]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/exit.c
Merge branches 'timers/clocksource', 'timers/hrtimers', 'timers/nohz', 'timers/ntp...
[linux-2.6-omap-h63xx.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55
56 static void exit_mm(struct task_struct * tsk);
57
58 static inline int task_detached(struct task_struct *p)
59 {
60         return p->exit_signal == -1;
61 }
62
63 static void __unhash_process(struct task_struct *p)
64 {
65         nr_threads--;
66         detach_pid(p, PIDTYPE_PID);
67         if (thread_group_leader(p)) {
68                 detach_pid(p, PIDTYPE_PGID);
69                 detach_pid(p, PIDTYPE_SID);
70
71                 list_del_rcu(&p->tasks);
72                 __get_cpu_var(process_counts)--;
73         }
74         list_del_rcu(&p->thread_group);
75         list_del_init(&p->sibling);
76 }
77
78 /*
79  * This function expects the tasklist_lock write-locked.
80  */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83         struct signal_struct *sig = tsk->signal;
84         struct sighand_struct *sighand;
85
86         BUG_ON(!sig);
87         BUG_ON(!atomic_read(&sig->count));
88
89         sighand = rcu_dereference(tsk->sighand);
90         spin_lock(&sighand->siglock);
91
92         posix_cpu_timers_exit(tsk);
93         if (atomic_dec_and_test(&sig->count))
94                 posix_cpu_timers_exit_group(tsk);
95         else {
96                 /*
97                  * If there is any task waiting for the group exit
98                  * then notify it:
99                  */
100                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101                         wake_up_process(sig->group_exit_task);
102
103                 if (tsk == sig->curr_target)
104                         sig->curr_target = next_thread(tsk);
105                 /*
106                  * Accumulate here the counters for all threads but the
107                  * group leader as they die, so they can be added into
108                  * the process-wide totals when those are taken.
109                  * The group leader stays around as a zombie as long
110                  * as there are other threads.  When it gets reaped,
111                  * the exit.c code will add its counts into these totals.
112                  * We won't ever get here for the group leader, since it
113                  * will have been the last reference on the signal_struct.
114                  */
115                 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
116                 sig->min_flt += tsk->min_flt;
117                 sig->maj_flt += tsk->maj_flt;
118                 sig->nvcsw += tsk->nvcsw;
119                 sig->nivcsw += tsk->nivcsw;
120                 sig->inblock += task_io_get_inblock(tsk);
121                 sig->oublock += task_io_get_oublock(tsk);
122                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
123                 sig = NULL; /* Marker for below. */
124         }
125
126         __unhash_process(tsk);
127
128         /*
129          * Do this under ->siglock, we can race with another thread
130          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
131          */
132         flush_sigqueue(&tsk->pending);
133
134         tsk->signal = NULL;
135         tsk->sighand = NULL;
136         spin_unlock(&sighand->siglock);
137
138         __cleanup_sighand(sighand);
139         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
140         if (sig) {
141                 flush_sigqueue(&sig->shared_pending);
142                 taskstats_tgid_free(sig);
143                 __cleanup_signal(sig);
144         }
145 }
146
147 static void delayed_put_task_struct(struct rcu_head *rhp)
148 {
149         put_task_struct(container_of(rhp, struct task_struct, rcu));
150 }
151
152
153 void release_task(struct task_struct * p)
154 {
155         struct task_struct *leader;
156         int zap_leader;
157 repeat:
158         tracehook_prepare_release_task(p);
159         atomic_dec(&p->user->processes);
160         proc_flush_task(p);
161         write_lock_irq(&tasklist_lock);
162         tracehook_finish_release_task(p);
163         __exit_signal(p);
164
165         /*
166          * If we are the last non-leader member of the thread
167          * group, and the leader is zombie, then notify the
168          * group leader's parent process. (if it wants notification.)
169          */
170         zap_leader = 0;
171         leader = p->group_leader;
172         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
173                 BUG_ON(task_detached(leader));
174                 do_notify_parent(leader, leader->exit_signal);
175                 /*
176                  * If we were the last child thread and the leader has
177                  * exited already, and the leader's parent ignores SIGCHLD,
178                  * then we are the one who should release the leader.
179                  *
180                  * do_notify_parent() will have marked it self-reaping in
181                  * that case.
182                  */
183                 zap_leader = task_detached(leader);
184
185                 /*
186                  * This maintains the invariant that release_task()
187                  * only runs on a task in EXIT_DEAD, just for sanity.
188                  */
189                 if (zap_leader)
190                         leader->exit_state = EXIT_DEAD;
191         }
192
193         write_unlock_irq(&tasklist_lock);
194         release_thread(p);
195         call_rcu(&p->rcu, delayed_put_task_struct);
196
197         p = leader;
198         if (unlikely(zap_leader))
199                 goto repeat;
200 }
201
202 /*
203  * This checks not only the pgrp, but falls back on the pid if no
204  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
205  * without this...
206  *
207  * The caller must hold rcu lock or the tasklist lock.
208  */
209 struct pid *session_of_pgrp(struct pid *pgrp)
210 {
211         struct task_struct *p;
212         struct pid *sid = NULL;
213
214         p = pid_task(pgrp, PIDTYPE_PGID);
215         if (p == NULL)
216                 p = pid_task(pgrp, PIDTYPE_PID);
217         if (p != NULL)
218                 sid = task_session(p);
219
220         return sid;
221 }
222
223 /*
224  * Determine if a process group is "orphaned", according to the POSIX
225  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
226  * by terminal-generated stop signals.  Newly orphaned process groups are
227  * to receive a SIGHUP and a SIGCONT.
228  *
229  * "I ask you, have you ever known what it is to be an orphan?"
230  */
231 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
232 {
233         struct task_struct *p;
234
235         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
236                 if ((p == ignored_task) ||
237                     (p->exit_state && thread_group_empty(p)) ||
238                     is_global_init(p->real_parent))
239                         continue;
240
241                 if (task_pgrp(p->real_parent) != pgrp &&
242                     task_session(p->real_parent) == task_session(p))
243                         return 0;
244         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
245
246         return 1;
247 }
248
249 int is_current_pgrp_orphaned(void)
250 {
251         int retval;
252
253         read_lock(&tasklist_lock);
254         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
255         read_unlock(&tasklist_lock);
256
257         return retval;
258 }
259
260 static int has_stopped_jobs(struct pid *pgrp)
261 {
262         int retval = 0;
263         struct task_struct *p;
264
265         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
266                 if (!task_is_stopped(p))
267                         continue;
268                 retval = 1;
269                 break;
270         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
271         return retval;
272 }
273
274 /*
275  * Check to see if any process groups have become orphaned as
276  * a result of our exiting, and if they have any stopped jobs,
277  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
278  */
279 static void
280 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
281 {
282         struct pid *pgrp = task_pgrp(tsk);
283         struct task_struct *ignored_task = tsk;
284
285         if (!parent)
286                  /* exit: our father is in a different pgrp than
287                   * we are and we were the only connection outside.
288                   */
289                 parent = tsk->real_parent;
290         else
291                 /* reparent: our child is in a different pgrp than
292                  * we are, and it was the only connection outside.
293                  */
294                 ignored_task = NULL;
295
296         if (task_pgrp(parent) != pgrp &&
297             task_session(parent) == task_session(tsk) &&
298             will_become_orphaned_pgrp(pgrp, ignored_task) &&
299             has_stopped_jobs(pgrp)) {
300                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
301                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
302         }
303 }
304
305 /**
306  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
307  *
308  * If a kernel thread is launched as a result of a system call, or if
309  * it ever exits, it should generally reparent itself to kthreadd so it
310  * isn't in the way of other processes and is correctly cleaned up on exit.
311  *
312  * The various task state such as scheduling policy and priority may have
313  * been inherited from a user process, so we reset them to sane values here.
314  *
315  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
316  */
317 static void reparent_to_kthreadd(void)
318 {
319         write_lock_irq(&tasklist_lock);
320
321         ptrace_unlink(current);
322         /* Reparent to init */
323         current->real_parent = current->parent = kthreadd_task;
324         list_move_tail(&current->sibling, &current->real_parent->children);
325
326         /* Set the exit signal to SIGCHLD so we signal init on exit */
327         current->exit_signal = SIGCHLD;
328
329         if (task_nice(current) < 0)
330                 set_user_nice(current, 0);
331         /* cpus_allowed? */
332         /* rt_priority? */
333         /* signals? */
334         security_task_reparent_to_init(current);
335         memcpy(current->signal->rlim, init_task.signal->rlim,
336                sizeof(current->signal->rlim));
337         atomic_inc(&(INIT_USER->__count));
338         write_unlock_irq(&tasklist_lock);
339         switch_uid(INIT_USER);
340 }
341
342 void __set_special_pids(struct pid *pid)
343 {
344         struct task_struct *curr = current->group_leader;
345         pid_t nr = pid_nr(pid);
346
347         if (task_session(curr) != pid) {
348                 change_pid(curr, PIDTYPE_SID, pid);
349                 set_task_session(curr, nr);
350         }
351         if (task_pgrp(curr) != pid) {
352                 change_pid(curr, PIDTYPE_PGID, pid);
353                 set_task_pgrp(curr, nr);
354         }
355 }
356
357 static void set_special_pids(struct pid *pid)
358 {
359         write_lock_irq(&tasklist_lock);
360         __set_special_pids(pid);
361         write_unlock_irq(&tasklist_lock);
362 }
363
364 /*
365  * Let kernel threads use this to say that they
366  * allow a certain signal (since daemonize() will
367  * have disabled all of them by default).
368  */
369 int allow_signal(int sig)
370 {
371         if (!valid_signal(sig) || sig < 1)
372                 return -EINVAL;
373
374         spin_lock_irq(&current->sighand->siglock);
375         sigdelset(&current->blocked, sig);
376         if (!current->mm) {
377                 /* Kernel threads handle their own signals.
378                    Let the signal code know it'll be handled, so
379                    that they don't get converted to SIGKILL or
380                    just silently dropped */
381                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
382         }
383         recalc_sigpending();
384         spin_unlock_irq(&current->sighand->siglock);
385         return 0;
386 }
387
388 EXPORT_SYMBOL(allow_signal);
389
390 int disallow_signal(int sig)
391 {
392         if (!valid_signal(sig) || sig < 1)
393                 return -EINVAL;
394
395         spin_lock_irq(&current->sighand->siglock);
396         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
397         recalc_sigpending();
398         spin_unlock_irq(&current->sighand->siglock);
399         return 0;
400 }
401
402 EXPORT_SYMBOL(disallow_signal);
403
404 /*
405  *      Put all the gunge required to become a kernel thread without
406  *      attached user resources in one place where it belongs.
407  */
408
409 void daemonize(const char *name, ...)
410 {
411         va_list args;
412         struct fs_struct *fs;
413         sigset_t blocked;
414
415         va_start(args, name);
416         vsnprintf(current->comm, sizeof(current->comm), name, args);
417         va_end(args);
418
419         /*
420          * If we were started as result of loading a module, close all of the
421          * user space pages.  We don't need them, and if we didn't close them
422          * they would be locked into memory.
423          */
424         exit_mm(current);
425         /*
426          * We don't want to have TIF_FREEZE set if the system-wide hibernation
427          * or suspend transition begins right now.
428          */
429         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
430
431         if (current->nsproxy != &init_nsproxy) {
432                 get_nsproxy(&init_nsproxy);
433                 switch_task_namespaces(current, &init_nsproxy);
434         }
435         set_special_pids(&init_struct_pid);
436         proc_clear_tty(current);
437
438         /* Block and flush all signals */
439         sigfillset(&blocked);
440         sigprocmask(SIG_BLOCK, &blocked, NULL);
441         flush_signals(current);
442
443         /* Become as one with the init task */
444
445         exit_fs(current);       /* current->fs->count--; */
446         fs = init_task.fs;
447         current->fs = fs;
448         atomic_inc(&fs->count);
449
450         exit_files(current);
451         current->files = init_task.files;
452         atomic_inc(&current->files->count);
453
454         reparent_to_kthreadd();
455 }
456
457 EXPORT_SYMBOL(daemonize);
458
459 static void close_files(struct files_struct * files)
460 {
461         int i, j;
462         struct fdtable *fdt;
463
464         j = 0;
465
466         /*
467          * It is safe to dereference the fd table without RCU or
468          * ->file_lock because this is the last reference to the
469          * files structure.
470          */
471         fdt = files_fdtable(files);
472         for (;;) {
473                 unsigned long set;
474                 i = j * __NFDBITS;
475                 if (i >= fdt->max_fds)
476                         break;
477                 set = fdt->open_fds->fds_bits[j++];
478                 while (set) {
479                         if (set & 1) {
480                                 struct file * file = xchg(&fdt->fd[i], NULL);
481                                 if (file) {
482                                         filp_close(file, files);
483                                         cond_resched();
484                                 }
485                         }
486                         i++;
487                         set >>= 1;
488                 }
489         }
490 }
491
492 struct files_struct *get_files_struct(struct task_struct *task)
493 {
494         struct files_struct *files;
495
496         task_lock(task);
497         files = task->files;
498         if (files)
499                 atomic_inc(&files->count);
500         task_unlock(task);
501
502         return files;
503 }
504
505 void put_files_struct(struct files_struct *files)
506 {
507         struct fdtable *fdt;
508
509         if (atomic_dec_and_test(&files->count)) {
510                 close_files(files);
511                 /*
512                  * Free the fd and fdset arrays if we expanded them.
513                  * If the fdtable was embedded, pass files for freeing
514                  * at the end of the RCU grace period. Otherwise,
515                  * you can free files immediately.
516                  */
517                 fdt = files_fdtable(files);
518                 if (fdt != &files->fdtab)
519                         kmem_cache_free(files_cachep, files);
520                 free_fdtable(fdt);
521         }
522 }
523
524 void reset_files_struct(struct files_struct *files)
525 {
526         struct task_struct *tsk = current;
527         struct files_struct *old;
528
529         old = tsk->files;
530         task_lock(tsk);
531         tsk->files = files;
532         task_unlock(tsk);
533         put_files_struct(old);
534 }
535
536 void exit_files(struct task_struct *tsk)
537 {
538         struct files_struct * files = tsk->files;
539
540         if (files) {
541                 task_lock(tsk);
542                 tsk->files = NULL;
543                 task_unlock(tsk);
544                 put_files_struct(files);
545         }
546 }
547
548 void put_fs_struct(struct fs_struct *fs)
549 {
550         /* No need to hold fs->lock if we are killing it */
551         if (atomic_dec_and_test(&fs->count)) {
552                 path_put(&fs->root);
553                 path_put(&fs->pwd);
554                 kmem_cache_free(fs_cachep, fs);
555         }
556 }
557
558 void exit_fs(struct task_struct *tsk)
559 {
560         struct fs_struct * fs = tsk->fs;
561
562         if (fs) {
563                 task_lock(tsk);
564                 tsk->fs = NULL;
565                 task_unlock(tsk);
566                 put_fs_struct(fs);
567         }
568 }
569
570 EXPORT_SYMBOL_GPL(exit_fs);
571
572 #ifdef CONFIG_MM_OWNER
573 /*
574  * Task p is exiting and it owned mm, lets find a new owner for it
575  */
576 static inline int
577 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
578 {
579         /*
580          * If there are other users of the mm and the owner (us) is exiting
581          * we need to find a new owner to take on the responsibility.
582          */
583         if (atomic_read(&mm->mm_users) <= 1)
584                 return 0;
585         if (mm->owner != p)
586                 return 0;
587         return 1;
588 }
589
590 void mm_update_next_owner(struct mm_struct *mm)
591 {
592         struct task_struct *c, *g, *p = current;
593
594 retry:
595         if (!mm_need_new_owner(mm, p))
596                 return;
597
598         read_lock(&tasklist_lock);
599         /*
600          * Search in the children
601          */
602         list_for_each_entry(c, &p->children, sibling) {
603                 if (c->mm == mm)
604                         goto assign_new_owner;
605         }
606
607         /*
608          * Search in the siblings
609          */
610         list_for_each_entry(c, &p->parent->children, sibling) {
611                 if (c->mm == mm)
612                         goto assign_new_owner;
613         }
614
615         /*
616          * Search through everything else. We should not get
617          * here often
618          */
619         do_each_thread(g, c) {
620                 if (c->mm == mm)
621                         goto assign_new_owner;
622         } while_each_thread(g, c);
623
624         read_unlock(&tasklist_lock);
625         /*
626          * We found no owner yet mm_users > 1: this implies that we are
627          * most likely racing with swapoff (try_to_unuse()) or /proc or
628          * ptrace or page migration (get_task_mm()).  Mark owner as NULL,
629          * so that subsystems can understand the callback and take action.
630          */
631         down_write(&mm->mmap_sem);
632         cgroup_mm_owner_callbacks(mm->owner, NULL);
633         mm->owner = NULL;
634         up_write(&mm->mmap_sem);
635         return;
636
637 assign_new_owner:
638         BUG_ON(c == p);
639         get_task_struct(c);
640         read_unlock(&tasklist_lock);
641         down_write(&mm->mmap_sem);
642         /*
643          * The task_lock protects c->mm from changing.
644          * We always want mm->owner->mm == mm
645          */
646         task_lock(c);
647         if (c->mm != mm) {
648                 task_unlock(c);
649                 up_write(&mm->mmap_sem);
650                 put_task_struct(c);
651                 goto retry;
652         }
653         cgroup_mm_owner_callbacks(mm->owner, c);
654         mm->owner = c;
655         task_unlock(c);
656         up_write(&mm->mmap_sem);
657         put_task_struct(c);
658 }
659 #endif /* CONFIG_MM_OWNER */
660
661 /*
662  * Turn us into a lazy TLB process if we
663  * aren't already..
664  */
665 static void exit_mm(struct task_struct * tsk)
666 {
667         struct mm_struct *mm = tsk->mm;
668         struct core_state *core_state;
669
670         mm_release(tsk, mm);
671         if (!mm)
672                 return;
673         /*
674          * Serialize with any possible pending coredump.
675          * We must hold mmap_sem around checking core_state
676          * and clearing tsk->mm.  The core-inducing thread
677          * will increment ->nr_threads for each thread in the
678          * group with ->mm != NULL.
679          */
680         down_read(&mm->mmap_sem);
681         core_state = mm->core_state;
682         if (core_state) {
683                 struct core_thread self;
684                 up_read(&mm->mmap_sem);
685
686                 self.task = tsk;
687                 self.next = xchg(&core_state->dumper.next, &self);
688                 /*
689                  * Implies mb(), the result of xchg() must be visible
690                  * to core_state->dumper.
691                  */
692                 if (atomic_dec_and_test(&core_state->nr_threads))
693                         complete(&core_state->startup);
694
695                 for (;;) {
696                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
697                         if (!self.task) /* see coredump_finish() */
698                                 break;
699                         schedule();
700                 }
701                 __set_task_state(tsk, TASK_RUNNING);
702                 down_read(&mm->mmap_sem);
703         }
704         atomic_inc(&mm->mm_count);
705         BUG_ON(mm != tsk->active_mm);
706         /* more a memory barrier than a real lock */
707         task_lock(tsk);
708         tsk->mm = NULL;
709         up_read(&mm->mmap_sem);
710         enter_lazy_tlb(mm, current);
711         /* We don't want this task to be frozen prematurely */
712         clear_freeze_flag(tsk);
713         task_unlock(tsk);
714         mm_update_next_owner(mm);
715         mmput(mm);
716 }
717
718 /*
719  * Return nonzero if @parent's children should reap themselves.
720  *
721  * Called with write_lock_irq(&tasklist_lock) held.
722  */
723 static int ignoring_children(struct task_struct *parent)
724 {
725         int ret;
726         struct sighand_struct *psig = parent->sighand;
727         unsigned long flags;
728         spin_lock_irqsave(&psig->siglock, flags);
729         ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
730                (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
731         spin_unlock_irqrestore(&psig->siglock, flags);
732         return ret;
733 }
734
735 /*
736  * Detach all tasks we were using ptrace on.
737  * Any that need to be release_task'd are put on the @dead list.
738  *
739  * Called with write_lock(&tasklist_lock) held.
740  */
741 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
742 {
743         struct task_struct *p, *n;
744         int ign = -1;
745
746         list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
747                 __ptrace_unlink(p);
748
749                 if (p->exit_state != EXIT_ZOMBIE)
750                         continue;
751
752                 /*
753                  * If it's a zombie, our attachedness prevented normal
754                  * parent notification or self-reaping.  Do notification
755                  * now if it would have happened earlier.  If it should
756                  * reap itself, add it to the @dead list.  We can't call
757                  * release_task() here because we already hold tasklist_lock.
758                  *
759                  * If it's our own child, there is no notification to do.
760                  * But if our normal children self-reap, then this child
761                  * was prevented by ptrace and we must reap it now.
762                  */
763                 if (!task_detached(p) && thread_group_empty(p)) {
764                         if (!same_thread_group(p->real_parent, parent))
765                                 do_notify_parent(p, p->exit_signal);
766                         else {
767                                 if (ign < 0)
768                                         ign = ignoring_children(parent);
769                                 if (ign)
770                                         p->exit_signal = -1;
771                         }
772                 }
773
774                 if (task_detached(p)) {
775                         /*
776                          * Mark it as in the process of being reaped.
777                          */
778                         p->exit_state = EXIT_DEAD;
779                         list_add(&p->ptrace_entry, dead);
780                 }
781         }
782 }
783
784 /*
785  * Finish up exit-time ptrace cleanup.
786  *
787  * Called without locks.
788  */
789 static void ptrace_exit_finish(struct task_struct *parent,
790                                struct list_head *dead)
791 {
792         struct task_struct *p, *n;
793
794         BUG_ON(!list_empty(&parent->ptraced));
795
796         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
797                 list_del_init(&p->ptrace_entry);
798                 release_task(p);
799         }
800 }
801
802 static void reparent_thread(struct task_struct *p, struct task_struct *father)
803 {
804         if (p->pdeath_signal)
805                 /* We already hold the tasklist_lock here.  */
806                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
807
808         list_move_tail(&p->sibling, &p->real_parent->children);
809
810         /* If this is a threaded reparent there is no need to
811          * notify anyone anything has happened.
812          */
813         if (same_thread_group(p->real_parent, father))
814                 return;
815
816         /* We don't want people slaying init.  */
817         if (!task_detached(p))
818                 p->exit_signal = SIGCHLD;
819
820         /* If we'd notified the old parent about this child's death,
821          * also notify the new parent.
822          */
823         if (!ptrace_reparented(p) &&
824             p->exit_state == EXIT_ZOMBIE &&
825             !task_detached(p) && thread_group_empty(p))
826                 do_notify_parent(p, p->exit_signal);
827
828         kill_orphaned_pgrp(p, father);
829 }
830
831 /*
832  * When we die, we re-parent all our children.
833  * Try to give them to another thread in our thread
834  * group, and if no such member exists, give it to
835  * the child reaper process (ie "init") in our pid
836  * space.
837  */
838 static struct task_struct *find_new_reaper(struct task_struct *father)
839 {
840         struct pid_namespace *pid_ns = task_active_pid_ns(father);
841         struct task_struct *thread;
842
843         thread = father;
844         while_each_thread(father, thread) {
845                 if (thread->flags & PF_EXITING)
846                         continue;
847                 if (unlikely(pid_ns->child_reaper == father))
848                         pid_ns->child_reaper = thread;
849                 return thread;
850         }
851
852         if (unlikely(pid_ns->child_reaper == father)) {
853                 write_unlock_irq(&tasklist_lock);
854                 if (unlikely(pid_ns == &init_pid_ns))
855                         panic("Attempted to kill init!");
856
857                 zap_pid_ns_processes(pid_ns);
858                 write_lock_irq(&tasklist_lock);
859                 /*
860                  * We can not clear ->child_reaper or leave it alone.
861                  * There may by stealth EXIT_DEAD tasks on ->children,
862                  * forget_original_parent() must move them somewhere.
863                  */
864                 pid_ns->child_reaper = init_pid_ns.child_reaper;
865         }
866
867         return pid_ns->child_reaper;
868 }
869
870 static void forget_original_parent(struct task_struct *father)
871 {
872         struct task_struct *p, *n, *reaper;
873         LIST_HEAD(ptrace_dead);
874
875         write_lock_irq(&tasklist_lock);
876         reaper = find_new_reaper(father);
877         /*
878          * First clean up ptrace if we were using it.
879          */
880         ptrace_exit(father, &ptrace_dead);
881
882         list_for_each_entry_safe(p, n, &father->children, sibling) {
883                 p->real_parent = reaper;
884                 if (p->parent == father) {
885                         BUG_ON(p->ptrace);
886                         p->parent = p->real_parent;
887                 }
888                 reparent_thread(p, father);
889         }
890
891         write_unlock_irq(&tasklist_lock);
892         BUG_ON(!list_empty(&father->children));
893
894         ptrace_exit_finish(father, &ptrace_dead);
895 }
896
897 /*
898  * Send signals to all our closest relatives so that they know
899  * to properly mourn us..
900  */
901 static void exit_notify(struct task_struct *tsk, int group_dead)
902 {
903         int signal;
904         void *cookie;
905
906         /*
907          * This does two things:
908          *
909          * A.  Make init inherit all the child processes
910          * B.  Check to see if any process groups have become orphaned
911          *      as a result of our exiting, and if they have any stopped
912          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
913          */
914         forget_original_parent(tsk);
915         exit_task_namespaces(tsk);
916
917         write_lock_irq(&tasklist_lock);
918         if (group_dead)
919                 kill_orphaned_pgrp(tsk->group_leader, NULL);
920
921         /* Let father know we died
922          *
923          * Thread signals are configurable, but you aren't going to use
924          * that to send signals to arbitary processes.
925          * That stops right now.
926          *
927          * If the parent exec id doesn't match the exec id we saved
928          * when we started then we know the parent has changed security
929          * domain.
930          *
931          * If our self_exec id doesn't match our parent_exec_id then
932          * we have changed execution domain as these two values started
933          * the same after a fork.
934          */
935         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
936             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
937              tsk->self_exec_id != tsk->parent_exec_id) &&
938             !capable(CAP_KILL))
939                 tsk->exit_signal = SIGCHLD;
940
941         signal = tracehook_notify_death(tsk, &cookie, group_dead);
942         if (signal >= 0)
943                 signal = do_notify_parent(tsk, signal);
944
945         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
946
947         /* mt-exec, de_thread() is waiting for us */
948         if (thread_group_leader(tsk) &&
949             tsk->signal->group_exit_task &&
950             tsk->signal->notify_count < 0)
951                 wake_up_process(tsk->signal->group_exit_task);
952
953         write_unlock_irq(&tasklist_lock);
954
955         tracehook_report_death(tsk, signal, cookie, group_dead);
956
957         /* If the process is dead, release it - nobody will wait for it */
958         if (signal == DEATH_REAP)
959                 release_task(tsk);
960 }
961
962 #ifdef CONFIG_DEBUG_STACK_USAGE
963 static void check_stack_usage(void)
964 {
965         static DEFINE_SPINLOCK(low_water_lock);
966         static int lowest_to_date = THREAD_SIZE;
967         unsigned long *n = end_of_stack(current);
968         unsigned long free;
969
970         while (*n == 0)
971                 n++;
972         free = (unsigned long)n - (unsigned long)end_of_stack(current);
973
974         if (free >= lowest_to_date)
975                 return;
976
977         spin_lock(&low_water_lock);
978         if (free < lowest_to_date) {
979                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
980                                 "left\n",
981                                 current->comm, free);
982                 lowest_to_date = free;
983         }
984         spin_unlock(&low_water_lock);
985 }
986 #else
987 static inline void check_stack_usage(void) {}
988 #endif
989
990 NORET_TYPE void do_exit(long code)
991 {
992         struct task_struct *tsk = current;
993         int group_dead;
994
995         profile_task_exit(tsk);
996
997         WARN_ON(atomic_read(&tsk->fs_excl));
998
999         if (unlikely(in_interrupt()))
1000                 panic("Aiee, killing interrupt handler!");
1001         if (unlikely(!tsk->pid))
1002                 panic("Attempted to kill the idle task!");
1003
1004         tracehook_report_exit(&code);
1005
1006         /*
1007          * We're taking recursive faults here in do_exit. Safest is to just
1008          * leave this task alone and wait for reboot.
1009          */
1010         if (unlikely(tsk->flags & PF_EXITING)) {
1011                 printk(KERN_ALERT
1012                         "Fixing recursive fault but reboot is needed!\n");
1013                 /*
1014                  * We can do this unlocked here. The futex code uses
1015                  * this flag just to verify whether the pi state
1016                  * cleanup has been done or not. In the worst case it
1017                  * loops once more. We pretend that the cleanup was
1018                  * done as there is no way to return. Either the
1019                  * OWNER_DIED bit is set by now or we push the blocked
1020                  * task into the wait for ever nirwana as well.
1021                  */
1022                 tsk->flags |= PF_EXITPIDONE;
1023                 if (tsk->io_context)
1024                         exit_io_context();
1025                 set_current_state(TASK_UNINTERRUPTIBLE);
1026                 schedule();
1027         }
1028
1029         exit_signals(tsk);  /* sets PF_EXITING */
1030         /*
1031          * tsk->flags are checked in the futex code to protect against
1032          * an exiting task cleaning up the robust pi futexes.
1033          */
1034         smp_mb();
1035         spin_unlock_wait(&tsk->pi_lock);
1036
1037         if (unlikely(in_atomic()))
1038                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1039                                 current->comm, task_pid_nr(current),
1040                                 preempt_count());
1041
1042         acct_update_integrals(tsk);
1043         if (tsk->mm) {
1044                 update_hiwater_rss(tsk->mm);
1045                 update_hiwater_vm(tsk->mm);
1046         }
1047         group_dead = atomic_dec_and_test(&tsk->signal->live);
1048         if (group_dead) {
1049                 hrtimer_cancel(&tsk->signal->real_timer);
1050                 exit_itimers(tsk->signal);
1051         }
1052         acct_collect(code, group_dead);
1053 #ifdef CONFIG_FUTEX
1054         if (unlikely(tsk->robust_list))
1055                 exit_robust_list(tsk);
1056 #ifdef CONFIG_COMPAT
1057         if (unlikely(tsk->compat_robust_list))
1058                 compat_exit_robust_list(tsk);
1059 #endif
1060 #endif
1061         if (group_dead)
1062                 tty_audit_exit();
1063         if (unlikely(tsk->audit_context))
1064                 audit_free(tsk);
1065
1066         tsk->exit_code = code;
1067         taskstats_exit(tsk, group_dead);
1068
1069         exit_mm(tsk);
1070
1071         if (group_dead)
1072                 acct_process();
1073         exit_sem(tsk);
1074         exit_files(tsk);
1075         exit_fs(tsk);
1076         check_stack_usage();
1077         exit_thread();
1078         cgroup_exit(tsk, 1);
1079         exit_keys(tsk);
1080
1081         if (group_dead && tsk->signal->leader)
1082                 disassociate_ctty(1);
1083
1084         module_put(task_thread_info(tsk)->exec_domain->module);
1085         if (tsk->binfmt)
1086                 module_put(tsk->binfmt->module);
1087
1088         proc_exit_connector(tsk);
1089         exit_notify(tsk, group_dead);
1090 #ifdef CONFIG_NUMA
1091         mpol_put(tsk->mempolicy);
1092         tsk->mempolicy = NULL;
1093 #endif
1094 #ifdef CONFIG_FUTEX
1095         /*
1096          * This must happen late, after the PID is not
1097          * hashed anymore:
1098          */
1099         if (unlikely(!list_empty(&tsk->pi_state_list)))
1100                 exit_pi_state_list(tsk);
1101         if (unlikely(current->pi_state_cache))
1102                 kfree(current->pi_state_cache);
1103 #endif
1104         /*
1105          * Make sure we are holding no locks:
1106          */
1107         debug_check_no_locks_held(tsk);
1108         /*
1109          * We can do this unlocked here. The futex code uses this flag
1110          * just to verify whether the pi state cleanup has been done
1111          * or not. In the worst case it loops once more.
1112          */
1113         tsk->flags |= PF_EXITPIDONE;
1114
1115         if (tsk->io_context)
1116                 exit_io_context();
1117
1118         if (tsk->splice_pipe)
1119                 __free_pipe_info(tsk->splice_pipe);
1120
1121         preempt_disable();
1122         /* causes final put_task_struct in finish_task_switch(). */
1123         tsk->state = TASK_DEAD;
1124
1125         schedule();
1126         BUG();
1127         /* Avoid "noreturn function does return".  */
1128         for (;;)
1129                 cpu_relax();    /* For when BUG is null */
1130 }
1131
1132 EXPORT_SYMBOL_GPL(do_exit);
1133
1134 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1135 {
1136         if (comp)
1137                 complete(comp);
1138
1139         do_exit(code);
1140 }
1141
1142 EXPORT_SYMBOL(complete_and_exit);
1143
1144 asmlinkage long sys_exit(int error_code)
1145 {
1146         do_exit((error_code&0xff)<<8);
1147 }
1148
1149 /*
1150  * Take down every thread in the group.  This is called by fatal signals
1151  * as well as by sys_exit_group (below).
1152  */
1153 NORET_TYPE void
1154 do_group_exit(int exit_code)
1155 {
1156         struct signal_struct *sig = current->signal;
1157
1158         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1159
1160         if (signal_group_exit(sig))
1161                 exit_code = sig->group_exit_code;
1162         else if (!thread_group_empty(current)) {
1163                 struct sighand_struct *const sighand = current->sighand;
1164                 spin_lock_irq(&sighand->siglock);
1165                 if (signal_group_exit(sig))
1166                         /* Another thread got here before we took the lock.  */
1167                         exit_code = sig->group_exit_code;
1168                 else {
1169                         sig->group_exit_code = exit_code;
1170                         sig->flags = SIGNAL_GROUP_EXIT;
1171                         zap_other_threads(current);
1172                 }
1173                 spin_unlock_irq(&sighand->siglock);
1174         }
1175
1176         do_exit(exit_code);
1177         /* NOTREACHED */
1178 }
1179
1180 /*
1181  * this kills every thread in the thread group. Note that any externally
1182  * wait4()-ing process will get the correct exit code - even if this
1183  * thread is not the thread group leader.
1184  */
1185 asmlinkage void sys_exit_group(int error_code)
1186 {
1187         do_group_exit((error_code & 0xff) << 8);
1188 }
1189
1190 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1191 {
1192         struct pid *pid = NULL;
1193         if (type == PIDTYPE_PID)
1194                 pid = task->pids[type].pid;
1195         else if (type < PIDTYPE_MAX)
1196                 pid = task->group_leader->pids[type].pid;
1197         return pid;
1198 }
1199
1200 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1201                           struct task_struct *p)
1202 {
1203         int err;
1204
1205         if (type < PIDTYPE_MAX) {
1206                 if (task_pid_type(p, type) != pid)
1207                         return 0;
1208         }
1209
1210         /* Wait for all children (clone and not) if __WALL is set;
1211          * otherwise, wait for clone children *only* if __WCLONE is
1212          * set; otherwise, wait for non-clone children *only*.  (Note:
1213          * A "clone" child here is one that reports to its parent
1214          * using a signal other than SIGCHLD.) */
1215         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1216             && !(options & __WALL))
1217                 return 0;
1218
1219         err = security_task_wait(p);
1220         if (err)
1221                 return err;
1222
1223         return 1;
1224 }
1225
1226 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1227                                int why, int status,
1228                                struct siginfo __user *infop,
1229                                struct rusage __user *rusagep)
1230 {
1231         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1232
1233         put_task_struct(p);
1234         if (!retval)
1235                 retval = put_user(SIGCHLD, &infop->si_signo);
1236         if (!retval)
1237                 retval = put_user(0, &infop->si_errno);
1238         if (!retval)
1239                 retval = put_user((short)why, &infop->si_code);
1240         if (!retval)
1241                 retval = put_user(pid, &infop->si_pid);
1242         if (!retval)
1243                 retval = put_user(uid, &infop->si_uid);
1244         if (!retval)
1245                 retval = put_user(status, &infop->si_status);
1246         if (!retval)
1247                 retval = pid;
1248         return retval;
1249 }
1250
1251 /*
1252  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1253  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1254  * the lock and this task is uninteresting.  If we return nonzero, we have
1255  * released the lock and the system call should return.
1256  */
1257 static int wait_task_zombie(struct task_struct *p, int options,
1258                             struct siginfo __user *infop,
1259                             int __user *stat_addr, struct rusage __user *ru)
1260 {
1261         unsigned long state;
1262         int retval, status, traced;
1263         pid_t pid = task_pid_vnr(p);
1264
1265         if (!likely(options & WEXITED))
1266                 return 0;
1267
1268         if (unlikely(options & WNOWAIT)) {
1269                 uid_t uid = p->uid;
1270                 int exit_code = p->exit_code;
1271                 int why, status;
1272
1273                 get_task_struct(p);
1274                 read_unlock(&tasklist_lock);
1275                 if ((exit_code & 0x7f) == 0) {
1276                         why = CLD_EXITED;
1277                         status = exit_code >> 8;
1278                 } else {
1279                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1280                         status = exit_code & 0x7f;
1281                 }
1282                 return wait_noreap_copyout(p, pid, uid, why,
1283                                            status, infop, ru);
1284         }
1285
1286         /*
1287          * Try to move the task's state to DEAD
1288          * only one thread is allowed to do this:
1289          */
1290         state = xchg(&p->exit_state, EXIT_DEAD);
1291         if (state != EXIT_ZOMBIE) {
1292                 BUG_ON(state != EXIT_DEAD);
1293                 return 0;
1294         }
1295
1296         traced = ptrace_reparented(p);
1297
1298         if (likely(!traced)) {
1299                 struct signal_struct *psig;
1300                 struct signal_struct *sig;
1301                 struct task_cputime cputime;
1302
1303                 /*
1304                  * The resource counters for the group leader are in its
1305                  * own task_struct.  Those for dead threads in the group
1306                  * are in its signal_struct, as are those for the child
1307                  * processes it has previously reaped.  All these
1308                  * accumulate in the parent's signal_struct c* fields.
1309                  *
1310                  * We don't bother to take a lock here to protect these
1311                  * p->signal fields, because they are only touched by
1312                  * __exit_signal, which runs with tasklist_lock
1313                  * write-locked anyway, and so is excluded here.  We do
1314                  * need to protect the access to p->parent->signal fields,
1315                  * as other threads in the parent group can be right
1316                  * here reaping other children at the same time.
1317                  *
1318                  * We use thread_group_cputime() to get times for the thread
1319                  * group, which consolidates times for all threads in the
1320                  * group including the group leader.
1321                  */
1322                 spin_lock_irq(&p->parent->sighand->siglock);
1323                 psig = p->parent->signal;
1324                 sig = p->signal;
1325                 thread_group_cputime(p, &cputime);
1326                 psig->cutime =
1327                         cputime_add(psig->cutime,
1328                         cputime_add(cputime.utime,
1329                                     sig->cutime));
1330                 psig->cstime =
1331                         cputime_add(psig->cstime,
1332                         cputime_add(cputime.stime,
1333                                     sig->cstime));
1334                 psig->cgtime =
1335                         cputime_add(psig->cgtime,
1336                         cputime_add(p->gtime,
1337                         cputime_add(sig->gtime,
1338                                     sig->cgtime)));
1339                 psig->cmin_flt +=
1340                         p->min_flt + sig->min_flt + sig->cmin_flt;
1341                 psig->cmaj_flt +=
1342                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1343                 psig->cnvcsw +=
1344                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1345                 psig->cnivcsw +=
1346                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1347                 psig->cinblock +=
1348                         task_io_get_inblock(p) +
1349                         sig->inblock + sig->cinblock;
1350                 psig->coublock +=
1351                         task_io_get_oublock(p) +
1352                         sig->oublock + sig->coublock;
1353                 task_io_accounting_add(&psig->ioac, &p->ioac);
1354                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1355                 spin_unlock_irq(&p->parent->sighand->siglock);
1356         }
1357
1358         /*
1359          * Now we are sure this task is interesting, and no other
1360          * thread can reap it because we set its state to EXIT_DEAD.
1361          */
1362         read_unlock(&tasklist_lock);
1363
1364         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1365         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1366                 ? p->signal->group_exit_code : p->exit_code;
1367         if (!retval && stat_addr)
1368                 retval = put_user(status, stat_addr);
1369         if (!retval && infop)
1370                 retval = put_user(SIGCHLD, &infop->si_signo);
1371         if (!retval && infop)
1372                 retval = put_user(0, &infop->si_errno);
1373         if (!retval && infop) {
1374                 int why;
1375
1376                 if ((status & 0x7f) == 0) {
1377                         why = CLD_EXITED;
1378                         status >>= 8;
1379                 } else {
1380                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1381                         status &= 0x7f;
1382                 }
1383                 retval = put_user((short)why, &infop->si_code);
1384                 if (!retval)
1385                         retval = put_user(status, &infop->si_status);
1386         }
1387         if (!retval && infop)
1388                 retval = put_user(pid, &infop->si_pid);
1389         if (!retval && infop)
1390                 retval = put_user(p->uid, &infop->si_uid);
1391         if (!retval)
1392                 retval = pid;
1393
1394         if (traced) {
1395                 write_lock_irq(&tasklist_lock);
1396                 /* We dropped tasklist, ptracer could die and untrace */
1397                 ptrace_unlink(p);
1398                 /*
1399                  * If this is not a detached task, notify the parent.
1400                  * If it's still not detached after that, don't release
1401                  * it now.
1402                  */
1403                 if (!task_detached(p)) {
1404                         do_notify_parent(p, p->exit_signal);
1405                         if (!task_detached(p)) {
1406                                 p->exit_state = EXIT_ZOMBIE;
1407                                 p = NULL;
1408                         }
1409                 }
1410                 write_unlock_irq(&tasklist_lock);
1411         }
1412         if (p != NULL)
1413                 release_task(p);
1414
1415         return retval;
1416 }
1417
1418 /*
1419  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1420  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1421  * the lock and this task is uninteresting.  If we return nonzero, we have
1422  * released the lock and the system call should return.
1423  */
1424 static int wait_task_stopped(int ptrace, struct task_struct *p,
1425                              int options, struct siginfo __user *infop,
1426                              int __user *stat_addr, struct rusage __user *ru)
1427 {
1428         int retval, exit_code, why;
1429         uid_t uid = 0; /* unneeded, required by compiler */
1430         pid_t pid;
1431
1432         if (!(options & WUNTRACED))
1433                 return 0;
1434
1435         exit_code = 0;
1436         spin_lock_irq(&p->sighand->siglock);
1437
1438         if (unlikely(!task_is_stopped_or_traced(p)))
1439                 goto unlock_sig;
1440
1441         if (!ptrace && p->signal->group_stop_count > 0)
1442                 /*
1443                  * A group stop is in progress and this is the group leader.
1444                  * We won't report until all threads have stopped.
1445                  */
1446                 goto unlock_sig;
1447
1448         exit_code = p->exit_code;
1449         if (!exit_code)
1450                 goto unlock_sig;
1451
1452         if (!unlikely(options & WNOWAIT))
1453                 p->exit_code = 0;
1454
1455         uid = p->uid;
1456 unlock_sig:
1457         spin_unlock_irq(&p->sighand->siglock);
1458         if (!exit_code)
1459                 return 0;
1460
1461         /*
1462          * Now we are pretty sure this task is interesting.
1463          * Make sure it doesn't get reaped out from under us while we
1464          * give up the lock and then examine it below.  We don't want to
1465          * keep holding onto the tasklist_lock while we call getrusage and
1466          * possibly take page faults for user memory.
1467          */
1468         get_task_struct(p);
1469         pid = task_pid_vnr(p);
1470         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1471         read_unlock(&tasklist_lock);
1472
1473         if (unlikely(options & WNOWAIT))
1474                 return wait_noreap_copyout(p, pid, uid,
1475                                            why, exit_code,
1476                                            infop, ru);
1477
1478         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1479         if (!retval && stat_addr)
1480                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1481         if (!retval && infop)
1482                 retval = put_user(SIGCHLD, &infop->si_signo);
1483         if (!retval && infop)
1484                 retval = put_user(0, &infop->si_errno);
1485         if (!retval && infop)
1486                 retval = put_user((short)why, &infop->si_code);
1487         if (!retval && infop)
1488                 retval = put_user(exit_code, &infop->si_status);
1489         if (!retval && infop)
1490                 retval = put_user(pid, &infop->si_pid);
1491         if (!retval && infop)
1492                 retval = put_user(uid, &infop->si_uid);
1493         if (!retval)
1494                 retval = pid;
1495         put_task_struct(p);
1496
1497         BUG_ON(!retval);
1498         return retval;
1499 }
1500
1501 /*
1502  * Handle do_wait work for one task in a live, non-stopped state.
1503  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1504  * the lock and this task is uninteresting.  If we return nonzero, we have
1505  * released the lock and the system call should return.
1506  */
1507 static int wait_task_continued(struct task_struct *p, int options,
1508                                struct siginfo __user *infop,
1509                                int __user *stat_addr, struct rusage __user *ru)
1510 {
1511         int retval;
1512         pid_t pid;
1513         uid_t uid;
1514
1515         if (!unlikely(options & WCONTINUED))
1516                 return 0;
1517
1518         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1519                 return 0;
1520
1521         spin_lock_irq(&p->sighand->siglock);
1522         /* Re-check with the lock held.  */
1523         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1524                 spin_unlock_irq(&p->sighand->siglock);
1525                 return 0;
1526         }
1527         if (!unlikely(options & WNOWAIT))
1528                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1529         spin_unlock_irq(&p->sighand->siglock);
1530
1531         pid = task_pid_vnr(p);
1532         uid = p->uid;
1533         get_task_struct(p);
1534         read_unlock(&tasklist_lock);
1535
1536         if (!infop) {
1537                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1538                 put_task_struct(p);
1539                 if (!retval && stat_addr)
1540                         retval = put_user(0xffff, stat_addr);
1541                 if (!retval)
1542                         retval = pid;
1543         } else {
1544                 retval = wait_noreap_copyout(p, pid, uid,
1545                                              CLD_CONTINUED, SIGCONT,
1546                                              infop, ru);
1547                 BUG_ON(retval == 0);
1548         }
1549
1550         return retval;
1551 }
1552
1553 /*
1554  * Consider @p for a wait by @parent.
1555  *
1556  * -ECHILD should be in *@notask_error before the first call.
1557  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1558  * Returns zero if the search for a child should continue;
1559  * then *@notask_error is 0 if @p is an eligible child,
1560  * or another error from security_task_wait(), or still -ECHILD.
1561  */
1562 static int wait_consider_task(struct task_struct *parent, int ptrace,
1563                               struct task_struct *p, int *notask_error,
1564                               enum pid_type type, struct pid *pid, int options,
1565                               struct siginfo __user *infop,
1566                               int __user *stat_addr, struct rusage __user *ru)
1567 {
1568         int ret = eligible_child(type, pid, options, p);
1569         if (!ret)
1570                 return ret;
1571
1572         if (unlikely(ret < 0)) {
1573                 /*
1574                  * If we have not yet seen any eligible child,
1575                  * then let this error code replace -ECHILD.
1576                  * A permission error will give the user a clue
1577                  * to look for security policy problems, rather
1578                  * than for mysterious wait bugs.
1579                  */
1580                 if (*notask_error)
1581                         *notask_error = ret;
1582         }
1583
1584         if (likely(!ptrace) && unlikely(p->ptrace)) {
1585                 /*
1586                  * This child is hidden by ptrace.
1587                  * We aren't allowed to see it now, but eventually we will.
1588                  */
1589                 *notask_error = 0;
1590                 return 0;
1591         }
1592
1593         if (p->exit_state == EXIT_DEAD)
1594                 return 0;
1595
1596         /*
1597          * We don't reap group leaders with subthreads.
1598          */
1599         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1600                 return wait_task_zombie(p, options, infop, stat_addr, ru);
1601
1602         /*
1603          * It's stopped or running now, so it might
1604          * later continue, exit, or stop again.
1605          */
1606         *notask_error = 0;
1607
1608         if (task_is_stopped_or_traced(p))
1609                 return wait_task_stopped(ptrace, p, options,
1610                                          infop, stat_addr, ru);
1611
1612         return wait_task_continued(p, options, infop, stat_addr, ru);
1613 }
1614
1615 /*
1616  * Do the work of do_wait() for one thread in the group, @tsk.
1617  *
1618  * -ECHILD should be in *@notask_error before the first call.
1619  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1620  * Returns zero if the search for a child should continue; then
1621  * *@notask_error is 0 if there were any eligible children,
1622  * or another error from security_task_wait(), or still -ECHILD.
1623  */
1624 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1625                           enum pid_type type, struct pid *pid, int options,
1626                           struct siginfo __user *infop, int __user *stat_addr,
1627                           struct rusage __user *ru)
1628 {
1629         struct task_struct *p;
1630
1631         list_for_each_entry(p, &tsk->children, sibling) {
1632                 /*
1633                  * Do not consider detached threads.
1634                  */
1635                 if (!task_detached(p)) {
1636                         int ret = wait_consider_task(tsk, 0, p, notask_error,
1637                                                      type, pid, options,
1638                                                      infop, stat_addr, ru);
1639                         if (ret)
1640                                 return ret;
1641                 }
1642         }
1643
1644         return 0;
1645 }
1646
1647 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1648                           enum pid_type type, struct pid *pid, int options,
1649                           struct siginfo __user *infop, int __user *stat_addr,
1650                           struct rusage __user *ru)
1651 {
1652         struct task_struct *p;
1653
1654         /*
1655          * Traditionally we see ptrace'd stopped tasks regardless of options.
1656          */
1657         options |= WUNTRACED;
1658
1659         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1660                 int ret = wait_consider_task(tsk, 1, p, notask_error,
1661                                              type, pid, options,
1662                                              infop, stat_addr, ru);
1663                 if (ret)
1664                         return ret;
1665         }
1666
1667         return 0;
1668 }
1669
1670 static long do_wait(enum pid_type type, struct pid *pid, int options,
1671                     struct siginfo __user *infop, int __user *stat_addr,
1672                     struct rusage __user *ru)
1673 {
1674         DECLARE_WAITQUEUE(wait, current);
1675         struct task_struct *tsk;
1676         int retval;
1677
1678         add_wait_queue(&current->signal->wait_chldexit,&wait);
1679 repeat:
1680         /*
1681          * If there is nothing that can match our critiera just get out.
1682          * We will clear @retval to zero if we see any child that might later
1683          * match our criteria, even if we are not able to reap it yet.
1684          */
1685         retval = -ECHILD;
1686         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1687                 goto end;
1688
1689         current->state = TASK_INTERRUPTIBLE;
1690         read_lock(&tasklist_lock);
1691         tsk = current;
1692         do {
1693                 int tsk_result = do_wait_thread(tsk, &retval,
1694                                                 type, pid, options,
1695                                                 infop, stat_addr, ru);
1696                 if (!tsk_result)
1697                         tsk_result = ptrace_do_wait(tsk, &retval,
1698                                                     type, pid, options,
1699                                                     infop, stat_addr, ru);
1700                 if (tsk_result) {
1701                         /*
1702                          * tasklist_lock is unlocked and we have a final result.
1703                          */
1704                         retval = tsk_result;
1705                         goto end;
1706                 }
1707
1708                 if (options & __WNOTHREAD)
1709                         break;
1710                 tsk = next_thread(tsk);
1711                 BUG_ON(tsk->signal != current->signal);
1712         } while (tsk != current);
1713         read_unlock(&tasklist_lock);
1714
1715         if (!retval && !(options & WNOHANG)) {
1716                 retval = -ERESTARTSYS;
1717                 if (!signal_pending(current)) {
1718                         schedule();
1719                         goto repeat;
1720                 }
1721         }
1722
1723 end:
1724         current->state = TASK_RUNNING;
1725         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1726         if (infop) {
1727                 if (retval > 0)
1728                         retval = 0;
1729                 else {
1730                         /*
1731                          * For a WNOHANG return, clear out all the fields
1732                          * we would set so the user can easily tell the
1733                          * difference.
1734                          */
1735                         if (!retval)
1736                                 retval = put_user(0, &infop->si_signo);
1737                         if (!retval)
1738                                 retval = put_user(0, &infop->si_errno);
1739                         if (!retval)
1740                                 retval = put_user(0, &infop->si_code);
1741                         if (!retval)
1742                                 retval = put_user(0, &infop->si_pid);
1743                         if (!retval)
1744                                 retval = put_user(0, &infop->si_uid);
1745                         if (!retval)
1746                                 retval = put_user(0, &infop->si_status);
1747                 }
1748         }
1749         return retval;
1750 }
1751
1752 asmlinkage long sys_waitid(int which, pid_t upid,
1753                            struct siginfo __user *infop, int options,
1754                            struct rusage __user *ru)
1755 {
1756         struct pid *pid = NULL;
1757         enum pid_type type;
1758         long ret;
1759
1760         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1761                 return -EINVAL;
1762         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1763                 return -EINVAL;
1764
1765         switch (which) {
1766         case P_ALL:
1767                 type = PIDTYPE_MAX;
1768                 break;
1769         case P_PID:
1770                 type = PIDTYPE_PID;
1771                 if (upid <= 0)
1772                         return -EINVAL;
1773                 break;
1774         case P_PGID:
1775                 type = PIDTYPE_PGID;
1776                 if (upid <= 0)
1777                         return -EINVAL;
1778                 break;
1779         default:
1780                 return -EINVAL;
1781         }
1782
1783         if (type < PIDTYPE_MAX)
1784                 pid = find_get_pid(upid);
1785         ret = do_wait(type, pid, options, infop, NULL, ru);
1786         put_pid(pid);
1787
1788         /* avoid REGPARM breakage on x86: */
1789         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1790         return ret;
1791 }
1792
1793 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1794                           int options, struct rusage __user *ru)
1795 {
1796         struct pid *pid = NULL;
1797         enum pid_type type;
1798         long ret;
1799
1800         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1801                         __WNOTHREAD|__WCLONE|__WALL))
1802                 return -EINVAL;
1803
1804         if (upid == -1)
1805                 type = PIDTYPE_MAX;
1806         else if (upid < 0) {
1807                 type = PIDTYPE_PGID;
1808                 pid = find_get_pid(-upid);
1809         } else if (upid == 0) {
1810                 type = PIDTYPE_PGID;
1811                 pid = get_pid(task_pgrp(current));
1812         } else /* upid > 0 */ {
1813                 type = PIDTYPE_PID;
1814                 pid = find_get_pid(upid);
1815         }
1816
1817         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1818         put_pid(pid);
1819
1820         /* avoid REGPARM breakage on x86: */
1821         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1822         return ret;
1823 }
1824
1825 #ifdef __ARCH_WANT_SYS_WAITPID
1826
1827 /*
1828  * sys_waitpid() remains for compatibility. waitpid() should be
1829  * implemented by calling sys_wait4() from libc.a.
1830  */
1831 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1832 {
1833         return sys_wait4(pid, stat_addr, options, NULL);
1834 }
1835
1836 #endif