]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/exit.c
[PATCH] exit: fix crash case
[linux-2.6-omap-h63xx.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/taskstats_kern.h>
29 #include <linux/delayacct.h>
30 #include <linux/cpuset.h>
31 #include <linux/syscalls.h>
32 #include <linux/signal.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cn_proc.h>
35 #include <linux/mutex.h>
36 #include <linux/futex.h>
37 #include <linux/compat.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/audit.h> /* for audit_free() */
40 #include <linux/resource.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/pgtable.h>
45 #include <asm/mmu_context.h>
46
47 extern void sem_exit (void);
48 extern struct task_struct *child_reaper;
49
50 static void exit_mm(struct task_struct * tsk);
51
52 static void __unhash_process(struct task_struct *p)
53 {
54         nr_threads--;
55         detach_pid(p, PIDTYPE_PID);
56         if (thread_group_leader(p)) {
57                 detach_pid(p, PIDTYPE_PGID);
58                 detach_pid(p, PIDTYPE_SID);
59
60                 list_del_rcu(&p->tasks);
61                 __get_cpu_var(process_counts)--;
62         }
63         list_del_rcu(&p->thread_group);
64         remove_parent(p);
65 }
66
67 /*
68  * This function expects the tasklist_lock write-locked.
69  */
70 static void __exit_signal(struct task_struct *tsk)
71 {
72         struct signal_struct *sig = tsk->signal;
73         struct sighand_struct *sighand;
74
75         BUG_ON(!sig);
76         BUG_ON(!atomic_read(&sig->count));
77
78         rcu_read_lock();
79         sighand = rcu_dereference(tsk->sighand);
80         spin_lock(&sighand->siglock);
81
82         posix_cpu_timers_exit(tsk);
83         if (atomic_dec_and_test(&sig->count))
84                 posix_cpu_timers_exit_group(tsk);
85         else {
86                 /*
87                  * If there is any task waiting for the group exit
88                  * then notify it:
89                  */
90                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
91                         wake_up_process(sig->group_exit_task);
92                         sig->group_exit_task = NULL;
93                 }
94                 if (tsk == sig->curr_target)
95                         sig->curr_target = next_thread(tsk);
96                 /*
97                  * Accumulate here the counters for all threads but the
98                  * group leader as they die, so they can be added into
99                  * the process-wide totals when those are taken.
100                  * The group leader stays around as a zombie as long
101                  * as there are other threads.  When it gets reaped,
102                  * the exit.c code will add its counts into these totals.
103                  * We won't ever get here for the group leader, since it
104                  * will have been the last reference on the signal_struct.
105                  */
106                 sig->utime = cputime_add(sig->utime, tsk->utime);
107                 sig->stime = cputime_add(sig->stime, tsk->stime);
108                 sig->min_flt += tsk->min_flt;
109                 sig->maj_flt += tsk->maj_flt;
110                 sig->nvcsw += tsk->nvcsw;
111                 sig->nivcsw += tsk->nivcsw;
112                 sig->sched_time += tsk->sched_time;
113                 sig = NULL; /* Marker for below. */
114         }
115
116         __unhash_process(tsk);
117
118         tsk->signal = NULL;
119         tsk->sighand = NULL;
120         spin_unlock(&sighand->siglock);
121         rcu_read_unlock();
122
123         __cleanup_sighand(sighand);
124         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
125         flush_sigqueue(&tsk->pending);
126         if (sig) {
127                 flush_sigqueue(&sig->shared_pending);
128                 __cleanup_signal(sig);
129         }
130 }
131
132 static void delayed_put_task_struct(struct rcu_head *rhp)
133 {
134         put_task_struct(container_of(rhp, struct task_struct, rcu));
135 }
136
137 void release_task(struct task_struct * p)
138 {
139         struct task_struct *leader;
140         int zap_leader;
141 repeat:
142         atomic_dec(&p->user->processes);
143         write_lock_irq(&tasklist_lock);
144         ptrace_unlink(p);
145         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
146         __exit_signal(p);
147
148         /*
149          * If we are the last non-leader member of the thread
150          * group, and the leader is zombie, then notify the
151          * group leader's parent process. (if it wants notification.)
152          */
153         zap_leader = 0;
154         leader = p->group_leader;
155         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
156                 BUG_ON(leader->exit_signal == -1);
157                 do_notify_parent(leader, leader->exit_signal);
158                 /*
159                  * If we were the last child thread and the leader has
160                  * exited already, and the leader's parent ignores SIGCHLD,
161                  * then we are the one who should release the leader.
162                  *
163                  * do_notify_parent() will have marked it self-reaping in
164                  * that case.
165                  */
166                 zap_leader = (leader->exit_signal == -1);
167         }
168
169         sched_exit(p);
170         write_unlock_irq(&tasklist_lock);
171         proc_flush_task(p);
172         release_thread(p);
173         call_rcu(&p->rcu, delayed_put_task_struct);
174
175         p = leader;
176         if (unlikely(zap_leader))
177                 goto repeat;
178 }
179
180 /*
181  * This checks not only the pgrp, but falls back on the pid if no
182  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
183  * without this...
184  */
185 int session_of_pgrp(int pgrp)
186 {
187         struct task_struct *p;
188         int sid = -1;
189
190         read_lock(&tasklist_lock);
191         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
192                 if (p->signal->session > 0) {
193                         sid = p->signal->session;
194                         goto out;
195                 }
196         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
197         p = find_task_by_pid(pgrp);
198         if (p)
199                 sid = p->signal->session;
200 out:
201         read_unlock(&tasklist_lock);
202         
203         return sid;
204 }
205
206 /*
207  * Determine if a process group is "orphaned", according to the POSIX
208  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
209  * by terminal-generated stop signals.  Newly orphaned process groups are
210  * to receive a SIGHUP and a SIGCONT.
211  *
212  * "I ask you, have you ever known what it is to be an orphan?"
213  */
214 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
215 {
216         struct task_struct *p;
217         int ret = 1;
218
219         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
220                 if (p == ignored_task
221                                 || p->exit_state
222                                 || is_init(p->real_parent))
223                         continue;
224                 if (process_group(p->real_parent) != pgrp
225                             && p->real_parent->signal->session == p->signal->session) {
226                         ret = 0;
227                         break;
228                 }
229         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
230         return ret;     /* (sighing) "Often!" */
231 }
232
233 int is_orphaned_pgrp(int pgrp)
234 {
235         int retval;
236
237         read_lock(&tasklist_lock);
238         retval = will_become_orphaned_pgrp(pgrp, NULL);
239         read_unlock(&tasklist_lock);
240
241         return retval;
242 }
243
244 static int has_stopped_jobs(int pgrp)
245 {
246         int retval = 0;
247         struct task_struct *p;
248
249         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
250                 if (p->state != TASK_STOPPED)
251                         continue;
252                 retval = 1;
253                 break;
254         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
255         return retval;
256 }
257
258 /**
259  * reparent_to_init - Reparent the calling kernel thread to the init task.
260  *
261  * If a kernel thread is launched as a result of a system call, or if
262  * it ever exits, it should generally reparent itself to init so that
263  * it is correctly cleaned up on exit.
264  *
265  * The various task state such as scheduling policy and priority may have
266  * been inherited from a user process, so we reset them to sane values here.
267  *
268  * NOTE that reparent_to_init() gives the caller full capabilities.
269  */
270 static void reparent_to_init(void)
271 {
272         write_lock_irq(&tasklist_lock);
273
274         ptrace_unlink(current);
275         /* Reparent to init */
276         remove_parent(current);
277         current->parent = child_reaper;
278         current->real_parent = child_reaper;
279         add_parent(current);
280
281         /* Set the exit signal to SIGCHLD so we signal init on exit */
282         current->exit_signal = SIGCHLD;
283
284         if ((current->policy == SCHED_NORMAL ||
285                         current->policy == SCHED_BATCH)
286                                 && (task_nice(current) < 0))
287                 set_user_nice(current, 0);
288         /* cpus_allowed? */
289         /* rt_priority? */
290         /* signals? */
291         security_task_reparent_to_init(current);
292         memcpy(current->signal->rlim, init_task.signal->rlim,
293                sizeof(current->signal->rlim));
294         atomic_inc(&(INIT_USER->__count));
295         write_unlock_irq(&tasklist_lock);
296         switch_uid(INIT_USER);
297 }
298
299 void __set_special_pids(pid_t session, pid_t pgrp)
300 {
301         struct task_struct *curr = current->group_leader;
302
303         if (curr->signal->session != session) {
304                 detach_pid(curr, PIDTYPE_SID);
305                 curr->signal->session = session;
306                 attach_pid(curr, PIDTYPE_SID, session);
307         }
308         if (process_group(curr) != pgrp) {
309                 detach_pid(curr, PIDTYPE_PGID);
310                 curr->signal->pgrp = pgrp;
311                 attach_pid(curr, PIDTYPE_PGID, pgrp);
312         }
313 }
314
315 void set_special_pids(pid_t session, pid_t pgrp)
316 {
317         write_lock_irq(&tasklist_lock);
318         __set_special_pids(session, pgrp);
319         write_unlock_irq(&tasklist_lock);
320 }
321
322 /*
323  * Let kernel threads use this to say that they
324  * allow a certain signal (since daemonize() will
325  * have disabled all of them by default).
326  */
327 int allow_signal(int sig)
328 {
329         if (!valid_signal(sig) || sig < 1)
330                 return -EINVAL;
331
332         spin_lock_irq(&current->sighand->siglock);
333         sigdelset(&current->blocked, sig);
334         if (!current->mm) {
335                 /* Kernel threads handle their own signals.
336                    Let the signal code know it'll be handled, so
337                    that they don't get converted to SIGKILL or
338                    just silently dropped */
339                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
340         }
341         recalc_sigpending();
342         spin_unlock_irq(&current->sighand->siglock);
343         return 0;
344 }
345
346 EXPORT_SYMBOL(allow_signal);
347
348 int disallow_signal(int sig)
349 {
350         if (!valid_signal(sig) || sig < 1)
351                 return -EINVAL;
352
353         spin_lock_irq(&current->sighand->siglock);
354         sigaddset(&current->blocked, sig);
355         recalc_sigpending();
356         spin_unlock_irq(&current->sighand->siglock);
357         return 0;
358 }
359
360 EXPORT_SYMBOL(disallow_signal);
361
362 /*
363  *      Put all the gunge required to become a kernel thread without
364  *      attached user resources in one place where it belongs.
365  */
366
367 void daemonize(const char *name, ...)
368 {
369         va_list args;
370         struct fs_struct *fs;
371         sigset_t blocked;
372
373         va_start(args, name);
374         vsnprintf(current->comm, sizeof(current->comm), name, args);
375         va_end(args);
376
377         /*
378          * If we were started as result of loading a module, close all of the
379          * user space pages.  We don't need them, and if we didn't close them
380          * they would be locked into memory.
381          */
382         exit_mm(current);
383
384         set_special_pids(1, 1);
385         mutex_lock(&tty_mutex);
386         current->signal->tty = NULL;
387         mutex_unlock(&tty_mutex);
388
389         /* Block and flush all signals */
390         sigfillset(&blocked);
391         sigprocmask(SIG_BLOCK, &blocked, NULL);
392         flush_signals(current);
393
394         /* Become as one with the init task */
395
396         exit_fs(current);       /* current->fs->count--; */
397         fs = init_task.fs;
398         current->fs = fs;
399         atomic_inc(&fs->count);
400         exit_namespace(current);
401         current->namespace = init_task.namespace;
402         get_namespace(current->namespace);
403         exit_files(current);
404         current->files = init_task.files;
405         atomic_inc(&current->files->count);
406
407         reparent_to_init();
408 }
409
410 EXPORT_SYMBOL(daemonize);
411
412 static void close_files(struct files_struct * files)
413 {
414         int i, j;
415         struct fdtable *fdt;
416
417         j = 0;
418
419         /*
420          * It is safe to dereference the fd table without RCU or
421          * ->file_lock because this is the last reference to the
422          * files structure.
423          */
424         fdt = files_fdtable(files);
425         for (;;) {
426                 unsigned long set;
427                 i = j * __NFDBITS;
428                 if (i >= fdt->max_fdset || i >= fdt->max_fds)
429                         break;
430                 set = fdt->open_fds->fds_bits[j++];
431                 while (set) {
432                         if (set & 1) {
433                                 struct file * file = xchg(&fdt->fd[i], NULL);
434                                 if (file)
435                                         filp_close(file, files);
436                         }
437                         i++;
438                         set >>= 1;
439                 }
440         }
441 }
442
443 struct files_struct *get_files_struct(struct task_struct *task)
444 {
445         struct files_struct *files;
446
447         task_lock(task);
448         files = task->files;
449         if (files)
450                 atomic_inc(&files->count);
451         task_unlock(task);
452
453         return files;
454 }
455
456 void fastcall put_files_struct(struct files_struct *files)
457 {
458         struct fdtable *fdt;
459
460         if (atomic_dec_and_test(&files->count)) {
461                 close_files(files);
462                 /*
463                  * Free the fd and fdset arrays if we expanded them.
464                  * If the fdtable was embedded, pass files for freeing
465                  * at the end of the RCU grace period. Otherwise,
466                  * you can free files immediately.
467                  */
468                 fdt = files_fdtable(files);
469                 if (fdt == &files->fdtab)
470                         fdt->free_files = files;
471                 else
472                         kmem_cache_free(files_cachep, files);
473                 free_fdtable(fdt);
474         }
475 }
476
477 EXPORT_SYMBOL(put_files_struct);
478
479 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
480 {
481         struct files_struct *old;
482
483         old = tsk->files;
484         task_lock(tsk);
485         tsk->files = files;
486         task_unlock(tsk);
487         put_files_struct(old);
488 }
489 EXPORT_SYMBOL(reset_files_struct);
490
491 static inline void __exit_files(struct task_struct *tsk)
492 {
493         struct files_struct * files = tsk->files;
494
495         if (files) {
496                 task_lock(tsk);
497                 tsk->files = NULL;
498                 task_unlock(tsk);
499                 put_files_struct(files);
500         }
501 }
502
503 void exit_files(struct task_struct *tsk)
504 {
505         __exit_files(tsk);
506 }
507
508 static inline void __put_fs_struct(struct fs_struct *fs)
509 {
510         /* No need to hold fs->lock if we are killing it */
511         if (atomic_dec_and_test(&fs->count)) {
512                 dput(fs->root);
513                 mntput(fs->rootmnt);
514                 dput(fs->pwd);
515                 mntput(fs->pwdmnt);
516                 if (fs->altroot) {
517                         dput(fs->altroot);
518                         mntput(fs->altrootmnt);
519                 }
520                 kmem_cache_free(fs_cachep, fs);
521         }
522 }
523
524 void put_fs_struct(struct fs_struct *fs)
525 {
526         __put_fs_struct(fs);
527 }
528
529 static inline void __exit_fs(struct task_struct *tsk)
530 {
531         struct fs_struct * fs = tsk->fs;
532
533         if (fs) {
534                 task_lock(tsk);
535                 tsk->fs = NULL;
536                 task_unlock(tsk);
537                 __put_fs_struct(fs);
538         }
539 }
540
541 void exit_fs(struct task_struct *tsk)
542 {
543         __exit_fs(tsk);
544 }
545
546 EXPORT_SYMBOL_GPL(exit_fs);
547
548 /*
549  * Turn us into a lazy TLB process if we
550  * aren't already..
551  */
552 static void exit_mm(struct task_struct * tsk)
553 {
554         struct mm_struct *mm = tsk->mm;
555
556         mm_release(tsk, mm);
557         if (!mm)
558                 return;
559         /*
560          * Serialize with any possible pending coredump.
561          * We must hold mmap_sem around checking core_waiters
562          * and clearing tsk->mm.  The core-inducing thread
563          * will increment core_waiters for each thread in the
564          * group with ->mm != NULL.
565          */
566         down_read(&mm->mmap_sem);
567         if (mm->core_waiters) {
568                 up_read(&mm->mmap_sem);
569                 down_write(&mm->mmap_sem);
570                 if (!--mm->core_waiters)
571                         complete(mm->core_startup_done);
572                 up_write(&mm->mmap_sem);
573
574                 wait_for_completion(&mm->core_done);
575                 down_read(&mm->mmap_sem);
576         }
577         atomic_inc(&mm->mm_count);
578         BUG_ON(mm != tsk->active_mm);
579         /* more a memory barrier than a real lock */
580         task_lock(tsk);
581         tsk->mm = NULL;
582         up_read(&mm->mmap_sem);
583         enter_lazy_tlb(mm, current);
584         task_unlock(tsk);
585         mmput(mm);
586 }
587
588 static inline void
589 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
590 {
591         /*
592          * Make sure we're not reparenting to ourselves and that
593          * the parent is not a zombie.
594          */
595         BUG_ON(p == reaper || reaper->exit_state);
596         p->real_parent = reaper;
597 }
598
599 static void
600 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
601 {
602         /* We don't want people slaying init.  */
603         if (p->exit_signal != -1)
604                 p->exit_signal = SIGCHLD;
605
606         if (p->pdeath_signal)
607                 /* We already hold the tasklist_lock here.  */
608                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
609
610         /* Move the child from its dying parent to the new one.  */
611         if (unlikely(traced)) {
612                 /* Preserve ptrace links if someone else is tracing this child.  */
613                 list_del_init(&p->ptrace_list);
614                 if (p->parent != p->real_parent)
615                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
616         } else {
617                 /* If this child is being traced, then we're the one tracing it
618                  * anyway, so let go of it.
619                  */
620                 p->ptrace = 0;
621                 remove_parent(p);
622                 p->parent = p->real_parent;
623                 add_parent(p);
624
625                 /* If we'd notified the old parent about this child's death,
626                  * also notify the new parent.
627                  */
628                 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
629                     thread_group_empty(p))
630                         do_notify_parent(p, p->exit_signal);
631                 else if (p->state == TASK_TRACED) {
632                         /*
633                          * If it was at a trace stop, turn it into
634                          * a normal stop since it's no longer being
635                          * traced.
636                          */
637                         ptrace_untrace(p);
638                 }
639         }
640
641         /*
642          * process group orphan check
643          * Case ii: Our child is in a different pgrp
644          * than we are, and it was the only connection
645          * outside, so the child pgrp is now orphaned.
646          */
647         if ((process_group(p) != process_group(father)) &&
648             (p->signal->session == father->signal->session)) {
649                 int pgrp = process_group(p);
650
651                 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
652                         __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
653                         __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
654                 }
655         }
656 }
657
658 /*
659  * When we die, we re-parent all our children.
660  * Try to give them to another thread in our thread
661  * group, and if no such member exists, give it to
662  * the global child reaper process (ie "init")
663  */
664 static void
665 forget_original_parent(struct task_struct *father, struct list_head *to_release)
666 {
667         struct task_struct *p, *reaper = father;
668         struct list_head *_p, *_n;
669
670         do {
671                 reaper = next_thread(reaper);
672                 if (reaper == father) {
673                         reaper = child_reaper;
674                         break;
675                 }
676         } while (reaper->exit_state);
677
678         /*
679          * There are only two places where our children can be:
680          *
681          * - in our child list
682          * - in our ptraced child list
683          *
684          * Search them and reparent children.
685          */
686         list_for_each_safe(_p, _n, &father->children) {
687                 int ptrace;
688                 p = list_entry(_p, struct task_struct, sibling);
689
690                 ptrace = p->ptrace;
691
692                 /* if father isn't the real parent, then ptrace must be enabled */
693                 BUG_ON(father != p->real_parent && !ptrace);
694
695                 if (father == p->real_parent) {
696                         /* reparent with a reaper, real father it's us */
697                         choose_new_parent(p, reaper);
698                         reparent_thread(p, father, 0);
699                 } else {
700                         /* reparent ptraced task to its real parent */
701                         __ptrace_unlink (p);
702                         if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
703                             thread_group_empty(p))
704                                 do_notify_parent(p, p->exit_signal);
705                 }
706
707                 /*
708                  * if the ptraced child is a zombie with exit_signal == -1
709                  * we must collect it before we exit, or it will remain
710                  * zombie forever since we prevented it from self-reap itself
711                  * while it was being traced by us, to be able to see it in wait4.
712                  */
713                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
714                         list_add(&p->ptrace_list, to_release);
715         }
716         list_for_each_safe(_p, _n, &father->ptrace_children) {
717                 p = list_entry(_p, struct task_struct, ptrace_list);
718                 choose_new_parent(p, reaper);
719                 reparent_thread(p, father, 1);
720         }
721 }
722
723 /*
724  * Send signals to all our closest relatives so that they know
725  * to properly mourn us..
726  */
727 static void exit_notify(struct task_struct *tsk)
728 {
729         int state;
730         struct task_struct *t;
731         struct list_head ptrace_dead, *_p, *_n;
732
733         if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
734             && !thread_group_empty(tsk)) {
735                 /*
736                  * This occurs when there was a race between our exit
737                  * syscall and a group signal choosing us as the one to
738                  * wake up.  It could be that we are the only thread
739                  * alerted to check for pending signals, but another thread
740                  * should be woken now to take the signal since we will not.
741                  * Now we'll wake all the threads in the group just to make
742                  * sure someone gets all the pending signals.
743                  */
744                 read_lock(&tasklist_lock);
745                 spin_lock_irq(&tsk->sighand->siglock);
746                 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
747                         if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
748                                 recalc_sigpending_tsk(t);
749                                 if (signal_pending(t))
750                                         signal_wake_up(t, 0);
751                         }
752                 spin_unlock_irq(&tsk->sighand->siglock);
753                 read_unlock(&tasklist_lock);
754         }
755
756         write_lock_irq(&tasklist_lock);
757
758         /*
759          * This does two things:
760          *
761          * A.  Make init inherit all the child processes
762          * B.  Check to see if any process groups have become orphaned
763          *      as a result of our exiting, and if they have any stopped
764          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
765          */
766
767         INIT_LIST_HEAD(&ptrace_dead);
768         forget_original_parent(tsk, &ptrace_dead);
769         BUG_ON(!list_empty(&tsk->children));
770         BUG_ON(!list_empty(&tsk->ptrace_children));
771
772         /*
773          * Check to see if any process groups have become orphaned
774          * as a result of our exiting, and if they have any stopped
775          * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
776          *
777          * Case i: Our father is in a different pgrp than we are
778          * and we were the only connection outside, so our pgrp
779          * is about to become orphaned.
780          */
781          
782         t = tsk->real_parent;
783         
784         if ((process_group(t) != process_group(tsk)) &&
785             (t->signal->session == tsk->signal->session) &&
786             will_become_orphaned_pgrp(process_group(tsk), tsk) &&
787             has_stopped_jobs(process_group(tsk))) {
788                 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
789                 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
790         }
791
792         /* Let father know we died 
793          *
794          * Thread signals are configurable, but you aren't going to use
795          * that to send signals to arbitary processes. 
796          * That stops right now.
797          *
798          * If the parent exec id doesn't match the exec id we saved
799          * when we started then we know the parent has changed security
800          * domain.
801          *
802          * If our self_exec id doesn't match our parent_exec_id then
803          * we have changed execution domain as these two values started
804          * the same after a fork.
805          *      
806          */
807         
808         if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
809             ( tsk->parent_exec_id != t->self_exec_id  ||
810               tsk->self_exec_id != tsk->parent_exec_id)
811             && !capable(CAP_KILL))
812                 tsk->exit_signal = SIGCHLD;
813
814
815         /* If something other than our normal parent is ptracing us, then
816          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
817          * only has special meaning to our real parent.
818          */
819         if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
820                 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
821                 do_notify_parent(tsk, signal);
822         } else if (tsk->ptrace) {
823                 do_notify_parent(tsk, SIGCHLD);
824         }
825
826         state = EXIT_ZOMBIE;
827         if (tsk->exit_signal == -1 &&
828             (likely(tsk->ptrace == 0) ||
829              unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
830                 state = EXIT_DEAD;
831         tsk->exit_state = state;
832
833         write_unlock_irq(&tasklist_lock);
834
835         list_for_each_safe(_p, _n, &ptrace_dead) {
836                 list_del_init(_p);
837                 t = list_entry(_p, struct task_struct, ptrace_list);
838                 release_task(t);
839         }
840
841         /* If the process is dead, release it - nobody will wait for it */
842         if (state == EXIT_DEAD)
843                 release_task(tsk);
844 }
845
846 fastcall NORET_TYPE void do_exit(long code)
847 {
848         struct task_struct *tsk = current;
849         struct taskstats *tidstats;
850         int group_dead;
851         unsigned int mycpu;
852
853         profile_task_exit(tsk);
854
855         WARN_ON(atomic_read(&tsk->fs_excl));
856
857         if (unlikely(in_interrupt()))
858                 panic("Aiee, killing interrupt handler!");
859         if (unlikely(!tsk->pid))
860                 panic("Attempted to kill the idle task!");
861         if (unlikely(tsk == child_reaper))
862                 panic("Attempted to kill init!");
863
864         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
865                 current->ptrace_message = code;
866                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
867         }
868
869         /*
870          * We're taking recursive faults here in do_exit. Safest is to just
871          * leave this task alone and wait for reboot.
872          */
873         if (unlikely(tsk->flags & PF_EXITING)) {
874                 printk(KERN_ALERT
875                         "Fixing recursive fault but reboot is needed!\n");
876                 if (tsk->io_context)
877                         exit_io_context();
878                 set_current_state(TASK_UNINTERRUPTIBLE);
879                 schedule();
880         }
881
882         tsk->flags |= PF_EXITING;
883
884         if (unlikely(in_atomic()))
885                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
886                                 current->comm, current->pid,
887                                 preempt_count());
888
889         taskstats_exit_alloc(&tidstats, &mycpu);
890
891         acct_update_integrals(tsk);
892         if (tsk->mm) {
893                 update_hiwater_rss(tsk->mm);
894                 update_hiwater_vm(tsk->mm);
895         }
896         group_dead = atomic_dec_and_test(&tsk->signal->live);
897         if (group_dead) {
898                 hrtimer_cancel(&tsk->signal->real_timer);
899                 exit_itimers(tsk->signal);
900         }
901         acct_collect(code, group_dead);
902         if (unlikely(tsk->robust_list))
903                 exit_robust_list(tsk);
904 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
905         if (unlikely(tsk->compat_robust_list))
906                 compat_exit_robust_list(tsk);
907 #endif
908         if (unlikely(tsk->audit_context))
909                 audit_free(tsk);
910         taskstats_exit_send(tsk, tidstats, group_dead, mycpu);
911         taskstats_exit_free(tidstats);
912
913         exit_mm(tsk);
914
915         if (group_dead)
916                 acct_process();
917         exit_sem(tsk);
918         __exit_files(tsk);
919         __exit_fs(tsk);
920         exit_namespace(tsk);
921         exit_thread();
922         cpuset_exit(tsk);
923         exit_keys(tsk);
924
925         if (group_dead && tsk->signal->leader)
926                 disassociate_ctty(1);
927
928         module_put(task_thread_info(tsk)->exec_domain->module);
929         if (tsk->binfmt)
930                 module_put(tsk->binfmt->module);
931
932         tsk->exit_code = code;
933         proc_exit_connector(tsk);
934         exit_notify(tsk);
935 #ifdef CONFIG_NUMA
936         mpol_free(tsk->mempolicy);
937         tsk->mempolicy = NULL;
938 #endif
939         /*
940          * This must happen late, after the PID is not
941          * hashed anymore:
942          */
943         if (unlikely(!list_empty(&tsk->pi_state_list)))
944                 exit_pi_state_list(tsk);
945         if (unlikely(current->pi_state_cache))
946                 kfree(current->pi_state_cache);
947         /*
948          * Make sure we are holding no locks:
949          */
950         debug_check_no_locks_held(tsk);
951
952         if (tsk->io_context)
953                 exit_io_context();
954
955         if (tsk->splice_pipe)
956                 __free_pipe_info(tsk->splice_pipe);
957
958         /* PF_DEAD causes final put_task_struct after we schedule. */
959         preempt_disable();
960         BUG_ON(tsk->flags & PF_DEAD);
961         tsk->flags |= PF_DEAD;
962
963         schedule();
964         BUG();
965         /* Avoid "noreturn function does return".  */
966         for (;;)
967                 cpu_relax();    /* For when BUG is null */
968 }
969
970 EXPORT_SYMBOL_GPL(do_exit);
971
972 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
973 {
974         if (comp)
975                 complete(comp);
976         
977         do_exit(code);
978 }
979
980 EXPORT_SYMBOL(complete_and_exit);
981
982 asmlinkage long sys_exit(int error_code)
983 {
984         do_exit((error_code&0xff)<<8);
985 }
986
987 /*
988  * Take down every thread in the group.  This is called by fatal signals
989  * as well as by sys_exit_group (below).
990  */
991 NORET_TYPE void
992 do_group_exit(int exit_code)
993 {
994         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
995
996         if (current->signal->flags & SIGNAL_GROUP_EXIT)
997                 exit_code = current->signal->group_exit_code;
998         else if (!thread_group_empty(current)) {
999                 struct signal_struct *const sig = current->signal;
1000                 struct sighand_struct *const sighand = current->sighand;
1001                 spin_lock_irq(&sighand->siglock);
1002                 if (sig->flags & SIGNAL_GROUP_EXIT)
1003                         /* Another thread got here before we took the lock.  */
1004                         exit_code = sig->group_exit_code;
1005                 else {
1006                         sig->group_exit_code = exit_code;
1007                         zap_other_threads(current);
1008                 }
1009                 spin_unlock_irq(&sighand->siglock);
1010         }
1011
1012         do_exit(exit_code);
1013         /* NOTREACHED */
1014 }
1015
1016 /*
1017  * this kills every thread in the thread group. Note that any externally
1018  * wait4()-ing process will get the correct exit code - even if this
1019  * thread is not the thread group leader.
1020  */
1021 asmlinkage void sys_exit_group(int error_code)
1022 {
1023         do_group_exit((error_code & 0xff) << 8);
1024 }
1025
1026 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1027 {
1028         if (pid > 0) {
1029                 if (p->pid != pid)
1030                         return 0;
1031         } else if (!pid) {
1032                 if (process_group(p) != process_group(current))
1033                         return 0;
1034         } else if (pid != -1) {
1035                 if (process_group(p) != -pid)
1036                         return 0;
1037         }
1038
1039         /*
1040          * Do not consider detached threads that are
1041          * not ptraced:
1042          */
1043         if (p->exit_signal == -1 && !p->ptrace)
1044                 return 0;
1045
1046         /* Wait for all children (clone and not) if __WALL is set;
1047          * otherwise, wait for clone children *only* if __WCLONE is
1048          * set; otherwise, wait for non-clone children *only*.  (Note:
1049          * A "clone" child here is one that reports to its parent
1050          * using a signal other than SIGCHLD.) */
1051         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1052             && !(options & __WALL))
1053                 return 0;
1054         /*
1055          * Do not consider thread group leaders that are
1056          * in a non-empty thread group:
1057          */
1058         if (delay_group_leader(p))
1059                 return 2;
1060
1061         if (security_task_wait(p))
1062                 return 0;
1063
1064         return 1;
1065 }
1066
1067 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1068                                int why, int status,
1069                                struct siginfo __user *infop,
1070                                struct rusage __user *rusagep)
1071 {
1072         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1073
1074         put_task_struct(p);
1075         if (!retval)
1076                 retval = put_user(SIGCHLD, &infop->si_signo);
1077         if (!retval)
1078                 retval = put_user(0, &infop->si_errno);
1079         if (!retval)
1080                 retval = put_user((short)why, &infop->si_code);
1081         if (!retval)
1082                 retval = put_user(pid, &infop->si_pid);
1083         if (!retval)
1084                 retval = put_user(uid, &infop->si_uid);
1085         if (!retval)
1086                 retval = put_user(status, &infop->si_status);
1087         if (!retval)
1088                 retval = pid;
1089         return retval;
1090 }
1091
1092 /*
1093  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1094  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1095  * the lock and this task is uninteresting.  If we return nonzero, we have
1096  * released the lock and the system call should return.
1097  */
1098 static int wait_task_zombie(struct task_struct *p, int noreap,
1099                             struct siginfo __user *infop,
1100                             int __user *stat_addr, struct rusage __user *ru)
1101 {
1102         unsigned long state;
1103         int retval;
1104         int status;
1105
1106         if (unlikely(noreap)) {
1107                 pid_t pid = p->pid;
1108                 uid_t uid = p->uid;
1109                 int exit_code = p->exit_code;
1110                 int why, status;
1111
1112                 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1113                         return 0;
1114                 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1115                         return 0;
1116                 get_task_struct(p);
1117                 read_unlock(&tasklist_lock);
1118                 if ((exit_code & 0x7f) == 0) {
1119                         why = CLD_EXITED;
1120                         status = exit_code >> 8;
1121                 } else {
1122                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1123                         status = exit_code & 0x7f;
1124                 }
1125                 return wait_noreap_copyout(p, pid, uid, why,
1126                                            status, infop, ru);
1127         }
1128
1129         /*
1130          * Try to move the task's state to DEAD
1131          * only one thread is allowed to do this:
1132          */
1133         state = xchg(&p->exit_state, EXIT_DEAD);
1134         if (state != EXIT_ZOMBIE) {
1135                 BUG_ON(state != EXIT_DEAD);
1136                 return 0;
1137         }
1138         if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1139                 /*
1140                  * This can only happen in a race with a ptraced thread
1141                  * dying on another processor.
1142                  */
1143                 return 0;
1144         }
1145
1146         if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1147                 struct signal_struct *psig;
1148                 struct signal_struct *sig;
1149
1150                 /*
1151                  * The resource counters for the group leader are in its
1152                  * own task_struct.  Those for dead threads in the group
1153                  * are in its signal_struct, as are those for the child
1154                  * processes it has previously reaped.  All these
1155                  * accumulate in the parent's signal_struct c* fields.
1156                  *
1157                  * We don't bother to take a lock here to protect these
1158                  * p->signal fields, because they are only touched by
1159                  * __exit_signal, which runs with tasklist_lock
1160                  * write-locked anyway, and so is excluded here.  We do
1161                  * need to protect the access to p->parent->signal fields,
1162                  * as other threads in the parent group can be right
1163                  * here reaping other children at the same time.
1164                  */
1165                 spin_lock_irq(&p->parent->sighand->siglock);
1166                 psig = p->parent->signal;
1167                 sig = p->signal;
1168                 psig->cutime =
1169                         cputime_add(psig->cutime,
1170                         cputime_add(p->utime,
1171                         cputime_add(sig->utime,
1172                                     sig->cutime)));
1173                 psig->cstime =
1174                         cputime_add(psig->cstime,
1175                         cputime_add(p->stime,
1176                         cputime_add(sig->stime,
1177                                     sig->cstime)));
1178                 psig->cmin_flt +=
1179                         p->min_flt + sig->min_flt + sig->cmin_flt;
1180                 psig->cmaj_flt +=
1181                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1182                 psig->cnvcsw +=
1183                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1184                 psig->cnivcsw +=
1185                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1186                 spin_unlock_irq(&p->parent->sighand->siglock);
1187         }
1188
1189         /*
1190          * Now we are sure this task is interesting, and no other
1191          * thread can reap it because we set its state to EXIT_DEAD.
1192          */
1193         read_unlock(&tasklist_lock);
1194
1195         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1196         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1197                 ? p->signal->group_exit_code : p->exit_code;
1198         if (!retval && stat_addr)
1199                 retval = put_user(status, stat_addr);
1200         if (!retval && infop)
1201                 retval = put_user(SIGCHLD, &infop->si_signo);
1202         if (!retval && infop)
1203                 retval = put_user(0, &infop->si_errno);
1204         if (!retval && infop) {
1205                 int why;
1206
1207                 if ((status & 0x7f) == 0) {
1208                         why = CLD_EXITED;
1209                         status >>= 8;
1210                 } else {
1211                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1212                         status &= 0x7f;
1213                 }
1214                 retval = put_user((short)why, &infop->si_code);
1215                 if (!retval)
1216                         retval = put_user(status, &infop->si_status);
1217         }
1218         if (!retval && infop)
1219                 retval = put_user(p->pid, &infop->si_pid);
1220         if (!retval && infop)
1221                 retval = put_user(p->uid, &infop->si_uid);
1222         if (retval) {
1223                 // TODO: is this safe?
1224                 p->exit_state = EXIT_ZOMBIE;
1225                 return retval;
1226         }
1227         retval = p->pid;
1228         if (p->real_parent != p->parent) {
1229                 write_lock_irq(&tasklist_lock);
1230                 /* Double-check with lock held.  */
1231                 if (p->real_parent != p->parent) {
1232                         __ptrace_unlink(p);
1233                         // TODO: is this safe?
1234                         p->exit_state = EXIT_ZOMBIE;
1235                         /*
1236                          * If this is not a detached task, notify the parent.
1237                          * If it's still not detached after that, don't release
1238                          * it now.
1239                          */
1240                         if (p->exit_signal != -1) {
1241                                 do_notify_parent(p, p->exit_signal);
1242                                 if (p->exit_signal != -1)
1243                                         p = NULL;
1244                         }
1245                 }
1246                 write_unlock_irq(&tasklist_lock);
1247         }
1248         if (p != NULL)
1249                 release_task(p);
1250         BUG_ON(!retval);
1251         return retval;
1252 }
1253
1254 /*
1255  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1256  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1257  * the lock and this task is uninteresting.  If we return nonzero, we have
1258  * released the lock and the system call should return.
1259  */
1260 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1261                              int noreap, struct siginfo __user *infop,
1262                              int __user *stat_addr, struct rusage __user *ru)
1263 {
1264         int retval, exit_code;
1265
1266         if (!p->exit_code)
1267                 return 0;
1268         if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1269             p->signal && p->signal->group_stop_count > 0)
1270                 /*
1271                  * A group stop is in progress and this is the group leader.
1272                  * We won't report until all threads have stopped.
1273                  */
1274                 return 0;
1275
1276         /*
1277          * Now we are pretty sure this task is interesting.
1278          * Make sure it doesn't get reaped out from under us while we
1279          * give up the lock and then examine it below.  We don't want to
1280          * keep holding onto the tasklist_lock while we call getrusage and
1281          * possibly take page faults for user memory.
1282          */
1283         get_task_struct(p);
1284         read_unlock(&tasklist_lock);
1285
1286         if (unlikely(noreap)) {
1287                 pid_t pid = p->pid;
1288                 uid_t uid = p->uid;
1289                 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1290
1291                 exit_code = p->exit_code;
1292                 if (unlikely(!exit_code) ||
1293                     unlikely(p->state & TASK_TRACED))
1294                         goto bail_ref;
1295                 return wait_noreap_copyout(p, pid, uid,
1296                                            why, (exit_code << 8) | 0x7f,
1297                                            infop, ru);
1298         }
1299
1300         write_lock_irq(&tasklist_lock);
1301
1302         /*
1303          * This uses xchg to be atomic with the thread resuming and setting
1304          * it.  It must also be done with the write lock held to prevent a
1305          * race with the EXIT_ZOMBIE case.
1306          */
1307         exit_code = xchg(&p->exit_code, 0);
1308         if (unlikely(p->exit_state)) {
1309                 /*
1310                  * The task resumed and then died.  Let the next iteration
1311                  * catch it in EXIT_ZOMBIE.  Note that exit_code might
1312                  * already be zero here if it resumed and did _exit(0).
1313                  * The task itself is dead and won't touch exit_code again;
1314                  * other processors in this function are locked out.
1315                  */
1316                 p->exit_code = exit_code;
1317                 exit_code = 0;
1318         }
1319         if (unlikely(exit_code == 0)) {
1320                 /*
1321                  * Another thread in this function got to it first, or it
1322                  * resumed, or it resumed and then died.
1323                  */
1324                 write_unlock_irq(&tasklist_lock);
1325 bail_ref:
1326                 put_task_struct(p);
1327                 /*
1328                  * We are returning to the wait loop without having successfully
1329                  * removed the process and having released the lock. We cannot
1330                  * continue, since the "p" task pointer is potentially stale.
1331                  *
1332                  * Return -EAGAIN, and do_wait() will restart the loop from the
1333                  * beginning. Do _not_ re-acquire the lock.
1334                  */
1335                 return -EAGAIN;
1336         }
1337
1338         /* move to end of parent's list to avoid starvation */
1339         remove_parent(p);
1340         add_parent(p);
1341
1342         write_unlock_irq(&tasklist_lock);
1343
1344         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1345         if (!retval && stat_addr)
1346                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1347         if (!retval && infop)
1348                 retval = put_user(SIGCHLD, &infop->si_signo);
1349         if (!retval && infop)
1350                 retval = put_user(0, &infop->si_errno);
1351         if (!retval && infop)
1352                 retval = put_user((short)((p->ptrace & PT_PTRACED)
1353                                           ? CLD_TRAPPED : CLD_STOPPED),
1354                                   &infop->si_code);
1355         if (!retval && infop)
1356                 retval = put_user(exit_code, &infop->si_status);
1357         if (!retval && infop)
1358                 retval = put_user(p->pid, &infop->si_pid);
1359         if (!retval && infop)
1360                 retval = put_user(p->uid, &infop->si_uid);
1361         if (!retval)
1362                 retval = p->pid;
1363         put_task_struct(p);
1364
1365         BUG_ON(!retval);
1366         return retval;
1367 }
1368
1369 /*
1370  * Handle do_wait work for one task in a live, non-stopped state.
1371  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1372  * the lock and this task is uninteresting.  If we return nonzero, we have
1373  * released the lock and the system call should return.
1374  */
1375 static int wait_task_continued(struct task_struct *p, int noreap,
1376                                struct siginfo __user *infop,
1377                                int __user *stat_addr, struct rusage __user *ru)
1378 {
1379         int retval;
1380         pid_t pid;
1381         uid_t uid;
1382
1383         if (unlikely(!p->signal))
1384                 return 0;
1385
1386         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1387                 return 0;
1388
1389         spin_lock_irq(&p->sighand->siglock);
1390         /* Re-check with the lock held.  */
1391         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1392                 spin_unlock_irq(&p->sighand->siglock);
1393                 return 0;
1394         }
1395         if (!noreap)
1396                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1397         spin_unlock_irq(&p->sighand->siglock);
1398
1399         pid = p->pid;
1400         uid = p->uid;
1401         get_task_struct(p);
1402         read_unlock(&tasklist_lock);
1403
1404         if (!infop) {
1405                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1406                 put_task_struct(p);
1407                 if (!retval && stat_addr)
1408                         retval = put_user(0xffff, stat_addr);
1409                 if (!retval)
1410                         retval = p->pid;
1411         } else {
1412                 retval = wait_noreap_copyout(p, pid, uid,
1413                                              CLD_CONTINUED, SIGCONT,
1414                                              infop, ru);
1415                 BUG_ON(retval == 0);
1416         }
1417
1418         return retval;
1419 }
1420
1421
1422 static inline int my_ptrace_child(struct task_struct *p)
1423 {
1424         if (!(p->ptrace & PT_PTRACED))
1425                 return 0;
1426         if (!(p->ptrace & PT_ATTACHED))
1427                 return 1;
1428         /*
1429          * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1430          * we are the attacher.  If we are the real parent, this is a race
1431          * inside ptrace_attach.  It is waiting for the tasklist_lock,
1432          * which we have to switch the parent links, but has already set
1433          * the flags in p->ptrace.
1434          */
1435         return (p->parent != p->real_parent);
1436 }
1437
1438 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1439                     int __user *stat_addr, struct rusage __user *ru)
1440 {
1441         DECLARE_WAITQUEUE(wait, current);
1442         struct task_struct *tsk;
1443         int flag, retval;
1444
1445         add_wait_queue(&current->signal->wait_chldexit,&wait);
1446 repeat:
1447         /*
1448          * We will set this flag if we see any child that might later
1449          * match our criteria, even if we are not able to reap it yet.
1450          */
1451         flag = 0;
1452         current->state = TASK_INTERRUPTIBLE;
1453         read_lock(&tasklist_lock);
1454         tsk = current;
1455         do {
1456                 struct task_struct *p;
1457                 struct list_head *_p;
1458                 int ret;
1459
1460                 list_for_each(_p,&tsk->children) {
1461                         p = list_entry(_p, struct task_struct, sibling);
1462
1463                         ret = eligible_child(pid, options, p);
1464                         if (!ret)
1465                                 continue;
1466
1467                         switch (p->state) {
1468                         case TASK_TRACED:
1469                                 /*
1470                                  * When we hit the race with PTRACE_ATTACH,
1471                                  * we will not report this child.  But the
1472                                  * race means it has not yet been moved to
1473                                  * our ptrace_children list, so we need to
1474                                  * set the flag here to avoid a spurious ECHILD
1475                                  * when the race happens with the only child.
1476                                  */
1477                                 flag = 1;
1478                                 if (!my_ptrace_child(p))
1479                                         continue;
1480                                 /*FALLTHROUGH*/
1481                         case TASK_STOPPED:
1482                                 /*
1483                                  * It's stopped now, so it might later
1484                                  * continue, exit, or stop again.
1485                                  */
1486                                 flag = 1;
1487                                 if (!(options & WUNTRACED) &&
1488                                     !my_ptrace_child(p))
1489                                         continue;
1490                                 retval = wait_task_stopped(p, ret == 2,
1491                                                            (options & WNOWAIT),
1492                                                            infop,
1493                                                            stat_addr, ru);
1494                                 if (retval == -EAGAIN)
1495                                         goto repeat;
1496                                 if (retval != 0) /* He released the lock.  */
1497                                         goto end;
1498                                 break;
1499                         default:
1500                         // case EXIT_DEAD:
1501                                 if (p->exit_state == EXIT_DEAD)
1502                                         continue;
1503                         // case EXIT_ZOMBIE:
1504                                 if (p->exit_state == EXIT_ZOMBIE) {
1505                                         /*
1506                                          * Eligible but we cannot release
1507                                          * it yet:
1508                                          */
1509                                         if (ret == 2)
1510                                                 goto check_continued;
1511                                         if (!likely(options & WEXITED))
1512                                                 continue;
1513                                         retval = wait_task_zombie(
1514                                                 p, (options & WNOWAIT),
1515                                                 infop, stat_addr, ru);
1516                                         /* He released the lock.  */
1517                                         if (retval != 0)
1518                                                 goto end;
1519                                         break;
1520                                 }
1521 check_continued:
1522                                 /*
1523                                  * It's running now, so it might later
1524                                  * exit, stop, or stop and then continue.
1525                                  */
1526                                 flag = 1;
1527                                 if (!unlikely(options & WCONTINUED))
1528                                         continue;
1529                                 retval = wait_task_continued(
1530                                         p, (options & WNOWAIT),
1531                                         infop, stat_addr, ru);
1532                                 if (retval != 0) /* He released the lock.  */
1533                                         goto end;
1534                                 break;
1535                         }
1536                 }
1537                 if (!flag) {
1538                         list_for_each(_p, &tsk->ptrace_children) {
1539                                 p = list_entry(_p, struct task_struct,
1540                                                 ptrace_list);
1541                                 if (!eligible_child(pid, options, p))
1542                                         continue;
1543                                 flag = 1;
1544                                 break;
1545                         }
1546                 }
1547                 if (options & __WNOTHREAD)
1548                         break;
1549                 tsk = next_thread(tsk);
1550                 BUG_ON(tsk->signal != current->signal);
1551         } while (tsk != current);
1552
1553         read_unlock(&tasklist_lock);
1554         if (flag) {
1555                 retval = 0;
1556                 if (options & WNOHANG)
1557                         goto end;
1558                 retval = -ERESTARTSYS;
1559                 if (signal_pending(current))
1560                         goto end;
1561                 schedule();
1562                 goto repeat;
1563         }
1564         retval = -ECHILD;
1565 end:
1566         current->state = TASK_RUNNING;
1567         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1568         if (infop) {
1569                 if (retval > 0)
1570                 retval = 0;
1571                 else {
1572                         /*
1573                          * For a WNOHANG return, clear out all the fields
1574                          * we would set so the user can easily tell the
1575                          * difference.
1576                          */
1577                         if (!retval)
1578                                 retval = put_user(0, &infop->si_signo);
1579                         if (!retval)
1580                                 retval = put_user(0, &infop->si_errno);
1581                         if (!retval)
1582                                 retval = put_user(0, &infop->si_code);
1583                         if (!retval)
1584                                 retval = put_user(0, &infop->si_pid);
1585                         if (!retval)
1586                                 retval = put_user(0, &infop->si_uid);
1587                         if (!retval)
1588                                 retval = put_user(0, &infop->si_status);
1589                 }
1590         }
1591         return retval;
1592 }
1593
1594 asmlinkage long sys_waitid(int which, pid_t pid,
1595                            struct siginfo __user *infop, int options,
1596                            struct rusage __user *ru)
1597 {
1598         long ret;
1599
1600         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1601                 return -EINVAL;
1602         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1603                 return -EINVAL;
1604
1605         switch (which) {
1606         case P_ALL:
1607                 pid = -1;
1608                 break;
1609         case P_PID:
1610                 if (pid <= 0)
1611                         return -EINVAL;
1612                 break;
1613         case P_PGID:
1614                 if (pid <= 0)
1615                         return -EINVAL;
1616                 pid = -pid;
1617                 break;
1618         default:
1619                 return -EINVAL;
1620         }
1621
1622         ret = do_wait(pid, options, infop, NULL, ru);
1623
1624         /* avoid REGPARM breakage on x86: */
1625         prevent_tail_call(ret);
1626         return ret;
1627 }
1628
1629 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1630                           int options, struct rusage __user *ru)
1631 {
1632         long ret;
1633
1634         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1635                         __WNOTHREAD|__WCLONE|__WALL))
1636                 return -EINVAL;
1637         ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1638
1639         /* avoid REGPARM breakage on x86: */
1640         prevent_tail_call(ret);
1641         return ret;
1642 }
1643
1644 #ifdef __ARCH_WANT_SYS_WAITPID
1645
1646 /*
1647  * sys_waitpid() remains for compatibility. waitpid() should be
1648  * implemented by calling sys_wait4() from libc.a.
1649  */
1650 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1651 {
1652         return sys_wait4(pid, stat_addr, options, NULL);
1653 }
1654
1655 #endif