]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - include/linux/mtd/cfi.h
Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-omap-h63xx.git] / include / linux / mtd / cfi.h
1
2 /* Common Flash Interface structures
3  * See http://support.intel.com/design/flash/technote/index.htm
4  */
5
6 #ifndef __MTD_CFI_H__
7 #define __MTD_CFI_H__
8
9 #include <linux/delay.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/mtd/flashchip.h>
13 #include <linux/mtd/map.h>
14 #include <linux/mtd/cfi_endian.h>
15 #include <linux/mtd/xip.h>
16
17 #ifdef CONFIG_MTD_CFI_I1
18 #define cfi_interleave(cfi) 1
19 #define cfi_interleave_is_1(cfi) (cfi_interleave(cfi) == 1)
20 #else
21 #define cfi_interleave_is_1(cfi) (0)
22 #endif
23
24 #ifdef CONFIG_MTD_CFI_I2
25 # ifdef cfi_interleave
26 #  undef cfi_interleave
27 #  define cfi_interleave(cfi) ((cfi)->interleave)
28 # else
29 #  define cfi_interleave(cfi) 2
30 # endif
31 #define cfi_interleave_is_2(cfi) (cfi_interleave(cfi) == 2)
32 #else
33 #define cfi_interleave_is_2(cfi) (0)
34 #endif
35
36 #ifdef CONFIG_MTD_CFI_I4
37 # ifdef cfi_interleave
38 #  undef cfi_interleave
39 #  define cfi_interleave(cfi) ((cfi)->interleave)
40 # else
41 #  define cfi_interleave(cfi) 4
42 # endif
43 #define cfi_interleave_is_4(cfi) (cfi_interleave(cfi) == 4)
44 #else
45 #define cfi_interleave_is_4(cfi) (0)
46 #endif
47
48 #ifdef CONFIG_MTD_CFI_I8
49 # ifdef cfi_interleave
50 #  undef cfi_interleave
51 #  define cfi_interleave(cfi) ((cfi)->interleave)
52 # else
53 #  define cfi_interleave(cfi) 8
54 # endif
55 #define cfi_interleave_is_8(cfi) (cfi_interleave(cfi) == 8)
56 #else
57 #define cfi_interleave_is_8(cfi) (0)
58 #endif
59
60 #ifndef cfi_interleave
61 #warning No CONFIG_MTD_CFI_Ix selected. No NOR chip support can work.
62 static inline int cfi_interleave(void *cfi)
63 {
64         BUG();
65         return 0;
66 }
67 #endif
68
69 static inline int cfi_interleave_supported(int i)
70 {
71         switch (i) {
72 #ifdef CONFIG_MTD_CFI_I1
73         case 1:
74 #endif
75 #ifdef CONFIG_MTD_CFI_I2
76         case 2:
77 #endif
78 #ifdef CONFIG_MTD_CFI_I4
79         case 4:
80 #endif
81 #ifdef CONFIG_MTD_CFI_I8
82         case 8:
83 #endif
84                 return 1;
85
86         default:
87                 return 0;
88         }
89 }
90
91
92 /* NB: these values must represents the number of bytes needed to meet the
93  *     device type (x8, x16, x32).  Eg. a 32 bit device is 4 x 8 bytes.
94  *     These numbers are used in calculations.
95  */
96 #define CFI_DEVICETYPE_X8  (8 / 8)
97 #define CFI_DEVICETYPE_X16 (16 / 8)
98 #define CFI_DEVICETYPE_X32 (32 / 8)
99 #define CFI_DEVICETYPE_X64 (64 / 8)
100
101
102 /* Device Interface Code Assignments from the "Common Flash Memory Interface
103  * Publication 100" dated December 1, 2001.
104  */
105 #define CFI_INTERFACE_X8_ASYNC          0x0000
106 #define CFI_INTERFACE_X16_ASYNC         0x0001
107 #define CFI_INTERFACE_X8_BY_X16_ASYNC   0x0002
108 #define CFI_INTERFACE_X32_ASYNC         0x0003
109 #define CFI_INTERFACE_X16_BY_X32_ASYNC  0x0005
110 #define CFI_INTERFACE_NOT_ALLOWED       0xffff
111
112
113 /* NB: We keep these structures in memory in HOST byteorder, except
114  * where individually noted.
115  */
116
117 /* Basic Query Structure */
118 struct cfi_ident {
119         uint8_t  qry[3];
120         uint16_t P_ID;
121         uint16_t P_ADR;
122         uint16_t A_ID;
123         uint16_t A_ADR;
124         uint8_t  VccMin;
125         uint8_t  VccMax;
126         uint8_t  VppMin;
127         uint8_t  VppMax;
128         uint8_t  WordWriteTimeoutTyp;
129         uint8_t  BufWriteTimeoutTyp;
130         uint8_t  BlockEraseTimeoutTyp;
131         uint8_t  ChipEraseTimeoutTyp;
132         uint8_t  WordWriteTimeoutMax;
133         uint8_t  BufWriteTimeoutMax;
134         uint8_t  BlockEraseTimeoutMax;
135         uint8_t  ChipEraseTimeoutMax;
136         uint8_t  DevSize;
137         uint16_t InterfaceDesc;
138         uint16_t MaxBufWriteSize;
139         uint8_t  NumEraseRegions;
140         uint32_t EraseRegionInfo[0]; /* Not host ordered */
141 } __attribute__((packed));
142
143 /* Extended Query Structure for both PRI and ALT */
144
145 struct cfi_extquery {
146         uint8_t  pri[3];
147         uint8_t  MajorVersion;
148         uint8_t  MinorVersion;
149 } __attribute__((packed));
150
151 /* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
152
153 struct cfi_pri_intelext {
154         uint8_t  pri[3];
155         uint8_t  MajorVersion;
156         uint8_t  MinorVersion;
157         uint32_t FeatureSupport; /* if bit 31 is set then an additional uint32_t feature
158                                     block follows - FIXME - not currently supported */
159         uint8_t  SuspendCmdSupport;
160         uint16_t BlkStatusRegMask;
161         uint8_t  VccOptimal;
162         uint8_t  VppOptimal;
163         uint8_t  NumProtectionFields;
164         uint16_t ProtRegAddr;
165         uint8_t  FactProtRegSize;
166         uint8_t  UserProtRegSize;
167         uint8_t  extra[0];
168 } __attribute__((packed));
169
170 struct cfi_intelext_otpinfo {
171         uint32_t ProtRegAddr;
172         uint16_t FactGroups;
173         uint8_t  FactProtRegSize;
174         uint16_t UserGroups;
175         uint8_t  UserProtRegSize;
176 } __attribute__((packed));
177
178 struct cfi_intelext_blockinfo {
179         uint16_t NumIdentBlocks;
180         uint16_t BlockSize;
181         uint16_t MinBlockEraseCycles;
182         uint8_t  BitsPerCell;
183         uint8_t  BlockCap;
184 } __attribute__((packed));
185
186 struct cfi_intelext_regioninfo {
187         uint16_t NumIdentPartitions;
188         uint8_t  NumOpAllowed;
189         uint8_t  NumOpAllowedSimProgMode;
190         uint8_t  NumOpAllowedSimEraMode;
191         uint8_t  NumBlockTypes;
192         struct cfi_intelext_blockinfo BlockTypes[1];
193 } __attribute__((packed));
194
195 struct cfi_intelext_programming_regioninfo {
196         uint8_t  ProgRegShift;
197         uint8_t  Reserved1;
198         uint8_t  ControlValid;
199         uint8_t  Reserved2;
200         uint8_t  ControlInvalid;
201         uint8_t  Reserved3;
202 } __attribute__((packed));
203
204 /* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */
205
206 struct cfi_pri_amdstd {
207         uint8_t  pri[3];
208         uint8_t  MajorVersion;
209         uint8_t  MinorVersion;
210         uint8_t  SiliconRevision; /* bits 1-0: Address Sensitive Unlock */
211         uint8_t  EraseSuspend;
212         uint8_t  BlkProt;
213         uint8_t  TmpBlkUnprotect;
214         uint8_t  BlkProtUnprot;
215         uint8_t  SimultaneousOps;
216         uint8_t  BurstMode;
217         uint8_t  PageMode;
218         uint8_t  VppMin;
219         uint8_t  VppMax;
220         uint8_t  TopBottom;
221 } __attribute__((packed));
222
223 /* Vendor-Specific PRI for Atmel chips (command set 0x0002) */
224
225 struct cfi_pri_atmel {
226         uint8_t pri[3];
227         uint8_t MajorVersion;
228         uint8_t MinorVersion;
229         uint8_t Features;
230         uint8_t BottomBoot;
231         uint8_t BurstMode;
232         uint8_t PageMode;
233 } __attribute__((packed));
234
235 struct cfi_pri_query {
236         uint8_t  NumFields;
237         uint32_t ProtField[1]; /* Not host ordered */
238 } __attribute__((packed));
239
240 struct cfi_bri_query {
241         uint8_t  PageModeReadCap;
242         uint8_t  NumFields;
243         uint32_t ConfField[1]; /* Not host ordered */
244 } __attribute__((packed));
245
246 #define P_ID_NONE               0x0000
247 #define P_ID_INTEL_EXT          0x0001
248 #define P_ID_AMD_STD            0x0002
249 #define P_ID_INTEL_STD          0x0003
250 #define P_ID_AMD_EXT            0x0004
251 #define P_ID_WINBOND            0x0006
252 #define P_ID_ST_ADV             0x0020
253 #define P_ID_MITSUBISHI_STD     0x0100
254 #define P_ID_MITSUBISHI_EXT     0x0101
255 #define P_ID_SST_PAGE           0x0102
256 #define P_ID_INTEL_PERFORMANCE  0x0200
257 #define P_ID_INTEL_DATA         0x0210
258 #define P_ID_RESERVED           0xffff
259
260
261 #define CFI_MODE_CFI    1
262 #define CFI_MODE_JEDEC  0
263
264 struct cfi_private {
265         uint16_t cmdset;
266         void *cmdset_priv;
267         int interleave;
268         int device_type;
269         int cfi_mode;           /* Are we a JEDEC device pretending to be CFI? */
270         int addr_unlock1;
271         int addr_unlock2;
272         struct mtd_info *(*cmdset_setup)(struct map_info *);
273         struct cfi_ident *cfiq; /* For now only one. We insist that all devs
274                                   must be of the same type. */
275         int mfr, id;
276         int numchips;
277         unsigned long chipshift; /* Because they're of the same type */
278         const char *im_name;     /* inter_module name for cmdset_setup */
279         struct flchip chips[0];  /* per-chip data structure for each chip */
280 };
281
282 /*
283  * Returns the command address according to the given geometry.
284  */
285 static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs,
286                                 struct map_info *map, struct cfi_private *cfi)
287 {
288         unsigned bankwidth = map_bankwidth(map);
289         unsigned interleave = cfi_interleave(cfi);
290         unsigned type = cfi->device_type;
291         uint32_t addr;
292         
293         addr = (cmd_ofs * type) * interleave;
294
295         /* Modify the unlock address if we are in compatiblity mode.
296          * For 16bit devices on 8 bit busses
297          * and 32bit devices on 16 bit busses
298          * set the low bit of the alternating bit sequence of the address.
299          */
300         if (((type * interleave) > bankwidth) && ((uint8_t)cmd_ofs == 0xaa))
301                 addr |= (type >> 1)*interleave;
302
303         return  addr;
304 }
305
306 /*
307  * Transforms the CFI command for the given geometry (bus width & interleave).
308  * It looks too long to be inline, but in the common case it should almost all
309  * get optimised away.
310  */
311 static inline map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
312 {
313         map_word val = { {0} };
314         int wordwidth, words_per_bus, chip_mode, chips_per_word;
315         unsigned long onecmd;
316         int i;
317
318         /* We do it this way to give the compiler a fighting chance
319            of optimising away all the crap for 'bankwidth' larger than
320            an unsigned long, in the common case where that support is
321            disabled */
322         if (map_bankwidth_is_large(map)) {
323                 wordwidth = sizeof(unsigned long);
324                 words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
325         } else {
326                 wordwidth = map_bankwidth(map);
327                 words_per_bus = 1;
328         }
329
330         chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
331         chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
332
333         /* First, determine what the bit-pattern should be for a single
334            device, according to chip mode and endianness... */
335         switch (chip_mode) {
336         default: BUG();
337         case 1:
338                 onecmd = cmd;
339                 break;
340         case 2:
341                 onecmd = cpu_to_cfi16(cmd);
342                 break;
343         case 4:
344                 onecmd = cpu_to_cfi32(cmd);
345                 break;
346         }
347
348         /* Now replicate it across the size of an unsigned long, or
349            just to the bus width as appropriate */
350         switch (chips_per_word) {
351         default: BUG();
352 #if BITS_PER_LONG >= 64
353         case 8:
354                 onecmd |= (onecmd << (chip_mode * 32));
355 #endif
356         case 4:
357                 onecmd |= (onecmd << (chip_mode * 16));
358         case 2:
359                 onecmd |= (onecmd << (chip_mode * 8));
360         case 1:
361                 ;
362         }
363
364         /* And finally, for the multi-word case, replicate it
365            in all words in the structure */
366         for (i=0; i < words_per_bus; i++) {
367                 val.x[i] = onecmd;
368         }
369
370         return val;
371 }
372 #define CMD(x)  cfi_build_cmd((x), map, cfi)
373
374
375 static inline unsigned long cfi_merge_status(map_word val, struct map_info *map,
376                                            struct cfi_private *cfi)
377 {
378         int wordwidth, words_per_bus, chip_mode, chips_per_word;
379         unsigned long onestat, res = 0;
380         int i;
381
382         /* We do it this way to give the compiler a fighting chance
383            of optimising away all the crap for 'bankwidth' larger than
384            an unsigned long, in the common case where that support is
385            disabled */
386         if (map_bankwidth_is_large(map)) {
387                 wordwidth = sizeof(unsigned long);
388                 words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
389         } else {
390                 wordwidth = map_bankwidth(map);
391                 words_per_bus = 1;
392         }
393
394         chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
395         chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
396
397         onestat = val.x[0];
398         /* Or all status words together */
399         for (i=1; i < words_per_bus; i++) {
400                 onestat |= val.x[i];
401         }
402
403         res = onestat;
404         switch(chips_per_word) {
405         default: BUG();
406 #if BITS_PER_LONG >= 64
407         case 8:
408                 res |= (onestat >> (chip_mode * 32));
409 #endif
410         case 4:
411                 res |= (onestat >> (chip_mode * 16));
412         case 2:
413                 res |= (onestat >> (chip_mode * 8));
414         case 1:
415                 ;
416         }
417
418         /* Last, determine what the bit-pattern should be for a single
419            device, according to chip mode and endianness... */
420         switch (chip_mode) {
421         case 1:
422                 break;
423         case 2:
424                 res = cfi16_to_cpu(res);
425                 break;
426         case 4:
427                 res = cfi32_to_cpu(res);
428                 break;
429         default: BUG();
430         }
431         return res;
432 }
433
434 #define MERGESTATUS(x) cfi_merge_status((x), map, cfi)
435
436
437 /*
438  * Sends a CFI command to a bank of flash for the given geometry.
439  *
440  * Returns the offset in flash where the command was written.
441  * If prev_val is non-null, it will be set to the value at the command address,
442  * before the command was written.
443  */
444 static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
445                                 struct map_info *map, struct cfi_private *cfi,
446                                 int type, map_word *prev_val)
447 {
448         map_word val;
449         uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi);
450         val = cfi_build_cmd(cmd, map, cfi);
451
452         if (prev_val)
453                 *prev_val = map_read(map, addr);
454
455         map_write(map, val, addr);
456
457         return addr - base;
458 }
459
460 static inline uint8_t cfi_read_query(struct map_info *map, uint32_t addr)
461 {
462         map_word val = map_read(map, addr);
463
464         if (map_bankwidth_is_1(map)) {
465                 return val.x[0];
466         } else if (map_bankwidth_is_2(map)) {
467                 return cfi16_to_cpu(val.x[0]);
468         } else {
469                 /* No point in a 64-bit byteswap since that would just be
470                    swapping the responses from different chips, and we are
471                    only interested in one chip (a representative sample) */
472                 return cfi32_to_cpu(val.x[0]);
473         }
474 }
475
476 static inline uint16_t cfi_read_query16(struct map_info *map, uint32_t addr)
477 {
478         map_word val = map_read(map, addr);
479
480         if (map_bankwidth_is_1(map)) {
481                 return val.x[0] & 0xff;
482         } else if (map_bankwidth_is_2(map)) {
483                 return cfi16_to_cpu(val.x[0]);
484         } else {
485                 /* No point in a 64-bit byteswap since that would just be
486                    swapping the responses from different chips, and we are
487                    only interested in one chip (a representative sample) */
488                 return cfi32_to_cpu(val.x[0]);
489         }
490 }
491
492 static inline void cfi_udelay(int us)
493 {
494         if (us >= 1000) {
495                 msleep((us+999)/1000);
496         } else {
497                 udelay(us);
498                 cond_resched();
499         }
500 }
501
502 int __xipram cfi_qry_present(struct map_info *map, __u32 base,
503                              struct cfi_private *cfi);
504 int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
505                              struct cfi_private *cfi);
506 void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
507                                struct cfi_private *cfi);
508
509 struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size,
510                              const char* name);
511 struct cfi_fixup {
512         uint16_t mfr;
513         uint16_t id;
514         void (*fixup)(struct mtd_info *mtd, void* param);
515         void* param;
516 };
517
518 #define CFI_MFR_ANY 0xffff
519 #define CFI_ID_ANY  0xffff
520
521 #define CFI_MFR_AMD 0x0001
522 #define CFI_MFR_ATMEL 0x001F
523 #define CFI_MFR_ST  0x0020      /* STMicroelectronics */
524
525 void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup* fixups);
526
527 typedef int (*varsize_frob_t)(struct map_info *map, struct flchip *chip,
528                               unsigned long adr, int len, void *thunk);
529
530 int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
531         loff_t ofs, size_t len, void *thunk);
532
533
534 #endif /* __MTD_CFI_H__ */