2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
35 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/sections.h>
40 /* Per cpu memory for storing cpu states in case of system crash. */
41 note_buf_t* crash_notes;
43 /* vmcoreinfo stuff */
44 unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
45 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
46 size_t vmcoreinfo_size;
47 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
49 /* Location of the reserved area for the crash kernel */
50 struct resource crashk_res = {
51 .name = "Crash kernel",
54 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
57 int kexec_should_crash(struct task_struct *p)
59 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
65 * When kexec transitions to the new kernel there is a one-to-one
66 * mapping between physical and virtual addresses. On processors
67 * where you can disable the MMU this is trivial, and easy. For
68 * others it is still a simple predictable page table to setup.
70 * In that environment kexec copies the new kernel to its final
71 * resting place. This means I can only support memory whose
72 * physical address can fit in an unsigned long. In particular
73 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
74 * If the assembly stub has more restrictive requirements
75 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
76 * defined more restrictively in <asm/kexec.h>.
78 * The code for the transition from the current kernel to the
79 * the new kernel is placed in the control_code_buffer, whose size
80 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
81 * page of memory is necessary, but some architectures require more.
82 * Because this memory must be identity mapped in the transition from
83 * virtual to physical addresses it must live in the range
84 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
87 * The assembly stub in the control code buffer is passed a linked list
88 * of descriptor pages detailing the source pages of the new kernel,
89 * and the destination addresses of those source pages. As this data
90 * structure is not used in the context of the current OS, it must
93 * The code has been made to work with highmem pages and will use a
94 * destination page in its final resting place (if it happens
95 * to allocate it). The end product of this is that most of the
96 * physical address space, and most of RAM can be used.
98 * Future directions include:
99 * - allocating a page table with the control code buffer identity
100 * mapped, to simplify machine_kexec and make kexec_on_panic more
105 * KIMAGE_NO_DEST is an impossible destination address..., for
106 * allocating pages whose destination address we do not care about.
108 #define KIMAGE_NO_DEST (-1UL)
110 static int kimage_is_destination_range(struct kimage *image,
111 unsigned long start, unsigned long end);
112 static struct page *kimage_alloc_page(struct kimage *image,
116 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
117 unsigned long nr_segments,
118 struct kexec_segment __user *segments)
120 size_t segment_bytes;
121 struct kimage *image;
125 /* Allocate a controlling structure */
127 image = kzalloc(sizeof(*image), GFP_KERNEL);
132 image->entry = &image->head;
133 image->last_entry = &image->head;
134 image->control_page = ~0; /* By default this does not apply */
135 image->start = entry;
136 image->type = KEXEC_TYPE_DEFAULT;
138 /* Initialize the list of control pages */
139 INIT_LIST_HEAD(&image->control_pages);
141 /* Initialize the list of destination pages */
142 INIT_LIST_HEAD(&image->dest_pages);
144 /* Initialize the list of unuseable pages */
145 INIT_LIST_HEAD(&image->unuseable_pages);
147 /* Read in the segments */
148 image->nr_segments = nr_segments;
149 segment_bytes = nr_segments * sizeof(*segments);
150 result = copy_from_user(image->segment, segments, segment_bytes);
155 * Verify we have good destination addresses. The caller is
156 * responsible for making certain we don't attempt to load
157 * the new image into invalid or reserved areas of RAM. This
158 * just verifies it is an address we can use.
160 * Since the kernel does everything in page size chunks ensure
161 * the destination addreses are page aligned. Too many
162 * special cases crop of when we don't do this. The most
163 * insidious is getting overlapping destination addresses
164 * simply because addresses are changed to page size
167 result = -EADDRNOTAVAIL;
168 for (i = 0; i < nr_segments; i++) {
169 unsigned long mstart, mend;
171 mstart = image->segment[i].mem;
172 mend = mstart + image->segment[i].memsz;
173 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
175 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 /* Verify our destination addresses do not overlap.
180 * If we alloed overlapping destination addresses
181 * through very weird things can happen with no
182 * easy explanation as one segment stops on another.
185 for (i = 0; i < nr_segments; i++) {
186 unsigned long mstart, mend;
189 mstart = image->segment[i].mem;
190 mend = mstart + image->segment[i].memsz;
191 for (j = 0; j < i; j++) {
192 unsigned long pstart, pend;
193 pstart = image->segment[j].mem;
194 pend = pstart + image->segment[j].memsz;
195 /* Do the segments overlap ? */
196 if ((mend > pstart) && (mstart < pend))
201 /* Ensure our buffer sizes are strictly less than
202 * our memory sizes. This should always be the case,
203 * and it is easier to check up front than to be surprised
207 for (i = 0; i < nr_segments; i++) {
208 if (image->segment[i].bufsz > image->segment[i].memsz)
223 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
224 unsigned long nr_segments,
225 struct kexec_segment __user *segments)
228 struct kimage *image;
230 /* Allocate and initialize a controlling structure */
232 result = do_kimage_alloc(&image, entry, nr_segments, segments);
239 * Find a location for the control code buffer, and add it
240 * the vector of segments so that it's pages will also be
241 * counted as destination pages.
244 image->control_code_page = kimage_alloc_control_pages(image,
245 get_order(KEXEC_CONTROL_PAGE_SIZE));
246 if (!image->control_code_page) {
247 printk(KERN_ERR "Could not allocate control_code_buffer\n");
251 image->swap_page = kimage_alloc_control_pages(image, 0);
252 if (!image->swap_page) {
253 printk(KERN_ERR "Could not allocate swap buffer\n");
267 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
268 unsigned long nr_segments,
269 struct kexec_segment __user *segments)
272 struct kimage *image;
276 /* Verify we have a valid entry point */
277 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
278 result = -EADDRNOTAVAIL;
282 /* Allocate and initialize a controlling structure */
283 result = do_kimage_alloc(&image, entry, nr_segments, segments);
287 /* Enable the special crash kernel control page
290 image->control_page = crashk_res.start;
291 image->type = KEXEC_TYPE_CRASH;
294 * Verify we have good destination addresses. Normally
295 * the caller is responsible for making certain we don't
296 * attempt to load the new image into invalid or reserved
297 * areas of RAM. But crash kernels are preloaded into a
298 * reserved area of ram. We must ensure the addresses
299 * are in the reserved area otherwise preloading the
300 * kernel could corrupt things.
302 result = -EADDRNOTAVAIL;
303 for (i = 0; i < nr_segments; i++) {
304 unsigned long mstart, mend;
306 mstart = image->segment[i].mem;
307 mend = mstart + image->segment[i].memsz - 1;
308 /* Ensure we are within the crash kernel limits */
309 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
314 * Find a location for the control code buffer, and add
315 * the vector of segments so that it's pages will also be
316 * counted as destination pages.
319 image->control_code_page = kimage_alloc_control_pages(image,
320 get_order(KEXEC_CONTROL_PAGE_SIZE));
321 if (!image->control_code_page) {
322 printk(KERN_ERR "Could not allocate control_code_buffer\n");
336 static int kimage_is_destination_range(struct kimage *image,
342 for (i = 0; i < image->nr_segments; i++) {
343 unsigned long mstart, mend;
345 mstart = image->segment[i].mem;
346 mend = mstart + image->segment[i].memsz;
347 if ((end > mstart) && (start < mend))
354 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
358 pages = alloc_pages(gfp_mask, order);
360 unsigned int count, i;
361 pages->mapping = NULL;
362 set_page_private(pages, order);
364 for (i = 0; i < count; i++)
365 SetPageReserved(pages + i);
371 static void kimage_free_pages(struct page *page)
373 unsigned int order, count, i;
375 order = page_private(page);
377 for (i = 0; i < count; i++)
378 ClearPageReserved(page + i);
379 __free_pages(page, order);
382 static void kimage_free_page_list(struct list_head *list)
384 struct list_head *pos, *next;
386 list_for_each_safe(pos, next, list) {
389 page = list_entry(pos, struct page, lru);
390 list_del(&page->lru);
391 kimage_free_pages(page);
395 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
398 /* Control pages are special, they are the intermediaries
399 * that are needed while we copy the rest of the pages
400 * to their final resting place. As such they must
401 * not conflict with either the destination addresses
402 * or memory the kernel is already using.
404 * The only case where we really need more than one of
405 * these are for architectures where we cannot disable
406 * the MMU and must instead generate an identity mapped
407 * page table for all of the memory.
409 * At worst this runs in O(N) of the image size.
411 struct list_head extra_pages;
416 INIT_LIST_HEAD(&extra_pages);
418 /* Loop while I can allocate a page and the page allocated
419 * is a destination page.
422 unsigned long pfn, epfn, addr, eaddr;
424 pages = kimage_alloc_pages(GFP_KERNEL, order);
427 pfn = page_to_pfn(pages);
429 addr = pfn << PAGE_SHIFT;
430 eaddr = epfn << PAGE_SHIFT;
431 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
432 kimage_is_destination_range(image, addr, eaddr)) {
433 list_add(&pages->lru, &extra_pages);
439 /* Remember the allocated page... */
440 list_add(&pages->lru, &image->control_pages);
442 /* Because the page is already in it's destination
443 * location we will never allocate another page at
444 * that address. Therefore kimage_alloc_pages
445 * will not return it (again) and we don't need
446 * to give it an entry in image->segment[].
449 /* Deal with the destination pages I have inadvertently allocated.
451 * Ideally I would convert multi-page allocations into single
452 * page allocations, and add everyting to image->dest_pages.
454 * For now it is simpler to just free the pages.
456 kimage_free_page_list(&extra_pages);
461 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
464 /* Control pages are special, they are the intermediaries
465 * that are needed while we copy the rest of the pages
466 * to their final resting place. As such they must
467 * not conflict with either the destination addresses
468 * or memory the kernel is already using.
470 * Control pages are also the only pags we must allocate
471 * when loading a crash kernel. All of the other pages
472 * are specified by the segments and we just memcpy
473 * into them directly.
475 * The only case where we really need more than one of
476 * these are for architectures where we cannot disable
477 * the MMU and must instead generate an identity mapped
478 * page table for all of the memory.
480 * Given the low demand this implements a very simple
481 * allocator that finds the first hole of the appropriate
482 * size in the reserved memory region, and allocates all
483 * of the memory up to and including the hole.
485 unsigned long hole_start, hole_end, size;
489 size = (1 << order) << PAGE_SHIFT;
490 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
491 hole_end = hole_start + size - 1;
492 while (hole_end <= crashk_res.end) {
495 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
497 if (hole_end > crashk_res.end)
499 /* See if I overlap any of the segments */
500 for (i = 0; i < image->nr_segments; i++) {
501 unsigned long mstart, mend;
503 mstart = image->segment[i].mem;
504 mend = mstart + image->segment[i].memsz - 1;
505 if ((hole_end >= mstart) && (hole_start <= mend)) {
506 /* Advance the hole to the end of the segment */
507 hole_start = (mend + (size - 1)) & ~(size - 1);
508 hole_end = hole_start + size - 1;
512 /* If I don't overlap any segments I have found my hole! */
513 if (i == image->nr_segments) {
514 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
519 image->control_page = hole_end;
525 struct page *kimage_alloc_control_pages(struct kimage *image,
528 struct page *pages = NULL;
530 switch (image->type) {
531 case KEXEC_TYPE_DEFAULT:
532 pages = kimage_alloc_normal_control_pages(image, order);
534 case KEXEC_TYPE_CRASH:
535 pages = kimage_alloc_crash_control_pages(image, order);
542 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
544 if (*image->entry != 0)
547 if (image->entry == image->last_entry) {
548 kimage_entry_t *ind_page;
551 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
555 ind_page = page_address(page);
556 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
557 image->entry = ind_page;
558 image->last_entry = ind_page +
559 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
561 *image->entry = entry;
568 static int kimage_set_destination(struct kimage *image,
569 unsigned long destination)
573 destination &= PAGE_MASK;
574 result = kimage_add_entry(image, destination | IND_DESTINATION);
576 image->destination = destination;
582 static int kimage_add_page(struct kimage *image, unsigned long page)
587 result = kimage_add_entry(image, page | IND_SOURCE);
589 image->destination += PAGE_SIZE;
595 static void kimage_free_extra_pages(struct kimage *image)
597 /* Walk through and free any extra destination pages I may have */
598 kimage_free_page_list(&image->dest_pages);
600 /* Walk through and free any unuseable pages I have cached */
601 kimage_free_page_list(&image->unuseable_pages);
604 static void kimage_terminate(struct kimage *image)
606 if (*image->entry != 0)
609 *image->entry = IND_DONE;
612 #define for_each_kimage_entry(image, ptr, entry) \
613 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
614 ptr = (entry & IND_INDIRECTION)? \
615 phys_to_virt((entry & PAGE_MASK)): ptr +1)
617 static void kimage_free_entry(kimage_entry_t entry)
621 page = pfn_to_page(entry >> PAGE_SHIFT);
622 kimage_free_pages(page);
625 static void kimage_free(struct kimage *image)
627 kimage_entry_t *ptr, entry;
628 kimage_entry_t ind = 0;
633 kimage_free_extra_pages(image);
634 for_each_kimage_entry(image, ptr, entry) {
635 if (entry & IND_INDIRECTION) {
636 /* Free the previous indirection page */
637 if (ind & IND_INDIRECTION)
638 kimage_free_entry(ind);
639 /* Save this indirection page until we are
644 else if (entry & IND_SOURCE)
645 kimage_free_entry(entry);
647 /* Free the final indirection page */
648 if (ind & IND_INDIRECTION)
649 kimage_free_entry(ind);
651 /* Handle any machine specific cleanup */
652 machine_kexec_cleanup(image);
654 /* Free the kexec control pages... */
655 kimage_free_page_list(&image->control_pages);
659 static kimage_entry_t *kimage_dst_used(struct kimage *image,
662 kimage_entry_t *ptr, entry;
663 unsigned long destination = 0;
665 for_each_kimage_entry(image, ptr, entry) {
666 if (entry & IND_DESTINATION)
667 destination = entry & PAGE_MASK;
668 else if (entry & IND_SOURCE) {
669 if (page == destination)
671 destination += PAGE_SIZE;
678 static struct page *kimage_alloc_page(struct kimage *image,
680 unsigned long destination)
683 * Here we implement safeguards to ensure that a source page
684 * is not copied to its destination page before the data on
685 * the destination page is no longer useful.
687 * To do this we maintain the invariant that a source page is
688 * either its own destination page, or it is not a
689 * destination page at all.
691 * That is slightly stronger than required, but the proof
692 * that no problems will not occur is trivial, and the
693 * implementation is simply to verify.
695 * When allocating all pages normally this algorithm will run
696 * in O(N) time, but in the worst case it will run in O(N^2)
697 * time. If the runtime is a problem the data structures can
704 * Walk through the list of destination pages, and see if I
707 list_for_each_entry(page, &image->dest_pages, lru) {
708 addr = page_to_pfn(page) << PAGE_SHIFT;
709 if (addr == destination) {
710 list_del(&page->lru);
718 /* Allocate a page, if we run out of memory give up */
719 page = kimage_alloc_pages(gfp_mask, 0);
722 /* If the page cannot be used file it away */
723 if (page_to_pfn(page) >
724 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
725 list_add(&page->lru, &image->unuseable_pages);
728 addr = page_to_pfn(page) << PAGE_SHIFT;
730 /* If it is the destination page we want use it */
731 if (addr == destination)
734 /* If the page is not a destination page use it */
735 if (!kimage_is_destination_range(image, addr,
740 * I know that the page is someones destination page.
741 * See if there is already a source page for this
742 * destination page. And if so swap the source pages.
744 old = kimage_dst_used(image, addr);
747 unsigned long old_addr;
748 struct page *old_page;
750 old_addr = *old & PAGE_MASK;
751 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
752 copy_highpage(page, old_page);
753 *old = addr | (*old & ~PAGE_MASK);
755 /* The old page I have found cannot be a
756 * destination page, so return it if it's
757 * gfp_flags honor the ones passed in.
759 if (!(gfp_mask & __GFP_HIGHMEM) &&
760 PageHighMem(old_page)) {
761 kimage_free_pages(old_page);
769 /* Place the page on the destination list I
772 list_add(&page->lru, &image->dest_pages);
779 static int kimage_load_normal_segment(struct kimage *image,
780 struct kexec_segment *segment)
783 unsigned long ubytes, mbytes;
785 unsigned char __user *buf;
789 ubytes = segment->bufsz;
790 mbytes = segment->memsz;
791 maddr = segment->mem;
793 result = kimage_set_destination(image, maddr);
800 size_t uchunk, mchunk;
802 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
807 result = kimage_add_page(image, page_to_pfn(page)
813 /* Start with a clear page */
814 memset(ptr, 0, PAGE_SIZE);
815 ptr += maddr & ~PAGE_MASK;
816 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
824 result = copy_from_user(ptr, buf, uchunk);
827 result = (result < 0) ? result : -EIO;
839 static int kimage_load_crash_segment(struct kimage *image,
840 struct kexec_segment *segment)
842 /* For crash dumps kernels we simply copy the data from
843 * user space to it's destination.
844 * We do things a page at a time for the sake of kmap.
847 unsigned long ubytes, mbytes;
849 unsigned char __user *buf;
853 ubytes = segment->bufsz;
854 mbytes = segment->memsz;
855 maddr = segment->mem;
859 size_t uchunk, mchunk;
861 page = pfn_to_page(maddr >> PAGE_SHIFT);
867 ptr += maddr & ~PAGE_MASK;
868 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
873 if (uchunk > ubytes) {
875 /* Zero the trailing part of the page */
876 memset(ptr + uchunk, 0, mchunk - uchunk);
878 result = copy_from_user(ptr, buf, uchunk);
879 kexec_flush_icache_page(page);
882 result = (result < 0) ? result : -EIO;
894 static int kimage_load_segment(struct kimage *image,
895 struct kexec_segment *segment)
897 int result = -ENOMEM;
899 switch (image->type) {
900 case KEXEC_TYPE_DEFAULT:
901 result = kimage_load_normal_segment(image, segment);
903 case KEXEC_TYPE_CRASH:
904 result = kimage_load_crash_segment(image, segment);
912 * Exec Kernel system call: for obvious reasons only root may call it.
914 * This call breaks up into three pieces.
915 * - A generic part which loads the new kernel from the current
916 * address space, and very carefully places the data in the
919 * - A generic part that interacts with the kernel and tells all of
920 * the devices to shut down. Preventing on-going dmas, and placing
921 * the devices in a consistent state so a later kernel can
924 * - A machine specific part that includes the syscall number
925 * and the copies the image to it's final destination. And
926 * jumps into the image at entry.
928 * kexec does not sync, or unmount filesystems so if you need
929 * that to happen you need to do that yourself.
931 struct kimage *kexec_image;
932 struct kimage *kexec_crash_image;
934 static DEFINE_MUTEX(kexec_mutex);
936 asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
937 struct kexec_segment __user *segments,
940 struct kimage **dest_image, *image;
943 /* We only trust the superuser with rebooting the system. */
944 if (!capable(CAP_SYS_BOOT))
948 * Verify we have a legal set of flags
949 * This leaves us room for future extensions.
951 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
954 /* Verify we are on the appropriate architecture */
955 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
956 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
959 /* Put an artificial cap on the number
960 * of segments passed to kexec_load.
962 if (nr_segments > KEXEC_SEGMENT_MAX)
968 /* Because we write directly to the reserved memory
969 * region when loading crash kernels we need a mutex here to
970 * prevent multiple crash kernels from attempting to load
971 * simultaneously, and to prevent a crash kernel from loading
972 * over the top of a in use crash kernel.
974 * KISS: always take the mutex.
976 if (!mutex_trylock(&kexec_mutex))
979 dest_image = &kexec_image;
980 if (flags & KEXEC_ON_CRASH)
981 dest_image = &kexec_crash_image;
982 if (nr_segments > 0) {
985 /* Loading another kernel to reboot into */
986 if ((flags & KEXEC_ON_CRASH) == 0)
987 result = kimage_normal_alloc(&image, entry,
988 nr_segments, segments);
989 /* Loading another kernel to switch to if this one crashes */
990 else if (flags & KEXEC_ON_CRASH) {
991 /* Free any current crash dump kernel before
994 kimage_free(xchg(&kexec_crash_image, NULL));
995 result = kimage_crash_alloc(&image, entry,
996 nr_segments, segments);
1001 if (flags & KEXEC_PRESERVE_CONTEXT)
1002 image->preserve_context = 1;
1003 result = machine_kexec_prepare(image);
1007 for (i = 0; i < nr_segments; i++) {
1008 result = kimage_load_segment(image, &image->segment[i]);
1012 kimage_terminate(image);
1014 /* Install the new kernel, and Uninstall the old */
1015 image = xchg(dest_image, image);
1018 mutex_unlock(&kexec_mutex);
1024 #ifdef CONFIG_COMPAT
1025 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1026 unsigned long nr_segments,
1027 struct compat_kexec_segment __user *segments,
1028 unsigned long flags)
1030 struct compat_kexec_segment in;
1031 struct kexec_segment out, __user *ksegments;
1032 unsigned long i, result;
1034 /* Don't allow clients that don't understand the native
1035 * architecture to do anything.
1037 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1040 if (nr_segments > KEXEC_SEGMENT_MAX)
1043 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1044 for (i=0; i < nr_segments; i++) {
1045 result = copy_from_user(&in, &segments[i], sizeof(in));
1049 out.buf = compat_ptr(in.buf);
1050 out.bufsz = in.bufsz;
1052 out.memsz = in.memsz;
1054 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1059 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1063 void crash_kexec(struct pt_regs *regs)
1065 /* Take the kexec_mutex here to prevent sys_kexec_load
1066 * running on one cpu from replacing the crash kernel
1067 * we are using after a panic on a different cpu.
1069 * If the crash kernel was not located in a fixed area
1070 * of memory the xchg(&kexec_crash_image) would be
1071 * sufficient. But since I reuse the memory...
1073 if (mutex_trylock(&kexec_mutex)) {
1074 if (kexec_crash_image) {
1075 struct pt_regs fixed_regs;
1076 crash_setup_regs(&fixed_regs, regs);
1077 crash_save_vmcoreinfo();
1078 machine_crash_shutdown(&fixed_regs);
1079 machine_kexec(kexec_crash_image);
1081 mutex_unlock(&kexec_mutex);
1085 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1088 struct elf_note note;
1090 note.n_namesz = strlen(name) + 1;
1091 note.n_descsz = data_len;
1093 memcpy(buf, ¬e, sizeof(note));
1094 buf += (sizeof(note) + 3)/4;
1095 memcpy(buf, name, note.n_namesz);
1096 buf += (note.n_namesz + 3)/4;
1097 memcpy(buf, data, note.n_descsz);
1098 buf += (note.n_descsz + 3)/4;
1103 static void final_note(u32 *buf)
1105 struct elf_note note;
1110 memcpy(buf, ¬e, sizeof(note));
1113 void crash_save_cpu(struct pt_regs *regs, int cpu)
1115 struct elf_prstatus prstatus;
1118 if ((cpu < 0) || (cpu >= NR_CPUS))
1121 /* Using ELF notes here is opportunistic.
1122 * I need a well defined structure format
1123 * for the data I pass, and I need tags
1124 * on the data to indicate what information I have
1125 * squirrelled away. ELF notes happen to provide
1126 * all of that, so there is no need to invent something new.
1128 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1131 memset(&prstatus, 0, sizeof(prstatus));
1132 prstatus.pr_pid = current->pid;
1133 elf_core_copy_regs(&prstatus.pr_reg, regs);
1134 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1135 &prstatus, sizeof(prstatus));
1139 static int __init crash_notes_memory_init(void)
1141 /* Allocate memory for saving cpu registers. */
1142 crash_notes = alloc_percpu(note_buf_t);
1144 printk("Kexec: Memory allocation for saving cpu register"
1145 " states failed\n");
1150 module_init(crash_notes_memory_init)
1154 * parsing the "crashkernel" commandline
1156 * this code is intended to be called from architecture specific code
1161 * This function parses command lines in the format
1163 * crashkernel=ramsize-range:size[,...][@offset]
1165 * The function returns 0 on success and -EINVAL on failure.
1167 static int __init parse_crashkernel_mem(char *cmdline,
1168 unsigned long long system_ram,
1169 unsigned long long *crash_size,
1170 unsigned long long *crash_base)
1172 char *cur = cmdline, *tmp;
1174 /* for each entry of the comma-separated list */
1176 unsigned long long start, end = ULLONG_MAX, size;
1178 /* get the start of the range */
1179 start = memparse(cur, &tmp);
1181 pr_warning("crashkernel: Memory value expected\n");
1186 pr_warning("crashkernel: '-' expected\n");
1191 /* if no ':' is here, than we read the end */
1193 end = memparse(cur, &tmp);
1195 pr_warning("crashkernel: Memory "
1196 "value expected\n");
1201 pr_warning("crashkernel: end <= start\n");
1207 pr_warning("crashkernel: ':' expected\n");
1212 size = memparse(cur, &tmp);
1214 pr_warning("Memory value expected\n");
1218 if (size >= system_ram) {
1219 pr_warning("crashkernel: invalid size\n");
1224 if (system_ram >= start && system_ram < end) {
1228 } while (*cur++ == ',');
1230 if (*crash_size > 0) {
1231 while (*cur != ' ' && *cur != '@')
1235 *crash_base = memparse(cur, &tmp);
1237 pr_warning("Memory value expected "
1248 * That function parses "simple" (old) crashkernel command lines like
1250 * crashkernel=size[@offset]
1252 * It returns 0 on success and -EINVAL on failure.
1254 static int __init parse_crashkernel_simple(char *cmdline,
1255 unsigned long long *crash_size,
1256 unsigned long long *crash_base)
1258 char *cur = cmdline;
1260 *crash_size = memparse(cmdline, &cur);
1261 if (cmdline == cur) {
1262 pr_warning("crashkernel: memory value expected\n");
1267 *crash_base = memparse(cur+1, &cur);
1273 * That function is the entry point for command line parsing and should be
1274 * called from the arch-specific code.
1276 int __init parse_crashkernel(char *cmdline,
1277 unsigned long long system_ram,
1278 unsigned long long *crash_size,
1279 unsigned long long *crash_base)
1281 char *p = cmdline, *ck_cmdline = NULL;
1282 char *first_colon, *first_space;
1284 BUG_ON(!crash_size || !crash_base);
1288 /* find crashkernel and use the last one if there are more */
1289 p = strstr(p, "crashkernel=");
1292 p = strstr(p+1, "crashkernel=");
1298 ck_cmdline += 12; /* strlen("crashkernel=") */
1301 * if the commandline contains a ':', then that's the extended
1302 * syntax -- if not, it must be the classic syntax
1304 first_colon = strchr(ck_cmdline, ':');
1305 first_space = strchr(ck_cmdline, ' ');
1306 if (first_colon && (!first_space || first_colon < first_space))
1307 return parse_crashkernel_mem(ck_cmdline, system_ram,
1308 crash_size, crash_base);
1310 return parse_crashkernel_simple(ck_cmdline, crash_size,
1318 void crash_save_vmcoreinfo(void)
1322 if (!vmcoreinfo_size)
1325 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1327 buf = (u32 *)vmcoreinfo_note;
1329 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1335 void vmcoreinfo_append_str(const char *fmt, ...)
1341 va_start(args, fmt);
1342 r = vsnprintf(buf, sizeof(buf), fmt, args);
1345 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1346 r = vmcoreinfo_max_size - vmcoreinfo_size;
1348 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1350 vmcoreinfo_size += r;
1354 * provide an empty default implementation here -- architecture
1355 * code may override this
1357 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1360 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1362 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1365 static int __init crash_save_vmcoreinfo_init(void)
1367 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1368 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1370 VMCOREINFO_SYMBOL(init_uts_ns);
1371 VMCOREINFO_SYMBOL(node_online_map);
1372 VMCOREINFO_SYMBOL(swapper_pg_dir);
1373 VMCOREINFO_SYMBOL(_stext);
1375 #ifndef CONFIG_NEED_MULTIPLE_NODES
1376 VMCOREINFO_SYMBOL(mem_map);
1377 VMCOREINFO_SYMBOL(contig_page_data);
1379 #ifdef CONFIG_SPARSEMEM
1380 VMCOREINFO_SYMBOL(mem_section);
1381 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1382 VMCOREINFO_STRUCT_SIZE(mem_section);
1383 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1385 VMCOREINFO_STRUCT_SIZE(page);
1386 VMCOREINFO_STRUCT_SIZE(pglist_data);
1387 VMCOREINFO_STRUCT_SIZE(zone);
1388 VMCOREINFO_STRUCT_SIZE(free_area);
1389 VMCOREINFO_STRUCT_SIZE(list_head);
1390 VMCOREINFO_SIZE(nodemask_t);
1391 VMCOREINFO_OFFSET(page, flags);
1392 VMCOREINFO_OFFSET(page, _count);
1393 VMCOREINFO_OFFSET(page, mapping);
1394 VMCOREINFO_OFFSET(page, lru);
1395 VMCOREINFO_OFFSET(pglist_data, node_zones);
1396 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1397 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1398 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1400 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1401 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1402 VMCOREINFO_OFFSET(pglist_data, node_id);
1403 VMCOREINFO_OFFSET(zone, free_area);
1404 VMCOREINFO_OFFSET(zone, vm_stat);
1405 VMCOREINFO_OFFSET(zone, spanned_pages);
1406 VMCOREINFO_OFFSET(free_area, free_list);
1407 VMCOREINFO_OFFSET(list_head, next);
1408 VMCOREINFO_OFFSET(list_head, prev);
1409 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1410 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1411 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1412 VMCOREINFO_NUMBER(PG_lru);
1413 VMCOREINFO_NUMBER(PG_private);
1414 VMCOREINFO_NUMBER(PG_swapcache);
1416 arch_crash_save_vmcoreinfo();
1421 module_init(crash_save_vmcoreinfo_init)
1424 * Move into place and start executing a preloaded standalone
1425 * executable. If nothing was preloaded return an error.
1427 int kernel_kexec(void)
1431 if (!mutex_trylock(&kexec_mutex))
1438 #ifdef CONFIG_KEXEC_JUMP
1439 if (kexec_image->preserve_context) {
1440 mutex_lock(&pm_mutex);
1441 pm_prepare_console();
1442 error = freeze_processes();
1445 goto Restore_console;
1448 error = device_suspend(PMSG_FREEZE);
1450 goto Resume_console;
1451 error = disable_nonboot_cpus();
1453 goto Resume_devices;
1455 local_irq_disable();
1456 /* At this point, device_suspend() has been called,
1457 * but *not* device_power_down(). We *must*
1458 * device_power_down() now. Otherwise, drivers for
1459 * some devices (e.g. interrupt controllers) become
1460 * desynchronized with the actual state of the
1461 * hardware at resume time, and evil weirdness ensues.
1463 error = device_power_down(PMSG_FREEZE);
1469 kernel_restart_prepare(NULL);
1470 printk(KERN_EMERG "Starting new kernel\n");
1474 machine_kexec(kexec_image);
1476 #ifdef CONFIG_KEXEC_JUMP
1477 if (kexec_image->preserve_context) {
1478 device_power_up(PMSG_RESTORE);
1482 enable_nonboot_cpus();
1484 device_resume(PMSG_RESTORE);
1489 pm_restore_console();
1490 mutex_unlock(&pm_mutex);
1495 mutex_unlock(&kexec_mutex);