]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/irq/handle.c
sparseirq: work around compiler optimizing away __weak functions
[linux-2.6-omap-h63xx.git] / kernel / irq / handle.c
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20
21 #include "internals.h"
22
23 /*
24  * lockdep: we want to handle all irq_desc locks as a single lock-class:
25  */
26 struct lock_class_key irq_desc_lock_class;
27
28 /**
29  * handle_bad_irq - handle spurious and unhandled irqs
30  * @irq:       the interrupt number
31  * @desc:      description of the interrupt
32  *
33  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
34  */
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
36 {
37         print_irq_desc(irq, desc);
38         kstat_incr_irqs_this_cpu(irq, desc);
39         ack_bad_irq(irq);
40 }
41
42 /*
43  * Linux has a controller-independent interrupt architecture.
44  * Every controller has a 'controller-template', that is used
45  * by the main code to do the right thing. Each driver-visible
46  * interrupt source is transparently wired to the appropriate
47  * controller. Thus drivers need not be aware of the
48  * interrupt-controller.
49  *
50  * The code is designed to be easily extended with new/different
51  * interrupt controllers, without having to do assembly magic or
52  * having to touch the generic code.
53  *
54  * Controller mappings for all interrupt sources:
55  */
56 int nr_irqs = NR_IRQS;
57 EXPORT_SYMBOL_GPL(nr_irqs);
58
59 #ifdef CONFIG_SPARSE_IRQ
60 static struct irq_desc irq_desc_init = {
61         .irq        = -1,
62         .status     = IRQ_DISABLED,
63         .chip       = &no_irq_chip,
64         .handle_irq = handle_bad_irq,
65         .depth      = 1,
66         .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
67 #ifdef CONFIG_SMP
68         .affinity   = CPU_MASK_ALL
69 #endif
70 };
71
72 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
73 {
74         unsigned long bytes;
75         char *ptr;
76         int node;
77
78         /* Compute how many bytes we need per irq and allocate them */
79         bytes = nr * sizeof(unsigned int);
80
81         node = cpu_to_node(cpu);
82         ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
83         printk(KERN_DEBUG "  alloc kstat_irqs on cpu %d node %d\n", cpu, node);
84
85         if (ptr)
86                 desc->kstat_irqs = (unsigned int *)ptr;
87 }
88
89 int __weak arch_init_chip_data(struct irq_desc *desc, int cpu)
90 {
91         return 0;
92 }
93
94 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
95 {
96         memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
97
98         spin_lock_init(&desc->lock);
99         desc->irq = irq;
100 #ifdef CONFIG_SMP
101         desc->cpu = cpu;
102 #endif
103         lockdep_set_class(&desc->lock, &irq_desc_lock_class);
104         init_kstat_irqs(desc, cpu, nr_cpu_ids);
105         if (!desc->kstat_irqs) {
106                 printk(KERN_ERR "can not alloc kstat_irqs\n");
107                 BUG_ON(1);
108         }
109         arch_init_chip_data(desc, cpu);
110 }
111
112 /*
113  * Protect the sparse_irqs:
114  */
115 DEFINE_SPINLOCK(sparse_irq_lock);
116
117 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
118
119 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
120         [0 ... NR_IRQS_LEGACY-1] = {
121                 .irq        = -1,
122                 .status     = IRQ_DISABLED,
123                 .chip       = &no_irq_chip,
124                 .handle_irq = handle_bad_irq,
125                 .depth      = 1,
126                 .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
127 #ifdef CONFIG_SMP
128                 .affinity   = CPU_MASK_ALL
129 #endif
130         }
131 };
132
133 /* FIXME: use bootmem alloc ...*/
134 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
135
136 int __init early_irq_init(void)
137 {
138         struct irq_desc *desc;
139         int legacy_count;
140         int i;
141
142         desc = irq_desc_legacy;
143         legacy_count = ARRAY_SIZE(irq_desc_legacy);
144
145         for (i = 0; i < legacy_count; i++) {
146                 desc[i].irq = i;
147                 desc[i].kstat_irqs = kstat_irqs_legacy[i];
148
149                 irq_desc_ptrs[i] = desc + i;
150         }
151
152         for (i = legacy_count; i < NR_IRQS; i++)
153                 irq_desc_ptrs[i] = NULL;
154
155         return arch_early_irq_init();
156 }
157
158 struct irq_desc *irq_to_desc(unsigned int irq)
159 {
160         return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL;
161 }
162
163 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
164 {
165         struct irq_desc *desc;
166         unsigned long flags;
167         int node;
168
169         if (irq >= NR_IRQS) {
170                 printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n",
171                                 irq, NR_IRQS);
172                 WARN_ON(1);
173                 return NULL;
174         }
175
176         desc = irq_desc_ptrs[irq];
177         if (desc)
178                 return desc;
179
180         spin_lock_irqsave(&sparse_irq_lock, flags);
181
182         /* We have to check it to avoid races with another CPU */
183         desc = irq_desc_ptrs[irq];
184         if (desc)
185                 goto out_unlock;
186
187         node = cpu_to_node(cpu);
188         desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
189         printk(KERN_DEBUG "  alloc irq_desc for %d on cpu %d node %d\n",
190                  irq, cpu, node);
191         if (!desc) {
192                 printk(KERN_ERR "can not alloc irq_desc\n");
193                 BUG_ON(1);
194         }
195         init_one_irq_desc(irq, desc, cpu);
196
197         irq_desc_ptrs[irq] = desc;
198
199 out_unlock:
200         spin_unlock_irqrestore(&sparse_irq_lock, flags);
201
202         return desc;
203 }
204
205 #else /* !CONFIG_SPARSE_IRQ */
206
207 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
208         [0 ... NR_IRQS-1] = {
209                 .status = IRQ_DISABLED,
210                 .chip = &no_irq_chip,
211                 .handle_irq = handle_bad_irq,
212                 .depth = 1,
213                 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
214 #ifdef CONFIG_SMP
215                 .affinity = CPU_MASK_ALL
216 #endif
217         }
218 };
219
220 struct irq_desc *irq_to_desc(unsigned int irq)
221 {
222         return (irq < NR_IRQS) ? irq_desc + irq : NULL;
223 }
224
225 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
226 {
227         return irq_to_desc(irq);
228 }
229 #endif /* !CONFIG_SPARSE_IRQ */
230
231 /*
232  * What should we do if we get a hw irq event on an illegal vector?
233  * Each architecture has to answer this themself.
234  */
235 static void ack_bad(unsigned int irq)
236 {
237         struct irq_desc *desc = irq_to_desc(irq);
238
239         print_irq_desc(irq, desc);
240         ack_bad_irq(irq);
241 }
242
243 /*
244  * NOP functions
245  */
246 static void noop(unsigned int irq)
247 {
248 }
249
250 static unsigned int noop_ret(unsigned int irq)
251 {
252         return 0;
253 }
254
255 /*
256  * Generic no controller implementation
257  */
258 struct irq_chip no_irq_chip = {
259         .name           = "none",
260         .startup        = noop_ret,
261         .shutdown       = noop,
262         .enable         = noop,
263         .disable        = noop,
264         .ack            = ack_bad,
265         .end            = noop,
266 };
267
268 /*
269  * Generic dummy implementation which can be used for
270  * real dumb interrupt sources
271  */
272 struct irq_chip dummy_irq_chip = {
273         .name           = "dummy",
274         .startup        = noop_ret,
275         .shutdown       = noop,
276         .enable         = noop,
277         .disable        = noop,
278         .ack            = noop,
279         .mask           = noop,
280         .unmask         = noop,
281         .end            = noop,
282 };
283
284 /*
285  * Special, empty irq handler:
286  */
287 irqreturn_t no_action(int cpl, void *dev_id)
288 {
289         return IRQ_NONE;
290 }
291
292 /**
293  * handle_IRQ_event - irq action chain handler
294  * @irq:        the interrupt number
295  * @action:     the interrupt action chain for this irq
296  *
297  * Handles the action chain of an irq event
298  */
299 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
300 {
301         irqreturn_t ret, retval = IRQ_NONE;
302         unsigned int status = 0;
303
304         if (!(action->flags & IRQF_DISABLED))
305                 local_irq_enable_in_hardirq();
306
307         do {
308                 ret = action->handler(irq, action->dev_id);
309                 if (ret == IRQ_HANDLED)
310                         status |= action->flags;
311                 retval |= ret;
312                 action = action->next;
313         } while (action);
314
315         if (status & IRQF_SAMPLE_RANDOM)
316                 add_interrupt_randomness(irq);
317         local_irq_disable();
318
319         return retval;
320 }
321
322 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
323 /**
324  * __do_IRQ - original all in one highlevel IRQ handler
325  * @irq:        the interrupt number
326  *
327  * __do_IRQ handles all normal device IRQ's (the special
328  * SMP cross-CPU interrupts have their own specific
329  * handlers).
330  *
331  * This is the original x86 implementation which is used for every
332  * interrupt type.
333  */
334 unsigned int __do_IRQ(unsigned int irq)
335 {
336         struct irq_desc *desc = irq_to_desc(irq);
337         struct irqaction *action;
338         unsigned int status;
339
340         kstat_incr_irqs_this_cpu(irq, desc);
341
342         if (CHECK_IRQ_PER_CPU(desc->status)) {
343                 irqreturn_t action_ret;
344
345                 /*
346                  * No locking required for CPU-local interrupts:
347                  */
348                 if (desc->chip->ack) {
349                         desc->chip->ack(irq);
350                         /* get new one */
351                         desc = irq_remap_to_desc(irq, desc);
352                 }
353                 if (likely(!(desc->status & IRQ_DISABLED))) {
354                         action_ret = handle_IRQ_event(irq, desc->action);
355                         if (!noirqdebug)
356                                 note_interrupt(irq, desc, action_ret);
357                 }
358                 desc->chip->end(irq);
359                 return 1;
360         }
361
362         spin_lock(&desc->lock);
363         if (desc->chip->ack) {
364                 desc->chip->ack(irq);
365                 desc = irq_remap_to_desc(irq, desc);
366         }
367         /*
368          * REPLAY is when Linux resends an IRQ that was dropped earlier
369          * WAITING is used by probe to mark irqs that are being tested
370          */
371         status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
372         status |= IRQ_PENDING; /* we _want_ to handle it */
373
374         /*
375          * If the IRQ is disabled for whatever reason, we cannot
376          * use the action we have.
377          */
378         action = NULL;
379         if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
380                 action = desc->action;
381                 status &= ~IRQ_PENDING; /* we commit to handling */
382                 status |= IRQ_INPROGRESS; /* we are handling it */
383         }
384         desc->status = status;
385
386         /*
387          * If there is no IRQ handler or it was disabled, exit early.
388          * Since we set PENDING, if another processor is handling
389          * a different instance of this same irq, the other processor
390          * will take care of it.
391          */
392         if (unlikely(!action))
393                 goto out;
394
395         /*
396          * Edge triggered interrupts need to remember
397          * pending events.
398          * This applies to any hw interrupts that allow a second
399          * instance of the same irq to arrive while we are in do_IRQ
400          * or in the handler. But the code here only handles the _second_
401          * instance of the irq, not the third or fourth. So it is mostly
402          * useful for irq hardware that does not mask cleanly in an
403          * SMP environment.
404          */
405         for (;;) {
406                 irqreturn_t action_ret;
407
408                 spin_unlock(&desc->lock);
409
410                 action_ret = handle_IRQ_event(irq, action);
411                 if (!noirqdebug)
412                         note_interrupt(irq, desc, action_ret);
413
414                 spin_lock(&desc->lock);
415                 if (likely(!(desc->status & IRQ_PENDING)))
416                         break;
417                 desc->status &= ~IRQ_PENDING;
418         }
419         desc->status &= ~IRQ_INPROGRESS;
420
421 out:
422         /*
423          * The ->end() handler has to deal with interrupts which got
424          * disabled while the handler was running.
425          */
426         desc->chip->end(irq);
427         spin_unlock(&desc->lock);
428
429         return 1;
430 }
431 #endif
432
433 void early_init_irq_lock_class(void)
434 {
435         struct irq_desc *desc;
436         int i;
437
438         for_each_irq_desc(i, desc) {
439                 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
440         }
441 }
442
443 #ifdef CONFIG_SPARSE_IRQ
444 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
445 {
446         struct irq_desc *desc = irq_to_desc(irq);
447         return desc ? desc->kstat_irqs[cpu] : 0;
448 }
449 #endif
450 EXPORT_SYMBOL(kstat_irqs_cpu);
451