]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/fork.c
1c999f3e0b47f02a4fd805daf90f9b914c44282b
[linux-2.6-omap-h63xx.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46 #include <linux/delayacct.h>
47 #include <linux/taskstats_kern.h>
48 #include <linux/random.h>
49
50 #include <asm/pgtable.h>
51 #include <asm/pgalloc.h>
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56
57 /*
58  * Protected counters by write_lock_irq(&tasklist_lock)
59  */
60 unsigned long total_forks;      /* Handle normal Linux uptimes. */
61 int nr_threads;                 /* The idle threads do not count.. */
62
63 int max_threads;                /* tunable limit on nr_threads */
64
65 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
66
67 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
68
69 int nr_processes(void)
70 {
71         int cpu;
72         int total = 0;
73
74         for_each_online_cpu(cpu)
75                 total += per_cpu(process_counts, cpu);
76
77         return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106         free_thread_info(tsk->thread_info);
107         rt_mutex_debug_task_free(tsk);
108         free_task_struct(tsk);
109 }
110 EXPORT_SYMBOL(free_task);
111
112 void __put_task_struct(struct task_struct *tsk)
113 {
114         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
115         WARN_ON(atomic_read(&tsk->usage));
116         WARN_ON(tsk == current);
117
118         security_task_free(tsk);
119         free_uid(tsk->user);
120         put_group_info(tsk->group_info);
121         delayacct_tsk_free(tsk);
122
123         if (!profile_handoff_task(tsk))
124                 free_task(tsk);
125 }
126
127 void __init fork_init(unsigned long mempages)
128 {
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
132 #endif
133         /* create a slab on which task_structs can be allocated */
134         task_struct_cachep =
135                 kmem_cache_create("task_struct", sizeof(struct task_struct),
136                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 #endif
138
139         /*
140          * The default maximum number of threads is set to a safe
141          * value: the thread structures can take up at most half
142          * of memory.
143          */
144         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
145
146         /*
147          * we need to allow at least 20 threads to boot a system
148          */
149         if(max_threads < 20)
150                 max_threads = 20;
151
152         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154         init_task.signal->rlim[RLIMIT_SIGPENDING] =
155                 init_task.signal->rlim[RLIMIT_NPROC];
156 }
157
158 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 {
160         struct task_struct *tsk;
161         struct thread_info *ti;
162
163         prepare_to_copy(orig);
164
165         tsk = alloc_task_struct();
166         if (!tsk)
167                 return NULL;
168
169         ti = alloc_thread_info(tsk);
170         if (!ti) {
171                 free_task_struct(tsk);
172                 return NULL;
173         }
174
175         *tsk = *orig;
176         tsk->thread_info = ti;
177         setup_thread_stack(tsk, orig);
178
179 #ifdef CONFIG_CC_STACKPROTECTOR
180         tsk->stack_canary = get_random_int();
181 #endif
182
183         /* One for us, one for whoever does the "release_task()" (usually parent) */
184         atomic_set(&tsk->usage,2);
185         atomic_set(&tsk->fs_excl, 0);
186 #ifdef CONFIG_BLK_DEV_IO_TRACE
187         tsk->btrace_seq = 0;
188 #endif
189         tsk->splice_pipe = NULL;
190         return tsk;
191 }
192
193 #ifdef CONFIG_MMU
194 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
195 {
196         struct vm_area_struct *mpnt, *tmp, **pprev;
197         struct rb_node **rb_link, *rb_parent;
198         int retval;
199         unsigned long charge;
200         struct mempolicy *pol;
201
202         down_write(&oldmm->mmap_sem);
203         flush_cache_mm(oldmm);
204         /*
205          * Not linked in yet - no deadlock potential:
206          */
207         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
208
209         mm->locked_vm = 0;
210         mm->mmap = NULL;
211         mm->mmap_cache = NULL;
212         mm->free_area_cache = oldmm->mmap_base;
213         mm->cached_hole_size = ~0UL;
214         mm->map_count = 0;
215         cpus_clear(mm->cpu_vm_mask);
216         mm->mm_rb = RB_ROOT;
217         rb_link = &mm->mm_rb.rb_node;
218         rb_parent = NULL;
219         pprev = &mm->mmap;
220
221         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
222                 struct file *file;
223
224                 if (mpnt->vm_flags & VM_DONTCOPY) {
225                         long pages = vma_pages(mpnt);
226                         mm->total_vm -= pages;
227                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
228                                                                 -pages);
229                         continue;
230                 }
231                 charge = 0;
232                 if (mpnt->vm_flags & VM_ACCOUNT) {
233                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
234                         if (security_vm_enough_memory(len))
235                                 goto fail_nomem;
236                         charge = len;
237                 }
238                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
239                 if (!tmp)
240                         goto fail_nomem;
241                 *tmp = *mpnt;
242                 pol = mpol_copy(vma_policy(mpnt));
243                 retval = PTR_ERR(pol);
244                 if (IS_ERR(pol))
245                         goto fail_nomem_policy;
246                 vma_set_policy(tmp, pol);
247                 tmp->vm_flags &= ~VM_LOCKED;
248                 tmp->vm_mm = mm;
249                 tmp->vm_next = NULL;
250                 anon_vma_link(tmp);
251                 file = tmp->vm_file;
252                 if (file) {
253                         struct inode *inode = file->f_dentry->d_inode;
254                         get_file(file);
255                         if (tmp->vm_flags & VM_DENYWRITE)
256                                 atomic_dec(&inode->i_writecount);
257       
258                         /* insert tmp into the share list, just after mpnt */
259                         spin_lock(&file->f_mapping->i_mmap_lock);
260                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
261                         flush_dcache_mmap_lock(file->f_mapping);
262                         vma_prio_tree_add(tmp, mpnt);
263                         flush_dcache_mmap_unlock(file->f_mapping);
264                         spin_unlock(&file->f_mapping->i_mmap_lock);
265                 }
266
267                 /*
268                  * Link in the new vma and copy the page table entries.
269                  */
270                 *pprev = tmp;
271                 pprev = &tmp->vm_next;
272
273                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
274                 rb_link = &tmp->vm_rb.rb_right;
275                 rb_parent = &tmp->vm_rb;
276
277                 mm->map_count++;
278                 retval = copy_page_range(mm, oldmm, mpnt);
279
280                 if (tmp->vm_ops && tmp->vm_ops->open)
281                         tmp->vm_ops->open(tmp);
282
283                 if (retval)
284                         goto out;
285         }
286         retval = 0;
287 out:
288         up_write(&mm->mmap_sem);
289         flush_tlb_mm(oldmm);
290         up_write(&oldmm->mmap_sem);
291         return retval;
292 fail_nomem_policy:
293         kmem_cache_free(vm_area_cachep, tmp);
294 fail_nomem:
295         retval = -ENOMEM;
296         vm_unacct_memory(charge);
297         goto out;
298 }
299
300 static inline int mm_alloc_pgd(struct mm_struct * mm)
301 {
302         mm->pgd = pgd_alloc(mm);
303         if (unlikely(!mm->pgd))
304                 return -ENOMEM;
305         return 0;
306 }
307
308 static inline void mm_free_pgd(struct mm_struct * mm)
309 {
310         pgd_free(mm->pgd);
311 }
312 #else
313 #define dup_mmap(mm, oldmm)     (0)
314 #define mm_alloc_pgd(mm)        (0)
315 #define mm_free_pgd(mm)
316 #endif /* CONFIG_MMU */
317
318  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
319
320 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
321 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
322
323 #include <linux/init_task.h>
324
325 static struct mm_struct * mm_init(struct mm_struct * mm)
326 {
327         atomic_set(&mm->mm_users, 1);
328         atomic_set(&mm->mm_count, 1);
329         init_rwsem(&mm->mmap_sem);
330         INIT_LIST_HEAD(&mm->mmlist);
331         mm->core_waiters = 0;
332         mm->nr_ptes = 0;
333         set_mm_counter(mm, file_rss, 0);
334         set_mm_counter(mm, anon_rss, 0);
335         spin_lock_init(&mm->page_table_lock);
336         rwlock_init(&mm->ioctx_list_lock);
337         mm->ioctx_list = NULL;
338         mm->free_area_cache = TASK_UNMAPPED_BASE;
339         mm->cached_hole_size = ~0UL;
340
341         if (likely(!mm_alloc_pgd(mm))) {
342                 mm->def_flags = 0;
343                 return mm;
344         }
345         free_mm(mm);
346         return NULL;
347 }
348
349 /*
350  * Allocate and initialize an mm_struct.
351  */
352 struct mm_struct * mm_alloc(void)
353 {
354         struct mm_struct * mm;
355
356         mm = allocate_mm();
357         if (mm) {
358                 memset(mm, 0, sizeof(*mm));
359                 mm = mm_init(mm);
360         }
361         return mm;
362 }
363
364 /*
365  * Called when the last reference to the mm
366  * is dropped: either by a lazy thread or by
367  * mmput. Free the page directory and the mm.
368  */
369 void fastcall __mmdrop(struct mm_struct *mm)
370 {
371         BUG_ON(mm == &init_mm);
372         mm_free_pgd(mm);
373         destroy_context(mm);
374         free_mm(mm);
375 }
376
377 /*
378  * Decrement the use count and release all resources for an mm.
379  */
380 void mmput(struct mm_struct *mm)
381 {
382         might_sleep();
383
384         if (atomic_dec_and_test(&mm->mm_users)) {
385                 exit_aio(mm);
386                 exit_mmap(mm);
387                 if (!list_empty(&mm->mmlist)) {
388                         spin_lock(&mmlist_lock);
389                         list_del(&mm->mmlist);
390                         spin_unlock(&mmlist_lock);
391                 }
392                 put_swap_token(mm);
393                 mmdrop(mm);
394         }
395 }
396 EXPORT_SYMBOL_GPL(mmput);
397
398 /**
399  * get_task_mm - acquire a reference to the task's mm
400  *
401  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
402  * this kernel workthread has transiently adopted a user mm with use_mm,
403  * to do its AIO) is not set and if so returns a reference to it, after
404  * bumping up the use count.  User must release the mm via mmput()
405  * after use.  Typically used by /proc and ptrace.
406  */
407 struct mm_struct *get_task_mm(struct task_struct *task)
408 {
409         struct mm_struct *mm;
410
411         task_lock(task);
412         mm = task->mm;
413         if (mm) {
414                 if (task->flags & PF_BORROWED_MM)
415                         mm = NULL;
416                 else
417                         atomic_inc(&mm->mm_users);
418         }
419         task_unlock(task);
420         return mm;
421 }
422 EXPORT_SYMBOL_GPL(get_task_mm);
423
424 /* Please note the differences between mmput and mm_release.
425  * mmput is called whenever we stop holding onto a mm_struct,
426  * error success whatever.
427  *
428  * mm_release is called after a mm_struct has been removed
429  * from the current process.
430  *
431  * This difference is important for error handling, when we
432  * only half set up a mm_struct for a new process and need to restore
433  * the old one.  Because we mmput the new mm_struct before
434  * restoring the old one. . .
435  * Eric Biederman 10 January 1998
436  */
437 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
438 {
439         struct completion *vfork_done = tsk->vfork_done;
440
441         /* Get rid of any cached register state */
442         deactivate_mm(tsk, mm);
443
444         /* notify parent sleeping on vfork() */
445         if (vfork_done) {
446                 tsk->vfork_done = NULL;
447                 complete(vfork_done);
448         }
449         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
450                 u32 __user * tidptr = tsk->clear_child_tid;
451                 tsk->clear_child_tid = NULL;
452
453                 /*
454                  * We don't check the error code - if userspace has
455                  * not set up a proper pointer then tough luck.
456                  */
457                 put_user(0, tidptr);
458                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
459         }
460 }
461
462 /*
463  * Allocate a new mm structure and copy contents from the
464  * mm structure of the passed in task structure.
465  */
466 static struct mm_struct *dup_mm(struct task_struct *tsk)
467 {
468         struct mm_struct *mm, *oldmm = current->mm;
469         int err;
470
471         if (!oldmm)
472                 return NULL;
473
474         mm = allocate_mm();
475         if (!mm)
476                 goto fail_nomem;
477
478         memcpy(mm, oldmm, sizeof(*mm));
479
480         if (!mm_init(mm))
481                 goto fail_nomem;
482
483         if (init_new_context(tsk, mm))
484                 goto fail_nocontext;
485
486         err = dup_mmap(mm, oldmm);
487         if (err)
488                 goto free_pt;
489
490         mm->hiwater_rss = get_mm_rss(mm);
491         mm->hiwater_vm = mm->total_vm;
492
493         return mm;
494
495 free_pt:
496         mmput(mm);
497
498 fail_nomem:
499         return NULL;
500
501 fail_nocontext:
502         /*
503          * If init_new_context() failed, we cannot use mmput() to free the mm
504          * because it calls destroy_context()
505          */
506         mm_free_pgd(mm);
507         free_mm(mm);
508         return NULL;
509 }
510
511 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
512 {
513         struct mm_struct * mm, *oldmm;
514         int retval;
515
516         tsk->min_flt = tsk->maj_flt = 0;
517         tsk->nvcsw = tsk->nivcsw = 0;
518
519         tsk->mm = NULL;
520         tsk->active_mm = NULL;
521
522         /*
523          * Are we cloning a kernel thread?
524          *
525          * We need to steal a active VM for that..
526          */
527         oldmm = current->mm;
528         if (!oldmm)
529                 return 0;
530
531         if (clone_flags & CLONE_VM) {
532                 atomic_inc(&oldmm->mm_users);
533                 mm = oldmm;
534                 goto good_mm;
535         }
536
537         retval = -ENOMEM;
538         mm = dup_mm(tsk);
539         if (!mm)
540                 goto fail_nomem;
541
542 good_mm:
543         tsk->mm = mm;
544         tsk->active_mm = mm;
545         return 0;
546
547 fail_nomem:
548         return retval;
549 }
550
551 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
552 {
553         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
554         /* We don't need to lock fs - think why ;-) */
555         if (fs) {
556                 atomic_set(&fs->count, 1);
557                 rwlock_init(&fs->lock);
558                 fs->umask = old->umask;
559                 read_lock(&old->lock);
560                 fs->rootmnt = mntget(old->rootmnt);
561                 fs->root = dget(old->root);
562                 fs->pwdmnt = mntget(old->pwdmnt);
563                 fs->pwd = dget(old->pwd);
564                 if (old->altroot) {
565                         fs->altrootmnt = mntget(old->altrootmnt);
566                         fs->altroot = dget(old->altroot);
567                 } else {
568                         fs->altrootmnt = NULL;
569                         fs->altroot = NULL;
570                 }
571                 read_unlock(&old->lock);
572         }
573         return fs;
574 }
575
576 struct fs_struct *copy_fs_struct(struct fs_struct *old)
577 {
578         return __copy_fs_struct(old);
579 }
580
581 EXPORT_SYMBOL_GPL(copy_fs_struct);
582
583 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
584 {
585         if (clone_flags & CLONE_FS) {
586                 atomic_inc(&current->fs->count);
587                 return 0;
588         }
589         tsk->fs = __copy_fs_struct(current->fs);
590         if (!tsk->fs)
591                 return -ENOMEM;
592         return 0;
593 }
594
595 static int count_open_files(struct fdtable *fdt)
596 {
597         int size = fdt->max_fdset;
598         int i;
599
600         /* Find the last open fd */
601         for (i = size/(8*sizeof(long)); i > 0; ) {
602                 if (fdt->open_fds->fds_bits[--i])
603                         break;
604         }
605         i = (i+1) * 8 * sizeof(long);
606         return i;
607 }
608
609 static struct files_struct *alloc_files(void)
610 {
611         struct files_struct *newf;
612         struct fdtable *fdt;
613
614         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
615         if (!newf)
616                 goto out;
617
618         atomic_set(&newf->count, 1);
619
620         spin_lock_init(&newf->file_lock);
621         newf->next_fd = 0;
622         fdt = &newf->fdtab;
623         fdt->max_fds = NR_OPEN_DEFAULT;
624         fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
625         fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
626         fdt->open_fds = (fd_set *)&newf->open_fds_init;
627         fdt->fd = &newf->fd_array[0];
628         INIT_RCU_HEAD(&fdt->rcu);
629         fdt->free_files = NULL;
630         fdt->next = NULL;
631         rcu_assign_pointer(newf->fdt, fdt);
632 out:
633         return newf;
634 }
635
636 /*
637  * Allocate a new files structure and copy contents from the
638  * passed in files structure.
639  * errorp will be valid only when the returned files_struct is NULL.
640  */
641 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
642 {
643         struct files_struct *newf;
644         struct file **old_fds, **new_fds;
645         int open_files, size, i, expand;
646         struct fdtable *old_fdt, *new_fdt;
647
648         *errorp = -ENOMEM;
649         newf = alloc_files();
650         if (!newf)
651                 goto out;
652
653         spin_lock(&oldf->file_lock);
654         old_fdt = files_fdtable(oldf);
655         new_fdt = files_fdtable(newf);
656         size = old_fdt->max_fdset;
657         open_files = count_open_files(old_fdt);
658         expand = 0;
659
660         /*
661          * Check whether we need to allocate a larger fd array or fd set.
662          * Note: we're not a clone task, so the open count won't  change.
663          */
664         if (open_files > new_fdt->max_fdset) {
665                 new_fdt->max_fdset = 0;
666                 expand = 1;
667         }
668         if (open_files > new_fdt->max_fds) {
669                 new_fdt->max_fds = 0;
670                 expand = 1;
671         }
672
673         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
674         if (expand) {
675                 spin_unlock(&oldf->file_lock);
676                 spin_lock(&newf->file_lock);
677                 *errorp = expand_files(newf, open_files-1);
678                 spin_unlock(&newf->file_lock);
679                 if (*errorp < 0)
680                         goto out_release;
681                 new_fdt = files_fdtable(newf);
682                 /*
683                  * Reacquire the oldf lock and a pointer to its fd table
684                  * who knows it may have a new bigger fd table. We need
685                  * the latest pointer.
686                  */
687                 spin_lock(&oldf->file_lock);
688                 old_fdt = files_fdtable(oldf);
689         }
690
691         old_fds = old_fdt->fd;
692         new_fds = new_fdt->fd;
693
694         memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
695         memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
696
697         for (i = open_files; i != 0; i--) {
698                 struct file *f = *old_fds++;
699                 if (f) {
700                         get_file(f);
701                 } else {
702                         /*
703                          * The fd may be claimed in the fd bitmap but not yet
704                          * instantiated in the files array if a sibling thread
705                          * is partway through open().  So make sure that this
706                          * fd is available to the new process.
707                          */
708                         FD_CLR(open_files - i, new_fdt->open_fds);
709                 }
710                 rcu_assign_pointer(*new_fds++, f);
711         }
712         spin_unlock(&oldf->file_lock);
713
714         /* compute the remainder to be cleared */
715         size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
716
717         /* This is long word aligned thus could use a optimized version */ 
718         memset(new_fds, 0, size); 
719
720         if (new_fdt->max_fdset > open_files) {
721                 int left = (new_fdt->max_fdset-open_files)/8;
722                 int start = open_files / (8 * sizeof(unsigned long));
723
724                 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
725                 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
726         }
727
728 out:
729         return newf;
730
731 out_release:
732         free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
733         free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
734         free_fd_array(new_fdt->fd, new_fdt->max_fds);
735         kmem_cache_free(files_cachep, newf);
736         return NULL;
737 }
738
739 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
740 {
741         struct files_struct *oldf, *newf;
742         int error = 0;
743
744         /*
745          * A background process may not have any files ...
746          */
747         oldf = current->files;
748         if (!oldf)
749                 goto out;
750
751         if (clone_flags & CLONE_FILES) {
752                 atomic_inc(&oldf->count);
753                 goto out;
754         }
755
756         /*
757          * Note: we may be using current for both targets (See exec.c)
758          * This works because we cache current->files (old) as oldf. Don't
759          * break this.
760          */
761         tsk->files = NULL;
762         newf = dup_fd(oldf, &error);
763         if (!newf)
764                 goto out;
765
766         tsk->files = newf;
767         error = 0;
768 out:
769         return error;
770 }
771
772 /*
773  *      Helper to unshare the files of the current task.
774  *      We don't want to expose copy_files internals to
775  *      the exec layer of the kernel.
776  */
777
778 int unshare_files(void)
779 {
780         struct files_struct *files  = current->files;
781         int rc;
782
783         BUG_ON(!files);
784
785         /* This can race but the race causes us to copy when we don't
786            need to and drop the copy */
787         if(atomic_read(&files->count) == 1)
788         {
789                 atomic_inc(&files->count);
790                 return 0;
791         }
792         rc = copy_files(0, current);
793         if(rc)
794                 current->files = files;
795         return rc;
796 }
797
798 EXPORT_SYMBOL(unshare_files);
799
800 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
801 {
802         struct sighand_struct *sig;
803
804         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
805                 atomic_inc(&current->sighand->count);
806                 return 0;
807         }
808         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
809         rcu_assign_pointer(tsk->sighand, sig);
810         if (!sig)
811                 return -ENOMEM;
812         atomic_set(&sig->count, 1);
813         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
814         return 0;
815 }
816
817 void __cleanup_sighand(struct sighand_struct *sighand)
818 {
819         if (atomic_dec_and_test(&sighand->count))
820                 kmem_cache_free(sighand_cachep, sighand);
821 }
822
823 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
824 {
825         struct signal_struct *sig;
826         int ret;
827
828         if (clone_flags & CLONE_THREAD) {
829                 atomic_inc(&current->signal->count);
830                 atomic_inc(&current->signal->live);
831                 taskstats_tgid_alloc(current->signal);
832                 return 0;
833         }
834         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
835         tsk->signal = sig;
836         if (!sig)
837                 return -ENOMEM;
838
839         ret = copy_thread_group_keys(tsk);
840         if (ret < 0) {
841                 kmem_cache_free(signal_cachep, sig);
842                 return ret;
843         }
844
845         atomic_set(&sig->count, 1);
846         atomic_set(&sig->live, 1);
847         init_waitqueue_head(&sig->wait_chldexit);
848         sig->flags = 0;
849         sig->group_exit_code = 0;
850         sig->group_exit_task = NULL;
851         sig->group_stop_count = 0;
852         sig->curr_target = NULL;
853         init_sigpending(&sig->shared_pending);
854         INIT_LIST_HEAD(&sig->posix_timers);
855
856         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
857         sig->it_real_incr.tv64 = 0;
858         sig->real_timer.function = it_real_fn;
859         sig->tsk = tsk;
860
861         sig->it_virt_expires = cputime_zero;
862         sig->it_virt_incr = cputime_zero;
863         sig->it_prof_expires = cputime_zero;
864         sig->it_prof_incr = cputime_zero;
865
866         sig->leader = 0;        /* session leadership doesn't inherit */
867         sig->tty_old_pgrp = 0;
868
869         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
870         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
871         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
872         sig->sched_time = 0;
873         INIT_LIST_HEAD(&sig->cpu_timers[0]);
874         INIT_LIST_HEAD(&sig->cpu_timers[1]);
875         INIT_LIST_HEAD(&sig->cpu_timers[2]);
876         taskstats_tgid_init(sig);
877
878         task_lock(current->group_leader);
879         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
880         task_unlock(current->group_leader);
881
882         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
883                 /*
884                  * New sole thread in the process gets an expiry time
885                  * of the whole CPU time limit.
886                  */
887                 tsk->it_prof_expires =
888                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
889         }
890         acct_init_pacct(&sig->pacct);
891
892         return 0;
893 }
894
895 void __cleanup_signal(struct signal_struct *sig)
896 {
897         exit_thread_group_keys(sig);
898         taskstats_tgid_free(sig);
899         kmem_cache_free(signal_cachep, sig);
900 }
901
902 static inline void cleanup_signal(struct task_struct *tsk)
903 {
904         struct signal_struct *sig = tsk->signal;
905
906         atomic_dec(&sig->live);
907
908         if (atomic_dec_and_test(&sig->count))
909                 __cleanup_signal(sig);
910 }
911
912 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
913 {
914         unsigned long new_flags = p->flags;
915
916         new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
917         new_flags |= PF_FORKNOEXEC;
918         if (!(clone_flags & CLONE_PTRACE))
919                 p->ptrace = 0;
920         p->flags = new_flags;
921 }
922
923 asmlinkage long sys_set_tid_address(int __user *tidptr)
924 {
925         current->clear_child_tid = tidptr;
926
927         return current->pid;
928 }
929
930 static inline void rt_mutex_init_task(struct task_struct *p)
931 {
932 #ifdef CONFIG_RT_MUTEXES
933         spin_lock_init(&p->pi_lock);
934         plist_head_init(&p->pi_waiters, &p->pi_lock);
935         p->pi_blocked_on = NULL;
936 #endif
937 }
938
939 /*
940  * This creates a new process as a copy of the old one,
941  * but does not actually start it yet.
942  *
943  * It copies the registers, and all the appropriate
944  * parts of the process environment (as per the clone
945  * flags). The actual kick-off is left to the caller.
946  */
947 static struct task_struct *copy_process(unsigned long clone_flags,
948                                         unsigned long stack_start,
949                                         struct pt_regs *regs,
950                                         unsigned long stack_size,
951                                         int __user *parent_tidptr,
952                                         int __user *child_tidptr,
953                                         int pid)
954 {
955         int retval;
956         struct task_struct *p = NULL;
957
958         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
959                 return ERR_PTR(-EINVAL);
960
961         /*
962          * Thread groups must share signals as well, and detached threads
963          * can only be started up within the thread group.
964          */
965         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
966                 return ERR_PTR(-EINVAL);
967
968         /*
969          * Shared signal handlers imply shared VM. By way of the above,
970          * thread groups also imply shared VM. Blocking this case allows
971          * for various simplifications in other code.
972          */
973         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
974                 return ERR_PTR(-EINVAL);
975
976         retval = security_task_create(clone_flags);
977         if (retval)
978                 goto fork_out;
979
980         retval = -ENOMEM;
981         p = dup_task_struct(current);
982         if (!p)
983                 goto fork_out;
984
985 #ifdef CONFIG_TRACE_IRQFLAGS
986         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
987         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
988 #endif
989         retval = -EAGAIN;
990         if (atomic_read(&p->user->processes) >=
991                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
992                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
993                                 p->user != &root_user)
994                         goto bad_fork_free;
995         }
996
997         atomic_inc(&p->user->__count);
998         atomic_inc(&p->user->processes);
999         get_group_info(p->group_info);
1000
1001         /*
1002          * If multiple threads are within copy_process(), then this check
1003          * triggers too late. This doesn't hurt, the check is only there
1004          * to stop root fork bombs.
1005          */
1006         if (nr_threads >= max_threads)
1007                 goto bad_fork_cleanup_count;
1008
1009         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1010                 goto bad_fork_cleanup_count;
1011
1012         if (p->binfmt && !try_module_get(p->binfmt->module))
1013                 goto bad_fork_cleanup_put_domain;
1014
1015         p->did_exec = 0;
1016         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1017         copy_flags(clone_flags, p);
1018         p->pid = pid;
1019         retval = -EFAULT;
1020         if (clone_flags & CLONE_PARENT_SETTID)
1021                 if (put_user(p->pid, parent_tidptr))
1022                         goto bad_fork_cleanup_delays_binfmt;
1023
1024         INIT_LIST_HEAD(&p->children);
1025         INIT_LIST_HEAD(&p->sibling);
1026         p->vfork_done = NULL;
1027         spin_lock_init(&p->alloc_lock);
1028
1029         clear_tsk_thread_flag(p, TIF_SIGPENDING);
1030         init_sigpending(&p->pending);
1031
1032         p->utime = cputime_zero;
1033         p->stime = cputime_zero;
1034         p->sched_time = 0;
1035         p->rchar = 0;           /* I/O counter: bytes read */
1036         p->wchar = 0;           /* I/O counter: bytes written */
1037         p->syscr = 0;           /* I/O counter: read syscalls */
1038         p->syscw = 0;           /* I/O counter: write syscalls */
1039         acct_clear_integrals(p);
1040
1041         p->it_virt_expires = cputime_zero;
1042         p->it_prof_expires = cputime_zero;
1043         p->it_sched_expires = 0;
1044         INIT_LIST_HEAD(&p->cpu_timers[0]);
1045         INIT_LIST_HEAD(&p->cpu_timers[1]);
1046         INIT_LIST_HEAD(&p->cpu_timers[2]);
1047
1048         p->lock_depth = -1;             /* -1 = no lock */
1049         do_posix_clock_monotonic_gettime(&p->start_time);
1050         p->security = NULL;
1051         p->io_context = NULL;
1052         p->io_wait = NULL;
1053         p->audit_context = NULL;
1054         cpuset_fork(p);
1055 #ifdef CONFIG_NUMA
1056         p->mempolicy = mpol_copy(p->mempolicy);
1057         if (IS_ERR(p->mempolicy)) {
1058                 retval = PTR_ERR(p->mempolicy);
1059                 p->mempolicy = NULL;
1060                 goto bad_fork_cleanup_cpuset;
1061         }
1062         mpol_fix_fork_child_flag(p);
1063 #endif
1064 #ifdef CONFIG_TRACE_IRQFLAGS
1065         p->irq_events = 0;
1066 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1067         p->hardirqs_enabled = 1;
1068 #else
1069         p->hardirqs_enabled = 0;
1070 #endif
1071         p->hardirq_enable_ip = 0;
1072         p->hardirq_enable_event = 0;
1073         p->hardirq_disable_ip = _THIS_IP_;
1074         p->hardirq_disable_event = 0;
1075         p->softirqs_enabled = 1;
1076         p->softirq_enable_ip = _THIS_IP_;
1077         p->softirq_enable_event = 0;
1078         p->softirq_disable_ip = 0;
1079         p->softirq_disable_event = 0;
1080         p->hardirq_context = 0;
1081         p->softirq_context = 0;
1082 #endif
1083 #ifdef CONFIG_LOCKDEP
1084         p->lockdep_depth = 0; /* no locks held yet */
1085         p->curr_chain_key = 0;
1086         p->lockdep_recursion = 0;
1087 #endif
1088
1089         rt_mutex_init_task(p);
1090
1091 #ifdef CONFIG_DEBUG_MUTEXES
1092         p->blocked_on = NULL; /* not blocked yet */
1093 #endif
1094
1095         p->tgid = p->pid;
1096         if (clone_flags & CLONE_THREAD)
1097                 p->tgid = current->tgid;
1098
1099         if ((retval = security_task_alloc(p)))
1100                 goto bad_fork_cleanup_policy;
1101         if ((retval = audit_alloc(p)))
1102                 goto bad_fork_cleanup_security;
1103         /* copy all the process information */
1104         if ((retval = copy_semundo(clone_flags, p)))
1105                 goto bad_fork_cleanup_audit;
1106         if ((retval = copy_files(clone_flags, p)))
1107                 goto bad_fork_cleanup_semundo;
1108         if ((retval = copy_fs(clone_flags, p)))
1109                 goto bad_fork_cleanup_files;
1110         if ((retval = copy_sighand(clone_flags, p)))
1111                 goto bad_fork_cleanup_fs;
1112         if ((retval = copy_signal(clone_flags, p)))
1113                 goto bad_fork_cleanup_sighand;
1114         if ((retval = copy_mm(clone_flags, p)))
1115                 goto bad_fork_cleanup_signal;
1116         if ((retval = copy_keys(clone_flags, p)))
1117                 goto bad_fork_cleanup_mm;
1118         if ((retval = copy_namespace(clone_flags, p)))
1119                 goto bad_fork_cleanup_keys;
1120         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1121         if (retval)
1122                 goto bad_fork_cleanup_namespace;
1123
1124         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1125         /*
1126          * Clear TID on mm_release()?
1127          */
1128         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1129         p->robust_list = NULL;
1130 #ifdef CONFIG_COMPAT
1131         p->compat_robust_list = NULL;
1132 #endif
1133         INIT_LIST_HEAD(&p->pi_state_list);
1134         p->pi_state_cache = NULL;
1135
1136         /*
1137          * sigaltstack should be cleared when sharing the same VM
1138          */
1139         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1140                 p->sas_ss_sp = p->sas_ss_size = 0;
1141
1142         /*
1143          * Syscall tracing should be turned off in the child regardless
1144          * of CLONE_PTRACE.
1145          */
1146         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1147 #ifdef TIF_SYSCALL_EMU
1148         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1149 #endif
1150
1151         /* Our parent execution domain becomes current domain
1152            These must match for thread signalling to apply */
1153         p->parent_exec_id = p->self_exec_id;
1154
1155         /* ok, now we should be set up.. */
1156         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1157         p->pdeath_signal = 0;
1158         p->exit_state = 0;
1159
1160         /*
1161          * Ok, make it visible to the rest of the system.
1162          * We dont wake it up yet.
1163          */
1164         p->group_leader = p;
1165         INIT_LIST_HEAD(&p->thread_group);
1166         INIT_LIST_HEAD(&p->ptrace_children);
1167         INIT_LIST_HEAD(&p->ptrace_list);
1168
1169         /* Perform scheduler related setup. Assign this task to a CPU. */
1170         sched_fork(p, clone_flags);
1171
1172         /* Need tasklist lock for parent etc handling! */
1173         write_lock_irq(&tasklist_lock);
1174
1175         /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1176         p->ioprio = current->ioprio;
1177
1178         /*
1179          * The task hasn't been attached yet, so its cpus_allowed mask will
1180          * not be changed, nor will its assigned CPU.
1181          *
1182          * The cpus_allowed mask of the parent may have changed after it was
1183          * copied first time - so re-copy it here, then check the child's CPU
1184          * to ensure it is on a valid CPU (and if not, just force it back to
1185          * parent's CPU). This avoids alot of nasty races.
1186          */
1187         p->cpus_allowed = current->cpus_allowed;
1188         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1189                         !cpu_online(task_cpu(p))))
1190                 set_task_cpu(p, smp_processor_id());
1191
1192         /* CLONE_PARENT re-uses the old parent */
1193         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1194                 p->real_parent = current->real_parent;
1195         else
1196                 p->real_parent = current;
1197         p->parent = p->real_parent;
1198
1199         spin_lock(&current->sighand->siglock);
1200
1201         /*
1202          * Process group and session signals need to be delivered to just the
1203          * parent before the fork or both the parent and the child after the
1204          * fork. Restart if a signal comes in before we add the new process to
1205          * it's process group.
1206          * A fatal signal pending means that current will exit, so the new
1207          * thread can't slip out of an OOM kill (or normal SIGKILL).
1208          */
1209         recalc_sigpending();
1210         if (signal_pending(current)) {
1211                 spin_unlock(&current->sighand->siglock);
1212                 write_unlock_irq(&tasklist_lock);
1213                 retval = -ERESTARTNOINTR;
1214                 goto bad_fork_cleanup_namespace;
1215         }
1216
1217         if (clone_flags & CLONE_THREAD) {
1218                 p->group_leader = current->group_leader;
1219                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1220
1221                 if (!cputime_eq(current->signal->it_virt_expires,
1222                                 cputime_zero) ||
1223                     !cputime_eq(current->signal->it_prof_expires,
1224                                 cputime_zero) ||
1225                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1226                     !list_empty(&current->signal->cpu_timers[0]) ||
1227                     !list_empty(&current->signal->cpu_timers[1]) ||
1228                     !list_empty(&current->signal->cpu_timers[2])) {
1229                         /*
1230                          * Have child wake up on its first tick to check
1231                          * for process CPU timers.
1232                          */
1233                         p->it_prof_expires = jiffies_to_cputime(1);
1234                 }
1235         }
1236
1237         if (likely(p->pid)) {
1238                 add_parent(p);
1239                 if (unlikely(p->ptrace & PT_PTRACED))
1240                         __ptrace_link(p, current->parent);
1241
1242                 if (thread_group_leader(p)) {
1243                         p->signal->tty = current->signal->tty;
1244                         p->signal->pgrp = process_group(current);
1245                         p->signal->session = current->signal->session;
1246                         attach_pid(p, PIDTYPE_PGID, process_group(p));
1247                         attach_pid(p, PIDTYPE_SID, p->signal->session);
1248
1249                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1250                         __get_cpu_var(process_counts)++;
1251                 }
1252                 attach_pid(p, PIDTYPE_PID, p->pid);
1253                 nr_threads++;
1254         }
1255
1256         total_forks++;
1257         spin_unlock(&current->sighand->siglock);
1258         write_unlock_irq(&tasklist_lock);
1259         proc_fork_connector(p);
1260         return p;
1261
1262 bad_fork_cleanup_namespace:
1263         exit_namespace(p);
1264 bad_fork_cleanup_keys:
1265         exit_keys(p);
1266 bad_fork_cleanup_mm:
1267         if (p->mm)
1268                 mmput(p->mm);
1269 bad_fork_cleanup_signal:
1270         cleanup_signal(p);
1271 bad_fork_cleanup_sighand:
1272         __cleanup_sighand(p->sighand);
1273 bad_fork_cleanup_fs:
1274         exit_fs(p); /* blocking */
1275 bad_fork_cleanup_files:
1276         exit_files(p); /* blocking */
1277 bad_fork_cleanup_semundo:
1278         exit_sem(p);
1279 bad_fork_cleanup_audit:
1280         audit_free(p);
1281 bad_fork_cleanup_security:
1282         security_task_free(p);
1283 bad_fork_cleanup_policy:
1284 #ifdef CONFIG_NUMA
1285         mpol_free(p->mempolicy);
1286 bad_fork_cleanup_cpuset:
1287 #endif
1288         cpuset_exit(p);
1289 bad_fork_cleanup_delays_binfmt:
1290         delayacct_tsk_free(p);
1291         if (p->binfmt)
1292                 module_put(p->binfmt->module);
1293 bad_fork_cleanup_put_domain:
1294         module_put(task_thread_info(p)->exec_domain->module);
1295 bad_fork_cleanup_count:
1296         put_group_info(p->group_info);
1297         atomic_dec(&p->user->processes);
1298         free_uid(p->user);
1299 bad_fork_free:
1300         free_task(p);
1301 fork_out:
1302         return ERR_PTR(retval);
1303 }
1304
1305 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1306 {
1307         memset(regs, 0, sizeof(struct pt_regs));
1308         return regs;
1309 }
1310
1311 struct task_struct * __devinit fork_idle(int cpu)
1312 {
1313         struct task_struct *task;
1314         struct pt_regs regs;
1315
1316         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1317         if (!task)
1318                 return ERR_PTR(-ENOMEM);
1319         init_idle(task, cpu);
1320
1321         return task;
1322 }
1323
1324 static inline int fork_traceflag (unsigned clone_flags)
1325 {
1326         if (clone_flags & CLONE_UNTRACED)
1327                 return 0;
1328         else if (clone_flags & CLONE_VFORK) {
1329                 if (current->ptrace & PT_TRACE_VFORK)
1330                         return PTRACE_EVENT_VFORK;
1331         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1332                 if (current->ptrace & PT_TRACE_CLONE)
1333                         return PTRACE_EVENT_CLONE;
1334         } else if (current->ptrace & PT_TRACE_FORK)
1335                 return PTRACE_EVENT_FORK;
1336
1337         return 0;
1338 }
1339
1340 /*
1341  *  Ok, this is the main fork-routine.
1342  *
1343  * It copies the process, and if successful kick-starts
1344  * it and waits for it to finish using the VM if required.
1345  */
1346 long do_fork(unsigned long clone_flags,
1347               unsigned long stack_start,
1348               struct pt_regs *regs,
1349               unsigned long stack_size,
1350               int __user *parent_tidptr,
1351               int __user *child_tidptr)
1352 {
1353         struct task_struct *p;
1354         int trace = 0;
1355         struct pid *pid = alloc_pid();
1356         long nr;
1357
1358         if (!pid)
1359                 return -EAGAIN;
1360         nr = pid->nr;
1361         if (unlikely(current->ptrace)) {
1362                 trace = fork_traceflag (clone_flags);
1363                 if (trace)
1364                         clone_flags |= CLONE_PTRACE;
1365         }
1366
1367         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1368         /*
1369          * Do this prior waking up the new thread - the thread pointer
1370          * might get invalid after that point, if the thread exits quickly.
1371          */
1372         if (!IS_ERR(p)) {
1373                 struct completion vfork;
1374
1375                 if (clone_flags & CLONE_VFORK) {
1376                         p->vfork_done = &vfork;
1377                         init_completion(&vfork);
1378                 }
1379
1380                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1381                         /*
1382                          * We'll start up with an immediate SIGSTOP.
1383                          */
1384                         sigaddset(&p->pending.signal, SIGSTOP);
1385                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1386                 }
1387
1388                 if (!(clone_flags & CLONE_STOPPED))
1389                         wake_up_new_task(p, clone_flags);
1390                 else
1391                         p->state = TASK_STOPPED;
1392
1393                 if (unlikely (trace)) {
1394                         current->ptrace_message = nr;
1395                         ptrace_notify ((trace << 8) | SIGTRAP);
1396                 }
1397
1398                 if (clone_flags & CLONE_VFORK) {
1399                         wait_for_completion(&vfork);
1400                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1401                                 current->ptrace_message = nr;
1402                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1403                         }
1404                 }
1405         } else {
1406                 free_pid(pid);
1407                 nr = PTR_ERR(p);
1408         }
1409         return nr;
1410 }
1411
1412 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1413 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1414 #endif
1415
1416 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1417 {
1418         struct sighand_struct *sighand = data;
1419
1420         if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1421                                         SLAB_CTOR_CONSTRUCTOR)
1422                 spin_lock_init(&sighand->siglock);
1423 }
1424
1425 void __init proc_caches_init(void)
1426 {
1427         sighand_cachep = kmem_cache_create("sighand_cache",
1428                         sizeof(struct sighand_struct), 0,
1429                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1430                         sighand_ctor, NULL);
1431         signal_cachep = kmem_cache_create("signal_cache",
1432                         sizeof(struct signal_struct), 0,
1433                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1434         files_cachep = kmem_cache_create("files_cache", 
1435                         sizeof(struct files_struct), 0,
1436                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1437         fs_cachep = kmem_cache_create("fs_cache", 
1438                         sizeof(struct fs_struct), 0,
1439                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1440         vm_area_cachep = kmem_cache_create("vm_area_struct",
1441                         sizeof(struct vm_area_struct), 0,
1442                         SLAB_PANIC, NULL, NULL);
1443         mm_cachep = kmem_cache_create("mm_struct",
1444                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1445                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1446 }
1447
1448
1449 /*
1450  * Check constraints on flags passed to the unshare system call and
1451  * force unsharing of additional process context as appropriate.
1452  */
1453 static inline void check_unshare_flags(unsigned long *flags_ptr)
1454 {
1455         /*
1456          * If unsharing a thread from a thread group, must also
1457          * unshare vm.
1458          */
1459         if (*flags_ptr & CLONE_THREAD)
1460                 *flags_ptr |= CLONE_VM;
1461
1462         /*
1463          * If unsharing vm, must also unshare signal handlers.
1464          */
1465         if (*flags_ptr & CLONE_VM)
1466                 *flags_ptr |= CLONE_SIGHAND;
1467
1468         /*
1469          * If unsharing signal handlers and the task was created
1470          * using CLONE_THREAD, then must unshare the thread
1471          */
1472         if ((*flags_ptr & CLONE_SIGHAND) &&
1473             (atomic_read(&current->signal->count) > 1))
1474                 *flags_ptr |= CLONE_THREAD;
1475
1476         /*
1477          * If unsharing namespace, must also unshare filesystem information.
1478          */
1479         if (*flags_ptr & CLONE_NEWNS)
1480                 *flags_ptr |= CLONE_FS;
1481 }
1482
1483 /*
1484  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1485  */
1486 static int unshare_thread(unsigned long unshare_flags)
1487 {
1488         if (unshare_flags & CLONE_THREAD)
1489                 return -EINVAL;
1490
1491         return 0;
1492 }
1493
1494 /*
1495  * Unshare the filesystem structure if it is being shared
1496  */
1497 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1498 {
1499         struct fs_struct *fs = current->fs;
1500
1501         if ((unshare_flags & CLONE_FS) &&
1502             (fs && atomic_read(&fs->count) > 1)) {
1503                 *new_fsp = __copy_fs_struct(current->fs);
1504                 if (!*new_fsp)
1505                         return -ENOMEM;
1506         }
1507
1508         return 0;
1509 }
1510
1511 /*
1512  * Unshare the namespace structure if it is being shared
1513  */
1514 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1515 {
1516         struct namespace *ns = current->namespace;
1517
1518         if ((unshare_flags & CLONE_NEWNS) &&
1519             (ns && atomic_read(&ns->count) > 1)) {
1520                 if (!capable(CAP_SYS_ADMIN))
1521                         return -EPERM;
1522
1523                 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1524                 if (!*new_nsp)
1525                         return -ENOMEM;
1526         }
1527
1528         return 0;
1529 }
1530
1531 /*
1532  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1533  * supported yet
1534  */
1535 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1536 {
1537         struct sighand_struct *sigh = current->sighand;
1538
1539         if ((unshare_flags & CLONE_SIGHAND) &&
1540             (sigh && atomic_read(&sigh->count) > 1))
1541                 return -EINVAL;
1542         else
1543                 return 0;
1544 }
1545
1546 /*
1547  * Unshare vm if it is being shared
1548  */
1549 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1550 {
1551         struct mm_struct *mm = current->mm;
1552
1553         if ((unshare_flags & CLONE_VM) &&
1554             (mm && atomic_read(&mm->mm_users) > 1)) {
1555                 return -EINVAL;
1556         }
1557
1558         return 0;
1559 }
1560
1561 /*
1562  * Unshare file descriptor table if it is being shared
1563  */
1564 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1565 {
1566         struct files_struct *fd = current->files;
1567         int error = 0;
1568
1569         if ((unshare_flags & CLONE_FILES) &&
1570             (fd && atomic_read(&fd->count) > 1)) {
1571                 *new_fdp = dup_fd(fd, &error);
1572                 if (!*new_fdp)
1573                         return error;
1574         }
1575
1576         return 0;
1577 }
1578
1579 /*
1580  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1581  * supported yet
1582  */
1583 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1584 {
1585         if (unshare_flags & CLONE_SYSVSEM)
1586                 return -EINVAL;
1587
1588         return 0;
1589 }
1590
1591 /*
1592  * unshare allows a process to 'unshare' part of the process
1593  * context which was originally shared using clone.  copy_*
1594  * functions used by do_fork() cannot be used here directly
1595  * because they modify an inactive task_struct that is being
1596  * constructed. Here we are modifying the current, active,
1597  * task_struct.
1598  */
1599 asmlinkage long sys_unshare(unsigned long unshare_flags)
1600 {
1601         int err = 0;
1602         struct fs_struct *fs, *new_fs = NULL;
1603         struct namespace *ns, *new_ns = NULL;
1604         struct sighand_struct *sigh, *new_sigh = NULL;
1605         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1606         struct files_struct *fd, *new_fd = NULL;
1607         struct sem_undo_list *new_ulist = NULL;
1608
1609         check_unshare_flags(&unshare_flags);
1610
1611         /* Return -EINVAL for all unsupported flags */
1612         err = -EINVAL;
1613         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1614                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1615                 goto bad_unshare_out;
1616
1617         if ((err = unshare_thread(unshare_flags)))
1618                 goto bad_unshare_out;
1619         if ((err = unshare_fs(unshare_flags, &new_fs)))
1620                 goto bad_unshare_cleanup_thread;
1621         if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1622                 goto bad_unshare_cleanup_fs;
1623         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1624                 goto bad_unshare_cleanup_ns;
1625         if ((err = unshare_vm(unshare_flags, &new_mm)))
1626                 goto bad_unshare_cleanup_sigh;
1627         if ((err = unshare_fd(unshare_flags, &new_fd)))
1628                 goto bad_unshare_cleanup_vm;
1629         if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1630                 goto bad_unshare_cleanup_fd;
1631
1632         if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1633
1634                 task_lock(current);
1635
1636                 if (new_fs) {
1637                         fs = current->fs;
1638                         current->fs = new_fs;
1639                         new_fs = fs;
1640                 }
1641
1642                 if (new_ns) {
1643                         ns = current->namespace;
1644                         current->namespace = new_ns;
1645                         new_ns = ns;
1646                 }
1647
1648                 if (new_sigh) {
1649                         sigh = current->sighand;
1650                         rcu_assign_pointer(current->sighand, new_sigh);
1651                         new_sigh = sigh;
1652                 }
1653
1654                 if (new_mm) {
1655                         mm = current->mm;
1656                         active_mm = current->active_mm;
1657                         current->mm = new_mm;
1658                         current->active_mm = new_mm;
1659                         activate_mm(active_mm, new_mm);
1660                         new_mm = mm;
1661                 }
1662
1663                 if (new_fd) {
1664                         fd = current->files;
1665                         current->files = new_fd;
1666                         new_fd = fd;
1667                 }
1668
1669                 task_unlock(current);
1670         }
1671
1672 bad_unshare_cleanup_fd:
1673         if (new_fd)
1674                 put_files_struct(new_fd);
1675
1676 bad_unshare_cleanup_vm:
1677         if (new_mm)
1678                 mmput(new_mm);
1679
1680 bad_unshare_cleanup_sigh:
1681         if (new_sigh)
1682                 if (atomic_dec_and_test(&new_sigh->count))
1683                         kmem_cache_free(sighand_cachep, new_sigh);
1684
1685 bad_unshare_cleanup_ns:
1686         if (new_ns)
1687                 put_namespace(new_ns);
1688
1689 bad_unshare_cleanup_fs:
1690         if (new_fs)
1691                 put_fs_struct(new_fs);
1692
1693 bad_unshare_cleanup_thread:
1694 bad_unshare_out:
1695         return err;
1696 }