]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - include/linux/sched.h
[PATCH] csa: convert CONFIG tag for extended accounting routines
[linux-2.6-omap-h63xx.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h>       /* For AT_VECTOR_SIZE */
5
6 /*
7  * cloning flags:
8  */
9 #define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
10 #define CLONE_VM        0x00000100      /* set if VM shared between processes */
11 #define CLONE_FS        0x00000200      /* set if fs info shared between processes */
12 #define CLONE_FILES     0x00000400      /* set if open files shared between processes */
13 #define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD    0x00010000      /* Same thread group? */
18 #define CLONE_NEWNS     0x00020000      /* New namespace group? */
19 #define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
23 #define CLONE_DETACHED          0x00400000      /* Unused, ignored */
24 #define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
26 #define CLONE_STOPPED           0x02000000      /* Start in stopped state */
27
28 /*
29  * Scheduling policies
30  */
31 #define SCHED_NORMAL            0
32 #define SCHED_FIFO              1
33 #define SCHED_RR                2
34 #define SCHED_BATCH             3
35
36 #ifdef __KERNEL__
37
38 struct sched_param {
39         int sched_priority;
40 };
41
42 #include <asm/param.h>  /* for HZ */
43
44 #include <linux/capability.h>
45 #include <linux/threads.h>
46 #include <linux/kernel.h>
47 #include <linux/types.h>
48 #include <linux/timex.h>
49 #include <linux/jiffies.h>
50 #include <linux/rbtree.h>
51 #include <linux/thread_info.h>
52 #include <linux/cpumask.h>
53 #include <linux/errno.h>
54 #include <linux/nodemask.h>
55
56 #include <asm/system.h>
57 #include <asm/semaphore.h>
58 #include <asm/page.h>
59 #include <asm/ptrace.h>
60 #include <asm/mmu.h>
61 #include <asm/cputime.h>
62
63 #include <linux/smp.h>
64 #include <linux/sem.h>
65 #include <linux/signal.h>
66 #include <linux/securebits.h>
67 #include <linux/fs_struct.h>
68 #include <linux/compiler.h>
69 #include <linux/completion.h>
70 #include <linux/pid.h>
71 #include <linux/percpu.h>
72 #include <linux/topology.h>
73 #include <linux/seccomp.h>
74 #include <linux/rcupdate.h>
75 #include <linux/futex.h>
76 #include <linux/rtmutex.h>
77
78 #include <linux/time.h>
79 #include <linux/param.h>
80 #include <linux/resource.h>
81 #include <linux/timer.h>
82 #include <linux/hrtimer.h>
83
84 #include <asm/processor.h>
85
86 struct exec_domain;
87 struct futex_pi_state;
88
89 /*
90  * List of flags we want to share for kernel threads,
91  * if only because they are not used by them anyway.
92  */
93 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
94
95 /*
96  * These are the constant used to fake the fixed-point load-average
97  * counting. Some notes:
98  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
99  *    a load-average precision of 10 bits integer + 11 bits fractional
100  *  - if you want to count load-averages more often, you need more
101  *    precision, or rounding will get you. With 2-second counting freq,
102  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
103  *    11 bit fractions.
104  */
105 extern unsigned long avenrun[];         /* Load averages */
106
107 #define FSHIFT          11              /* nr of bits of precision */
108 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
109 #define LOAD_FREQ       (5*HZ)          /* 5 sec intervals */
110 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
111 #define EXP_5           2014            /* 1/exp(5sec/5min) */
112 #define EXP_15          2037            /* 1/exp(5sec/15min) */
113
114 #define CALC_LOAD(load,exp,n) \
115         load *= exp; \
116         load += n*(FIXED_1-exp); \
117         load >>= FSHIFT;
118
119 extern unsigned long total_forks;
120 extern int nr_threads;
121 extern int last_pid;
122 DECLARE_PER_CPU(unsigned long, process_counts);
123 extern int nr_processes(void);
124 extern unsigned long nr_running(void);
125 extern unsigned long nr_uninterruptible(void);
126 extern unsigned long nr_active(void);
127 extern unsigned long nr_iowait(void);
128 extern unsigned long weighted_cpuload(const int cpu);
129
130
131 /*
132  * Task state bitmask. NOTE! These bits are also
133  * encoded in fs/proc/array.c: get_task_state().
134  *
135  * We have two separate sets of flags: task->state
136  * is about runnability, while task->exit_state are
137  * about the task exiting. Confusing, but this way
138  * modifying one set can't modify the other one by
139  * mistake.
140  */
141 #define TASK_RUNNING            0
142 #define TASK_INTERRUPTIBLE      1
143 #define TASK_UNINTERRUPTIBLE    2
144 #define TASK_STOPPED            4
145 #define TASK_TRACED             8
146 /* in tsk->exit_state */
147 #define EXIT_ZOMBIE             16
148 #define EXIT_DEAD               32
149 /* in tsk->state again */
150 #define TASK_NONINTERACTIVE     64
151 #define TASK_DEAD               128
152
153 #define __set_task_state(tsk, state_value)              \
154         do { (tsk)->state = (state_value); } while (0)
155 #define set_task_state(tsk, state_value)                \
156         set_mb((tsk)->state, (state_value))
157
158 /*
159  * set_current_state() includes a barrier so that the write of current->state
160  * is correctly serialised wrt the caller's subsequent test of whether to
161  * actually sleep:
162  *
163  *      set_current_state(TASK_UNINTERRUPTIBLE);
164  *      if (do_i_need_to_sleep())
165  *              schedule();
166  *
167  * If the caller does not need such serialisation then use __set_current_state()
168  */
169 #define __set_current_state(state_value)                        \
170         do { current->state = (state_value); } while (0)
171 #define set_current_state(state_value)          \
172         set_mb(current->state, (state_value))
173
174 /* Task command name length */
175 #define TASK_COMM_LEN 16
176
177 #include <linux/spinlock.h>
178
179 /*
180  * This serializes "schedule()" and also protects
181  * the run-queue from deletions/modifications (but
182  * _adding_ to the beginning of the run-queue has
183  * a separate lock).
184  */
185 extern rwlock_t tasklist_lock;
186 extern spinlock_t mmlist_lock;
187
188 struct task_struct;
189
190 extern void sched_init(void);
191 extern void sched_init_smp(void);
192 extern void init_idle(struct task_struct *idle, int cpu);
193
194 extern cpumask_t nohz_cpu_mask;
195
196 extern void show_state(void);
197 extern void show_regs(struct pt_regs *);
198
199 /*
200  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
201  * task), SP is the stack pointer of the first frame that should be shown in the back
202  * trace (or NULL if the entire call-chain of the task should be shown).
203  */
204 extern void show_stack(struct task_struct *task, unsigned long *sp);
205
206 void io_schedule(void);
207 long io_schedule_timeout(long timeout);
208
209 extern void cpu_init (void);
210 extern void trap_init(void);
211 extern void update_process_times(int user);
212 extern void scheduler_tick(void);
213
214 #ifdef CONFIG_DETECT_SOFTLOCKUP
215 extern void softlockup_tick(void);
216 extern void spawn_softlockup_task(void);
217 extern void touch_softlockup_watchdog(void);
218 #else
219 static inline void softlockup_tick(void)
220 {
221 }
222 static inline void spawn_softlockup_task(void)
223 {
224 }
225 static inline void touch_softlockup_watchdog(void)
226 {
227 }
228 #endif
229
230
231 /* Attach to any functions which should be ignored in wchan output. */
232 #define __sched         __attribute__((__section__(".sched.text")))
233 /* Is this address in the __sched functions? */
234 extern int in_sched_functions(unsigned long addr);
235
236 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
237 extern signed long FASTCALL(schedule_timeout(signed long timeout));
238 extern signed long schedule_timeout_interruptible(signed long timeout);
239 extern signed long schedule_timeout_uninterruptible(signed long timeout);
240 asmlinkage void schedule(void);
241
242 struct namespace;
243
244 /* Maximum number of active map areas.. This is a random (large) number */
245 #define DEFAULT_MAX_MAP_COUNT   65536
246
247 extern int sysctl_max_map_count;
248
249 #include <linux/aio.h>
250
251 extern unsigned long
252 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
253                        unsigned long, unsigned long);
254 extern unsigned long
255 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
256                           unsigned long len, unsigned long pgoff,
257                           unsigned long flags);
258 extern void arch_unmap_area(struct mm_struct *, unsigned long);
259 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
260
261 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
262 /*
263  * The mm counters are not protected by its page_table_lock,
264  * so must be incremented atomically.
265  */
266 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
267 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
268 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
269 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
270 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
271 typedef atomic_long_t mm_counter_t;
272
273 #else  /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
274 /*
275  * The mm counters are protected by its page_table_lock,
276  * so can be incremented directly.
277  */
278 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
279 #define get_mm_counter(mm, member) ((mm)->_##member)
280 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
281 #define inc_mm_counter(mm, member) (mm)->_##member++
282 #define dec_mm_counter(mm, member) (mm)->_##member--
283 typedef unsigned long mm_counter_t;
284
285 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
286
287 #define get_mm_rss(mm)                                  \
288         (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
289 #define update_hiwater_rss(mm)  do {                    \
290         unsigned long _rss = get_mm_rss(mm);            \
291         if ((mm)->hiwater_rss < _rss)                   \
292                 (mm)->hiwater_rss = _rss;               \
293 } while (0)
294 #define update_hiwater_vm(mm)   do {                    \
295         if ((mm)->hiwater_vm < (mm)->total_vm)          \
296                 (mm)->hiwater_vm = (mm)->total_vm;      \
297 } while (0)
298
299 struct mm_struct {
300         struct vm_area_struct * mmap;           /* list of VMAs */
301         struct rb_root mm_rb;
302         struct vm_area_struct * mmap_cache;     /* last find_vma result */
303         unsigned long (*get_unmapped_area) (struct file *filp,
304                                 unsigned long addr, unsigned long len,
305                                 unsigned long pgoff, unsigned long flags);
306         void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
307         unsigned long mmap_base;                /* base of mmap area */
308         unsigned long task_size;                /* size of task vm space */
309         unsigned long cached_hole_size;         /* if non-zero, the largest hole below free_area_cache */
310         unsigned long free_area_cache;          /* first hole of size cached_hole_size or larger */
311         pgd_t * pgd;
312         atomic_t mm_users;                      /* How many users with user space? */
313         atomic_t mm_count;                      /* How many references to "struct mm_struct" (users count as 1) */
314         int map_count;                          /* number of VMAs */
315         struct rw_semaphore mmap_sem;
316         spinlock_t page_table_lock;             /* Protects page tables and some counters */
317
318         struct list_head mmlist;                /* List of maybe swapped mm's.  These are globally strung
319                                                  * together off init_mm.mmlist, and are protected
320                                                  * by mmlist_lock
321                                                  */
322
323         /* Special counters, in some configurations protected by the
324          * page_table_lock, in other configurations by being atomic.
325          */
326         mm_counter_t _file_rss;
327         mm_counter_t _anon_rss;
328
329         unsigned long hiwater_rss;      /* High-watermark of RSS usage */
330         unsigned long hiwater_vm;       /* High-water virtual memory usage */
331
332         unsigned long total_vm, locked_vm, shared_vm, exec_vm;
333         unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
334         unsigned long start_code, end_code, start_data, end_data;
335         unsigned long start_brk, brk, start_stack;
336         unsigned long arg_start, arg_end, env_start, env_end;
337
338         unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
339
340         unsigned dumpable:2;
341         cpumask_t cpu_vm_mask;
342
343         /* Architecture-specific MM context */
344         mm_context_t context;
345
346         /* Token based thrashing protection. */
347         unsigned long swap_token_time;
348         char recent_pagein;
349
350         /* coredumping support */
351         int core_waiters;
352         struct completion *core_startup_done, core_done;
353
354         /* aio bits */
355         rwlock_t                ioctx_list_lock;
356         struct kioctx           *ioctx_list;
357 };
358
359 struct sighand_struct {
360         atomic_t                count;
361         struct k_sigaction      action[_NSIG];
362         spinlock_t              siglock;
363 };
364
365 struct pacct_struct {
366         int                     ac_flag;
367         long                    ac_exitcode;
368         unsigned long           ac_mem;
369         cputime_t               ac_utime, ac_stime;
370         unsigned long           ac_minflt, ac_majflt;
371 };
372
373 /*
374  * NOTE! "signal_struct" does not have it's own
375  * locking, because a shared signal_struct always
376  * implies a shared sighand_struct, so locking
377  * sighand_struct is always a proper superset of
378  * the locking of signal_struct.
379  */
380 struct signal_struct {
381         atomic_t                count;
382         atomic_t                live;
383
384         wait_queue_head_t       wait_chldexit;  /* for wait4() */
385
386         /* current thread group signal load-balancing target: */
387         struct task_struct      *curr_target;
388
389         /* shared signal handling: */
390         struct sigpending       shared_pending;
391
392         /* thread group exit support */
393         int                     group_exit_code;
394         /* overloaded:
395          * - notify group_exit_task when ->count is equal to notify_count
396          * - everyone except group_exit_task is stopped during signal delivery
397          *   of fatal signals, group_exit_task processes the signal.
398          */
399         struct task_struct      *group_exit_task;
400         int                     notify_count;
401
402         /* thread group stop support, overloads group_exit_code too */
403         int                     group_stop_count;
404         unsigned int            flags; /* see SIGNAL_* flags below */
405
406         /* POSIX.1b Interval Timers */
407         struct list_head posix_timers;
408
409         /* ITIMER_REAL timer for the process */
410         struct hrtimer real_timer;
411         struct task_struct *tsk;
412         ktime_t it_real_incr;
413
414         /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
415         cputime_t it_prof_expires, it_virt_expires;
416         cputime_t it_prof_incr, it_virt_incr;
417
418         /* job control IDs */
419         pid_t pgrp;
420         pid_t tty_old_pgrp;
421         pid_t session;
422         /* boolean value for session group leader */
423         int leader;
424
425         struct tty_struct *tty; /* NULL if no tty */
426
427         /*
428          * Cumulative resource counters for dead threads in the group,
429          * and for reaped dead child processes forked by this group.
430          * Live threads maintain their own counters and add to these
431          * in __exit_signal, except for the group leader.
432          */
433         cputime_t utime, stime, cutime, cstime;
434         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
435         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
436
437         /*
438          * Cumulative ns of scheduled CPU time for dead threads in the
439          * group, not including a zombie group leader.  (This only differs
440          * from jiffies_to_ns(utime + stime) if sched_clock uses something
441          * other than jiffies.)
442          */
443         unsigned long long sched_time;
444
445         /*
446          * We don't bother to synchronize most readers of this at all,
447          * because there is no reader checking a limit that actually needs
448          * to get both rlim_cur and rlim_max atomically, and either one
449          * alone is a single word that can safely be read normally.
450          * getrlimit/setrlimit use task_lock(current->group_leader) to
451          * protect this instead of the siglock, because they really
452          * have no need to disable irqs.
453          */
454         struct rlimit rlim[RLIM_NLIMITS];
455
456         struct list_head cpu_timers[3];
457
458         /* keep the process-shared keyrings here so that they do the right
459          * thing in threads created with CLONE_THREAD */
460 #ifdef CONFIG_KEYS
461         struct key *session_keyring;    /* keyring inherited over fork */
462         struct key *process_keyring;    /* keyring private to this process */
463 #endif
464 #ifdef CONFIG_BSD_PROCESS_ACCT
465         struct pacct_struct pacct;      /* per-process accounting information */
466 #endif
467 #ifdef CONFIG_TASKSTATS
468         spinlock_t stats_lock;
469         struct taskstats *stats;
470 #endif
471 };
472
473 /* Context switch must be unlocked if interrupts are to be enabled */
474 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
475 # define __ARCH_WANT_UNLOCKED_CTXSW
476 #endif
477
478 /*
479  * Bits in flags field of signal_struct.
480  */
481 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
482 #define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
483 #define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
484 #define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
485
486
487 /*
488  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
489  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
490  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
491  * values are inverted: lower p->prio value means higher priority.
492  *
493  * The MAX_USER_RT_PRIO value allows the actual maximum
494  * RT priority to be separate from the value exported to
495  * user-space.  This allows kernel threads to set their
496  * priority to a value higher than any user task. Note:
497  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
498  */
499
500 #define MAX_USER_RT_PRIO        100
501 #define MAX_RT_PRIO             MAX_USER_RT_PRIO
502
503 #define MAX_PRIO                (MAX_RT_PRIO + 40)
504
505 #define rt_prio(prio)           unlikely((prio) < MAX_RT_PRIO)
506 #define rt_task(p)              rt_prio((p)->prio)
507 #define batch_task(p)           (unlikely((p)->policy == SCHED_BATCH))
508 #define is_rt_policy(p)         ((p) != SCHED_NORMAL && (p) != SCHED_BATCH)
509 #define has_rt_policy(p)        unlikely(is_rt_policy((p)->policy))
510
511 /*
512  * Some day this will be a full-fledged user tracking system..
513  */
514 struct user_struct {
515         atomic_t __count;       /* reference count */
516         atomic_t processes;     /* How many processes does this user have? */
517         atomic_t files;         /* How many open files does this user have? */
518         atomic_t sigpending;    /* How many pending signals does this user have? */
519 #ifdef CONFIG_INOTIFY_USER
520         atomic_t inotify_watches; /* How many inotify watches does this user have? */
521         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
522 #endif
523         /* protected by mq_lock */
524         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
525         unsigned long locked_shm; /* How many pages of mlocked shm ? */
526
527 #ifdef CONFIG_KEYS
528         struct key *uid_keyring;        /* UID specific keyring */
529         struct key *session_keyring;    /* UID's default session keyring */
530 #endif
531
532         /* Hash table maintenance information */
533         struct list_head uidhash_list;
534         uid_t uid;
535 };
536
537 extern struct user_struct *find_user(uid_t);
538
539 extern struct user_struct root_user;
540 #define INIT_USER (&root_user)
541
542 struct backing_dev_info;
543 struct reclaim_state;
544
545 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
546 struct sched_info {
547         /* cumulative counters */
548         unsigned long   cpu_time,       /* time spent on the cpu */
549                         run_delay,      /* time spent waiting on a runqueue */
550                         pcnt;           /* # of timeslices run on this cpu */
551
552         /* timestamps */
553         unsigned long   last_arrival,   /* when we last ran on a cpu */
554                         last_queued;    /* when we were last queued to run */
555 };
556 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
557
558 #ifdef CONFIG_SCHEDSTATS
559 extern struct file_operations proc_schedstat_operations;
560 #endif /* CONFIG_SCHEDSTATS */
561
562 #ifdef CONFIG_TASK_DELAY_ACCT
563 struct task_delay_info {
564         spinlock_t      lock;
565         unsigned int    flags;  /* Private per-task flags */
566
567         /* For each stat XXX, add following, aligned appropriately
568          *
569          * struct timespec XXX_start, XXX_end;
570          * u64 XXX_delay;
571          * u32 XXX_count;
572          *
573          * Atomicity of updates to XXX_delay, XXX_count protected by
574          * single lock above (split into XXX_lock if contention is an issue).
575          */
576
577         /*
578          * XXX_count is incremented on every XXX operation, the delay
579          * associated with the operation is added to XXX_delay.
580          * XXX_delay contains the accumulated delay time in nanoseconds.
581          */
582         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
583         u64 blkio_delay;        /* wait for sync block io completion */
584         u64 swapin_delay;       /* wait for swapin block io completion */
585         u32 blkio_count;        /* total count of the number of sync block */
586                                 /* io operations performed */
587         u32 swapin_count;       /* total count of the number of swapin block */
588                                 /* io operations performed */
589 };
590 #endif  /* CONFIG_TASK_DELAY_ACCT */
591
592 static inline int sched_info_on(void)
593 {
594 #ifdef CONFIG_SCHEDSTATS
595         return 1;
596 #elif defined(CONFIG_TASK_DELAY_ACCT)
597         extern int delayacct_on;
598         return delayacct_on;
599 #else
600         return 0;
601 #endif
602 }
603
604 enum idle_type
605 {
606         SCHED_IDLE,
607         NOT_IDLE,
608         NEWLY_IDLE,
609         MAX_IDLE_TYPES
610 };
611
612 /*
613  * sched-domains (multiprocessor balancing) declarations:
614  */
615 #define SCHED_LOAD_SCALE        128UL   /* increase resolution of load */
616
617 #ifdef CONFIG_SMP
618 #define SD_LOAD_BALANCE         1       /* Do load balancing on this domain. */
619 #define SD_BALANCE_NEWIDLE      2       /* Balance when about to become idle */
620 #define SD_BALANCE_EXEC         4       /* Balance on exec */
621 #define SD_BALANCE_FORK         8       /* Balance on fork, clone */
622 #define SD_WAKE_IDLE            16      /* Wake to idle CPU on task wakeup */
623 #define SD_WAKE_AFFINE          32      /* Wake task to waking CPU */
624 #define SD_WAKE_BALANCE         64      /* Perform balancing at task wakeup */
625 #define SD_SHARE_CPUPOWER       128     /* Domain members share cpu power */
626 #define SD_POWERSAVINGS_BALANCE 256     /* Balance for power savings */
627
628 #define BALANCE_FOR_POWER       ((sched_mc_power_savings || sched_smt_power_savings) \
629                                  ? SD_POWERSAVINGS_BALANCE : 0)
630
631
632 struct sched_group {
633         struct sched_group *next;       /* Must be a circular list */
634         cpumask_t cpumask;
635
636         /*
637          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
638          * single CPU. This is read only (except for setup, hotplug CPU).
639          */
640         unsigned long cpu_power;
641 };
642
643 struct sched_domain {
644         /* These fields must be setup */
645         struct sched_domain *parent;    /* top domain must be null terminated */
646         struct sched_group *groups;     /* the balancing groups of the domain */
647         cpumask_t span;                 /* span of all CPUs in this domain */
648         unsigned long min_interval;     /* Minimum balance interval ms */
649         unsigned long max_interval;     /* Maximum balance interval ms */
650         unsigned int busy_factor;       /* less balancing by factor if busy */
651         unsigned int imbalance_pct;     /* No balance until over watermark */
652         unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
653         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
654         unsigned int per_cpu_gain;      /* CPU % gained by adding domain cpus */
655         unsigned int busy_idx;
656         unsigned int idle_idx;
657         unsigned int newidle_idx;
658         unsigned int wake_idx;
659         unsigned int forkexec_idx;
660         int flags;                      /* See SD_* */
661
662         /* Runtime fields. */
663         unsigned long last_balance;     /* init to jiffies. units in jiffies */
664         unsigned int balance_interval;  /* initialise to 1. units in ms. */
665         unsigned int nr_balance_failed; /* initialise to 0 */
666
667 #ifdef CONFIG_SCHEDSTATS
668         /* load_balance() stats */
669         unsigned long lb_cnt[MAX_IDLE_TYPES];
670         unsigned long lb_failed[MAX_IDLE_TYPES];
671         unsigned long lb_balanced[MAX_IDLE_TYPES];
672         unsigned long lb_imbalance[MAX_IDLE_TYPES];
673         unsigned long lb_gained[MAX_IDLE_TYPES];
674         unsigned long lb_hot_gained[MAX_IDLE_TYPES];
675         unsigned long lb_nobusyg[MAX_IDLE_TYPES];
676         unsigned long lb_nobusyq[MAX_IDLE_TYPES];
677
678         /* Active load balancing */
679         unsigned long alb_cnt;
680         unsigned long alb_failed;
681         unsigned long alb_pushed;
682
683         /* SD_BALANCE_EXEC stats */
684         unsigned long sbe_cnt;
685         unsigned long sbe_balanced;
686         unsigned long sbe_pushed;
687
688         /* SD_BALANCE_FORK stats */
689         unsigned long sbf_cnt;
690         unsigned long sbf_balanced;
691         unsigned long sbf_pushed;
692
693         /* try_to_wake_up() stats */
694         unsigned long ttwu_wake_remote;
695         unsigned long ttwu_move_affine;
696         unsigned long ttwu_move_balance;
697 #endif
698 };
699
700 extern int partition_sched_domains(cpumask_t *partition1,
701                                     cpumask_t *partition2);
702
703 /*
704  * Maximum cache size the migration-costs auto-tuning code will
705  * search from:
706  */
707 extern unsigned int max_cache_size;
708
709 #endif  /* CONFIG_SMP */
710
711
712 struct io_context;                      /* See blkdev.h */
713 struct cpuset;
714
715 #define NGROUPS_SMALL           32
716 #define NGROUPS_PER_BLOCK       ((int)(PAGE_SIZE / sizeof(gid_t)))
717 struct group_info {
718         int ngroups;
719         atomic_t usage;
720         gid_t small_block[NGROUPS_SMALL];
721         int nblocks;
722         gid_t *blocks[0];
723 };
724
725 /*
726  * get_group_info() must be called with the owning task locked (via task_lock())
727  * when task != current.  The reason being that the vast majority of callers are
728  * looking at current->group_info, which can not be changed except by the
729  * current task.  Changing current->group_info requires the task lock, too.
730  */
731 #define get_group_info(group_info) do { \
732         atomic_inc(&(group_info)->usage); \
733 } while (0)
734
735 #define put_group_info(group_info) do { \
736         if (atomic_dec_and_test(&(group_info)->usage)) \
737                 groups_free(group_info); \
738 } while (0)
739
740 extern struct group_info *groups_alloc(int gidsetsize);
741 extern void groups_free(struct group_info *group_info);
742 extern int set_current_groups(struct group_info *group_info);
743 extern int groups_search(struct group_info *group_info, gid_t grp);
744 /* access the groups "array" with this macro */
745 #define GROUP_AT(gi, i) \
746     ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
747
748 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
749 extern void prefetch_stack(struct task_struct *t);
750 #else
751 static inline void prefetch_stack(struct task_struct *t) { }
752 #endif
753
754 struct audit_context;           /* See audit.c */
755 struct mempolicy;
756 struct pipe_inode_info;
757
758 enum sleep_type {
759         SLEEP_NORMAL,
760         SLEEP_NONINTERACTIVE,
761         SLEEP_INTERACTIVE,
762         SLEEP_INTERRUPTED,
763 };
764
765 struct prio_array;
766
767 struct task_struct {
768         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
769         struct thread_info *thread_info;
770         atomic_t usage;
771         unsigned long flags;    /* per process flags, defined below */
772         unsigned long ptrace;
773
774         int lock_depth;         /* BKL lock depth */
775
776 #ifdef CONFIG_SMP
777 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
778         int oncpu;
779 #endif
780 #endif
781         int load_weight;        /* for niceness load balancing purposes */
782         int prio, static_prio, normal_prio;
783         struct list_head run_list;
784         struct prio_array *array;
785
786         unsigned short ioprio;
787 #ifdef CONFIG_BLK_DEV_IO_TRACE
788         unsigned int btrace_seq;
789 #endif
790         unsigned long sleep_avg;
791         unsigned long long timestamp, last_ran;
792         unsigned long long sched_time; /* sched_clock time spent running */
793         enum sleep_type sleep_type;
794
795         unsigned long policy;
796         cpumask_t cpus_allowed;
797         unsigned int time_slice, first_time_slice;
798
799 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
800         struct sched_info sched_info;
801 #endif
802
803         struct list_head tasks;
804         /*
805          * ptrace_list/ptrace_children forms the list of my children
806          * that were stolen by a ptracer.
807          */
808         struct list_head ptrace_children;
809         struct list_head ptrace_list;
810
811         struct mm_struct *mm, *active_mm;
812
813 /* task state */
814         struct linux_binfmt *binfmt;
815         long exit_state;
816         int exit_code, exit_signal;
817         int pdeath_signal;  /*  The signal sent when the parent dies  */
818         /* ??? */
819         unsigned long personality;
820         unsigned did_exec:1;
821         pid_t pid;
822         pid_t tgid;
823
824 #ifdef CONFIG_CC_STACKPROTECTOR
825         /* Canary value for the -fstack-protector gcc feature */
826         unsigned long stack_canary;
827 #endif
828         /* 
829          * pointers to (original) parent process, youngest child, younger sibling,
830          * older sibling, respectively.  (p->father can be replaced with 
831          * p->parent->pid)
832          */
833         struct task_struct *real_parent; /* real parent process (when being debugged) */
834         struct task_struct *parent;     /* parent process */
835         /*
836          * children/sibling forms the list of my children plus the
837          * tasks I'm ptracing.
838          */
839         struct list_head children;      /* list of my children */
840         struct list_head sibling;       /* linkage in my parent's children list */
841         struct task_struct *group_leader;       /* threadgroup leader */
842
843         /* PID/PID hash table linkage. */
844         struct pid_link pids[PIDTYPE_MAX];
845         struct list_head thread_group;
846
847         struct completion *vfork_done;          /* for vfork() */
848         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
849         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
850
851         unsigned long rt_priority;
852         cputime_t utime, stime;
853         unsigned long nvcsw, nivcsw; /* context switch counts */
854         struct timespec start_time;
855 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
856         unsigned long min_flt, maj_flt;
857
858         cputime_t it_prof_expires, it_virt_expires;
859         unsigned long long it_sched_expires;
860         struct list_head cpu_timers[3];
861
862 /* process credentials */
863         uid_t uid,euid,suid,fsuid;
864         gid_t gid,egid,sgid,fsgid;
865         struct group_info *group_info;
866         kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
867         unsigned keep_capabilities:1;
868         struct user_struct *user;
869 #ifdef CONFIG_KEYS
870         struct key *request_key_auth;   /* assumed request_key authority */
871         struct key *thread_keyring;     /* keyring private to this thread */
872         unsigned char jit_keyring;      /* default keyring to attach requested keys to */
873 #endif
874         /*
875          * fpu_counter contains the number of consecutive context switches
876          * that the FPU is used. If this is over a threshold, the lazy fpu
877          * saving becomes unlazy to save the trap. This is an unsigned char
878          * so that after 256 times the counter wraps and the behavior turns
879          * lazy again; this to deal with bursty apps that only use FPU for
880          * a short time
881          */
882         unsigned char fpu_counter;
883         int oomkilladj; /* OOM kill score adjustment (bit shift). */
884         char comm[TASK_COMM_LEN]; /* executable name excluding path
885                                      - access with [gs]et_task_comm (which lock
886                                        it with task_lock())
887                                      - initialized normally by flush_old_exec */
888 /* file system info */
889         int link_count, total_link_count;
890 #ifdef CONFIG_SYSVIPC
891 /* ipc stuff */
892         struct sysv_sem sysvsem;
893 #endif
894 /* CPU-specific state of this task */
895         struct thread_struct thread;
896 /* filesystem information */
897         struct fs_struct *fs;
898 /* open file information */
899         struct files_struct *files;
900 /* namespace */
901         struct namespace *namespace;
902 /* signal handlers */
903         struct signal_struct *signal;
904         struct sighand_struct *sighand;
905
906         sigset_t blocked, real_blocked;
907         sigset_t saved_sigmask;         /* To be restored with TIF_RESTORE_SIGMASK */
908         struct sigpending pending;
909
910         unsigned long sas_ss_sp;
911         size_t sas_ss_size;
912         int (*notifier)(void *priv);
913         void *notifier_data;
914         sigset_t *notifier_mask;
915         
916         void *security;
917         struct audit_context *audit_context;
918         seccomp_t seccomp;
919
920 /* Thread group tracking */
921         u32 parent_exec_id;
922         u32 self_exec_id;
923 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
924         spinlock_t alloc_lock;
925
926         /* Protection of the PI data structures: */
927         spinlock_t pi_lock;
928
929 #ifdef CONFIG_RT_MUTEXES
930         /* PI waiters blocked on a rt_mutex held by this task */
931         struct plist_head pi_waiters;
932         /* Deadlock detection and priority inheritance handling */
933         struct rt_mutex_waiter *pi_blocked_on;
934 #endif
935
936 #ifdef CONFIG_DEBUG_MUTEXES
937         /* mutex deadlock detection */
938         struct mutex_waiter *blocked_on;
939 #endif
940 #ifdef CONFIG_TRACE_IRQFLAGS
941         unsigned int irq_events;
942         int hardirqs_enabled;
943         unsigned long hardirq_enable_ip;
944         unsigned int hardirq_enable_event;
945         unsigned long hardirq_disable_ip;
946         unsigned int hardirq_disable_event;
947         int softirqs_enabled;
948         unsigned long softirq_disable_ip;
949         unsigned int softirq_disable_event;
950         unsigned long softirq_enable_ip;
951         unsigned int softirq_enable_event;
952         int hardirq_context;
953         int softirq_context;
954 #endif
955 #ifdef CONFIG_LOCKDEP
956 # define MAX_LOCK_DEPTH 30UL
957         u64 curr_chain_key;
958         int lockdep_depth;
959         struct held_lock held_locks[MAX_LOCK_DEPTH];
960         unsigned int lockdep_recursion;
961 #endif
962
963 /* journalling filesystem info */
964         void *journal_info;
965
966 /* VM state */
967         struct reclaim_state *reclaim_state;
968
969         struct backing_dev_info *backing_dev_info;
970
971         struct io_context *io_context;
972
973         unsigned long ptrace_message;
974         siginfo_t *last_siginfo; /* For ptrace use.  */
975 /*
976  * current io wait handle: wait queue entry to use for io waits
977  * If this thread is processing aio, this points at the waitqueue
978  * inside the currently handled kiocb. It may be NULL (i.e. default
979  * to a stack based synchronous wait) if its doing sync IO.
980  */
981         wait_queue_t *io_wait;
982 /* i/o counters(bytes read/written, #syscalls */
983         u64 rchar, wchar, syscr, syscw;
984 #if defined(CONFIG_TASK_XACCT)
985         u64 acct_rss_mem1;      /* accumulated rss usage */
986         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
987         clock_t acct_stimexpd;  /* clock_t-converted stime since last update */
988 #endif
989 #ifdef CONFIG_NUMA
990         struct mempolicy *mempolicy;
991         short il_next;
992 #endif
993 #ifdef CONFIG_CPUSETS
994         struct cpuset *cpuset;
995         nodemask_t mems_allowed;
996         int cpuset_mems_generation;
997         int cpuset_mem_spread_rotor;
998 #endif
999         struct robust_list_head __user *robust_list;
1000 #ifdef CONFIG_COMPAT
1001         struct compat_robust_list_head __user *compat_robust_list;
1002 #endif
1003         struct list_head pi_state_list;
1004         struct futex_pi_state *pi_state_cache;
1005
1006         atomic_t fs_excl;       /* holding fs exclusive resources */
1007         struct rcu_head rcu;
1008
1009         /*
1010          * cache last used pipe for splice
1011          */
1012         struct pipe_inode_info *splice_pipe;
1013 #ifdef  CONFIG_TASK_DELAY_ACCT
1014         struct task_delay_info *delays;
1015 #endif
1016 };
1017
1018 static inline pid_t process_group(struct task_struct *tsk)
1019 {
1020         return tsk->signal->pgrp;
1021 }
1022
1023 /**
1024  * pid_alive - check that a task structure is not stale
1025  * @p: Task structure to be checked.
1026  *
1027  * Test if a process is not yet dead (at most zombie state)
1028  * If pid_alive fails, then pointers within the task structure
1029  * can be stale and must not be dereferenced.
1030  */
1031 static inline int pid_alive(struct task_struct *p)
1032 {
1033         return p->pids[PIDTYPE_PID].pid != NULL;
1034 }
1035
1036 /**
1037  * is_init - check if a task structure is the first user space
1038  *           task the kernel created.
1039  * @p: Task structure to be checked.
1040  */
1041 static inline int is_init(struct task_struct *tsk)
1042 {
1043         return tsk->pid == 1;
1044 }
1045
1046 extern void free_task(struct task_struct *tsk);
1047 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1048
1049 extern void __put_task_struct(struct task_struct *t);
1050
1051 static inline void put_task_struct(struct task_struct *t)
1052 {
1053         if (atomic_dec_and_test(&t->usage))
1054                 __put_task_struct(t);
1055 }
1056
1057 /*
1058  * Per process flags
1059  */
1060 #define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1061                                         /* Not implemented yet, only for 486*/
1062 #define PF_STARTING     0x00000002      /* being created */
1063 #define PF_EXITING      0x00000004      /* getting shut down */
1064 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1065 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1066 #define PF_DUMPCORE     0x00000200      /* dumped core */
1067 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1068 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1069 #define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1070 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1071 #define PF_FREEZE       0x00004000      /* this task is being frozen for suspend now */
1072 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1073 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1074 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1075 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1076 #define PF_SWAPOFF      0x00080000      /* I am in swapoff */
1077 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1078 #define PF_BORROWED_MM  0x00200000      /* I am a kthread doing use_mm */
1079 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1080 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1081 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1082 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1083 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1084 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1085
1086 /*
1087  * Only the _current_ task can read/write to tsk->flags, but other
1088  * tasks can access tsk->flags in readonly mode for example
1089  * with tsk_used_math (like during threaded core dumping).
1090  * There is however an exception to this rule during ptrace
1091  * or during fork: the ptracer task is allowed to write to the
1092  * child->flags of its traced child (same goes for fork, the parent
1093  * can write to the child->flags), because we're guaranteed the
1094  * child is not running and in turn not changing child->flags
1095  * at the same time the parent does it.
1096  */
1097 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1098 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1099 #define clear_used_math() clear_stopped_child_used_math(current)
1100 #define set_used_math() set_stopped_child_used_math(current)
1101 #define conditional_stopped_child_used_math(condition, child) \
1102         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1103 #define conditional_used_math(condition) \
1104         conditional_stopped_child_used_math(condition, current)
1105 #define copy_to_stopped_child_used_math(child) \
1106         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1107 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1108 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1109 #define used_math() tsk_used_math(current)
1110
1111 #ifdef CONFIG_SMP
1112 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1113 #else
1114 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1115 {
1116         if (!cpu_isset(0, new_mask))
1117                 return -EINVAL;
1118         return 0;
1119 }
1120 #endif
1121
1122 extern unsigned long long sched_clock(void);
1123 extern unsigned long long
1124 current_sched_time(const struct task_struct *current_task);
1125
1126 /* sched_exec is called by processes performing an exec */
1127 #ifdef CONFIG_SMP
1128 extern void sched_exec(void);
1129 #else
1130 #define sched_exec()   {}
1131 #endif
1132
1133 #ifdef CONFIG_HOTPLUG_CPU
1134 extern void idle_task_exit(void);
1135 #else
1136 static inline void idle_task_exit(void) {}
1137 #endif
1138
1139 extern void sched_idle_next(void);
1140
1141 #ifdef CONFIG_RT_MUTEXES
1142 extern int rt_mutex_getprio(struct task_struct *p);
1143 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1144 extern void rt_mutex_adjust_pi(struct task_struct *p);
1145 #else
1146 static inline int rt_mutex_getprio(struct task_struct *p)
1147 {
1148         return p->normal_prio;
1149 }
1150 # define rt_mutex_adjust_pi(p)          do { } while (0)
1151 #endif
1152
1153 extern void set_user_nice(struct task_struct *p, long nice);
1154 extern int task_prio(const struct task_struct *p);
1155 extern int task_nice(const struct task_struct *p);
1156 extern int can_nice(const struct task_struct *p, const int nice);
1157 extern int task_curr(const struct task_struct *p);
1158 extern int idle_cpu(int cpu);
1159 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1160 extern struct task_struct *idle_task(int cpu);
1161 extern struct task_struct *curr_task(int cpu);
1162 extern void set_curr_task(int cpu, struct task_struct *p);
1163
1164 void yield(void);
1165
1166 /*
1167  * The default (Linux) execution domain.
1168  */
1169 extern struct exec_domain       default_exec_domain;
1170
1171 union thread_union {
1172         struct thread_info thread_info;
1173         unsigned long stack[THREAD_SIZE/sizeof(long)];
1174 };
1175
1176 #ifndef __HAVE_ARCH_KSTACK_END
1177 static inline int kstack_end(void *addr)
1178 {
1179         /* Reliable end of stack detection:
1180          * Some APM bios versions misalign the stack
1181          */
1182         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1183 }
1184 #endif
1185
1186 extern union thread_union init_thread_union;
1187 extern struct task_struct init_task;
1188
1189 extern struct   mm_struct init_mm;
1190
1191 #define find_task_by_pid(nr)    find_task_by_pid_type(PIDTYPE_PID, nr)
1192 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1193 extern void set_special_pids(pid_t session, pid_t pgrp);
1194 extern void __set_special_pids(pid_t session, pid_t pgrp);
1195
1196 /* per-UID process charging. */
1197 extern struct user_struct * alloc_uid(uid_t);
1198 static inline struct user_struct *get_uid(struct user_struct *u)
1199 {
1200         atomic_inc(&u->__count);
1201         return u;
1202 }
1203 extern void free_uid(struct user_struct *);
1204 extern void switch_uid(struct user_struct *);
1205
1206 #include <asm/current.h>
1207
1208 extern void do_timer(unsigned long ticks);
1209
1210 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1211 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1212 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1213                                                 unsigned long clone_flags));
1214 #ifdef CONFIG_SMP
1215  extern void kick_process(struct task_struct *tsk);
1216 #else
1217  static inline void kick_process(struct task_struct *tsk) { }
1218 #endif
1219 extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags));
1220 extern void FASTCALL(sched_exit(struct task_struct * p));
1221
1222 extern int in_group_p(gid_t);
1223 extern int in_egroup_p(gid_t);
1224
1225 extern void proc_caches_init(void);
1226 extern void flush_signals(struct task_struct *);
1227 extern void flush_signal_handlers(struct task_struct *, int force_default);
1228 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1229
1230 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1231 {
1232         unsigned long flags;
1233         int ret;
1234
1235         spin_lock_irqsave(&tsk->sighand->siglock, flags);
1236         ret = dequeue_signal(tsk, mask, info);
1237         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1238
1239         return ret;
1240 }       
1241
1242 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1243                               sigset_t *mask);
1244 extern void unblock_all_signals(void);
1245 extern void release_task(struct task_struct * p);
1246 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1247 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1248 extern int force_sigsegv(int, struct task_struct *);
1249 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1250 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
1251 extern int kill_pg_info(int, struct siginfo *, pid_t);
1252 extern int kill_proc_info(int, struct siginfo *, pid_t);
1253 extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t, u32);
1254 extern void do_notify_parent(struct task_struct *, int);
1255 extern void force_sig(int, struct task_struct *);
1256 extern void force_sig_specific(int, struct task_struct *);
1257 extern int send_sig(int, struct task_struct *, int);
1258 extern void zap_other_threads(struct task_struct *p);
1259 extern int kill_pg(pid_t, int, int);
1260 extern int kill_proc(pid_t, int, int);
1261 extern struct sigqueue *sigqueue_alloc(void);
1262 extern void sigqueue_free(struct sigqueue *);
1263 extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
1264 extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
1265 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1266 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1267
1268 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
1269 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1270 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
1271 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1272
1273 static inline int is_si_special(const struct siginfo *info)
1274 {
1275         return info <= SEND_SIG_FORCED;
1276 }
1277
1278 /* True if we are on the alternate signal stack.  */
1279
1280 static inline int on_sig_stack(unsigned long sp)
1281 {
1282         return (sp - current->sas_ss_sp < current->sas_ss_size);
1283 }
1284
1285 static inline int sas_ss_flags(unsigned long sp)
1286 {
1287         return (current->sas_ss_size == 0 ? SS_DISABLE
1288                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1289 }
1290
1291 /*
1292  * Routines for handling mm_structs
1293  */
1294 extern struct mm_struct * mm_alloc(void);
1295
1296 /* mmdrop drops the mm and the page tables */
1297 extern void FASTCALL(__mmdrop(struct mm_struct *));
1298 static inline void mmdrop(struct mm_struct * mm)
1299 {
1300         if (atomic_dec_and_test(&mm->mm_count))
1301                 __mmdrop(mm);
1302 }
1303
1304 /* mmput gets rid of the mappings and all user-space */
1305 extern void mmput(struct mm_struct *);
1306 /* Grab a reference to a task's mm, if it is not already going away */
1307 extern struct mm_struct *get_task_mm(struct task_struct *task);
1308 /* Remove the current tasks stale references to the old mm_struct */
1309 extern void mm_release(struct task_struct *, struct mm_struct *);
1310
1311 extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1312 extern void flush_thread(void);
1313 extern void exit_thread(void);
1314
1315 extern void exit_files(struct task_struct *);
1316 extern void __cleanup_signal(struct signal_struct *);
1317 extern void __cleanup_sighand(struct sighand_struct *);
1318 extern void exit_itimers(struct signal_struct *);
1319
1320 extern NORET_TYPE void do_group_exit(int);
1321
1322 extern void daemonize(const char *, ...);
1323 extern int allow_signal(int);
1324 extern int disallow_signal(int);
1325 extern struct task_struct *child_reaper;
1326
1327 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1328 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1329 struct task_struct *fork_idle(int);
1330
1331 extern void set_task_comm(struct task_struct *tsk, char *from);
1332 extern void get_task_comm(char *to, struct task_struct *tsk);
1333
1334 #ifdef CONFIG_SMP
1335 extern void wait_task_inactive(struct task_struct * p);
1336 #else
1337 #define wait_task_inactive(p)   do { } while (0)
1338 #endif
1339
1340 #define remove_parent(p)        list_del_init(&(p)->sibling)
1341 #define add_parent(p)           list_add_tail(&(p)->sibling,&(p)->parent->children)
1342
1343 #define next_task(p)    list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1344
1345 #define for_each_process(p) \
1346         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1347
1348 /*
1349  * Careful: do_each_thread/while_each_thread is a double loop so
1350  *          'break' will not work as expected - use goto instead.
1351  */
1352 #define do_each_thread(g, t) \
1353         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1354
1355 #define while_each_thread(g, t) \
1356         while ((t = next_thread(t)) != g)
1357
1358 /* de_thread depends on thread_group_leader not being a pid based check */
1359 #define thread_group_leader(p)  (p == p->group_leader)
1360
1361 static inline struct task_struct *next_thread(const struct task_struct *p)
1362 {
1363         return list_entry(rcu_dereference(p->thread_group.next),
1364                           struct task_struct, thread_group);
1365 }
1366
1367 static inline int thread_group_empty(struct task_struct *p)
1368 {
1369         return list_empty(&p->thread_group);
1370 }
1371
1372 #define delay_group_leader(p) \
1373                 (thread_group_leader(p) && !thread_group_empty(p))
1374
1375 /*
1376  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1377  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
1378  * pins the final release of task.io_context.  Also protects ->cpuset.
1379  *
1380  * Nests both inside and outside of read_lock(&tasklist_lock).
1381  * It must not be nested with write_lock_irq(&tasklist_lock),
1382  * neither inside nor outside.
1383  */
1384 static inline void task_lock(struct task_struct *p)
1385 {
1386         spin_lock(&p->alloc_lock);
1387 }
1388
1389 static inline void task_unlock(struct task_struct *p)
1390 {
1391         spin_unlock(&p->alloc_lock);
1392 }
1393
1394 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1395                                                         unsigned long *flags);
1396
1397 static inline void unlock_task_sighand(struct task_struct *tsk,
1398                                                 unsigned long *flags)
1399 {
1400         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1401 }
1402
1403 #ifndef __HAVE_THREAD_FUNCTIONS
1404
1405 #define task_thread_info(task) (task)->thread_info
1406 #define task_stack_page(task) ((void*)((task)->thread_info))
1407
1408 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1409 {
1410         *task_thread_info(p) = *task_thread_info(org);
1411         task_thread_info(p)->task = p;
1412 }
1413
1414 static inline unsigned long *end_of_stack(struct task_struct *p)
1415 {
1416         return (unsigned long *)(p->thread_info + 1);
1417 }
1418
1419 #endif
1420
1421 /* set thread flags in other task's structures
1422  * - see asm/thread_info.h for TIF_xxxx flags available
1423  */
1424 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1425 {
1426         set_ti_thread_flag(task_thread_info(tsk), flag);
1427 }
1428
1429 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1430 {
1431         clear_ti_thread_flag(task_thread_info(tsk), flag);
1432 }
1433
1434 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1435 {
1436         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1437 }
1438
1439 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1440 {
1441         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1442 }
1443
1444 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1445 {
1446         return test_ti_thread_flag(task_thread_info(tsk), flag);
1447 }
1448
1449 static inline void set_tsk_need_resched(struct task_struct *tsk)
1450 {
1451         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1452 }
1453
1454 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1455 {
1456         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1457 }
1458
1459 static inline int signal_pending(struct task_struct *p)
1460 {
1461         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1462 }
1463   
1464 static inline int need_resched(void)
1465 {
1466         return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1467 }
1468
1469 /*
1470  * cond_resched() and cond_resched_lock(): latency reduction via
1471  * explicit rescheduling in places that are safe. The return
1472  * value indicates whether a reschedule was done in fact.
1473  * cond_resched_lock() will drop the spinlock before scheduling,
1474  * cond_resched_softirq() will enable bhs before scheduling.
1475  */
1476 extern int cond_resched(void);
1477 extern int cond_resched_lock(spinlock_t * lock);
1478 extern int cond_resched_softirq(void);
1479
1480 /*
1481  * Does a critical section need to be broken due to another
1482  * task waiting?:
1483  */
1484 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1485 # define need_lockbreak(lock) ((lock)->break_lock)
1486 #else
1487 # define need_lockbreak(lock) 0
1488 #endif
1489
1490 /*
1491  * Does a critical section need to be broken due to another
1492  * task waiting or preemption being signalled:
1493  */
1494 static inline int lock_need_resched(spinlock_t *lock)
1495 {
1496         if (need_lockbreak(lock) || need_resched())
1497                 return 1;
1498         return 0;
1499 }
1500
1501 /* Reevaluate whether the task has signals pending delivery.
1502    This is required every time the blocked sigset_t changes.
1503    callers must hold sighand->siglock.  */
1504
1505 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1506 extern void recalc_sigpending(void);
1507
1508 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1509
1510 /*
1511  * Wrappers for p->thread_info->cpu access. No-op on UP.
1512  */
1513 #ifdef CONFIG_SMP
1514
1515 static inline unsigned int task_cpu(const struct task_struct *p)
1516 {
1517         return task_thread_info(p)->cpu;
1518 }
1519
1520 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1521 {
1522         task_thread_info(p)->cpu = cpu;
1523 }
1524
1525 #else
1526
1527 static inline unsigned int task_cpu(const struct task_struct *p)
1528 {
1529         return 0;
1530 }
1531
1532 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1533 {
1534 }
1535
1536 #endif /* CONFIG_SMP */
1537
1538 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1539 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1540 #else
1541 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1542 {
1543         mm->mmap_base = TASK_UNMAPPED_BASE;
1544         mm->get_unmapped_area = arch_get_unmapped_area;
1545         mm->unmap_area = arch_unmap_area;
1546 }
1547 #endif
1548
1549 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1550 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1551
1552 #include <linux/sysdev.h>
1553 extern int sched_mc_power_savings, sched_smt_power_savings;
1554 extern struct sysdev_attribute attr_sched_mc_power_savings, attr_sched_smt_power_savings;
1555 extern int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls);
1556
1557 extern void normalize_rt_tasks(void);
1558
1559 #ifdef CONFIG_PM
1560 /*
1561  * Check if a process has been frozen
1562  */
1563 static inline int frozen(struct task_struct *p)
1564 {
1565         return p->flags & PF_FROZEN;
1566 }
1567
1568 /*
1569  * Check if there is a request to freeze a process
1570  */
1571 static inline int freezing(struct task_struct *p)
1572 {
1573         return p->flags & PF_FREEZE;
1574 }
1575
1576 /*
1577  * Request that a process be frozen
1578  * FIXME: SMP problem. We may not modify other process' flags!
1579  */
1580 static inline void freeze(struct task_struct *p)
1581 {
1582         p->flags |= PF_FREEZE;
1583 }
1584
1585 /*
1586  * Sometimes we may need to cancel the previous 'freeze' request
1587  */
1588 static inline void do_not_freeze(struct task_struct *p)
1589 {
1590         p->flags &= ~PF_FREEZE;
1591 }
1592
1593 /*
1594  * Wake up a frozen process
1595  */
1596 static inline int thaw_process(struct task_struct *p)
1597 {
1598         if (frozen(p)) {
1599                 p->flags &= ~PF_FROZEN;
1600                 wake_up_process(p);
1601                 return 1;
1602         }
1603         return 0;
1604 }
1605
1606 /*
1607  * freezing is complete, mark process as frozen
1608  */
1609 static inline void frozen_process(struct task_struct *p)
1610 {
1611         p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN;
1612 }
1613
1614 extern void refrigerator(void);
1615 extern int freeze_processes(void);
1616 extern void thaw_processes(void);
1617
1618 static inline int try_to_freeze(void)
1619 {
1620         if (freezing(current)) {
1621                 refrigerator();
1622                 return 1;
1623         } else
1624                 return 0;
1625 }
1626 #else
1627 static inline int frozen(struct task_struct *p) { return 0; }
1628 static inline int freezing(struct task_struct *p) { return 0; }
1629 static inline void freeze(struct task_struct *p) { BUG(); }
1630 static inline int thaw_process(struct task_struct *p) { return 1; }
1631 static inline void frozen_process(struct task_struct *p) { BUG(); }
1632
1633 static inline void refrigerator(void) {}
1634 static inline int freeze_processes(void) { BUG(); return 0; }
1635 static inline void thaw_processes(void) {}
1636
1637 static inline int try_to_freeze(void) { return 0; }
1638
1639 #endif /* CONFIG_PM */
1640 #endif /* __KERNEL__ */
1641
1642 #endif