8953
8954         mutex_lock(&rt_constraints_mutex);
8955         read_lock(&tasklist_lock);
8956         err = __rt_schedulable(tg, rt_period, rt_runtime);
8957         if (err)
8958                 goto unlock;
8959
8960         spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8961         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8962         tg->rt_bandwidth.rt_runtime = rt_runtime;
8963
8964         for_each_possible_cpu(i) {
8965                 struct rt_rq *rt_rq = tg->rt_rq[i];
8966
8967                 spin_lock(&rt_rq->rt_runtime_lock);
8968                 rt_rq->rt_runtime = rt_runtime;
8969                 spin_unlock(&rt_rq->rt_runtime_lock);
8970         }
8971         spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8972  unlock:
8973         read_unlock(&tasklist_lock);
8974         mutex_unlock(&rt_constraints_mutex);
8975
8976         return err;
8977 }
8978
8979 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8980 {
8981         u64 rt_runtime, rt_period;
8982
8983         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8984         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8985         if (rt_runtime_us < 0)
8986                 rt_runtime = RUNTIME_INF;
8987
8988         return tg_set_bandwidth(tg, rt_period, rt_runtime);
8989 }
8990
8991 long sched_group_rt_runtime(struct task_group *tg)
8992 {
8993         u64 rt_runtime_us;
8994
8995         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8996                 return -1;
8997
8998         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8999         do_div(rt_runtime_us, NSEC_PER_USEC);
9000         return rt_runtime_us;
9001 }
9002
9003 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9004 {
9005         u64 rt_runtime, rt_period;
9006
9007         rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9008         rt_runtime = tg->rt_bandwidth.rt_runtime;
9009
9010         if (rt_period == 0)
9011                 return -EINVAL;
9012
9013         return tg_set_bandwidth(tg, rt_period, rt_runtime);
9014 }
9015
9016 long sched_group_rt_period(struct task_group *tg)
9017 {
9018         u64 rt_period_us;
9019
9020         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9021         do_div(rt_period_us, NSEC_PER_USEC);
9022         return rt_period_us;
9023 }
9024
9025 static int sched_rt_global_constraints(void)
9026 {
9027         u64 runtime, period;
9028         int ret = 0;
9029
9030         if (sysctl_sched_rt_period <= 0)
9031                 return -EINVAL;
9032
9033         runtime = global_rt_runtime();
9034         period = global_rt_period();
9035
9036         /*
9037          * Sanity check on the sysctl variables.
9038          */
9039         if (runtime > period && runtime != RUNTIME_INF)
9040                 return -EINVAL;
9041
9042         mutex_lock(&rt_constraints_mutex);
9043         read_lock(&tasklist_lock);
9044         ret = __rt_schedulable(NULL, 0, 0);
9045         read_unlock(&tasklist_lock);
9046         mutex_unlock(&rt_constraints_mutex);
9047
9048         return ret;
9049 }
9050 #else /* !CONFIG_RT_GROUP_SCHED */
9051 static int sched_rt_global_constraints(void)
9052 {
9053         unsigned long flags;
9054         int i;
9055
9056         if (sysctl_sched_rt_period <= 0)
9057                 return -EINVAL;
9058
9059         spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9060         for_each_possible_cpu(i) {
9061                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9062
9063                 spin_lock(&rt_rq->rt_runtime_lock);
9064                 rt_rq->rt_runtime = global_rt_runtime();
9065                 spin_unlock(&rt_rq->rt_runtime_lock);
9066         }
9067         spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9068
9069         return 0;
9070 }
9071 #endif /* CONFIG_RT_GROUP_SCHED */
9072
9073 int sched_rt_handler(struct ctl_table *table, int write,
9074                 struct file *filp, void __user *buffer, size_t *lenp,
9075                 loff_t *ppos)
9076 {
9077         int ret;
9078         int old_period, old_runtime;
9079         static DEFINE_MUTEX(mutex);
9080
9081         mutex_lock(&mutex);
9082         old_period = sysctl_sched_rt_period;
9083         old_runtime = sysctl_sched_rt_runtime;
9084
9085         ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9086
9087         if (!ret && write) {
9088                 ret = sched_rt_global_constraints();
9089                 if (ret) {
9090                         sysctl_sched_rt_period = old_period;
9091                         sysctl_sched_rt_runtime = old_runtime;
9092                 } else {
9093                         def_rt_bandwidth.rt_runtime = global_rt_runtime();
9094                         def_rt_bandwidth.rt_period =
9095                                 ns_to_ktime(global_rt_period());
9096                 }
9097         }
9098         mutex_unlock(&mutex);
9099
9100         return ret;
9101 }
9102
9103 #ifdef CONFIG_CGROUP_SCHED
9104
9105 /* return corresponding task_group object of a cgroup */
9106 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9107 {
9108         return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9109                             struct task_group, css);
9110 }
9111
9112 static struct cgroup_subsys_state *
9113 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9114 {
9115         struct task_group *tg, *parent;
9116
9117         if (!cgrp->parent) {
9118                 /* This is early initialization for the top cgroup */
9119                 return &init_task_group.css;
9120         }
9121
9122         parent = cgroup_tg(cgrp->parent);
9123         tg = sched_create_group(parent);
9124         if (IS_ERR(tg))
9125                 return ERR_PTR(-ENOMEM);
9126
9127         return &tg->css;
9128 }
9129
9130 static void
9131 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9132 {
9133         struct task_group *tg = cgroup_tg(cgrp);
9134
9135         sched_destroy_group(tg);
9136 }
9137
9138 static int
9139 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9140                       struct task_struct *tsk)
9141 {
9142 #ifdef CONFIG_RT_GROUP_SCHED
9143         /* Don't accept realtime tasks when there is no way for them to run */
9144         if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9145                 return -EINVAL;
9146 #else
9147         /* We don't support RT-tasks being in separate groups */
9148         if (tsk->sched_class != &fair_sched_class)
9149                 return -EINVAL;
9150 #endif
9151
9152         return 0;
9153 }
9154
9155 static void
9156 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9157                         struct cgroup *old_cont, struct task_struct *tsk)
9158 {
9159         sched_move_task(tsk);
9160 }
9161
9162 #ifdef CONFIG_FAIR_GROUP_SCHED
9163 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9164                                 u64 shareval)
9165 {
9166         return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9167 }
9168
9169 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9170 {
9171         struct task_group *tg = cgroup_tg(cgrp);
9172
9173         return (u64) tg->shares;
9174 }
9175 #endif /* CONFIG_FAIR_GROUP_SCHED */
9176
9177 #ifdef CONFIG_RT_GROUP_SCHED
9178 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9179                                 s64 val)
9180 {
9181         return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9182 }
9183
9184 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9185 {
9186         return sched_group_rt_runtime(cgroup_tg(cgrp));
9187 }
9188
9189 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9190                 u64 rt_period_us)
9191 {
9192         return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9193 }
9194
9195 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9196 {
9197         return sched_group_rt_period(cgroup_tg(cgrp));
9198 }
9199 #endif /* CONFIG_RT_GROUP_SCHED */
9200
9201 static struct cftype cpu_files[] = {
9202 #ifdef CONFIG_FAIR_GROUP_SCHED
9203         {
9204                 .name = "shares",
9205                 .read_u64 = cpu_shares_read_u64,
9206                 .write_u64 = cpu_shares_write_u64,
9207         },
9208 #endif
9209 #ifdef CONFIG_RT_GROUP_SCHED
9210         {
9211                 .name = "rt_runtime_us",
9212                 .read_s64 = cpu_rt_runtime_read,
9213                 .write_s64 = cpu_rt_runtime_write,
9214         },
9215         {
9216                 .name = "rt_period_us",
9217                 .read_u64 = cpu_rt_period_read_uint,
9218                 .write_u64 = cpu_rt_period_write_uint,
9219         },
9220 #endif
9221 };
9222
9223 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9224 {
9225         return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9226 }
9227
9228 struct cgroup_subsys cpu_cgroup_subsys = {
9229         .name           = "cpu",
9230         .create         = cpu_cgroup_create,
9231         .destroy        = cpu_cgroup_destroy,
9232         .can_attach     = cpu_cgroup_can_attach,
9233         .attach         = cpu_cgroup_attach,
9234         .populate       = cpu_cgroup_populate,
9235         .subsys_id      = cpu_cgroup_subsys_id,
9236         .early_init     = 1,
9237 };
9238
9239 #endif  /* CONFIG_CGROUP_SCHED */
9240
9241 #ifdef CONFIG_CGROUP_CPUACCT
9242
9243 /*
9244  * CPU accounting code for task groups.
9245  *
9246  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9247  * (balbir@in.ibm.com).
9248  */
9249
9250 /* track cpu usage of a group of tasks */
9251 struct cpuacct {
9252         struct cgroup_subsys_state css;
9253         /* cpuusage holds pointer to a u64-type object on every cpu */
9254         u64 *cpuusage;
9255 };
9256
9257 struct cgroup_subsys cpuacct_subsys;
9258
9259 /* return cpu accounting group corresponding to this container */
9260 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9261 {
9262         return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9263                             struct cpuacct, css);
9264 }
9265
9266 /* return cpu accounting group to which this task belongs */
9267 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9268 {
9269         return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9270                             struct cpuacct, css);
9271 }
9272
9273 /* create a new cpu accounting group */
9274 static struct cgroup_subsys_state *cpuacct_create(
9275         struct cgroup_subsys *ss, struct cgroup *cgrp)
9276 {
9277         struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9278
9279         if (!ca)
9280                 return ERR_PTR(-ENOMEM);
9281
9282         ca->cpuusage = alloc_percpu(u64);
9283         if (!ca->cpuusage) {
9284                 kfree(ca);
9285                 return ERR_PTR(-ENOMEM);
9286         }
9287
9288         return &ca->css;
9289 }
9290
9291 /* destroy an existing cpu accounting group */
9292 static void
9293 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9294 {
9295         struct cpuacct *ca = cgroup_ca(cgrp);
9296
9297         free_percpu(ca->cpuusage);
9298         kfree(ca);
9299 }
9300
9301 /* return total cpu usage (in nanoseconds) of a group */
9302 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9303 {
9304         struct cpuacct *ca = cgroup_ca(cgrp);
9305         u64 totalcpuusage = 0;
9306         int i;
9307
9308         for_each_possible_cpu(i) {
9309                 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9310
9311                 /*
9312                  * Take rq->lock to make 64-bit addition safe on 32-bit
9313                  * platforms.
9314                  */
9315                 spin_lock_irq(&cpu_rq(i)->lock);
9316                 totalcpuusage += *cpuusage;
9317                 spin_unlock_irq(&cpu_rq(i)->lock);
9318         }
9319
9320         return totalcpuusage;
9321 }
9322
9323 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9324                                                                 u64 reset)
9325 {
9326         struct cpuacct *ca = cgroup_ca(cgrp);
9327         int err = 0;
9328         int i;
9329
9330         if (reset) {
9331                 err = -EINVAL;
9332                 goto out;
9333         }
9334
9335         for_each_possible_cpu(i) {
9336                 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9337
9338                 spin_lock_irq(&cpu_rq(i)->lock);
9339                 *cpuusage = 0;
9340                 spin_unlock_irq(&cpu_rq(i)->lock);
9341         }
9342 out:
9343         return err;
9344 }
9345
9346 static struct cftype files[] = {
9347         {
9348                 .name = "usage",
9349                 .read_u64 = cpuusage_read,
9350                 .write_u64 = cpuusage_write,
9351         },
9352 };
9353
9354 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9355 {
9356         return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9357 }
9358
9359 /*
9360  * charge this task's execution time to its accounting group.
9361  *
9362  * called with rq->lock held.
9363  */
9364 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9365 {
9366         struct cpuacct *ca;
9367
9368         if (!cpuacct_subsys.active)
9369                 return;
9370
9371         ca = task_ca(tsk);
9372         if (ca) {
9373                 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9374
9375                 *cpuusage += cputime;
9376         }
9377 }
9378
9379 struct cgroup_subsys cpuacct_subsys = {
9380         .name = "cpuacct",
9381         .create = cpuacct_create,
9382         .destroy = cpuacct_destroy,
9383         .populate = cpuacct_populate,
9384         .subsys_id = cpuacct_subsys_id,
9385 };
9386 #endif  /* CONFIG_CGROUP_CPUACCT */