]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - include/linux/skbuff.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[linux-2.6-omap-h63xx.git] / include / linux / skbuff.h
1 /*
2  *      Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *      Authors:
5  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *              Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 /* Don't change this without changing skb_csum_unnecessary! */
33 #define CHECKSUM_NONE 0
34 #define CHECKSUM_UNNECESSARY 1
35 #define CHECKSUM_COMPLETE 2
36 #define CHECKSUM_PARTIAL 3
37
38 #define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
39                                  ~(SMP_CACHE_BYTES - 1))
40 #define SKB_WITH_OVERHEAD(X)    \
41         ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
42 #define SKB_MAX_ORDER(X, ORDER) \
43         SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
44 #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
46
47 /* A. Checksumming of received packets by device.
48  *
49  *      NONE: device failed to checksum this packet.
50  *              skb->csum is undefined.
51  *
52  *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
53  *              skb->csum is undefined.
54  *            It is bad option, but, unfortunately, many of vendors do this.
55  *            Apparently with secret goal to sell you new device, when you
56  *            will add new protocol to your host. F.e. IPv6. 8)
57  *
58  *      COMPLETE: the most generic way. Device supplied checksum of _all_
59  *          the packet as seen by netif_rx in skb->csum.
60  *          NOTE: Even if device supports only some protocols, but
61  *          is able to produce some skb->csum, it MUST use COMPLETE,
62  *          not UNNECESSARY.
63  *
64  *      PARTIAL: identical to the case for output below.  This may occur
65  *          on a packet received directly from another Linux OS, e.g.,
66  *          a virtualised Linux kernel on the same host.  The packet can
67  *          be treated in the same way as UNNECESSARY except that on
68  *          output (i.e., forwarding) the checksum must be filled in
69  *          by the OS or the hardware.
70  *
71  * B. Checksumming on output.
72  *
73  *      NONE: skb is checksummed by protocol or csum is not required.
74  *
75  *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
76  *      from skb->csum_start to the end and to record the checksum
77  *      at skb->csum_start + skb->csum_offset.
78  *
79  *      Device must show its capabilities in dev->features, set
80  *      at device setup time.
81  *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
82  *                        everything.
83  *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
84  *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
85  *                        TCP/UDP over IPv4. Sigh. Vendors like this
86  *                        way by an unknown reason. Though, see comment above
87  *                        about CHECKSUM_UNNECESSARY. 8)
88  *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
89  *
90  *      Any questions? No questions, good.              --ANK
91  */
92
93 struct net_device;
94 struct scatterlist;
95 struct pipe_inode_info;
96
97 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
98 struct nf_conntrack {
99         atomic_t use;
100 };
101 #endif
102
103 #ifdef CONFIG_BRIDGE_NETFILTER
104 struct nf_bridge_info {
105         atomic_t use;
106         struct net_device *physindev;
107         struct net_device *physoutdev;
108         unsigned int mask;
109         unsigned long data[32 / sizeof(unsigned long)];
110 };
111 #endif
112
113 struct sk_buff_head {
114         /* These two members must be first. */
115         struct sk_buff  *next;
116         struct sk_buff  *prev;
117
118         __u32           qlen;
119         spinlock_t      lock;
120 };
121
122 struct sk_buff;
123
124 /* To allow 64K frame to be packed as single skb without frag_list */
125 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
126
127 typedef struct skb_frag_struct skb_frag_t;
128
129 struct skb_frag_struct {
130         struct page *page;
131         __u32 page_offset;
132         __u32 size;
133 };
134
135 #define HAVE_HW_TIME_STAMP
136
137 /**
138  * struct skb_shared_hwtstamps - hardware time stamps
139  * @hwtstamp:   hardware time stamp transformed into duration
140  *              since arbitrary point in time
141  * @syststamp:  hwtstamp transformed to system time base
142  *
143  * Software time stamps generated by ktime_get_real() are stored in
144  * skb->tstamp. The relation between the different kinds of time
145  * stamps is as follows:
146  *
147  * syststamp and tstamp can be compared against each other in
148  * arbitrary combinations.  The accuracy of a
149  * syststamp/tstamp/"syststamp from other device" comparison is
150  * limited by the accuracy of the transformation into system time
151  * base. This depends on the device driver and its underlying
152  * hardware.
153  *
154  * hwtstamps can only be compared against other hwtstamps from
155  * the same device.
156  *
157  * This structure is attached to packets as part of the
158  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
159  */
160 struct skb_shared_hwtstamps {
161         ktime_t hwtstamp;
162         ktime_t syststamp;
163 };
164
165 /**
166  * struct skb_shared_tx - instructions for time stamping of outgoing packets
167  * @hardware:           generate hardware time stamp
168  * @software:           generate software time stamp
169  * @in_progress:        device driver is going to provide
170  *                      hardware time stamp
171  *
172  * These flags are attached to packets as part of the
173  * &skb_shared_info. Use skb_tx() to get a pointer.
174  */
175 union skb_shared_tx {
176         struct {
177                 __u8    hardware:1,
178                         software:1,
179                         in_progress:1;
180         };
181         __u8 flags;
182 };
183
184 /* This data is invariant across clones and lives at
185  * the end of the header data, ie. at skb->end.
186  */
187 struct skb_shared_info {
188         atomic_t        dataref;
189         unsigned short  nr_frags;
190         unsigned short  gso_size;
191         /* Warning: this field is not always filled in (UFO)! */
192         unsigned short  gso_segs;
193         unsigned short  gso_type;
194         __be32          ip6_frag_id;
195         union skb_shared_tx tx_flags;
196 #ifdef CONFIG_HAS_DMA
197         unsigned int    num_dma_maps;
198 #endif
199         struct sk_buff  *frag_list;
200         struct skb_shared_hwtstamps hwtstamps;
201         skb_frag_t      frags[MAX_SKB_FRAGS];
202 #ifdef CONFIG_HAS_DMA
203         dma_addr_t      dma_maps[MAX_SKB_FRAGS + 1];
204 #endif
205 };
206
207 /* We divide dataref into two halves.  The higher 16 bits hold references
208  * to the payload part of skb->data.  The lower 16 bits hold references to
209  * the entire skb->data.  A clone of a headerless skb holds the length of
210  * the header in skb->hdr_len.
211  *
212  * All users must obey the rule that the skb->data reference count must be
213  * greater than or equal to the payload reference count.
214  *
215  * Holding a reference to the payload part means that the user does not
216  * care about modifications to the header part of skb->data.
217  */
218 #define SKB_DATAREF_SHIFT 16
219 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
220
221
222 enum {
223         SKB_FCLONE_UNAVAILABLE,
224         SKB_FCLONE_ORIG,
225         SKB_FCLONE_CLONE,
226 };
227
228 enum {
229         SKB_GSO_TCPV4 = 1 << 0,
230         SKB_GSO_UDP = 1 << 1,
231
232         /* This indicates the skb is from an untrusted source. */
233         SKB_GSO_DODGY = 1 << 2,
234
235         /* This indicates the tcp segment has CWR set. */
236         SKB_GSO_TCP_ECN = 1 << 3,
237
238         SKB_GSO_TCPV6 = 1 << 4,
239
240         SKB_GSO_FCOE = 1 << 5,
241 };
242
243 #if BITS_PER_LONG > 32
244 #define NET_SKBUFF_DATA_USES_OFFSET 1
245 #endif
246
247 #ifdef NET_SKBUFF_DATA_USES_OFFSET
248 typedef unsigned int sk_buff_data_t;
249 #else
250 typedef unsigned char *sk_buff_data_t;
251 #endif
252
253 /** 
254  *      struct sk_buff - socket buffer
255  *      @next: Next buffer in list
256  *      @prev: Previous buffer in list
257  *      @sk: Socket we are owned by
258  *      @tstamp: Time we arrived
259  *      @dev: Device we arrived on/are leaving by
260  *      @transport_header: Transport layer header
261  *      @network_header: Network layer header
262  *      @mac_header: Link layer header
263  *      @dst: destination entry
264  *      @sp: the security path, used for xfrm
265  *      @cb: Control buffer. Free for use by every layer. Put private vars here
266  *      @len: Length of actual data
267  *      @data_len: Data length
268  *      @mac_len: Length of link layer header
269  *      @hdr_len: writable header length of cloned skb
270  *      @csum: Checksum (must include start/offset pair)
271  *      @csum_start: Offset from skb->head where checksumming should start
272  *      @csum_offset: Offset from csum_start where checksum should be stored
273  *      @local_df: allow local fragmentation
274  *      @cloned: Head may be cloned (check refcnt to be sure)
275  *      @nohdr: Payload reference only, must not modify header
276  *      @pkt_type: Packet class
277  *      @fclone: skbuff clone status
278  *      @ip_summed: Driver fed us an IP checksum
279  *      @priority: Packet queueing priority
280  *      @users: User count - see {datagram,tcp}.c
281  *      @protocol: Packet protocol from driver
282  *      @truesize: Buffer size 
283  *      @head: Head of buffer
284  *      @data: Data head pointer
285  *      @tail: Tail pointer
286  *      @end: End pointer
287  *      @destructor: Destruct function
288  *      @mark: Generic packet mark
289  *      @nfct: Associated connection, if any
290  *      @ipvs_property: skbuff is owned by ipvs
291  *      @peeked: this packet has been seen already, so stats have been
292  *              done for it, don't do them again
293  *      @nf_trace: netfilter packet trace flag
294  *      @nfctinfo: Relationship of this skb to the connection
295  *      @nfct_reasm: netfilter conntrack re-assembly pointer
296  *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
297  *      @iif: ifindex of device we arrived on
298  *      @queue_mapping: Queue mapping for multiqueue devices
299  *      @tc_index: Traffic control index
300  *      @tc_verd: traffic control verdict
301  *      @ndisc_nodetype: router type (from link layer)
302  *      @do_not_encrypt: set to prevent encryption of this frame
303  *      @requeue: set to indicate that the wireless core should attempt
304  *              a software retry on this frame if we failed to
305  *              receive an ACK for it
306  *      @dma_cookie: a cookie to one of several possible DMA operations
307  *              done by skb DMA functions
308  *      @secmark: security marking
309  *      @vlan_tci: vlan tag control information
310  */
311
312 struct sk_buff {
313         /* These two members must be first. */
314         struct sk_buff          *next;
315         struct sk_buff          *prev;
316
317         struct sock             *sk;
318         ktime_t                 tstamp;
319         struct net_device       *dev;
320
321         union {
322                 struct  dst_entry       *dst;
323                 struct  rtable          *rtable;
324         };
325 #ifdef CONFIG_XFRM
326         struct  sec_path        *sp;
327 #endif
328         /*
329          * This is the control buffer. It is free to use for every
330          * layer. Please put your private variables there. If you
331          * want to keep them across layers you have to do a skb_clone()
332          * first. This is owned by whoever has the skb queued ATM.
333          */
334         char                    cb[48];
335
336         unsigned int            len,
337                                 data_len;
338         __u16                   mac_len,
339                                 hdr_len;
340         union {
341                 __wsum          csum;
342                 struct {
343                         __u16   csum_start;
344                         __u16   csum_offset;
345                 };
346         };
347         __u32                   priority;
348         __u8                    local_df:1,
349                                 cloned:1,
350                                 ip_summed:2,
351                                 nohdr:1,
352                                 nfctinfo:3;
353         __u8                    pkt_type:3,
354                                 fclone:2,
355                                 ipvs_property:1,
356                                 peeked:1,
357                                 nf_trace:1;
358         __be16                  protocol;
359
360         void                    (*destructor)(struct sk_buff *skb);
361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
362         struct nf_conntrack     *nfct;
363         struct sk_buff          *nfct_reasm;
364 #endif
365 #ifdef CONFIG_BRIDGE_NETFILTER
366         struct nf_bridge_info   *nf_bridge;
367 #endif
368
369         int                     iif;
370         __u16                   queue_mapping;
371 #ifdef CONFIG_NET_SCHED
372         __u16                   tc_index;       /* traffic control index */
373 #ifdef CONFIG_NET_CLS_ACT
374         __u16                   tc_verd;        /* traffic control verdict */
375 #endif
376 #endif
377 #ifdef CONFIG_IPV6_NDISC_NODETYPE
378         __u8                    ndisc_nodetype:2;
379 #endif
380 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
381         __u8                    do_not_encrypt:1;
382         __u8                    requeue:1;
383 #endif
384         /* 0/13/14 bit hole */
385
386 #ifdef CONFIG_NET_DMA
387         dma_cookie_t            dma_cookie;
388 #endif
389 #ifdef CONFIG_NETWORK_SECMARK
390         __u32                   secmark;
391 #endif
392
393         __u32                   mark;
394
395         __u16                   vlan_tci;
396
397         sk_buff_data_t          transport_header;
398         sk_buff_data_t          network_header;
399         sk_buff_data_t          mac_header;
400         /* These elements must be at the end, see alloc_skb() for details.  */
401         sk_buff_data_t          tail;
402         sk_buff_data_t          end;
403         unsigned char           *head,
404                                 *data;
405         unsigned int            truesize;
406         atomic_t                users;
407 };
408
409 #ifdef __KERNEL__
410 /*
411  *      Handling routines are only of interest to the kernel
412  */
413 #include <linux/slab.h>
414
415 #include <asm/system.h>
416
417 #ifdef CONFIG_HAS_DMA
418 #include <linux/dma-mapping.h>
419 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
420                        enum dma_data_direction dir);
421 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
422                           enum dma_data_direction dir);
423 #endif
424
425 extern void kfree_skb(struct sk_buff *skb);
426 extern void consume_skb(struct sk_buff *skb);
427 extern void            __kfree_skb(struct sk_buff *skb);
428 extern struct sk_buff *__alloc_skb(unsigned int size,
429                                    gfp_t priority, int fclone, int node);
430 static inline struct sk_buff *alloc_skb(unsigned int size,
431                                         gfp_t priority)
432 {
433         return __alloc_skb(size, priority, 0, -1);
434 }
435
436 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
437                                                gfp_t priority)
438 {
439         return __alloc_skb(size, priority, 1, -1);
440 }
441
442 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
443
444 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
445 extern struct sk_buff *skb_clone(struct sk_buff *skb,
446                                  gfp_t priority);
447 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
448                                 gfp_t priority);
449 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
450                                  gfp_t gfp_mask);
451 extern int             pskb_expand_head(struct sk_buff *skb,
452                                         int nhead, int ntail,
453                                         gfp_t gfp_mask);
454 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
455                                             unsigned int headroom);
456 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
457                                        int newheadroom, int newtailroom,
458                                        gfp_t priority);
459 extern int             skb_to_sgvec(struct sk_buff *skb,
460                                     struct scatterlist *sg, int offset,
461                                     int len);
462 extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
463                                     struct sk_buff **trailer);
464 extern int             skb_pad(struct sk_buff *skb, int pad);
465 #define dev_kfree_skb(a)        consume_skb(a)
466 #define dev_consume_skb(a)      kfree_skb_clean(a)
467 extern void           skb_over_panic(struct sk_buff *skb, int len,
468                                      void *here);
469 extern void           skb_under_panic(struct sk_buff *skb, int len,
470                                       void *here);
471
472 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
473                         int getfrag(void *from, char *to, int offset,
474                         int len,int odd, struct sk_buff *skb),
475                         void *from, int length);
476
477 struct skb_seq_state
478 {
479         __u32           lower_offset;
480         __u32           upper_offset;
481         __u32           frag_idx;
482         __u32           stepped_offset;
483         struct sk_buff  *root_skb;
484         struct sk_buff  *cur_skb;
485         __u8            *frag_data;
486 };
487
488 extern void           skb_prepare_seq_read(struct sk_buff *skb,
489                                            unsigned int from, unsigned int to,
490                                            struct skb_seq_state *st);
491 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
492                                    struct skb_seq_state *st);
493 extern void           skb_abort_seq_read(struct skb_seq_state *st);
494
495 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
496                                     unsigned int to, struct ts_config *config,
497                                     struct ts_state *state);
498
499 #ifdef NET_SKBUFF_DATA_USES_OFFSET
500 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
501 {
502         return skb->head + skb->end;
503 }
504 #else
505 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
506 {
507         return skb->end;
508 }
509 #endif
510
511 /* Internal */
512 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
513
514 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
515 {
516         return &skb_shinfo(skb)->hwtstamps;
517 }
518
519 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
520 {
521         return &skb_shinfo(skb)->tx_flags;
522 }
523
524 /**
525  *      skb_queue_empty - check if a queue is empty
526  *      @list: queue head
527  *
528  *      Returns true if the queue is empty, false otherwise.
529  */
530 static inline int skb_queue_empty(const struct sk_buff_head *list)
531 {
532         return list->next == (struct sk_buff *)list;
533 }
534
535 /**
536  *      skb_queue_is_last - check if skb is the last entry in the queue
537  *      @list: queue head
538  *      @skb: buffer
539  *
540  *      Returns true if @skb is the last buffer on the list.
541  */
542 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
543                                      const struct sk_buff *skb)
544 {
545         return (skb->next == (struct sk_buff *) list);
546 }
547
548 /**
549  *      skb_queue_is_first - check if skb is the first entry in the queue
550  *      @list: queue head
551  *      @skb: buffer
552  *
553  *      Returns true if @skb is the first buffer on the list.
554  */
555 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
556                                       const struct sk_buff *skb)
557 {
558         return (skb->prev == (struct sk_buff *) list);
559 }
560
561 /**
562  *      skb_queue_next - return the next packet in the queue
563  *      @list: queue head
564  *      @skb: current buffer
565  *
566  *      Return the next packet in @list after @skb.  It is only valid to
567  *      call this if skb_queue_is_last() evaluates to false.
568  */
569 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
570                                              const struct sk_buff *skb)
571 {
572         /* This BUG_ON may seem severe, but if we just return then we
573          * are going to dereference garbage.
574          */
575         BUG_ON(skb_queue_is_last(list, skb));
576         return skb->next;
577 }
578
579 /**
580  *      skb_queue_prev - return the prev packet in the queue
581  *      @list: queue head
582  *      @skb: current buffer
583  *
584  *      Return the prev packet in @list before @skb.  It is only valid to
585  *      call this if skb_queue_is_first() evaluates to false.
586  */
587 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
588                                              const struct sk_buff *skb)
589 {
590         /* This BUG_ON may seem severe, but if we just return then we
591          * are going to dereference garbage.
592          */
593         BUG_ON(skb_queue_is_first(list, skb));
594         return skb->prev;
595 }
596
597 /**
598  *      skb_get - reference buffer
599  *      @skb: buffer to reference
600  *
601  *      Makes another reference to a socket buffer and returns a pointer
602  *      to the buffer.
603  */
604 static inline struct sk_buff *skb_get(struct sk_buff *skb)
605 {
606         atomic_inc(&skb->users);
607         return skb;
608 }
609
610 /*
611  * If users == 1, we are the only owner and are can avoid redundant
612  * atomic change.
613  */
614
615 /**
616  *      skb_cloned - is the buffer a clone
617  *      @skb: buffer to check
618  *
619  *      Returns true if the buffer was generated with skb_clone() and is
620  *      one of multiple shared copies of the buffer. Cloned buffers are
621  *      shared data so must not be written to under normal circumstances.
622  */
623 static inline int skb_cloned(const struct sk_buff *skb)
624 {
625         return skb->cloned &&
626                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
627 }
628
629 /**
630  *      skb_header_cloned - is the header a clone
631  *      @skb: buffer to check
632  *
633  *      Returns true if modifying the header part of the buffer requires
634  *      the data to be copied.
635  */
636 static inline int skb_header_cloned(const struct sk_buff *skb)
637 {
638         int dataref;
639
640         if (!skb->cloned)
641                 return 0;
642
643         dataref = atomic_read(&skb_shinfo(skb)->dataref);
644         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
645         return dataref != 1;
646 }
647
648 /**
649  *      skb_header_release - release reference to header
650  *      @skb: buffer to operate on
651  *
652  *      Drop a reference to the header part of the buffer.  This is done
653  *      by acquiring a payload reference.  You must not read from the header
654  *      part of skb->data after this.
655  */
656 static inline void skb_header_release(struct sk_buff *skb)
657 {
658         BUG_ON(skb->nohdr);
659         skb->nohdr = 1;
660         atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
661 }
662
663 /**
664  *      skb_shared - is the buffer shared
665  *      @skb: buffer to check
666  *
667  *      Returns true if more than one person has a reference to this
668  *      buffer.
669  */
670 static inline int skb_shared(const struct sk_buff *skb)
671 {
672         return atomic_read(&skb->users) != 1;
673 }
674
675 /**
676  *      skb_share_check - check if buffer is shared and if so clone it
677  *      @skb: buffer to check
678  *      @pri: priority for memory allocation
679  *
680  *      If the buffer is shared the buffer is cloned and the old copy
681  *      drops a reference. A new clone with a single reference is returned.
682  *      If the buffer is not shared the original buffer is returned. When
683  *      being called from interrupt status or with spinlocks held pri must
684  *      be GFP_ATOMIC.
685  *
686  *      NULL is returned on a memory allocation failure.
687  */
688 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
689                                               gfp_t pri)
690 {
691         might_sleep_if(pri & __GFP_WAIT);
692         if (skb_shared(skb)) {
693                 struct sk_buff *nskb = skb_clone(skb, pri);
694                 kfree_skb(skb);
695                 skb = nskb;
696         }
697         return skb;
698 }
699
700 /*
701  *      Copy shared buffers into a new sk_buff. We effectively do COW on
702  *      packets to handle cases where we have a local reader and forward
703  *      and a couple of other messy ones. The normal one is tcpdumping
704  *      a packet thats being forwarded.
705  */
706
707 /**
708  *      skb_unshare - make a copy of a shared buffer
709  *      @skb: buffer to check
710  *      @pri: priority for memory allocation
711  *
712  *      If the socket buffer is a clone then this function creates a new
713  *      copy of the data, drops a reference count on the old copy and returns
714  *      the new copy with the reference count at 1. If the buffer is not a clone
715  *      the original buffer is returned. When called with a spinlock held or
716  *      from interrupt state @pri must be %GFP_ATOMIC
717  *
718  *      %NULL is returned on a memory allocation failure.
719  */
720 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
721                                           gfp_t pri)
722 {
723         might_sleep_if(pri & __GFP_WAIT);
724         if (skb_cloned(skb)) {
725                 struct sk_buff *nskb = skb_copy(skb, pri);
726                 kfree_skb(skb); /* Free our shared copy */
727                 skb = nskb;
728         }
729         return skb;
730 }
731
732 /**
733  *      skb_peek
734  *      @list_: list to peek at
735  *
736  *      Peek an &sk_buff. Unlike most other operations you _MUST_
737  *      be careful with this one. A peek leaves the buffer on the
738  *      list and someone else may run off with it. You must hold
739  *      the appropriate locks or have a private queue to do this.
740  *
741  *      Returns %NULL for an empty list or a pointer to the head element.
742  *      The reference count is not incremented and the reference is therefore
743  *      volatile. Use with caution.
744  */
745 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
746 {
747         struct sk_buff *list = ((struct sk_buff *)list_)->next;
748         if (list == (struct sk_buff *)list_)
749                 list = NULL;
750         return list;
751 }
752
753 /**
754  *      skb_peek_tail
755  *      @list_: list to peek at
756  *
757  *      Peek an &sk_buff. Unlike most other operations you _MUST_
758  *      be careful with this one. A peek leaves the buffer on the
759  *      list and someone else may run off with it. You must hold
760  *      the appropriate locks or have a private queue to do this.
761  *
762  *      Returns %NULL for an empty list or a pointer to the tail element.
763  *      The reference count is not incremented and the reference is therefore
764  *      volatile. Use with caution.
765  */
766 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
767 {
768         struct sk_buff *list = ((struct sk_buff *)list_)->prev;
769         if (list == (struct sk_buff *)list_)
770                 list = NULL;
771         return list;
772 }
773
774 /**
775  *      skb_queue_len   - get queue length
776  *      @list_: list to measure
777  *
778  *      Return the length of an &sk_buff queue.
779  */
780 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
781 {
782         return list_->qlen;
783 }
784
785 /**
786  *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
787  *      @list: queue to initialize
788  *
789  *      This initializes only the list and queue length aspects of
790  *      an sk_buff_head object.  This allows to initialize the list
791  *      aspects of an sk_buff_head without reinitializing things like
792  *      the spinlock.  It can also be used for on-stack sk_buff_head
793  *      objects where the spinlock is known to not be used.
794  */
795 static inline void __skb_queue_head_init(struct sk_buff_head *list)
796 {
797         list->prev = list->next = (struct sk_buff *)list;
798         list->qlen = 0;
799 }
800
801 /*
802  * This function creates a split out lock class for each invocation;
803  * this is needed for now since a whole lot of users of the skb-queue
804  * infrastructure in drivers have different locking usage (in hardirq)
805  * than the networking core (in softirq only). In the long run either the
806  * network layer or drivers should need annotation to consolidate the
807  * main types of usage into 3 classes.
808  */
809 static inline void skb_queue_head_init(struct sk_buff_head *list)
810 {
811         spin_lock_init(&list->lock);
812         __skb_queue_head_init(list);
813 }
814
815 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
816                 struct lock_class_key *class)
817 {
818         skb_queue_head_init(list);
819         lockdep_set_class(&list->lock, class);
820 }
821
822 /*
823  *      Insert an sk_buff on a list.
824  *
825  *      The "__skb_xxxx()" functions are the non-atomic ones that
826  *      can only be called with interrupts disabled.
827  */
828 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
829 static inline void __skb_insert(struct sk_buff *newsk,
830                                 struct sk_buff *prev, struct sk_buff *next,
831                                 struct sk_buff_head *list)
832 {
833         newsk->next = next;
834         newsk->prev = prev;
835         next->prev  = prev->next = newsk;
836         list->qlen++;
837 }
838
839 static inline void __skb_queue_splice(const struct sk_buff_head *list,
840                                       struct sk_buff *prev,
841                                       struct sk_buff *next)
842 {
843         struct sk_buff *first = list->next;
844         struct sk_buff *last = list->prev;
845
846         first->prev = prev;
847         prev->next = first;
848
849         last->next = next;
850         next->prev = last;
851 }
852
853 /**
854  *      skb_queue_splice - join two skb lists, this is designed for stacks
855  *      @list: the new list to add
856  *      @head: the place to add it in the first list
857  */
858 static inline void skb_queue_splice(const struct sk_buff_head *list,
859                                     struct sk_buff_head *head)
860 {
861         if (!skb_queue_empty(list)) {
862                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
863                 head->qlen += list->qlen;
864         }
865 }
866
867 /**
868  *      skb_queue_splice - join two skb lists and reinitialise the emptied list
869  *      @list: the new list to add
870  *      @head: the place to add it in the first list
871  *
872  *      The list at @list is reinitialised
873  */
874 static inline void skb_queue_splice_init(struct sk_buff_head *list,
875                                          struct sk_buff_head *head)
876 {
877         if (!skb_queue_empty(list)) {
878                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
879                 head->qlen += list->qlen;
880                 __skb_queue_head_init(list);
881         }
882 }
883
884 /**
885  *      skb_queue_splice_tail - join two skb lists, each list being a queue
886  *      @list: the new list to add
887  *      @head: the place to add it in the first list
888  */
889 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
890                                          struct sk_buff_head *head)
891 {
892         if (!skb_queue_empty(list)) {
893                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
894                 head->qlen += list->qlen;
895         }
896 }
897
898 /**
899  *      skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
900  *      @list: the new list to add
901  *      @head: the place to add it in the first list
902  *
903  *      Each of the lists is a queue.
904  *      The list at @list is reinitialised
905  */
906 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
907                                               struct sk_buff_head *head)
908 {
909         if (!skb_queue_empty(list)) {
910                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
911                 head->qlen += list->qlen;
912                 __skb_queue_head_init(list);
913         }
914 }
915
916 /**
917  *      __skb_queue_after - queue a buffer at the list head
918  *      @list: list to use
919  *      @prev: place after this buffer
920  *      @newsk: buffer to queue
921  *
922  *      Queue a buffer int the middle of a list. This function takes no locks
923  *      and you must therefore hold required locks before calling it.
924  *
925  *      A buffer cannot be placed on two lists at the same time.
926  */
927 static inline void __skb_queue_after(struct sk_buff_head *list,
928                                      struct sk_buff *prev,
929                                      struct sk_buff *newsk)
930 {
931         __skb_insert(newsk, prev, prev->next, list);
932 }
933
934 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
935                        struct sk_buff_head *list);
936
937 static inline void __skb_queue_before(struct sk_buff_head *list,
938                                       struct sk_buff *next,
939                                       struct sk_buff *newsk)
940 {
941         __skb_insert(newsk, next->prev, next, list);
942 }
943
944 /**
945  *      __skb_queue_head - queue a buffer at the list head
946  *      @list: list to use
947  *      @newsk: buffer to queue
948  *
949  *      Queue a buffer at the start of a list. This function takes no locks
950  *      and you must therefore hold required locks before calling it.
951  *
952  *      A buffer cannot be placed on two lists at the same time.
953  */
954 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
955 static inline void __skb_queue_head(struct sk_buff_head *list,
956                                     struct sk_buff *newsk)
957 {
958         __skb_queue_after(list, (struct sk_buff *)list, newsk);
959 }
960
961 /**
962  *      __skb_queue_tail - queue a buffer at the list tail
963  *      @list: list to use
964  *      @newsk: buffer to queue
965  *
966  *      Queue a buffer at the end of a list. This function takes no locks
967  *      and you must therefore hold required locks before calling it.
968  *
969  *      A buffer cannot be placed on two lists at the same time.
970  */
971 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
972 static inline void __skb_queue_tail(struct sk_buff_head *list,
973                                    struct sk_buff *newsk)
974 {
975         __skb_queue_before(list, (struct sk_buff *)list, newsk);
976 }
977
978 /*
979  * remove sk_buff from list. _Must_ be called atomically, and with
980  * the list known..
981  */
982 extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
983 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
984 {
985         struct sk_buff *next, *prev;
986
987         list->qlen--;
988         next       = skb->next;
989         prev       = skb->prev;
990         skb->next  = skb->prev = NULL;
991         next->prev = prev;
992         prev->next = next;
993 }
994
995 /**
996  *      __skb_dequeue - remove from the head of the queue
997  *      @list: list to dequeue from
998  *
999  *      Remove the head of the list. This function does not take any locks
1000  *      so must be used with appropriate locks held only. The head item is
1001  *      returned or %NULL if the list is empty.
1002  */
1003 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1004 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1005 {
1006         struct sk_buff *skb = skb_peek(list);
1007         if (skb)
1008                 __skb_unlink(skb, list);
1009         return skb;
1010 }
1011
1012 /**
1013  *      __skb_dequeue_tail - remove from the tail of the queue
1014  *      @list: list to dequeue from
1015  *
1016  *      Remove the tail of the list. This function does not take any locks
1017  *      so must be used with appropriate locks held only. The tail item is
1018  *      returned or %NULL if the list is empty.
1019  */
1020 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1021 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1022 {
1023         struct sk_buff *skb = skb_peek_tail(list);
1024         if (skb)
1025                 __skb_unlink(skb, list);
1026         return skb;
1027 }
1028
1029
1030 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1031 {
1032         return skb->data_len;
1033 }
1034
1035 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1036 {
1037         return skb->len - skb->data_len;
1038 }
1039
1040 static inline int skb_pagelen(const struct sk_buff *skb)
1041 {
1042         int i, len = 0;
1043
1044         for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1045                 len += skb_shinfo(skb)->frags[i].size;
1046         return len + skb_headlen(skb);
1047 }
1048
1049 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1050                                       struct page *page, int off, int size)
1051 {
1052         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1053
1054         frag->page                = page;
1055         frag->page_offset         = off;
1056         frag->size                = size;
1057         skb_shinfo(skb)->nr_frags = i + 1;
1058 }
1059
1060 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1061                             int off, int size);
1062
1063 #define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1064 #define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->frag_list)
1065 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1066
1067 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1068 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1069 {
1070         return skb->head + skb->tail;
1071 }
1072
1073 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1074 {
1075         skb->tail = skb->data - skb->head;
1076 }
1077
1078 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1079 {
1080         skb_reset_tail_pointer(skb);
1081         skb->tail += offset;
1082 }
1083 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1084 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1085 {
1086         return skb->tail;
1087 }
1088
1089 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1090 {
1091         skb->tail = skb->data;
1092 }
1093
1094 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1095 {
1096         skb->tail = skb->data + offset;
1097 }
1098
1099 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1100
1101 /*
1102  *      Add data to an sk_buff
1103  */
1104 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1105 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1106 {
1107         unsigned char *tmp = skb_tail_pointer(skb);
1108         SKB_LINEAR_ASSERT(skb);
1109         skb->tail += len;
1110         skb->len  += len;
1111         return tmp;
1112 }
1113
1114 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1115 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1116 {
1117         skb->data -= len;
1118         skb->len  += len;
1119         return skb->data;
1120 }
1121
1122 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1123 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1124 {
1125         skb->len -= len;
1126         BUG_ON(skb->len < skb->data_len);
1127         return skb->data += len;
1128 }
1129
1130 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1131
1132 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1133 {
1134         if (len > skb_headlen(skb) &&
1135             !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1136                 return NULL;
1137         skb->len -= len;
1138         return skb->data += len;
1139 }
1140
1141 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1142 {
1143         return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1144 }
1145
1146 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1147 {
1148         if (likely(len <= skb_headlen(skb)))
1149                 return 1;
1150         if (unlikely(len > skb->len))
1151                 return 0;
1152         return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1153 }
1154
1155 /**
1156  *      skb_headroom - bytes at buffer head
1157  *      @skb: buffer to check
1158  *
1159  *      Return the number of bytes of free space at the head of an &sk_buff.
1160  */
1161 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1162 {
1163         return skb->data - skb->head;
1164 }
1165
1166 /**
1167  *      skb_tailroom - bytes at buffer end
1168  *      @skb: buffer to check
1169  *
1170  *      Return the number of bytes of free space at the tail of an sk_buff
1171  */
1172 static inline int skb_tailroom(const struct sk_buff *skb)
1173 {
1174         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1175 }
1176
1177 /**
1178  *      skb_reserve - adjust headroom
1179  *      @skb: buffer to alter
1180  *      @len: bytes to move
1181  *
1182  *      Increase the headroom of an empty &sk_buff by reducing the tail
1183  *      room. This is only allowed for an empty buffer.
1184  */
1185 static inline void skb_reserve(struct sk_buff *skb, int len)
1186 {
1187         skb->data += len;
1188         skb->tail += len;
1189 }
1190
1191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1192 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1193 {
1194         return skb->head + skb->transport_header;
1195 }
1196
1197 static inline void skb_reset_transport_header(struct sk_buff *skb)
1198 {
1199         skb->transport_header = skb->data - skb->head;
1200 }
1201
1202 static inline void skb_set_transport_header(struct sk_buff *skb,
1203                                             const int offset)
1204 {
1205         skb_reset_transport_header(skb);
1206         skb->transport_header += offset;
1207 }
1208
1209 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1210 {
1211         return skb->head + skb->network_header;
1212 }
1213
1214 static inline void skb_reset_network_header(struct sk_buff *skb)
1215 {
1216         skb->network_header = skb->data - skb->head;
1217 }
1218
1219 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1220 {
1221         skb_reset_network_header(skb);
1222         skb->network_header += offset;
1223 }
1224
1225 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1226 {
1227         return skb->head + skb->mac_header;
1228 }
1229
1230 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1231 {
1232         return skb->mac_header != ~0U;
1233 }
1234
1235 static inline void skb_reset_mac_header(struct sk_buff *skb)
1236 {
1237         skb->mac_header = skb->data - skb->head;
1238 }
1239
1240 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1241 {
1242         skb_reset_mac_header(skb);
1243         skb->mac_header += offset;
1244 }
1245
1246 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1247
1248 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1249 {
1250         return skb->transport_header;
1251 }
1252
1253 static inline void skb_reset_transport_header(struct sk_buff *skb)
1254 {
1255         skb->transport_header = skb->data;
1256 }
1257
1258 static inline void skb_set_transport_header(struct sk_buff *skb,
1259                                             const int offset)
1260 {
1261         skb->transport_header = skb->data + offset;
1262 }
1263
1264 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1265 {
1266         return skb->network_header;
1267 }
1268
1269 static inline void skb_reset_network_header(struct sk_buff *skb)
1270 {
1271         skb->network_header = skb->data;
1272 }
1273
1274 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1275 {
1276         skb->network_header = skb->data + offset;
1277 }
1278
1279 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1280 {
1281         return skb->mac_header;
1282 }
1283
1284 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1285 {
1286         return skb->mac_header != NULL;
1287 }
1288
1289 static inline void skb_reset_mac_header(struct sk_buff *skb)
1290 {
1291         skb->mac_header = skb->data;
1292 }
1293
1294 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1295 {
1296         skb->mac_header = skb->data + offset;
1297 }
1298 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1299
1300 static inline int skb_transport_offset(const struct sk_buff *skb)
1301 {
1302         return skb_transport_header(skb) - skb->data;
1303 }
1304
1305 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1306 {
1307         return skb->transport_header - skb->network_header;
1308 }
1309
1310 static inline int skb_network_offset(const struct sk_buff *skb)
1311 {
1312         return skb_network_header(skb) - skb->data;
1313 }
1314
1315 /*
1316  * CPUs often take a performance hit when accessing unaligned memory
1317  * locations. The actual performance hit varies, it can be small if the
1318  * hardware handles it or large if we have to take an exception and fix it
1319  * in software.
1320  *
1321  * Since an ethernet header is 14 bytes network drivers often end up with
1322  * the IP header at an unaligned offset. The IP header can be aligned by
1323  * shifting the start of the packet by 2 bytes. Drivers should do this
1324  * with:
1325  *
1326  * skb_reserve(NET_IP_ALIGN);
1327  *
1328  * The downside to this alignment of the IP header is that the DMA is now
1329  * unaligned. On some architectures the cost of an unaligned DMA is high
1330  * and this cost outweighs the gains made by aligning the IP header.
1331  * 
1332  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1333  * to be overridden.
1334  */
1335 #ifndef NET_IP_ALIGN
1336 #define NET_IP_ALIGN    2
1337 #endif
1338
1339 /*
1340  * The networking layer reserves some headroom in skb data (via
1341  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1342  * the header has to grow. In the default case, if the header has to grow
1343  * 32 bytes or less we avoid the reallocation.
1344  *
1345  * Unfortunately this headroom changes the DMA alignment of the resulting
1346  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1347  * on some architectures. An architecture can override this value,
1348  * perhaps setting it to a cacheline in size (since that will maintain
1349  * cacheline alignment of the DMA). It must be a power of 2.
1350  *
1351  * Various parts of the networking layer expect at least 32 bytes of
1352  * headroom, you should not reduce this.
1353  */
1354 #ifndef NET_SKB_PAD
1355 #define NET_SKB_PAD     32
1356 #endif
1357
1358 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1359
1360 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1361 {
1362         if (unlikely(skb->data_len)) {
1363                 WARN_ON(1);
1364                 return;
1365         }
1366         skb->len = len;
1367         skb_set_tail_pointer(skb, len);
1368 }
1369
1370 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1371
1372 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1373 {
1374         if (skb->data_len)
1375                 return ___pskb_trim(skb, len);
1376         __skb_trim(skb, len);
1377         return 0;
1378 }
1379
1380 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1381 {
1382         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1383 }
1384
1385 /**
1386  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1387  *      @skb: buffer to alter
1388  *      @len: new length
1389  *
1390  *      This is identical to pskb_trim except that the caller knows that
1391  *      the skb is not cloned so we should never get an error due to out-
1392  *      of-memory.
1393  */
1394 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1395 {
1396         int err = pskb_trim(skb, len);
1397         BUG_ON(err);
1398 }
1399
1400 /**
1401  *      skb_orphan - orphan a buffer
1402  *      @skb: buffer to orphan
1403  *
1404  *      If a buffer currently has an owner then we call the owner's
1405  *      destructor function and make the @skb unowned. The buffer continues
1406  *      to exist but is no longer charged to its former owner.
1407  */
1408 static inline void skb_orphan(struct sk_buff *skb)
1409 {
1410         if (skb->destructor)
1411                 skb->destructor(skb);
1412         skb->destructor = NULL;
1413         skb->sk         = NULL;
1414 }
1415
1416 /**
1417  *      __skb_queue_purge - empty a list
1418  *      @list: list to empty
1419  *
1420  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1421  *      the list and one reference dropped. This function does not take the
1422  *      list lock and the caller must hold the relevant locks to use it.
1423  */
1424 extern void skb_queue_purge(struct sk_buff_head *list);
1425 static inline void __skb_queue_purge(struct sk_buff_head *list)
1426 {
1427         struct sk_buff *skb;
1428         while ((skb = __skb_dequeue(list)) != NULL)
1429                 kfree_skb(skb);
1430 }
1431
1432 /**
1433  *      __dev_alloc_skb - allocate an skbuff for receiving
1434  *      @length: length to allocate
1435  *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1436  *
1437  *      Allocate a new &sk_buff and assign it a usage count of one. The
1438  *      buffer has unspecified headroom built in. Users should allocate
1439  *      the headroom they think they need without accounting for the
1440  *      built in space. The built in space is used for optimisations.
1441  *
1442  *      %NULL is returned if there is no free memory.
1443  */
1444 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1445                                               gfp_t gfp_mask)
1446 {
1447         struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1448         if (likely(skb))
1449                 skb_reserve(skb, NET_SKB_PAD);
1450         return skb;
1451 }
1452
1453 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1454
1455 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1456                 unsigned int length, gfp_t gfp_mask);
1457
1458 /**
1459  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1460  *      @dev: network device to receive on
1461  *      @length: length to allocate
1462  *
1463  *      Allocate a new &sk_buff and assign it a usage count of one. The
1464  *      buffer has unspecified headroom built in. Users should allocate
1465  *      the headroom they think they need without accounting for the
1466  *      built in space. The built in space is used for optimisations.
1467  *
1468  *      %NULL is returned if there is no free memory. Although this function
1469  *      allocates memory it can be called from an interrupt.
1470  */
1471 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1472                 unsigned int length)
1473 {
1474         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1475 }
1476
1477 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1478
1479 /**
1480  *      netdev_alloc_page - allocate a page for ps-rx on a specific device
1481  *      @dev: network device to receive on
1482  *
1483  *      Allocate a new page node local to the specified device.
1484  *
1485  *      %NULL is returned if there is no free memory.
1486  */
1487 static inline struct page *netdev_alloc_page(struct net_device *dev)
1488 {
1489         return __netdev_alloc_page(dev, GFP_ATOMIC);
1490 }
1491
1492 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1493 {
1494         __free_page(page);
1495 }
1496
1497 /**
1498  *      skb_clone_writable - is the header of a clone writable
1499  *      @skb: buffer to check
1500  *      @len: length up to which to write
1501  *
1502  *      Returns true if modifying the header part of the cloned buffer
1503  *      does not requires the data to be copied.
1504  */
1505 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1506 {
1507         return !skb_header_cloned(skb) &&
1508                skb_headroom(skb) + len <= skb->hdr_len;
1509 }
1510
1511 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1512                             int cloned)
1513 {
1514         int delta = 0;
1515
1516         if (headroom < NET_SKB_PAD)
1517                 headroom = NET_SKB_PAD;
1518         if (headroom > skb_headroom(skb))
1519                 delta = headroom - skb_headroom(skb);
1520
1521         if (delta || cloned)
1522                 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1523                                         GFP_ATOMIC);
1524         return 0;
1525 }
1526
1527 /**
1528  *      skb_cow - copy header of skb when it is required
1529  *      @skb: buffer to cow
1530  *      @headroom: needed headroom
1531  *
1532  *      If the skb passed lacks sufficient headroom or its data part
1533  *      is shared, data is reallocated. If reallocation fails, an error
1534  *      is returned and original skb is not changed.
1535  *
1536  *      The result is skb with writable area skb->head...skb->tail
1537  *      and at least @headroom of space at head.
1538  */
1539 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1540 {
1541         return __skb_cow(skb, headroom, skb_cloned(skb));
1542 }
1543
1544 /**
1545  *      skb_cow_head - skb_cow but only making the head writable
1546  *      @skb: buffer to cow
1547  *      @headroom: needed headroom
1548  *
1549  *      This function is identical to skb_cow except that we replace the
1550  *      skb_cloned check by skb_header_cloned.  It should be used when
1551  *      you only need to push on some header and do not need to modify
1552  *      the data.
1553  */
1554 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1555 {
1556         return __skb_cow(skb, headroom, skb_header_cloned(skb));
1557 }
1558
1559 /**
1560  *      skb_padto       - pad an skbuff up to a minimal size
1561  *      @skb: buffer to pad
1562  *      @len: minimal length
1563  *
1564  *      Pads up a buffer to ensure the trailing bytes exist and are
1565  *      blanked. If the buffer already contains sufficient data it
1566  *      is untouched. Otherwise it is extended. Returns zero on
1567  *      success. The skb is freed on error.
1568  */
1569  
1570 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1571 {
1572         unsigned int size = skb->len;
1573         if (likely(size >= len))
1574                 return 0;
1575         return skb_pad(skb, len - size);
1576 }
1577
1578 static inline int skb_add_data(struct sk_buff *skb,
1579                                char __user *from, int copy)
1580 {
1581         const int off = skb->len;
1582
1583         if (skb->ip_summed == CHECKSUM_NONE) {
1584                 int err = 0;
1585                 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1586                                                             copy, 0, &err);
1587                 if (!err) {
1588                         skb->csum = csum_block_add(skb->csum, csum, off);
1589                         return 0;
1590                 }
1591         } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1592                 return 0;
1593
1594         __skb_trim(skb, off);
1595         return -EFAULT;
1596 }
1597
1598 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1599                                    struct page *page, int off)
1600 {
1601         if (i) {
1602                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1603
1604                 return page == frag->page &&
1605                        off == frag->page_offset + frag->size;
1606         }
1607         return 0;
1608 }
1609
1610 static inline int __skb_linearize(struct sk_buff *skb)
1611 {
1612         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1613 }
1614
1615 /**
1616  *      skb_linearize - convert paged skb to linear one
1617  *      @skb: buffer to linarize
1618  *
1619  *      If there is no free memory -ENOMEM is returned, otherwise zero
1620  *      is returned and the old skb data released.
1621  */
1622 static inline int skb_linearize(struct sk_buff *skb)
1623 {
1624         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1625 }
1626
1627 /**
1628  *      skb_linearize_cow - make sure skb is linear and writable
1629  *      @skb: buffer to process
1630  *
1631  *      If there is no free memory -ENOMEM is returned, otherwise zero
1632  *      is returned and the old skb data released.
1633  */
1634 static inline int skb_linearize_cow(struct sk_buff *skb)
1635 {
1636         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1637                __skb_linearize(skb) : 0;
1638 }
1639
1640 /**
1641  *      skb_postpull_rcsum - update checksum for received skb after pull
1642  *      @skb: buffer to update
1643  *      @start: start of data before pull
1644  *      @len: length of data pulled
1645  *
1646  *      After doing a pull on a received packet, you need to call this to
1647  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1648  *      CHECKSUM_NONE so that it can be recomputed from scratch.
1649  */
1650
1651 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1652                                       const void *start, unsigned int len)
1653 {
1654         if (skb->ip_summed == CHECKSUM_COMPLETE)
1655                 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1656 }
1657
1658 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1659
1660 /**
1661  *      pskb_trim_rcsum - trim received skb and update checksum
1662  *      @skb: buffer to trim
1663  *      @len: new length
1664  *
1665  *      This is exactly the same as pskb_trim except that it ensures the
1666  *      checksum of received packets are still valid after the operation.
1667  */
1668
1669 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1670 {
1671         if (likely(len >= skb->len))
1672                 return 0;
1673         if (skb->ip_summed == CHECKSUM_COMPLETE)
1674                 skb->ip_summed = CHECKSUM_NONE;
1675         return __pskb_trim(skb, len);
1676 }
1677
1678 #define skb_queue_walk(queue, skb) \
1679                 for (skb = (queue)->next;                                       \
1680                      prefetch(skb->next), (skb != (struct sk_buff *)(queue));   \
1681                      skb = skb->next)
1682
1683 #define skb_queue_walk_safe(queue, skb, tmp)                                    \
1684                 for (skb = (queue)->next, tmp = skb->next;                      \
1685                      skb != (struct sk_buff *)(queue);                          \
1686                      skb = tmp, tmp = skb->next)
1687
1688 #define skb_queue_walk_from(queue, skb)                                         \
1689                 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1690                      skb = skb->next)
1691
1692 #define skb_queue_walk_from_safe(queue, skb, tmp)                               \
1693                 for (tmp = skb->next;                                           \
1694                      skb != (struct sk_buff *)(queue);                          \
1695                      skb = tmp, tmp = skb->next)
1696
1697 #define skb_queue_reverse_walk(queue, skb) \
1698                 for (skb = (queue)->prev;                                       \
1699                      prefetch(skb->prev), (skb != (struct sk_buff *)(queue));   \
1700                      skb = skb->prev)
1701
1702
1703 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1704                                            int *peeked, int *err);
1705 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1706                                          int noblock, int *err);
1707 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1708                                      struct poll_table_struct *wait);
1709 extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
1710                                                int offset, struct iovec *to,
1711                                                int size);
1712 extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1713                                                         int hlen,
1714                                                         struct iovec *iov);
1715 extern int             skb_copy_datagram_from_iovec(struct sk_buff *skb,
1716                                                     int offset,
1717                                                     struct iovec *from,
1718                                                     int len);
1719 extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1720 extern int             skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1721                                          unsigned int flags);
1722 extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
1723                                     int len, __wsum csum);
1724 extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
1725                                      void *to, int len);
1726 extern int             skb_store_bits(struct sk_buff *skb, int offset,
1727                                       const void *from, int len);
1728 extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
1729                                               int offset, u8 *to, int len,
1730                                               __wsum csum);
1731 extern int             skb_splice_bits(struct sk_buff *skb,
1732                                                 unsigned int offset,
1733                                                 struct pipe_inode_info *pipe,
1734                                                 unsigned int len,
1735                                                 unsigned int flags);
1736 extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1737 extern void            skb_split(struct sk_buff *skb,
1738                                  struct sk_buff *skb1, const u32 len);
1739 extern int             skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1740                                  int shiftlen);
1741
1742 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1743
1744 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1745                                        int len, void *buffer)
1746 {
1747         int hlen = skb_headlen(skb);
1748
1749         if (hlen - offset >= len)
1750                 return skb->data + offset;
1751
1752         if (skb_copy_bits(skb, offset, buffer, len) < 0)
1753                 return NULL;
1754
1755         return buffer;
1756 }
1757
1758 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1759                                              void *to,
1760                                              const unsigned int len)
1761 {
1762         memcpy(to, skb->data, len);
1763 }
1764
1765 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1766                                                     const int offset, void *to,
1767                                                     const unsigned int len)
1768 {
1769         memcpy(to, skb->data + offset, len);
1770 }
1771
1772 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1773                                            const void *from,
1774                                            const unsigned int len)
1775 {
1776         memcpy(skb->data, from, len);
1777 }
1778
1779 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1780                                                   const int offset,
1781                                                   const void *from,
1782                                                   const unsigned int len)
1783 {
1784         memcpy(skb->data + offset, from, len);
1785 }
1786
1787 extern void skb_init(void);
1788
1789 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1790 {
1791         return skb->tstamp;
1792 }
1793
1794 /**
1795  *      skb_get_timestamp - get timestamp from a skb
1796  *      @skb: skb to get stamp from
1797  *      @stamp: pointer to struct timeval to store stamp in
1798  *
1799  *      Timestamps are stored in the skb as offsets to a base timestamp.
1800  *      This function converts the offset back to a struct timeval and stores
1801  *      it in stamp.
1802  */
1803 static inline void skb_get_timestamp(const struct sk_buff *skb,
1804                                      struct timeval *stamp)
1805 {
1806         *stamp = ktime_to_timeval(skb->tstamp);
1807 }
1808
1809 static inline void skb_get_timestampns(const struct sk_buff *skb,
1810                                        struct timespec *stamp)
1811 {
1812         *stamp = ktime_to_timespec(skb->tstamp);
1813 }
1814
1815 static inline void __net_timestamp(struct sk_buff *skb)
1816 {
1817         skb->tstamp = ktime_get_real();
1818 }
1819
1820 static inline ktime_t net_timedelta(ktime_t t)
1821 {
1822         return ktime_sub(ktime_get_real(), t);
1823 }
1824
1825 static inline ktime_t net_invalid_timestamp(void)
1826 {
1827         return ktime_set(0, 0);
1828 }
1829
1830 /**
1831  * skb_tstamp_tx - queue clone of skb with send time stamps
1832  * @orig_skb:   the original outgoing packet
1833  * @hwtstamps:  hardware time stamps, may be NULL if not available
1834  *
1835  * If the skb has a socket associated, then this function clones the
1836  * skb (thus sharing the actual data and optional structures), stores
1837  * the optional hardware time stamping information (if non NULL) or
1838  * generates a software time stamp (otherwise), then queues the clone
1839  * to the error queue of the socket.  Errors are silently ignored.
1840  */
1841 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1842                         struct skb_shared_hwtstamps *hwtstamps);
1843
1844 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1845 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1846
1847 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1848 {
1849         return skb->ip_summed & CHECKSUM_UNNECESSARY;
1850 }
1851
1852 /**
1853  *      skb_checksum_complete - Calculate checksum of an entire packet
1854  *      @skb: packet to process
1855  *
1856  *      This function calculates the checksum over the entire packet plus
1857  *      the value of skb->csum.  The latter can be used to supply the
1858  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
1859  *      checksum.
1860  *
1861  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
1862  *      this function can be used to verify that checksum on received
1863  *      packets.  In that case the function should return zero if the
1864  *      checksum is correct.  In particular, this function will return zero
1865  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1866  *      hardware has already verified the correctness of the checksum.
1867  */
1868 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1869 {
1870         return skb_csum_unnecessary(skb) ?
1871                0 : __skb_checksum_complete(skb);
1872 }
1873
1874 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1875 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1876 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1877 {
1878         if (nfct && atomic_dec_and_test(&nfct->use))
1879                 nf_conntrack_destroy(nfct);
1880 }
1881 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1882 {
1883         if (nfct)
1884                 atomic_inc(&nfct->use);
1885 }
1886 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1887 {
1888         if (skb)
1889                 atomic_inc(&skb->users);
1890 }
1891 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1892 {
1893         if (skb)
1894                 kfree_skb(skb);
1895 }
1896 #endif
1897 #ifdef CONFIG_BRIDGE_NETFILTER
1898 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1899 {
1900         if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1901                 kfree(nf_bridge);
1902 }
1903 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1904 {
1905         if (nf_bridge)
1906                 atomic_inc(&nf_bridge->use);
1907 }
1908 #endif /* CONFIG_BRIDGE_NETFILTER */
1909 static inline void nf_reset(struct sk_buff *skb)
1910 {
1911 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1912         nf_conntrack_put(skb->nfct);
1913         skb->nfct = NULL;
1914         nf_conntrack_put_reasm(skb->nfct_reasm);
1915         skb->nfct_reasm = NULL;
1916 #endif
1917 #ifdef CONFIG_BRIDGE_NETFILTER
1918         nf_bridge_put(skb->nf_bridge);
1919         skb->nf_bridge = NULL;
1920 #endif
1921 }
1922
1923 /* Note: This doesn't put any conntrack and bridge info in dst. */
1924 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1925 {
1926 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1927         dst->nfct = src->nfct;
1928         nf_conntrack_get(src->nfct);
1929         dst->nfctinfo = src->nfctinfo;
1930         dst->nfct_reasm = src->nfct_reasm;
1931         nf_conntrack_get_reasm(src->nfct_reasm);
1932 #endif
1933 #ifdef CONFIG_BRIDGE_NETFILTER
1934         dst->nf_bridge  = src->nf_bridge;
1935         nf_bridge_get(src->nf_bridge);
1936 #endif
1937 }
1938
1939 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1940 {
1941 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1942         nf_conntrack_put(dst->nfct);
1943         nf_conntrack_put_reasm(dst->nfct_reasm);
1944 #endif
1945 #ifdef CONFIG_BRIDGE_NETFILTER
1946         nf_bridge_put(dst->nf_bridge);
1947 #endif
1948         __nf_copy(dst, src);
1949 }
1950
1951 #ifdef CONFIG_NETWORK_SECMARK
1952 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1953 {
1954         to->secmark = from->secmark;
1955 }
1956
1957 static inline void skb_init_secmark(struct sk_buff *skb)
1958 {
1959         skb->secmark = 0;
1960 }
1961 #else
1962 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1963 { }
1964
1965 static inline void skb_init_secmark(struct sk_buff *skb)
1966 { }
1967 #endif
1968
1969 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1970 {
1971         skb->queue_mapping = queue_mapping;
1972 }
1973
1974 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
1975 {
1976         return skb->queue_mapping;
1977 }
1978
1979 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1980 {
1981         to->queue_mapping = from->queue_mapping;
1982 }
1983
1984 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
1985 {
1986         skb->queue_mapping = rx_queue + 1;
1987 }
1988
1989 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
1990 {
1991         return skb->queue_mapping - 1;
1992 }
1993
1994 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
1995 {
1996         return (skb->queue_mapping != 0);
1997 }
1998
1999 extern u16 skb_tx_hash(const struct net_device *dev,
2000                        const struct sk_buff *skb);
2001
2002 #ifdef CONFIG_XFRM
2003 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2004 {
2005         return skb->sp;
2006 }
2007 #else
2008 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2009 {
2010         return NULL;
2011 }
2012 #endif
2013
2014 static inline int skb_is_gso(const struct sk_buff *skb)
2015 {
2016         return skb_shinfo(skb)->gso_size;
2017 }
2018
2019 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2020 {
2021         return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2022 }
2023
2024 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2025
2026 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2027 {
2028         /* LRO sets gso_size but not gso_type, whereas if GSO is really
2029          * wanted then gso_type will be set. */
2030         struct skb_shared_info *shinfo = skb_shinfo(skb);
2031         if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2032                 __skb_warn_lro_forwarding(skb);
2033                 return true;
2034         }
2035         return false;
2036 }
2037
2038 static inline void skb_forward_csum(struct sk_buff *skb)
2039 {
2040         /* Unfortunately we don't support this one.  Any brave souls? */
2041         if (skb->ip_summed == CHECKSUM_COMPLETE)
2042                 skb->ip_summed = CHECKSUM_NONE;
2043 }
2044
2045 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2046 #endif  /* __KERNEL__ */
2047 #endif  /* _LINUX_SKBUFF_H */