]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/irq/handle.c
fix warning: "x86: sparse_irq needs spin_lock in allocations"
[linux-2.6-omap-h63xx.git] / kernel / irq / handle.c
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18
19 #include "internals.h"
20
21 /*
22  * lockdep: we want to handle all irq_desc locks as a single lock-class:
23  */
24 static struct lock_class_key irq_desc_lock_class;
25
26 /**
27  * handle_bad_irq - handle spurious and unhandled irqs
28  * @irq:       the interrupt number
29  * @desc:      description of the interrupt
30  *
31  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
32  */
33 void
34 handle_bad_irq(unsigned int irq, struct irq_desc *desc)
35 {
36         print_irq_desc(irq, desc);
37 #ifdef CONFIG_HAVE_DYN_ARRAY
38         kstat_irqs_this_cpu(desc)++;
39 #else
40         kstat_irqs_this_cpu(irq)++;
41 #endif
42         ack_bad_irq(irq);
43 }
44
45 /*
46  * Linux has a controller-independent interrupt architecture.
47  * Every controller has a 'controller-template', that is used
48  * by the main code to do the right thing. Each driver-visible
49  * interrupt source is transparently wired to the appropriate
50  * controller. Thus drivers need not be aware of the
51  * interrupt-controller.
52  *
53  * The code is designed to be easily extended with new/different
54  * interrupt controllers, without having to do assembly magic or
55  * having to touch the generic code.
56  *
57  * Controller mappings for all interrupt sources:
58  */
59 int nr_irqs = NR_IRQS;
60 EXPORT_SYMBOL_GPL(nr_irqs);
61
62 #ifdef CONFIG_HAVE_DYN_ARRAY
63 static struct irq_desc irq_desc_init = {
64         .irq = -1U,
65         .status = IRQ_DISABLED,
66         .chip = &no_irq_chip,
67         .handle_irq = handle_bad_irq,
68         .depth = 1,
69         .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
70 #ifdef CONFIG_SMP
71         .affinity = CPU_MASK_ALL
72 #endif
73 };
74
75
76 static void init_one_irq_desc(struct irq_desc *desc)
77 {
78         memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
79         lockdep_set_class(&desc->lock, &irq_desc_lock_class);
80 }
81
82 extern int after_bootmem;
83 extern void *__alloc_bootmem_nopanic(unsigned long size,
84                              unsigned long align,
85                              unsigned long goal);
86
87 static void init_kstat_irqs(struct irq_desc *desc, int nr_desc, int nr)
88 {
89         unsigned long bytes, total_bytes;
90         char *ptr;
91         int i;
92         unsigned long phys;
93
94         /* Compute how many bytes we need per irq and allocate them */
95         bytes = nr * sizeof(unsigned int);
96         total_bytes = bytes * nr_desc;
97         if (after_bootmem)
98                 ptr = kzalloc(total_bytes, GFP_ATOMIC);
99         else
100                 ptr = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
101
102         if (!ptr)
103                 panic(" can not allocate kstat_irqs\n");
104
105         phys = __pa(ptr);
106         printk(KERN_DEBUG "kstat_irqs ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
107
108         for (i = 0; i < nr_desc; i++) {
109                 desc[i].kstat_irqs = (unsigned int *)ptr;
110                 ptr += bytes;
111         }
112 }
113
114 #ifdef CONFIG_HAVE_SPARSE_IRQ
115 /*
116  * Protect the sparse_irqs_free freelist:
117  */
118 static DEFINE_SPINLOCK(sparse_irq_lock);
119 static struct irq_desc *sparse_irqs_free;
120 struct irq_desc *sparse_irqs;
121 #endif
122
123 static void __init init_work(void *data)
124 {
125         struct dyn_array *da = data;
126         int i;
127         struct  irq_desc *desc;
128
129         desc = *da->name;
130
131         for (i = 0; i < *da->nr; i++) {
132                 init_one_irq_desc(&desc[i]);
133 #ifndef CONFIG_HAVE_SPARSE_IRQ
134                 desc[i].irq = i;
135 #endif
136         }
137
138         /* init kstat_irqs, nr_cpu_ids is ready already */
139         init_kstat_irqs(desc, *da->nr, nr_cpu_ids);
140
141 #ifdef CONFIG_HAVE_SPARSE_IRQ
142         for (i = 1; i < *da->nr; i++)
143                 desc[i-1].next = &desc[i];
144
145         sparse_irqs_free = sparse_irqs;
146         sparse_irqs = NULL;
147 #endif
148 }
149
150 #ifdef CONFIG_HAVE_SPARSE_IRQ
151 static int nr_irq_desc = 32;
152
153 static int __init parse_nr_irq_desc(char *arg)
154 {
155         if (arg)
156                 nr_irq_desc = simple_strtoul(arg, NULL, 0);
157         return 0;
158 }
159
160 early_param("nr_irq_desc", parse_nr_irq_desc);
161
162 DEFINE_DYN_ARRAY(sparse_irqs, sizeof(struct irq_desc), nr_irq_desc, PAGE_SIZE, init_work);
163
164 struct irq_desc *irq_to_desc(unsigned int irq)
165 {
166         struct irq_desc *desc;
167
168         desc = sparse_irqs;
169         while (desc) {
170                 if (desc->irq == irq)
171                         return desc;
172
173                 desc = desc->next;
174         }
175         return NULL;
176 }
177
178 struct irq_desc *irq_to_desc_alloc(unsigned int irq)
179 {
180         struct irq_desc *desc, *desc_pri;
181         unsigned long flags;
182         int count = 0;
183         int i;
184
185         desc_pri = desc = sparse_irqs;
186         while (desc) {
187                 if (desc->irq == irq)
188                         return desc;
189
190                 desc_pri = desc;
191                 desc = desc->next;
192                 count++;
193         }
194
195         spin_lock_irqsave(&sparse_irq_lock, flags);
196         /*
197          *  we run out of pre-allocate ones, allocate more
198          */
199         if (!sparse_irqs_free) {
200                 unsigned long phys;
201                 unsigned long total_bytes;
202
203                 printk(KERN_DEBUG "try to get more irq_desc %d\n", nr_irq_desc);
204
205                 total_bytes = sizeof(struct irq_desc) * nr_irq_desc;
206                 if (after_bootmem)
207                         desc = kzalloc(total_bytes, GFP_ATOMIC);
208                 else
209                         desc = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
210
211                 if (!desc)
212                         panic("please boot with nr_irq_desc= %d\n", count * 2);
213
214                 phys = __pa(desc);
215                 printk(KERN_DEBUG "irq_desc ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
216
217                 for (i = 0; i < nr_irq_desc; i++)
218                         init_one_irq_desc(&desc[i]);
219
220                 for (i = 1; i < nr_irq_desc; i++)
221                         desc[i-1].next = &desc[i];
222
223                 /* init kstat_irqs, nr_cpu_ids is ready already */
224                 init_kstat_irqs(desc, nr_irq_desc, nr_cpu_ids);
225
226                 sparse_irqs_free = desc;
227         }
228
229         desc = sparse_irqs_free;
230         sparse_irqs_free = sparse_irqs_free->next;
231         desc->next = NULL;
232         if (desc_pri)
233                 desc_pri->next = desc;
234         else
235                 sparse_irqs = desc;
236         desc->irq = irq;
237
238         spin_unlock_irqrestore(&sparse_irq_lock, flags);
239
240         return desc;
241 }
242 #else
243 struct irq_desc *irq_desc;
244 DEFINE_DYN_ARRAY(irq_desc, sizeof(struct irq_desc), nr_irqs, PAGE_SIZE, init_work);
245
246 #endif
247
248 #else
249
250 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
251         [0 ... NR_IRQS-1] = {
252                 .status = IRQ_DISABLED,
253                 .chip = &no_irq_chip,
254                 .handle_irq = handle_bad_irq,
255                 .depth = 1,
256                 .lock = __SPIN_LOCK_UNLOCKED(sparse_irqs->lock),
257 #ifdef CONFIG_SMP
258                 .affinity = CPU_MASK_ALL
259 #endif
260         }
261 };
262
263 #endif
264
265 #ifndef CONFIG_HAVE_SPARSE_IRQ
266 struct irq_desc *irq_to_desc(unsigned int irq)
267 {
268         if (irq < nr_irqs)
269                 return &irq_desc[irq];
270
271         return NULL;
272 }
273 struct irq_desc *irq_to_desc_alloc(unsigned int irq)
274 {
275         return irq_to_desc(irq);
276 }
277 #endif
278
279 /*
280  * What should we do if we get a hw irq event on an illegal vector?
281  * Each architecture has to answer this themself.
282  */
283 static void ack_bad(unsigned int irq)
284 {
285         struct irq_desc *desc;
286
287         desc = irq_to_desc(irq);
288         print_irq_desc(irq, desc);
289         ack_bad_irq(irq);
290 }
291
292 /*
293  * NOP functions
294  */
295 static void noop(unsigned int irq)
296 {
297 }
298
299 static unsigned int noop_ret(unsigned int irq)
300 {
301         return 0;
302 }
303
304 /*
305  * Generic no controller implementation
306  */
307 struct irq_chip no_irq_chip = {
308         .name           = "none",
309         .startup        = noop_ret,
310         .shutdown       = noop,
311         .enable         = noop,
312         .disable        = noop,
313         .ack            = ack_bad,
314         .end            = noop,
315 };
316
317 /*
318  * Generic dummy implementation which can be used for
319  * real dumb interrupt sources
320  */
321 struct irq_chip dummy_irq_chip = {
322         .name           = "dummy",
323         .startup        = noop_ret,
324         .shutdown       = noop,
325         .enable         = noop,
326         .disable        = noop,
327         .ack            = noop,
328         .mask           = noop,
329         .unmask         = noop,
330         .end            = noop,
331 };
332
333 /*
334  * Special, empty irq handler:
335  */
336 irqreturn_t no_action(int cpl, void *dev_id)
337 {
338         return IRQ_NONE;
339 }
340
341 /**
342  * handle_IRQ_event - irq action chain handler
343  * @irq:        the interrupt number
344  * @action:     the interrupt action chain for this irq
345  *
346  * Handles the action chain of an irq event
347  */
348 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
349 {
350         irqreturn_t ret, retval = IRQ_NONE;
351         unsigned int status = 0;
352
353         if (!(action->flags & IRQF_DISABLED))
354                 local_irq_enable_in_hardirq();
355
356         do {
357                 ret = action->handler(irq, action->dev_id);
358                 if (ret == IRQ_HANDLED)
359                         status |= action->flags;
360                 retval |= ret;
361                 action = action->next;
362         } while (action);
363
364         if (status & IRQF_SAMPLE_RANDOM)
365                 add_interrupt_randomness(irq);
366         local_irq_disable();
367
368         return retval;
369 }
370
371 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
372 /**
373  * __do_IRQ - original all in one highlevel IRQ handler
374  * @irq:        the interrupt number
375  *
376  * __do_IRQ handles all normal device IRQ's (the special
377  * SMP cross-CPU interrupts have their own specific
378  * handlers).
379  *
380  * This is the original x86 implementation which is used for every
381  * interrupt type.
382  */
383 unsigned int __do_IRQ(unsigned int irq)
384 {
385         struct irq_desc *desc = irq_to_desc(irq);
386         struct irqaction *action;
387         unsigned int status;
388
389 #ifdef CONFIG_HAVE_DYN_ARRAY
390         kstat_irqs_this_cpu(desc)++;
391 #else
392         kstat_irqs_this_cpu(irq)++;
393 #endif
394         if (CHECK_IRQ_PER_CPU(desc->status)) {
395                 irqreturn_t action_ret;
396
397                 /*
398                  * No locking required for CPU-local interrupts:
399                  */
400                 if (desc->chip->ack)
401                         desc->chip->ack(irq);
402                 if (likely(!(desc->status & IRQ_DISABLED))) {
403                         action_ret = handle_IRQ_event(irq, desc->action);
404                         if (!noirqdebug)
405                                 note_interrupt(irq, desc, action_ret);
406                 }
407                 desc->chip->end(irq);
408                 return 1;
409         }
410
411         spin_lock(&desc->lock);
412         if (desc->chip->ack)
413                 desc->chip->ack(irq);
414         /*
415          * REPLAY is when Linux resends an IRQ that was dropped earlier
416          * WAITING is used by probe to mark irqs that are being tested
417          */
418         status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
419         status |= IRQ_PENDING; /* we _want_ to handle it */
420
421         /*
422          * If the IRQ is disabled for whatever reason, we cannot
423          * use the action we have.
424          */
425         action = NULL;
426         if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
427                 action = desc->action;
428                 status &= ~IRQ_PENDING; /* we commit to handling */
429                 status |= IRQ_INPROGRESS; /* we are handling it */
430         }
431         desc->status = status;
432
433         /*
434          * If there is no IRQ handler or it was disabled, exit early.
435          * Since we set PENDING, if another processor is handling
436          * a different instance of this same irq, the other processor
437          * will take care of it.
438          */
439         if (unlikely(!action))
440                 goto out;
441
442         /*
443          * Edge triggered interrupts need to remember
444          * pending events.
445          * This applies to any hw interrupts that allow a second
446          * instance of the same irq to arrive while we are in do_IRQ
447          * or in the handler. But the code here only handles the _second_
448          * instance of the irq, not the third or fourth. So it is mostly
449          * useful for irq hardware that does not mask cleanly in an
450          * SMP environment.
451          */
452         for (;;) {
453                 irqreturn_t action_ret;
454
455                 spin_unlock(&desc->lock);
456
457                 action_ret = handle_IRQ_event(irq, action);
458                 if (!noirqdebug)
459                         note_interrupt(irq, desc, action_ret);
460
461                 spin_lock(&desc->lock);
462                 if (likely(!(desc->status & IRQ_PENDING)))
463                         break;
464                 desc->status &= ~IRQ_PENDING;
465         }
466         desc->status &= ~IRQ_INPROGRESS;
467
468 out:
469         /*
470          * The ->end() handler has to deal with interrupts which got
471          * disabled while the handler was running.
472          */
473         desc->chip->end(irq);
474         spin_unlock(&desc->lock);
475
476         return 1;
477 }
478 #endif
479
480
481 #ifdef CONFIG_TRACE_IRQFLAGS
482 void early_init_irq_lock_class(void)
483 {
484 #ifndef CONFIG_HAVE_DYN_ARRAY
485         int i;
486
487         for (i = 0; i < nr_irqs; i++)
488                 lockdep_set_class(&irq_desc[i].lock, &irq_desc_lock_class);
489 #endif
490 }
491 #endif
492
493 #ifdef CONFIG_HAVE_DYN_ARRAY
494 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
495 {
496         struct irq_desc *desc = irq_to_desc(irq);
497         return desc->kstat_irqs[cpu];
498 }
499 #endif
500 EXPORT_SYMBOL(kstat_irqs_cpu);
501