]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/fork.c
timers: fix itimer/many thread hang
[linux-2.6-omap-h63xx.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
61
62 #include <asm/pgtable.h>
63 #include <asm/pgalloc.h>
64 #include <asm/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/cacheflush.h>
67 #include <asm/tlbflush.h>
68
69 /*
70  * Protected counters by write_lock_irq(&tasklist_lock)
71  */
72 unsigned long total_forks;      /* Handle normal Linux uptimes. */
73 int nr_threads;                 /* The idle threads do not count.. */
74
75 int max_threads;                /* tunable limit on nr_threads */
76
77 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
78
79 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
80
81 int nr_processes(void)
82 {
83         int cpu;
84         int total = 0;
85
86         for_each_online_cpu(cpu)
87                 total += per_cpu(process_counts, cpu);
88
89         return total;
90 }
91
92 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
93 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
94 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
95 static struct kmem_cache *task_struct_cachep;
96 #endif
97
98 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
99 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
100 {
101 #ifdef CONFIG_DEBUG_STACK_USAGE
102         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
103 #else
104         gfp_t mask = GFP_KERNEL;
105 #endif
106         return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
107 }
108
109 static inline void free_thread_info(struct thread_info *ti)
110 {
111         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
112 }
113 #endif
114
115 /* SLAB cache for signal_struct structures (tsk->signal) */
116 static struct kmem_cache *signal_cachep;
117
118 /* SLAB cache for sighand_struct structures (tsk->sighand) */
119 struct kmem_cache *sighand_cachep;
120
121 /* SLAB cache for files_struct structures (tsk->files) */
122 struct kmem_cache *files_cachep;
123
124 /* SLAB cache for fs_struct structures (tsk->fs) */
125 struct kmem_cache *fs_cachep;
126
127 /* SLAB cache for vm_area_struct structures */
128 struct kmem_cache *vm_area_cachep;
129
130 /* SLAB cache for mm_struct structures (tsk->mm) */
131 static struct kmem_cache *mm_cachep;
132
133 void free_task(struct task_struct *tsk)
134 {
135         prop_local_destroy_single(&tsk->dirties);
136         free_thread_info(tsk->stack);
137         rt_mutex_debug_task_free(tsk);
138         free_task_struct(tsk);
139 }
140 EXPORT_SYMBOL(free_task);
141
142 void __put_task_struct(struct task_struct *tsk)
143 {
144         WARN_ON(!tsk->exit_state);
145         WARN_ON(atomic_read(&tsk->usage));
146         WARN_ON(tsk == current);
147
148         security_task_free(tsk);
149         free_uid(tsk->user);
150         put_group_info(tsk->group_info);
151         delayacct_tsk_free(tsk);
152
153         if (!profile_handoff_task(tsk))
154                 free_task(tsk);
155 }
156
157 /*
158  * macro override instead of weak attribute alias, to workaround
159  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
160  */
161 #ifndef arch_task_cache_init
162 #define arch_task_cache_init()
163 #endif
164
165 void __init fork_init(unsigned long mempages)
166 {
167 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
168 #ifndef ARCH_MIN_TASKALIGN
169 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
170 #endif
171         /* create a slab on which task_structs can be allocated */
172         task_struct_cachep =
173                 kmem_cache_create("task_struct", sizeof(struct task_struct),
174                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
175 #endif
176
177         /* do the arch specific task caches init */
178         arch_task_cache_init();
179
180         /*
181          * The default maximum number of threads is set to a safe
182          * value: the thread structures can take up at most half
183          * of memory.
184          */
185         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
186
187         /*
188          * we need to allow at least 20 threads to boot a system
189          */
190         if(max_threads < 20)
191                 max_threads = 20;
192
193         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
194         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
195         init_task.signal->rlim[RLIMIT_SIGPENDING] =
196                 init_task.signal->rlim[RLIMIT_NPROC];
197 }
198
199 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
200                                                struct task_struct *src)
201 {
202         *dst = *src;
203         return 0;
204 }
205
206 static struct task_struct *dup_task_struct(struct task_struct *orig)
207 {
208         struct task_struct *tsk;
209         struct thread_info *ti;
210         int err;
211
212         prepare_to_copy(orig);
213
214         tsk = alloc_task_struct();
215         if (!tsk)
216                 return NULL;
217
218         ti = alloc_thread_info(tsk);
219         if (!ti) {
220                 free_task_struct(tsk);
221                 return NULL;
222         }
223
224         err = arch_dup_task_struct(tsk, orig);
225         if (err)
226                 goto out;
227
228         tsk->stack = ti;
229
230         err = prop_local_init_single(&tsk->dirties);
231         if (err)
232                 goto out;
233
234         setup_thread_stack(tsk, orig);
235
236 #ifdef CONFIG_CC_STACKPROTECTOR
237         tsk->stack_canary = get_random_int();
238 #endif
239
240         /* One for us, one for whoever does the "release_task()" (usually parent) */
241         atomic_set(&tsk->usage,2);
242         atomic_set(&tsk->fs_excl, 0);
243 #ifdef CONFIG_BLK_DEV_IO_TRACE
244         tsk->btrace_seq = 0;
245 #endif
246         tsk->splice_pipe = NULL;
247         return tsk;
248
249 out:
250         free_thread_info(ti);
251         free_task_struct(tsk);
252         return NULL;
253 }
254
255 #ifdef CONFIG_MMU
256 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
257 {
258         struct vm_area_struct *mpnt, *tmp, **pprev;
259         struct rb_node **rb_link, *rb_parent;
260         int retval;
261         unsigned long charge;
262         struct mempolicy *pol;
263
264         down_write(&oldmm->mmap_sem);
265         flush_cache_dup_mm(oldmm);
266         /*
267          * Not linked in yet - no deadlock potential:
268          */
269         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
270
271         mm->locked_vm = 0;
272         mm->mmap = NULL;
273         mm->mmap_cache = NULL;
274         mm->free_area_cache = oldmm->mmap_base;
275         mm->cached_hole_size = ~0UL;
276         mm->map_count = 0;
277         cpus_clear(mm->cpu_vm_mask);
278         mm->mm_rb = RB_ROOT;
279         rb_link = &mm->mm_rb.rb_node;
280         rb_parent = NULL;
281         pprev = &mm->mmap;
282
283         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
284                 struct file *file;
285
286                 if (mpnt->vm_flags & VM_DONTCOPY) {
287                         long pages = vma_pages(mpnt);
288                         mm->total_vm -= pages;
289                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
290                                                                 -pages);
291                         continue;
292                 }
293                 charge = 0;
294                 if (mpnt->vm_flags & VM_ACCOUNT) {
295                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
296                         if (security_vm_enough_memory(len))
297                                 goto fail_nomem;
298                         charge = len;
299                 }
300                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
301                 if (!tmp)
302                         goto fail_nomem;
303                 *tmp = *mpnt;
304                 pol = mpol_dup(vma_policy(mpnt));
305                 retval = PTR_ERR(pol);
306                 if (IS_ERR(pol))
307                         goto fail_nomem_policy;
308                 vma_set_policy(tmp, pol);
309                 tmp->vm_flags &= ~VM_LOCKED;
310                 tmp->vm_mm = mm;
311                 tmp->vm_next = NULL;
312                 anon_vma_link(tmp);
313                 file = tmp->vm_file;
314                 if (file) {
315                         struct inode *inode = file->f_path.dentry->d_inode;
316                         get_file(file);
317                         if (tmp->vm_flags & VM_DENYWRITE)
318                                 atomic_dec(&inode->i_writecount);
319
320                         /* insert tmp into the share list, just after mpnt */
321                         spin_lock(&file->f_mapping->i_mmap_lock);
322                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
323                         flush_dcache_mmap_lock(file->f_mapping);
324                         vma_prio_tree_add(tmp, mpnt);
325                         flush_dcache_mmap_unlock(file->f_mapping);
326                         spin_unlock(&file->f_mapping->i_mmap_lock);
327                 }
328
329                 /*
330                  * Clear hugetlb-related page reserves for children. This only
331                  * affects MAP_PRIVATE mappings. Faults generated by the child
332                  * are not guaranteed to succeed, even if read-only
333                  */
334                 if (is_vm_hugetlb_page(tmp))
335                         reset_vma_resv_huge_pages(tmp);
336
337                 /*
338                  * Link in the new vma and copy the page table entries.
339                  */
340                 *pprev = tmp;
341                 pprev = &tmp->vm_next;
342
343                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
344                 rb_link = &tmp->vm_rb.rb_right;
345                 rb_parent = &tmp->vm_rb;
346
347                 mm->map_count++;
348                 retval = copy_page_range(mm, oldmm, mpnt);
349
350                 if (tmp->vm_ops && tmp->vm_ops->open)
351                         tmp->vm_ops->open(tmp);
352
353                 if (retval)
354                         goto out;
355         }
356         /* a new mm has just been created */
357         arch_dup_mmap(oldmm, mm);
358         retval = 0;
359 out:
360         up_write(&mm->mmap_sem);
361         flush_tlb_mm(oldmm);
362         up_write(&oldmm->mmap_sem);
363         return retval;
364 fail_nomem_policy:
365         kmem_cache_free(vm_area_cachep, tmp);
366 fail_nomem:
367         retval = -ENOMEM;
368         vm_unacct_memory(charge);
369         goto out;
370 }
371
372 static inline int mm_alloc_pgd(struct mm_struct * mm)
373 {
374         mm->pgd = pgd_alloc(mm);
375         if (unlikely(!mm->pgd))
376                 return -ENOMEM;
377         return 0;
378 }
379
380 static inline void mm_free_pgd(struct mm_struct * mm)
381 {
382         pgd_free(mm, mm->pgd);
383 }
384 #else
385 #define dup_mmap(mm, oldmm)     (0)
386 #define mm_alloc_pgd(mm)        (0)
387 #define mm_free_pgd(mm)
388 #endif /* CONFIG_MMU */
389
390 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
391
392 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
393 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
394
395 #include <linux/init_task.h>
396
397 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
398 {
399         atomic_set(&mm->mm_users, 1);
400         atomic_set(&mm->mm_count, 1);
401         init_rwsem(&mm->mmap_sem);
402         INIT_LIST_HEAD(&mm->mmlist);
403         mm->flags = (current->mm) ? current->mm->flags
404                                   : MMF_DUMP_FILTER_DEFAULT;
405         mm->core_state = NULL;
406         mm->nr_ptes = 0;
407         set_mm_counter(mm, file_rss, 0);
408         set_mm_counter(mm, anon_rss, 0);
409         spin_lock_init(&mm->page_table_lock);
410         rwlock_init(&mm->ioctx_list_lock);
411         mm->ioctx_list = NULL;
412         mm->free_area_cache = TASK_UNMAPPED_BASE;
413         mm->cached_hole_size = ~0UL;
414         mm_init_owner(mm, p);
415
416         if (likely(!mm_alloc_pgd(mm))) {
417                 mm->def_flags = 0;
418                 mmu_notifier_mm_init(mm);
419                 return mm;
420         }
421
422         free_mm(mm);
423         return NULL;
424 }
425
426 /*
427  * Allocate and initialize an mm_struct.
428  */
429 struct mm_struct * mm_alloc(void)
430 {
431         struct mm_struct * mm;
432
433         mm = allocate_mm();
434         if (mm) {
435                 memset(mm, 0, sizeof(*mm));
436                 mm = mm_init(mm, current);
437         }
438         return mm;
439 }
440
441 /*
442  * Called when the last reference to the mm
443  * is dropped: either by a lazy thread or by
444  * mmput. Free the page directory and the mm.
445  */
446 void __mmdrop(struct mm_struct *mm)
447 {
448         BUG_ON(mm == &init_mm);
449         mm_free_pgd(mm);
450         destroy_context(mm);
451         mmu_notifier_mm_destroy(mm);
452         free_mm(mm);
453 }
454 EXPORT_SYMBOL_GPL(__mmdrop);
455
456 /*
457  * Decrement the use count and release all resources for an mm.
458  */
459 void mmput(struct mm_struct *mm)
460 {
461         might_sleep();
462
463         if (atomic_dec_and_test(&mm->mm_users)) {
464                 exit_aio(mm);
465                 exit_mmap(mm);
466                 set_mm_exe_file(mm, NULL);
467                 if (!list_empty(&mm->mmlist)) {
468                         spin_lock(&mmlist_lock);
469                         list_del(&mm->mmlist);
470                         spin_unlock(&mmlist_lock);
471                 }
472                 put_swap_token(mm);
473                 mmdrop(mm);
474         }
475 }
476 EXPORT_SYMBOL_GPL(mmput);
477
478 /**
479  * get_task_mm - acquire a reference to the task's mm
480  *
481  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
482  * this kernel workthread has transiently adopted a user mm with use_mm,
483  * to do its AIO) is not set and if so returns a reference to it, after
484  * bumping up the use count.  User must release the mm via mmput()
485  * after use.  Typically used by /proc and ptrace.
486  */
487 struct mm_struct *get_task_mm(struct task_struct *task)
488 {
489         struct mm_struct *mm;
490
491         task_lock(task);
492         mm = task->mm;
493         if (mm) {
494                 if (task->flags & PF_KTHREAD)
495                         mm = NULL;
496                 else
497                         atomic_inc(&mm->mm_users);
498         }
499         task_unlock(task);
500         return mm;
501 }
502 EXPORT_SYMBOL_GPL(get_task_mm);
503
504 /* Please note the differences between mmput and mm_release.
505  * mmput is called whenever we stop holding onto a mm_struct,
506  * error success whatever.
507  *
508  * mm_release is called after a mm_struct has been removed
509  * from the current process.
510  *
511  * This difference is important for error handling, when we
512  * only half set up a mm_struct for a new process and need to restore
513  * the old one.  Because we mmput the new mm_struct before
514  * restoring the old one. . .
515  * Eric Biederman 10 January 1998
516  */
517 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
518 {
519         struct completion *vfork_done = tsk->vfork_done;
520
521         /* Get rid of any cached register state */
522         deactivate_mm(tsk, mm);
523
524         /* notify parent sleeping on vfork() */
525         if (vfork_done) {
526                 tsk->vfork_done = NULL;
527                 complete(vfork_done);
528         }
529
530         /*
531          * If we're exiting normally, clear a user-space tid field if
532          * requested.  We leave this alone when dying by signal, to leave
533          * the value intact in a core dump, and to save the unnecessary
534          * trouble otherwise.  Userland only wants this done for a sys_exit.
535          */
536         if (tsk->clear_child_tid
537             && !(tsk->flags & PF_SIGNALED)
538             && atomic_read(&mm->mm_users) > 1) {
539                 u32 __user * tidptr = tsk->clear_child_tid;
540                 tsk->clear_child_tid = NULL;
541
542                 /*
543                  * We don't check the error code - if userspace has
544                  * not set up a proper pointer then tough luck.
545                  */
546                 put_user(0, tidptr);
547                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
548         }
549 }
550
551 /*
552  * Allocate a new mm structure and copy contents from the
553  * mm structure of the passed in task structure.
554  */
555 struct mm_struct *dup_mm(struct task_struct *tsk)
556 {
557         struct mm_struct *mm, *oldmm = current->mm;
558         int err;
559
560         if (!oldmm)
561                 return NULL;
562
563         mm = allocate_mm();
564         if (!mm)
565                 goto fail_nomem;
566
567         memcpy(mm, oldmm, sizeof(*mm));
568
569         /* Initializing for Swap token stuff */
570         mm->token_priority = 0;
571         mm->last_interval = 0;
572
573         if (!mm_init(mm, tsk))
574                 goto fail_nomem;
575
576         if (init_new_context(tsk, mm))
577                 goto fail_nocontext;
578
579         dup_mm_exe_file(oldmm, mm);
580
581         err = dup_mmap(mm, oldmm);
582         if (err)
583                 goto free_pt;
584
585         mm->hiwater_rss = get_mm_rss(mm);
586         mm->hiwater_vm = mm->total_vm;
587
588         return mm;
589
590 free_pt:
591         mmput(mm);
592
593 fail_nomem:
594         return NULL;
595
596 fail_nocontext:
597         /*
598          * If init_new_context() failed, we cannot use mmput() to free the mm
599          * because it calls destroy_context()
600          */
601         mm_free_pgd(mm);
602         free_mm(mm);
603         return NULL;
604 }
605
606 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
607 {
608         struct mm_struct * mm, *oldmm;
609         int retval;
610
611         tsk->min_flt = tsk->maj_flt = 0;
612         tsk->nvcsw = tsk->nivcsw = 0;
613
614         tsk->mm = NULL;
615         tsk->active_mm = NULL;
616
617         /*
618          * Are we cloning a kernel thread?
619          *
620          * We need to steal a active VM for that..
621          */
622         oldmm = current->mm;
623         if (!oldmm)
624                 return 0;
625
626         if (clone_flags & CLONE_VM) {
627                 atomic_inc(&oldmm->mm_users);
628                 mm = oldmm;
629                 goto good_mm;
630         }
631
632         retval = -ENOMEM;
633         mm = dup_mm(tsk);
634         if (!mm)
635                 goto fail_nomem;
636
637 good_mm:
638         /* Initializing for Swap token stuff */
639         mm->token_priority = 0;
640         mm->last_interval = 0;
641
642         tsk->mm = mm;
643         tsk->active_mm = mm;
644         return 0;
645
646 fail_nomem:
647         return retval;
648 }
649
650 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
651 {
652         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
653         /* We don't need to lock fs - think why ;-) */
654         if (fs) {
655                 atomic_set(&fs->count, 1);
656                 rwlock_init(&fs->lock);
657                 fs->umask = old->umask;
658                 read_lock(&old->lock);
659                 fs->root = old->root;
660                 path_get(&old->root);
661                 fs->pwd = old->pwd;
662                 path_get(&old->pwd);
663                 read_unlock(&old->lock);
664         }
665         return fs;
666 }
667
668 struct fs_struct *copy_fs_struct(struct fs_struct *old)
669 {
670         return __copy_fs_struct(old);
671 }
672
673 EXPORT_SYMBOL_GPL(copy_fs_struct);
674
675 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
676 {
677         if (clone_flags & CLONE_FS) {
678                 atomic_inc(&current->fs->count);
679                 return 0;
680         }
681         tsk->fs = __copy_fs_struct(current->fs);
682         if (!tsk->fs)
683                 return -ENOMEM;
684         return 0;
685 }
686
687 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
688 {
689         struct files_struct *oldf, *newf;
690         int error = 0;
691
692         /*
693          * A background process may not have any files ...
694          */
695         oldf = current->files;
696         if (!oldf)
697                 goto out;
698
699         if (clone_flags & CLONE_FILES) {
700                 atomic_inc(&oldf->count);
701                 goto out;
702         }
703
704         newf = dup_fd(oldf, &error);
705         if (!newf)
706                 goto out;
707
708         tsk->files = newf;
709         error = 0;
710 out:
711         return error;
712 }
713
714 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
715 {
716 #ifdef CONFIG_BLOCK
717         struct io_context *ioc = current->io_context;
718
719         if (!ioc)
720                 return 0;
721         /*
722          * Share io context with parent, if CLONE_IO is set
723          */
724         if (clone_flags & CLONE_IO) {
725                 tsk->io_context = ioc_task_link(ioc);
726                 if (unlikely(!tsk->io_context))
727                         return -ENOMEM;
728         } else if (ioprio_valid(ioc->ioprio)) {
729                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
730                 if (unlikely(!tsk->io_context))
731                         return -ENOMEM;
732
733                 tsk->io_context->ioprio = ioc->ioprio;
734         }
735 #endif
736         return 0;
737 }
738
739 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
740 {
741         struct sighand_struct *sig;
742
743         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
744                 atomic_inc(&current->sighand->count);
745                 return 0;
746         }
747         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
748         rcu_assign_pointer(tsk->sighand, sig);
749         if (!sig)
750                 return -ENOMEM;
751         atomic_set(&sig->count, 1);
752         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
753         return 0;
754 }
755
756 void __cleanup_sighand(struct sighand_struct *sighand)
757 {
758         if (atomic_dec_and_test(&sighand->count))
759                 kmem_cache_free(sighand_cachep, sighand);
760 }
761
762
763 /*
764  * Initialize POSIX timer handling for a thread group.
765  */
766 static void posix_cpu_timers_init_group(struct signal_struct *sig)
767 {
768         /* Thread group counters. */
769         thread_group_cputime_init(sig);
770
771         /* Expiration times and increments. */
772         sig->it_virt_expires = cputime_zero;
773         sig->it_virt_incr = cputime_zero;
774         sig->it_prof_expires = cputime_zero;
775         sig->it_prof_incr = cputime_zero;
776
777         /* Cached expiration times. */
778         sig->cputime_expires.prof_exp = cputime_zero;
779         sig->cputime_expires.virt_exp = cputime_zero;
780         sig->cputime_expires.sched_exp = 0;
781
782         /* The timer lists. */
783         INIT_LIST_HEAD(&sig->cpu_timers[0]);
784         INIT_LIST_HEAD(&sig->cpu_timers[1]);
785         INIT_LIST_HEAD(&sig->cpu_timers[2]);
786 }
787
788 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
789 {
790         struct signal_struct *sig;
791         int ret;
792
793         if (clone_flags & CLONE_THREAD) {
794                 ret = thread_group_cputime_clone_thread(current, tsk);
795                 if (likely(!ret)) {
796                         atomic_inc(&current->signal->count);
797                         atomic_inc(&current->signal->live);
798                 }
799                 return ret;
800         }
801         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
802         tsk->signal = sig;
803         if (!sig)
804                 return -ENOMEM;
805
806         ret = copy_thread_group_keys(tsk);
807         if (ret < 0) {
808                 kmem_cache_free(signal_cachep, sig);
809                 return ret;
810         }
811
812         atomic_set(&sig->count, 1);
813         atomic_set(&sig->live, 1);
814         init_waitqueue_head(&sig->wait_chldexit);
815         sig->flags = 0;
816         sig->group_exit_code = 0;
817         sig->group_exit_task = NULL;
818         sig->group_stop_count = 0;
819         sig->curr_target = tsk;
820         init_sigpending(&sig->shared_pending);
821         INIT_LIST_HEAD(&sig->posix_timers);
822
823         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
824         sig->it_real_incr.tv64 = 0;
825         sig->real_timer.function = it_real_fn;
826
827         sig->leader = 0;        /* session leadership doesn't inherit */
828         sig->tty_old_pgrp = NULL;
829
830         sig->cutime = sig->cstime = cputime_zero;
831         sig->gtime = cputime_zero;
832         sig->cgtime = cputime_zero;
833         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
834         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
835         sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
836         task_io_accounting_init(&sig->ioac);
837         sig->sum_sched_runtime = 0;
838         INIT_LIST_HEAD(&sig->cpu_timers[0]);
839         INIT_LIST_HEAD(&sig->cpu_timers[1]);
840         INIT_LIST_HEAD(&sig->cpu_timers[2]);
841         taskstats_tgid_init(sig);
842
843         task_lock(current->group_leader);
844         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
845         task_unlock(current->group_leader);
846
847         posix_cpu_timers_init_group(sig);
848
849         acct_init_pacct(&sig->pacct);
850
851         tty_audit_fork(sig);
852
853         return 0;
854 }
855
856 void __cleanup_signal(struct signal_struct *sig)
857 {
858         thread_group_cputime_free(sig);
859         exit_thread_group_keys(sig);
860         kmem_cache_free(signal_cachep, sig);
861 }
862
863 static void cleanup_signal(struct task_struct *tsk)
864 {
865         struct signal_struct *sig = tsk->signal;
866
867         atomic_dec(&sig->live);
868
869         if (atomic_dec_and_test(&sig->count))
870                 __cleanup_signal(sig);
871 }
872
873 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
874 {
875         unsigned long new_flags = p->flags;
876
877         new_flags &= ~PF_SUPERPRIV;
878         new_flags |= PF_FORKNOEXEC;
879         new_flags |= PF_STARTING;
880         p->flags = new_flags;
881         clear_freeze_flag(p);
882 }
883
884 asmlinkage long sys_set_tid_address(int __user *tidptr)
885 {
886         current->clear_child_tid = tidptr;
887
888         return task_pid_vnr(current);
889 }
890
891 static void rt_mutex_init_task(struct task_struct *p)
892 {
893         spin_lock_init(&p->pi_lock);
894 #ifdef CONFIG_RT_MUTEXES
895         plist_head_init(&p->pi_waiters, &p->pi_lock);
896         p->pi_blocked_on = NULL;
897 #endif
898 }
899
900 #ifdef CONFIG_MM_OWNER
901 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
902 {
903         mm->owner = p;
904 }
905 #endif /* CONFIG_MM_OWNER */
906
907 /*
908  * Initialize POSIX timer handling for a single task.
909  */
910 static void posix_cpu_timers_init(struct task_struct *tsk)
911 {
912         tsk->cputime_expires.prof_exp = cputime_zero;
913         tsk->cputime_expires.virt_exp = cputime_zero;
914         tsk->cputime_expires.sched_exp = 0;
915         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
916         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
917         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
918 }
919
920 /*
921  * This creates a new process as a copy of the old one,
922  * but does not actually start it yet.
923  *
924  * It copies the registers, and all the appropriate
925  * parts of the process environment (as per the clone
926  * flags). The actual kick-off is left to the caller.
927  */
928 static struct task_struct *copy_process(unsigned long clone_flags,
929                                         unsigned long stack_start,
930                                         struct pt_regs *regs,
931                                         unsigned long stack_size,
932                                         int __user *child_tidptr,
933                                         struct pid *pid,
934                                         int trace)
935 {
936         int retval;
937         struct task_struct *p;
938         int cgroup_callbacks_done = 0;
939
940         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
941                 return ERR_PTR(-EINVAL);
942
943         /*
944          * Thread groups must share signals as well, and detached threads
945          * can only be started up within the thread group.
946          */
947         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
948                 return ERR_PTR(-EINVAL);
949
950         /*
951          * Shared signal handlers imply shared VM. By way of the above,
952          * thread groups also imply shared VM. Blocking this case allows
953          * for various simplifications in other code.
954          */
955         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
956                 return ERR_PTR(-EINVAL);
957
958         retval = security_task_create(clone_flags);
959         if (retval)
960                 goto fork_out;
961
962         retval = -ENOMEM;
963         p = dup_task_struct(current);
964         if (!p)
965                 goto fork_out;
966
967         rt_mutex_init_task(p);
968
969 #ifdef CONFIG_PROVE_LOCKING
970         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
971         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
972 #endif
973         retval = -EAGAIN;
974         if (atomic_read(&p->user->processes) >=
975                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
976                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
977                     p->user != current->nsproxy->user_ns->root_user)
978                         goto bad_fork_free;
979         }
980
981         atomic_inc(&p->user->__count);
982         atomic_inc(&p->user->processes);
983         get_group_info(p->group_info);
984
985         /*
986          * If multiple threads are within copy_process(), then this check
987          * triggers too late. This doesn't hurt, the check is only there
988          * to stop root fork bombs.
989          */
990         if (nr_threads >= max_threads)
991                 goto bad_fork_cleanup_count;
992
993         if (!try_module_get(task_thread_info(p)->exec_domain->module))
994                 goto bad_fork_cleanup_count;
995
996         if (p->binfmt && !try_module_get(p->binfmt->module))
997                 goto bad_fork_cleanup_put_domain;
998
999         p->did_exec = 0;
1000         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1001         copy_flags(clone_flags, p);
1002         INIT_LIST_HEAD(&p->children);
1003         INIT_LIST_HEAD(&p->sibling);
1004 #ifdef CONFIG_PREEMPT_RCU
1005         p->rcu_read_lock_nesting = 0;
1006         p->rcu_flipctr_idx = 0;
1007 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1008         p->vfork_done = NULL;
1009         spin_lock_init(&p->alloc_lock);
1010
1011         clear_tsk_thread_flag(p, TIF_SIGPENDING);
1012         init_sigpending(&p->pending);
1013
1014         p->utime = cputime_zero;
1015         p->stime = cputime_zero;
1016         p->gtime = cputime_zero;
1017         p->utimescaled = cputime_zero;
1018         p->stimescaled = cputime_zero;
1019         p->prev_utime = cputime_zero;
1020         p->prev_stime = cputime_zero;
1021
1022 #ifdef CONFIG_DETECT_SOFTLOCKUP
1023         p->last_switch_count = 0;
1024         p->last_switch_timestamp = 0;
1025 #endif
1026
1027         task_io_accounting_init(&p->ioac);
1028         acct_clear_integrals(p);
1029
1030         posix_cpu_timers_init(p);
1031
1032         p->lock_depth = -1;             /* -1 = no lock */
1033         do_posix_clock_monotonic_gettime(&p->start_time);
1034         p->real_start_time = p->start_time;
1035         monotonic_to_bootbased(&p->real_start_time);
1036 #ifdef CONFIG_SECURITY
1037         p->security = NULL;
1038 #endif
1039         p->cap_bset = current->cap_bset;
1040         p->io_context = NULL;
1041         p->audit_context = NULL;
1042         cgroup_fork(p);
1043 #ifdef CONFIG_NUMA
1044         p->mempolicy = mpol_dup(p->mempolicy);
1045         if (IS_ERR(p->mempolicy)) {
1046                 retval = PTR_ERR(p->mempolicy);
1047                 p->mempolicy = NULL;
1048                 goto bad_fork_cleanup_cgroup;
1049         }
1050         mpol_fix_fork_child_flag(p);
1051 #endif
1052 #ifdef CONFIG_TRACE_IRQFLAGS
1053         p->irq_events = 0;
1054 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1055         p->hardirqs_enabled = 1;
1056 #else
1057         p->hardirqs_enabled = 0;
1058 #endif
1059         p->hardirq_enable_ip = 0;
1060         p->hardirq_enable_event = 0;
1061         p->hardirq_disable_ip = _THIS_IP_;
1062         p->hardirq_disable_event = 0;
1063         p->softirqs_enabled = 1;
1064         p->softirq_enable_ip = _THIS_IP_;
1065         p->softirq_enable_event = 0;
1066         p->softirq_disable_ip = 0;
1067         p->softirq_disable_event = 0;
1068         p->hardirq_context = 0;
1069         p->softirq_context = 0;
1070 #endif
1071 #ifdef CONFIG_LOCKDEP
1072         p->lockdep_depth = 0; /* no locks held yet */
1073         p->curr_chain_key = 0;
1074         p->lockdep_recursion = 0;
1075 #endif
1076
1077 #ifdef CONFIG_DEBUG_MUTEXES
1078         p->blocked_on = NULL; /* not blocked yet */
1079 #endif
1080
1081         /* Perform scheduler related setup. Assign this task to a CPU. */
1082         sched_fork(p, clone_flags);
1083
1084         if ((retval = security_task_alloc(p)))
1085                 goto bad_fork_cleanup_policy;
1086         if ((retval = audit_alloc(p)))
1087                 goto bad_fork_cleanup_security;
1088         /* copy all the process information */
1089         if ((retval = copy_semundo(clone_flags, p)))
1090                 goto bad_fork_cleanup_audit;
1091         if ((retval = copy_files(clone_flags, p)))
1092                 goto bad_fork_cleanup_semundo;
1093         if ((retval = copy_fs(clone_flags, p)))
1094                 goto bad_fork_cleanup_files;
1095         if ((retval = copy_sighand(clone_flags, p)))
1096                 goto bad_fork_cleanup_fs;
1097         if ((retval = copy_signal(clone_flags, p)))
1098                 goto bad_fork_cleanup_sighand;
1099         if ((retval = copy_mm(clone_flags, p)))
1100                 goto bad_fork_cleanup_signal;
1101         if ((retval = copy_keys(clone_flags, p)))
1102                 goto bad_fork_cleanup_mm;
1103         if ((retval = copy_namespaces(clone_flags, p)))
1104                 goto bad_fork_cleanup_keys;
1105         if ((retval = copy_io(clone_flags, p)))
1106                 goto bad_fork_cleanup_namespaces;
1107         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1108         if (retval)
1109                 goto bad_fork_cleanup_io;
1110
1111         if (pid != &init_struct_pid) {
1112                 retval = -ENOMEM;
1113                 pid = alloc_pid(task_active_pid_ns(p));
1114                 if (!pid)
1115                         goto bad_fork_cleanup_io;
1116
1117                 if (clone_flags & CLONE_NEWPID) {
1118                         retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1119                         if (retval < 0)
1120                                 goto bad_fork_free_pid;
1121                 }
1122         }
1123
1124         p->pid = pid_nr(pid);
1125         p->tgid = p->pid;
1126         if (clone_flags & CLONE_THREAD)
1127                 p->tgid = current->tgid;
1128
1129         if (current->nsproxy != p->nsproxy) {
1130                 retval = ns_cgroup_clone(p, pid);
1131                 if (retval)
1132                         goto bad_fork_free_pid;
1133         }
1134
1135         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1136         /*
1137          * Clear TID on mm_release()?
1138          */
1139         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1140 #ifdef CONFIG_FUTEX
1141         p->robust_list = NULL;
1142 #ifdef CONFIG_COMPAT
1143         p->compat_robust_list = NULL;
1144 #endif
1145         INIT_LIST_HEAD(&p->pi_state_list);
1146         p->pi_state_cache = NULL;
1147 #endif
1148         /*
1149          * sigaltstack should be cleared when sharing the same VM
1150          */
1151         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1152                 p->sas_ss_sp = p->sas_ss_size = 0;
1153
1154         /*
1155          * Syscall tracing should be turned off in the child regardless
1156          * of CLONE_PTRACE.
1157          */
1158         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1159 #ifdef TIF_SYSCALL_EMU
1160         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1161 #endif
1162         clear_all_latency_tracing(p);
1163
1164         /* Our parent execution domain becomes current domain
1165            These must match for thread signalling to apply */
1166         p->parent_exec_id = p->self_exec_id;
1167
1168         /* ok, now we should be set up.. */
1169         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1170         p->pdeath_signal = 0;
1171         p->exit_state = 0;
1172
1173         /*
1174          * Ok, make it visible to the rest of the system.
1175          * We dont wake it up yet.
1176          */
1177         p->group_leader = p;
1178         INIT_LIST_HEAD(&p->thread_group);
1179
1180         /* Now that the task is set up, run cgroup callbacks if
1181          * necessary. We need to run them before the task is visible
1182          * on the tasklist. */
1183         cgroup_fork_callbacks(p);
1184         cgroup_callbacks_done = 1;
1185
1186         /* Need tasklist lock for parent etc handling! */
1187         write_lock_irq(&tasklist_lock);
1188
1189         /*
1190          * The task hasn't been attached yet, so its cpus_allowed mask will
1191          * not be changed, nor will its assigned CPU.
1192          *
1193          * The cpus_allowed mask of the parent may have changed after it was
1194          * copied first time - so re-copy it here, then check the child's CPU
1195          * to ensure it is on a valid CPU (and if not, just force it back to
1196          * parent's CPU). This avoids alot of nasty races.
1197          */
1198         p->cpus_allowed = current->cpus_allowed;
1199         p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1200         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1201                         !cpu_online(task_cpu(p))))
1202                 set_task_cpu(p, smp_processor_id());
1203
1204         /* CLONE_PARENT re-uses the old parent */
1205         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1206                 p->real_parent = current->real_parent;
1207         else
1208                 p->real_parent = current;
1209
1210         spin_lock(&current->sighand->siglock);
1211
1212         /*
1213          * Process group and session signals need to be delivered to just the
1214          * parent before the fork or both the parent and the child after the
1215          * fork. Restart if a signal comes in before we add the new process to
1216          * it's process group.
1217          * A fatal signal pending means that current will exit, so the new
1218          * thread can't slip out of an OOM kill (or normal SIGKILL).
1219          */
1220         recalc_sigpending();
1221         if (signal_pending(current)) {
1222                 spin_unlock(&current->sighand->siglock);
1223                 write_unlock_irq(&tasklist_lock);
1224                 retval = -ERESTARTNOINTR;
1225                 goto bad_fork_free_pid;
1226         }
1227
1228         if (clone_flags & CLONE_THREAD) {
1229                 p->group_leader = current->group_leader;
1230                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1231         }
1232
1233         if (likely(p->pid)) {
1234                 list_add_tail(&p->sibling, &p->real_parent->children);
1235                 tracehook_finish_clone(p, clone_flags, trace);
1236
1237                 if (thread_group_leader(p)) {
1238                         if (clone_flags & CLONE_NEWPID)
1239                                 p->nsproxy->pid_ns->child_reaper = p;
1240
1241                         p->signal->leader_pid = pid;
1242                         p->signal->tty = current->signal->tty;
1243                         set_task_pgrp(p, task_pgrp_nr(current));
1244                         set_task_session(p, task_session_nr(current));
1245                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1246                         attach_pid(p, PIDTYPE_SID, task_session(current));
1247                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1248                         __get_cpu_var(process_counts)++;
1249                 }
1250                 attach_pid(p, PIDTYPE_PID, pid);
1251                 nr_threads++;
1252         }
1253
1254         total_forks++;
1255         spin_unlock(&current->sighand->siglock);
1256         write_unlock_irq(&tasklist_lock);
1257         proc_fork_connector(p);
1258         cgroup_post_fork(p);
1259         return p;
1260
1261 bad_fork_free_pid:
1262         if (pid != &init_struct_pid)
1263                 free_pid(pid);
1264 bad_fork_cleanup_io:
1265         put_io_context(p->io_context);
1266 bad_fork_cleanup_namespaces:
1267         exit_task_namespaces(p);
1268 bad_fork_cleanup_keys:
1269         exit_keys(p);
1270 bad_fork_cleanup_mm:
1271         if (p->mm)
1272                 mmput(p->mm);
1273 bad_fork_cleanup_signal:
1274         cleanup_signal(p);
1275 bad_fork_cleanup_sighand:
1276         __cleanup_sighand(p->sighand);
1277 bad_fork_cleanup_fs:
1278         exit_fs(p); /* blocking */
1279 bad_fork_cleanup_files:
1280         exit_files(p); /* blocking */
1281 bad_fork_cleanup_semundo:
1282         exit_sem(p);
1283 bad_fork_cleanup_audit:
1284         audit_free(p);
1285 bad_fork_cleanup_security:
1286         security_task_free(p);
1287 bad_fork_cleanup_policy:
1288 #ifdef CONFIG_NUMA
1289         mpol_put(p->mempolicy);
1290 bad_fork_cleanup_cgroup:
1291 #endif
1292         cgroup_exit(p, cgroup_callbacks_done);
1293         delayacct_tsk_free(p);
1294         if (p->binfmt)
1295                 module_put(p->binfmt->module);
1296 bad_fork_cleanup_put_domain:
1297         module_put(task_thread_info(p)->exec_domain->module);
1298 bad_fork_cleanup_count:
1299         put_group_info(p->group_info);
1300         atomic_dec(&p->user->processes);
1301         free_uid(p->user);
1302 bad_fork_free:
1303         free_task(p);
1304 fork_out:
1305         return ERR_PTR(retval);
1306 }
1307
1308 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1309 {
1310         memset(regs, 0, sizeof(struct pt_regs));
1311         return regs;
1312 }
1313
1314 struct task_struct * __cpuinit fork_idle(int cpu)
1315 {
1316         struct task_struct *task;
1317         struct pt_regs regs;
1318
1319         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1320                             &init_struct_pid, 0);
1321         if (!IS_ERR(task))
1322                 init_idle(task, cpu);
1323
1324         return task;
1325 }
1326
1327 /*
1328  *  Ok, this is the main fork-routine.
1329  *
1330  * It copies the process, and if successful kick-starts
1331  * it and waits for it to finish using the VM if required.
1332  */
1333 long do_fork(unsigned long clone_flags,
1334               unsigned long stack_start,
1335               struct pt_regs *regs,
1336               unsigned long stack_size,
1337               int __user *parent_tidptr,
1338               int __user *child_tidptr)
1339 {
1340         struct task_struct *p;
1341         int trace = 0;
1342         long nr;
1343
1344         /*
1345          * We hope to recycle these flags after 2.6.26
1346          */
1347         if (unlikely(clone_flags & CLONE_STOPPED)) {
1348                 static int __read_mostly count = 100;
1349
1350                 if (count > 0 && printk_ratelimit()) {
1351                         char comm[TASK_COMM_LEN];
1352
1353                         count--;
1354                         printk(KERN_INFO "fork(): process `%s' used deprecated "
1355                                         "clone flags 0x%lx\n",
1356                                 get_task_comm(comm, current),
1357                                 clone_flags & CLONE_STOPPED);
1358                 }
1359         }
1360
1361         /*
1362          * When called from kernel_thread, don't do user tracing stuff.
1363          */
1364         if (likely(user_mode(regs)))
1365                 trace = tracehook_prepare_clone(clone_flags);
1366
1367         p = copy_process(clone_flags, stack_start, regs, stack_size,
1368                          child_tidptr, NULL, trace);
1369         /*
1370          * Do this prior waking up the new thread - the thread pointer
1371          * might get invalid after that point, if the thread exits quickly.
1372          */
1373         if (!IS_ERR(p)) {
1374                 struct completion vfork;
1375
1376                 nr = task_pid_vnr(p);
1377
1378                 if (clone_flags & CLONE_PARENT_SETTID)
1379                         put_user(nr, parent_tidptr);
1380
1381                 if (clone_flags & CLONE_VFORK) {
1382                         p->vfork_done = &vfork;
1383                         init_completion(&vfork);
1384                 }
1385
1386                 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1387
1388                 /*
1389                  * We set PF_STARTING at creation in case tracing wants to
1390                  * use this to distinguish a fully live task from one that
1391                  * hasn't gotten to tracehook_report_clone() yet.  Now we
1392                  * clear it and set the child going.
1393                  */
1394                 p->flags &= ~PF_STARTING;
1395
1396                 if (unlikely(clone_flags & CLONE_STOPPED)) {
1397                         /*
1398                          * We'll start up with an immediate SIGSTOP.
1399                          */
1400                         sigaddset(&p->pending.signal, SIGSTOP);
1401                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1402                         __set_task_state(p, TASK_STOPPED);
1403                 } else {
1404                         wake_up_new_task(p, clone_flags);
1405                 }
1406
1407                 tracehook_report_clone_complete(trace, regs,
1408                                                 clone_flags, nr, p);
1409
1410                 if (clone_flags & CLONE_VFORK) {
1411                         freezer_do_not_count();
1412                         wait_for_completion(&vfork);
1413                         freezer_count();
1414                         tracehook_report_vfork_done(p, nr);
1415                 }
1416         } else {
1417                 nr = PTR_ERR(p);
1418         }
1419         return nr;
1420 }
1421
1422 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1423 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1424 #endif
1425
1426 static void sighand_ctor(void *data)
1427 {
1428         struct sighand_struct *sighand = data;
1429
1430         spin_lock_init(&sighand->siglock);
1431         init_waitqueue_head(&sighand->signalfd_wqh);
1432 }
1433
1434 void __init proc_caches_init(void)
1435 {
1436         sighand_cachep = kmem_cache_create("sighand_cache",
1437                         sizeof(struct sighand_struct), 0,
1438                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1439                         sighand_ctor);
1440         signal_cachep = kmem_cache_create("signal_cache",
1441                         sizeof(struct signal_struct), 0,
1442                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1443         files_cachep = kmem_cache_create("files_cache",
1444                         sizeof(struct files_struct), 0,
1445                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1446         fs_cachep = kmem_cache_create("fs_cache",
1447                         sizeof(struct fs_struct), 0,
1448                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1449         vm_area_cachep = kmem_cache_create("vm_area_struct",
1450                         sizeof(struct vm_area_struct), 0,
1451                         SLAB_PANIC, NULL);
1452         mm_cachep = kmem_cache_create("mm_struct",
1453                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1454                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1455 }
1456
1457 /*
1458  * Check constraints on flags passed to the unshare system call and
1459  * force unsharing of additional process context as appropriate.
1460  */
1461 static void check_unshare_flags(unsigned long *flags_ptr)
1462 {
1463         /*
1464          * If unsharing a thread from a thread group, must also
1465          * unshare vm.
1466          */
1467         if (*flags_ptr & CLONE_THREAD)
1468                 *flags_ptr |= CLONE_VM;
1469
1470         /*
1471          * If unsharing vm, must also unshare signal handlers.
1472          */
1473         if (*flags_ptr & CLONE_VM)
1474                 *flags_ptr |= CLONE_SIGHAND;
1475
1476         /*
1477          * If unsharing signal handlers and the task was created
1478          * using CLONE_THREAD, then must unshare the thread
1479          */
1480         if ((*flags_ptr & CLONE_SIGHAND) &&
1481             (atomic_read(&current->signal->count) > 1))
1482                 *flags_ptr |= CLONE_THREAD;
1483
1484         /*
1485          * If unsharing namespace, must also unshare filesystem information.
1486          */
1487         if (*flags_ptr & CLONE_NEWNS)
1488                 *flags_ptr |= CLONE_FS;
1489 }
1490
1491 /*
1492  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1493  */
1494 static int unshare_thread(unsigned long unshare_flags)
1495 {
1496         if (unshare_flags & CLONE_THREAD)
1497                 return -EINVAL;
1498
1499         return 0;
1500 }
1501
1502 /*
1503  * Unshare the filesystem structure if it is being shared
1504  */
1505 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1506 {
1507         struct fs_struct *fs = current->fs;
1508
1509         if ((unshare_flags & CLONE_FS) &&
1510             (fs && atomic_read(&fs->count) > 1)) {
1511                 *new_fsp = __copy_fs_struct(current->fs);
1512                 if (!*new_fsp)
1513                         return -ENOMEM;
1514         }
1515
1516         return 0;
1517 }
1518
1519 /*
1520  * Unsharing of sighand is not supported yet
1521  */
1522 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1523 {
1524         struct sighand_struct *sigh = current->sighand;
1525
1526         if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1527                 return -EINVAL;
1528         else
1529                 return 0;
1530 }
1531
1532 /*
1533  * Unshare vm if it is being shared
1534  */
1535 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1536 {
1537         struct mm_struct *mm = current->mm;
1538
1539         if ((unshare_flags & CLONE_VM) &&
1540             (mm && atomic_read(&mm->mm_users) > 1)) {
1541                 return -EINVAL;
1542         }
1543
1544         return 0;
1545 }
1546
1547 /*
1548  * Unshare file descriptor table if it is being shared
1549  */
1550 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1551 {
1552         struct files_struct *fd = current->files;
1553         int error = 0;
1554
1555         if ((unshare_flags & CLONE_FILES) &&
1556             (fd && atomic_read(&fd->count) > 1)) {
1557                 *new_fdp = dup_fd(fd, &error);
1558                 if (!*new_fdp)
1559                         return error;
1560         }
1561
1562         return 0;
1563 }
1564
1565 /*
1566  * unshare allows a process to 'unshare' part of the process
1567  * context which was originally shared using clone.  copy_*
1568  * functions used by do_fork() cannot be used here directly
1569  * because they modify an inactive task_struct that is being
1570  * constructed. Here we are modifying the current, active,
1571  * task_struct.
1572  */
1573 asmlinkage long sys_unshare(unsigned long unshare_flags)
1574 {
1575         int err = 0;
1576         struct fs_struct *fs, *new_fs = NULL;
1577         struct sighand_struct *new_sigh = NULL;
1578         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1579         struct files_struct *fd, *new_fd = NULL;
1580         struct nsproxy *new_nsproxy = NULL;
1581         int do_sysvsem = 0;
1582
1583         check_unshare_flags(&unshare_flags);
1584
1585         /* Return -EINVAL for all unsupported flags */
1586         err = -EINVAL;
1587         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1588                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1589                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1590                                 CLONE_NEWNET))
1591                 goto bad_unshare_out;
1592
1593         /*
1594          * CLONE_NEWIPC must also detach from the undolist: after switching
1595          * to a new ipc namespace, the semaphore arrays from the old
1596          * namespace are unreachable.
1597          */
1598         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1599                 do_sysvsem = 1;
1600         if ((err = unshare_thread(unshare_flags)))
1601                 goto bad_unshare_out;
1602         if ((err = unshare_fs(unshare_flags, &new_fs)))
1603                 goto bad_unshare_cleanup_thread;
1604         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1605                 goto bad_unshare_cleanup_fs;
1606         if ((err = unshare_vm(unshare_flags, &new_mm)))
1607                 goto bad_unshare_cleanup_sigh;
1608         if ((err = unshare_fd(unshare_flags, &new_fd)))
1609                 goto bad_unshare_cleanup_vm;
1610         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1611                         new_fs)))
1612                 goto bad_unshare_cleanup_fd;
1613
1614         if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1615                 if (do_sysvsem) {
1616                         /*
1617                          * CLONE_SYSVSEM is equivalent to sys_exit().
1618                          */
1619                         exit_sem(current);
1620                 }
1621
1622                 if (new_nsproxy) {
1623                         switch_task_namespaces(current, new_nsproxy);
1624                         new_nsproxy = NULL;
1625                 }
1626
1627                 task_lock(current);
1628
1629                 if (new_fs) {
1630                         fs = current->fs;
1631                         current->fs = new_fs;
1632                         new_fs = fs;
1633                 }
1634
1635                 if (new_mm) {
1636                         mm = current->mm;
1637                         active_mm = current->active_mm;
1638                         current->mm = new_mm;
1639                         current->active_mm = new_mm;
1640                         activate_mm(active_mm, new_mm);
1641                         new_mm = mm;
1642                 }
1643
1644                 if (new_fd) {
1645                         fd = current->files;
1646                         current->files = new_fd;
1647                         new_fd = fd;
1648                 }
1649
1650                 task_unlock(current);
1651         }
1652
1653         if (new_nsproxy)
1654                 put_nsproxy(new_nsproxy);
1655
1656 bad_unshare_cleanup_fd:
1657         if (new_fd)
1658                 put_files_struct(new_fd);
1659
1660 bad_unshare_cleanup_vm:
1661         if (new_mm)
1662                 mmput(new_mm);
1663
1664 bad_unshare_cleanup_sigh:
1665         if (new_sigh)
1666                 if (atomic_dec_and_test(&new_sigh->count))
1667                         kmem_cache_free(sighand_cachep, new_sigh);
1668
1669 bad_unshare_cleanup_fs:
1670         if (new_fs)
1671                 put_fs_struct(new_fs);
1672
1673 bad_unshare_cleanup_thread:
1674 bad_unshare_out:
1675         return err;
1676 }
1677
1678 /*
1679  *      Helper to unshare the files of the current task.
1680  *      We don't want to expose copy_files internals to
1681  *      the exec layer of the kernel.
1682  */
1683
1684 int unshare_files(struct files_struct **displaced)
1685 {
1686         struct task_struct *task = current;
1687         struct files_struct *copy = NULL;
1688         int error;
1689
1690         error = unshare_fd(CLONE_FILES, &copy);
1691         if (error || !copy) {
1692                 *displaced = NULL;
1693                 return error;
1694         }
1695         *displaced = task->files;
1696         task_lock(task);
1697         task->files = copy;
1698         task_unlock(task);
1699         return 0;
1700 }