]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/irq/handle.c
irq: separate sparse_irqs from sparse_irqs_free
[linux-2.6-omap-h63xx.git] / kernel / irq / handle.c
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18
19 #include "internals.h"
20
21 #ifdef CONFIG_TRACE_IRQFLAGS
22
23 /*
24  * lockdep: we want to handle all irq_desc locks as a single lock-class:
25  */
26 static struct lock_class_key irq_desc_lock_class;
27 #endif
28
29 /**
30  * handle_bad_irq - handle spurious and unhandled irqs
31  * @irq:       the interrupt number
32  * @desc:      description of the interrupt
33  *
34  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
35  */
36 void
37 handle_bad_irq(unsigned int irq, struct irq_desc *desc)
38 {
39         print_irq_desc(irq, desc);
40         kstat_irqs_this_cpu(desc)++;
41         ack_bad_irq(irq);
42 }
43
44 /*
45  * Linux has a controller-independent interrupt architecture.
46  * Every controller has a 'controller-template', that is used
47  * by the main code to do the right thing. Each driver-visible
48  * interrupt source is transparently wired to the appropriate
49  * controller. Thus drivers need not be aware of the
50  * interrupt-controller.
51  *
52  * The code is designed to be easily extended with new/different
53  * interrupt controllers, without having to do assembly magic or
54  * having to touch the generic code.
55  *
56  * Controller mappings for all interrupt sources:
57  */
58 int nr_irqs = NR_IRQS;
59 EXPORT_SYMBOL_GPL(nr_irqs);
60
61 #ifdef CONFIG_HAVE_DYN_ARRAY
62 static struct irq_desc irq_desc_init = {
63         .irq = -1U,
64         .status = IRQ_DISABLED,
65         .chip = &no_irq_chip,
66         .handle_irq = handle_bad_irq,
67         .depth = 1,
68         .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
69 #ifdef CONFIG_SMP
70         .affinity = CPU_MASK_ALL
71 #endif
72 };
73
74
75 static void init_one_irq_desc(struct irq_desc *desc)
76 {
77         memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
78 #ifdef CONFIG_TRACE_IRQFLAGS
79         lockdep_set_class(&desc->lock, &irq_desc_lock_class);
80 #endif
81 }
82
83 extern int after_bootmem;
84 extern void *__alloc_bootmem_nopanic(unsigned long size,
85                              unsigned long align,
86                              unsigned long goal);
87
88 static void init_kstat_irqs(struct irq_desc *desc, int nr_desc, int nr)
89 {
90         unsigned long bytes, total_bytes;
91         char *ptr;
92         int i;
93         unsigned long phys;
94
95         /* Compute how many bytes we need per irq and allocate them */
96         bytes = nr * sizeof(unsigned int);
97         total_bytes = bytes * nr_desc;
98         if (after_bootmem)
99                 ptr = kzalloc(total_bytes, GFP_ATOMIC);
100         else
101                 ptr = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
102
103         if (!ptr)
104                 panic(" can not allocate kstat_irqs\n");
105
106         phys = __pa(ptr);
107         printk(KERN_DEBUG "kstat_irqs ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
108
109         for (i = 0; i < nr_desc; i++) {
110                 desc[i].kstat_irqs = (unsigned int *)ptr;
111                 ptr += bytes;
112         }
113 }
114
115 #ifdef CONFIG_HAVE_SPARSE_IRQ
116 static struct irq_desc *sparse_irqs_free;
117 struct irq_desc *sparse_irqs;
118 #endif
119
120 static void __init init_work(void *data)
121 {
122         struct dyn_array *da = data;
123         int i;
124         struct  irq_desc *desc;
125
126         desc = *da->name;
127
128         for (i = 0; i < *da->nr; i++) {
129                 init_one_irq_desc(&desc[i]);
130 #ifndef CONFIG_HAVE_SPARSE_IRQ
131                 desc[i].irq = i;
132 #endif
133         }
134
135         /* init kstat_irqs, nr_cpu_ids is ready already */
136         init_kstat_irqs(desc, *da->nr, nr_cpu_ids);
137
138 #ifdef CONFIG_HAVE_SPARSE_IRQ
139         for (i = 1; i < *da->nr; i++)
140                 desc[i-1].next = &desc[i];
141
142         sparse_irqs_free = sparse_irqs;
143         sparse_irqs = NULL;
144 #endif
145 }
146
147 #ifdef CONFIG_HAVE_SPARSE_IRQ
148 static int nr_irq_desc = 32;
149
150 static int __init parse_nr_irq_desc(char *arg)
151 {
152         if (arg)
153                 nr_irq_desc = simple_strtoul(arg, NULL, 0);
154         return 0;
155 }
156
157 early_param("nr_irq_desc", parse_nr_irq_desc);
158
159 DEFINE_DYN_ARRAY(sparse_irqs, sizeof(struct irq_desc), nr_irq_desc, PAGE_SIZE, init_work);
160
161 struct irq_desc *irq_to_desc(unsigned int irq)
162 {
163         struct irq_desc *desc;
164
165         desc = sparse_irqs;
166         while (desc) {
167                 if (desc->irq == irq)
168                         return desc;
169
170                 desc = desc->next;
171         }
172         return NULL;
173 }
174 struct irq_desc *irq_to_desc_alloc(unsigned int irq)
175 {
176         struct irq_desc *desc, *desc_pri;
177         int i;
178         int count = 0;
179
180         desc_pri = desc = sparse_irqs;
181         while (desc) {
182                 if (desc->irq == irq)
183                         return desc;
184
185                 desc_pri = desc;
186                 desc = desc->next;
187                 count++;
188         }
189
190         /*
191          *  we run out of pre-allocate ones, allocate more
192          */
193         if (!sparse_irqs_free) {
194                 unsigned long phys;
195                 unsigned long total_bytes;
196
197                 printk(KERN_DEBUG "try to get more irq_desc %d\n", nr_irq_desc);
198
199                 total_bytes = sizeof(struct irq_desc) * nr_irq_desc;
200                 if (after_bootmem)
201                         desc = kzalloc(total_bytes, GFP_ATOMIC);
202                 else
203                         desc = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
204
205                 if (!desc)
206                         panic("please boot with nr_irq_desc= %d\n", count * 2);
207
208                 phys = __pa(desc);
209                 printk(KERN_DEBUG "irq_desc ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
210
211                 for (i = 0; i < nr_irq_desc; i++)
212                         init_one_irq_desc(&desc[i]);
213
214                 for (i = 1; i < nr_irq_desc; i++)
215                         desc[i-1].next = &desc[i];
216
217                 /* init kstat_irqs, nr_cpu_ids is ready already */
218                 init_kstat_irqs(desc, nr_irq_desc, nr_cpu_ids);
219
220                 sparse_irqs_free = desc;
221         }
222
223         desc = sparse_irqs_free;
224         sparse_irqs_free = sparse_irqs_free->next;
225         desc->next = NULL;
226         if (desc_pri)
227                 desc_pri->next = desc;
228         else
229                 sparse_irqs = desc;
230         desc->irq = irq;
231         printk(KERN_DEBUG "found new irq_desc for irq %d\n", desc->irq);
232 #ifdef CONFIG_HAVE_SPARSE_IRQ_DEBUG
233         {
234                 /* dump the results */
235                 struct irq_desc *desc;
236                 unsigned long phys;
237                 unsigned long bytes = sizeof(struct irq_desc);
238                 unsigned int irqx;
239
240                 printk(KERN_DEBUG "=========================== %d\n", irq);
241                 printk(KERN_DEBUG "irq_desc dump after get that for %d\n", irq);
242                 for_each_irq_desc(irqx, desc) {
243                         phys = __pa(desc);
244                         printk(KERN_DEBUG "irq_desc %d ==> [%#lx - %#lx]\n", irqx, phys, phys + bytes);
245                 }
246                 printk(KERN_DEBUG "===========================\n");
247         }
248 #endif
249         return desc;
250 }
251 #else
252 struct irq_desc *irq_desc;
253 DEFINE_DYN_ARRAY(irq_desc, sizeof(struct irq_desc), nr_irqs, PAGE_SIZE, init_work);
254
255 #endif
256
257 #else
258
259 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
260         [0 ... NR_IRQS-1] = {
261                 .status = IRQ_DISABLED,
262                 .chip = &no_irq_chip,
263                 .handle_irq = handle_bad_irq,
264                 .depth = 1,
265                 .lock = __SPIN_LOCK_UNLOCKED(sparse_irqs->lock),
266 #ifdef CONFIG_SMP
267                 .affinity = CPU_MASK_ALL
268 #endif
269         }
270 };
271
272 #endif
273
274 #ifndef CONFIG_HAVE_SPARSE_IRQ
275 struct irq_desc *irq_to_desc(unsigned int irq)
276 {
277         if (irq < nr_irqs)
278                 return &irq_desc[irq];
279
280         return NULL;
281 }
282 struct irq_desc *irq_to_desc_alloc(unsigned int irq)
283 {
284         return irq_to_desc(irq);
285 }
286 #endif
287
288 /*
289  * What should we do if we get a hw irq event on an illegal vector?
290  * Each architecture has to answer this themself.
291  */
292 static void ack_bad(unsigned int irq)
293 {
294         struct irq_desc *desc;
295
296         desc = irq_to_desc(irq);
297         print_irq_desc(irq, desc);
298         ack_bad_irq(irq);
299 }
300
301 /*
302  * NOP functions
303  */
304 static void noop(unsigned int irq)
305 {
306 }
307
308 static unsigned int noop_ret(unsigned int irq)
309 {
310         return 0;
311 }
312
313 /*
314  * Generic no controller implementation
315  */
316 struct irq_chip no_irq_chip = {
317         .name           = "none",
318         .startup        = noop_ret,
319         .shutdown       = noop,
320         .enable         = noop,
321         .disable        = noop,
322         .ack            = ack_bad,
323         .end            = noop,
324 };
325
326 /*
327  * Generic dummy implementation which can be used for
328  * real dumb interrupt sources
329  */
330 struct irq_chip dummy_irq_chip = {
331         .name           = "dummy",
332         .startup        = noop_ret,
333         .shutdown       = noop,
334         .enable         = noop,
335         .disable        = noop,
336         .ack            = noop,
337         .mask           = noop,
338         .unmask         = noop,
339         .end            = noop,
340 };
341
342 /*
343  * Special, empty irq handler:
344  */
345 irqreturn_t no_action(int cpl, void *dev_id)
346 {
347         return IRQ_NONE;
348 }
349
350 /**
351  * handle_IRQ_event - irq action chain handler
352  * @irq:        the interrupt number
353  * @action:     the interrupt action chain for this irq
354  *
355  * Handles the action chain of an irq event
356  */
357 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
358 {
359         irqreturn_t ret, retval = IRQ_NONE;
360         unsigned int status = 0;
361
362         if (!(action->flags & IRQF_DISABLED))
363                 local_irq_enable_in_hardirq();
364
365         do {
366                 ret = action->handler(irq, action->dev_id);
367                 if (ret == IRQ_HANDLED)
368                         status |= action->flags;
369                 retval |= ret;
370                 action = action->next;
371         } while (action);
372
373         if (status & IRQF_SAMPLE_RANDOM)
374                 add_interrupt_randomness(irq);
375         local_irq_disable();
376
377         return retval;
378 }
379
380 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
381 /**
382  * __do_IRQ - original all in one highlevel IRQ handler
383  * @irq:        the interrupt number
384  *
385  * __do_IRQ handles all normal device IRQ's (the special
386  * SMP cross-CPU interrupts have their own specific
387  * handlers).
388  *
389  * This is the original x86 implementation which is used for every
390  * interrupt type.
391  */
392 unsigned int __do_IRQ(unsigned int irq)
393 {
394         struct irq_desc *desc = irq_to_desc(irq);
395         struct irqaction *action;
396         unsigned int status;
397
398         kstat_irqs_this_cpu(desc)++;
399         if (CHECK_IRQ_PER_CPU(desc->status)) {
400                 irqreturn_t action_ret;
401
402                 /*
403                  * No locking required for CPU-local interrupts:
404                  */
405                 if (desc->chip->ack)
406                         desc->chip->ack(irq);
407                 if (likely(!(desc->status & IRQ_DISABLED))) {
408                         action_ret = handle_IRQ_event(irq, desc->action);
409                         if (!noirqdebug)
410                                 note_interrupt(irq, desc, action_ret);
411                 }
412                 desc->chip->end(irq);
413                 return 1;
414         }
415
416         spin_lock(&desc->lock);
417         if (desc->chip->ack)
418                 desc->chip->ack(irq);
419         /*
420          * REPLAY is when Linux resends an IRQ that was dropped earlier
421          * WAITING is used by probe to mark irqs that are being tested
422          */
423         status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
424         status |= IRQ_PENDING; /* we _want_ to handle it */
425
426         /*
427          * If the IRQ is disabled for whatever reason, we cannot
428          * use the action we have.
429          */
430         action = NULL;
431         if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
432                 action = desc->action;
433                 status &= ~IRQ_PENDING; /* we commit to handling */
434                 status |= IRQ_INPROGRESS; /* we are handling it */
435         }
436         desc->status = status;
437
438         /*
439          * If there is no IRQ handler or it was disabled, exit early.
440          * Since we set PENDING, if another processor is handling
441          * a different instance of this same irq, the other processor
442          * will take care of it.
443          */
444         if (unlikely(!action))
445                 goto out;
446
447         /*
448          * Edge triggered interrupts need to remember
449          * pending events.
450          * This applies to any hw interrupts that allow a second
451          * instance of the same irq to arrive while we are in do_IRQ
452          * or in the handler. But the code here only handles the _second_
453          * instance of the irq, not the third or fourth. So it is mostly
454          * useful for irq hardware that does not mask cleanly in an
455          * SMP environment.
456          */
457         for (;;) {
458                 irqreturn_t action_ret;
459
460                 spin_unlock(&desc->lock);
461
462                 action_ret = handle_IRQ_event(irq, action);
463                 if (!noirqdebug)
464                         note_interrupt(irq, desc, action_ret);
465
466                 spin_lock(&desc->lock);
467                 if (likely(!(desc->status & IRQ_PENDING)))
468                         break;
469                 desc->status &= ~IRQ_PENDING;
470         }
471         desc->status &= ~IRQ_INPROGRESS;
472
473 out:
474         /*
475          * The ->end() handler has to deal with interrupts which got
476          * disabled while the handler was running.
477          */
478         desc->chip->end(irq);
479         spin_unlock(&desc->lock);
480
481         return 1;
482 }
483 #endif
484
485
486 #ifdef CONFIG_TRACE_IRQFLAGS
487 void early_init_irq_lock_class(void)
488 {
489 #ifndef CONFIG_HAVE_DYN_ARRAY
490         int i;
491
492         for (i = 0; i < nr_irqs; i++)
493                 lockdep_set_class(&irq_desc[i].lock, &irq_desc_lock_class);
494 #endif
495 }
496 #endif
497
498 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
499 {
500         struct irq_desc *desc = irq_to_desc(irq);
501         return desc->kstat_irqs[cpu];
502 }
503 EXPORT_SYMBOL(kstat_irqs_cpu);
504