]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - include/asm-i386/system.h
local_t: i386 extension
[linux-2.6-omap-h63xx.git] / include / asm-i386 / system.h
1 #ifndef __ASM_SYSTEM_H
2 #define __ASM_SYSTEM_H
3
4 #include <linux/kernel.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <linux/bitops.h> /* for LOCK_PREFIX */
8
9 #ifdef __KERNEL__
10
11 struct task_struct;     /* one of the stranger aspects of C forward declarations.. */
12 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
13
14 /*
15  * Saving eflags is important. It switches not only IOPL between tasks,
16  * it also protects other tasks from NT leaking through sysenter etc.
17  */
18 #define switch_to(prev,next,last) do {                                  \
19         unsigned long esi,edi;                                          \
20         asm volatile("pushfl\n\t"               /* Save flags */        \
21                      "pushl %%ebp\n\t"                                  \
22                      "movl %%esp,%0\n\t"        /* save ESP */          \
23                      "movl %5,%%esp\n\t"        /* restore ESP */       \
24                      "movl $1f,%1\n\t"          /* save EIP */          \
25                      "pushl %6\n\t"             /* restore EIP */       \
26                      "jmp __switch_to\n"                                \
27                      "1:\t"                                             \
28                      "popl %%ebp\n\t"                                   \
29                      "popfl"                                            \
30                      :"=m" (prev->thread.esp),"=m" (prev->thread.eip),  \
31                       "=a" (last),"=S" (esi),"=D" (edi)                 \
32                      :"m" (next->thread.esp),"m" (next->thread.eip),    \
33                       "2" (prev), "d" (next));                          \
34 } while (0)
35
36 #define _set_base(addr,base) do { unsigned long __pr; \
37 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
38         "rorl $16,%%edx\n\t" \
39         "movb %%dl,%2\n\t" \
40         "movb %%dh,%3" \
41         :"=&d" (__pr) \
42         :"m" (*((addr)+2)), \
43          "m" (*((addr)+4)), \
44          "m" (*((addr)+7)), \
45          "0" (base) \
46         ); } while(0)
47
48 #define _set_limit(addr,limit) do { unsigned long __lr; \
49 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
50         "rorl $16,%%edx\n\t" \
51         "movb %2,%%dh\n\t" \
52         "andb $0xf0,%%dh\n\t" \
53         "orb %%dh,%%dl\n\t" \
54         "movb %%dl,%2" \
55         :"=&d" (__lr) \
56         :"m" (*(addr)), \
57          "m" (*((addr)+6)), \
58          "0" (limit) \
59         ); } while(0)
60
61 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
62 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
63
64 /*
65  * Load a segment. Fall back on loading the zero
66  * segment if something goes wrong..
67  */
68 #define loadsegment(seg,value)                  \
69         asm volatile("\n"                       \
70                 "1:\t"                          \
71                 "mov %0,%%" #seg "\n"           \
72                 "2:\n"                          \
73                 ".section .fixup,\"ax\"\n"      \
74                 "3:\t"                          \
75                 "pushl $0\n\t"                  \
76                 "popl %%" #seg "\n\t"           \
77                 "jmp 2b\n"                      \
78                 ".previous\n"                   \
79                 ".section __ex_table,\"a\"\n\t" \
80                 ".align 4\n\t"                  \
81                 ".long 1b,3b\n"                 \
82                 ".previous"                     \
83                 : :"rm" (value))
84
85 /*
86  * Save a segment register away
87  */
88 #define savesegment(seg, value) \
89         asm volatile("mov %%" #seg ",%0":"=rm" (value))
90
91
92 static inline void native_clts(void)
93 {
94         asm volatile ("clts");
95 }
96
97 static inline unsigned long native_read_cr0(void)
98 {
99         unsigned long val;
100         asm volatile("movl %%cr0,%0\n\t" :"=r" (val));
101         return val;
102 }
103
104 static inline void native_write_cr0(unsigned long val)
105 {
106         asm volatile("movl %0,%%cr0": :"r" (val));
107 }
108
109 static inline unsigned long native_read_cr2(void)
110 {
111         unsigned long val;
112         asm volatile("movl %%cr2,%0\n\t" :"=r" (val));
113         return val;
114 }
115
116 static inline void native_write_cr2(unsigned long val)
117 {
118         asm volatile("movl %0,%%cr2": :"r" (val));
119 }
120
121 static inline unsigned long native_read_cr3(void)
122 {
123         unsigned long val;
124         asm volatile("movl %%cr3,%0\n\t" :"=r" (val));
125         return val;
126 }
127
128 static inline void native_write_cr3(unsigned long val)
129 {
130         asm volatile("movl %0,%%cr3": :"r" (val));
131 }
132
133 static inline unsigned long native_read_cr4(void)
134 {
135         unsigned long val;
136         asm volatile("movl %%cr4,%0\n\t" :"=r" (val));
137         return val;
138 }
139
140 static inline unsigned long native_read_cr4_safe(void)
141 {
142         unsigned long val;
143         /* This could fault if %cr4 does not exist */
144         asm("1: movl %%cr4, %0          \n"
145                 "2:                             \n"
146                 ".section __ex_table,\"a\"      \n"
147                 ".long 1b,2b                    \n"
148                 ".previous                      \n"
149                 : "=r" (val): "0" (0));
150         return val;
151 }
152
153 static inline void native_write_cr4(unsigned long val)
154 {
155         asm volatile("movl %0,%%cr4": :"r" (val));
156 }
157
158 static inline void native_wbinvd(void)
159 {
160         asm volatile("wbinvd": : :"memory");
161 }
162
163
164 #ifdef CONFIG_PARAVIRT
165 #include <asm/paravirt.h>
166 #else
167 #define read_cr0()      (native_read_cr0())
168 #define write_cr0(x)    (native_write_cr0(x))
169 #define read_cr2()      (native_read_cr2())
170 #define write_cr2(x)    (native_write_cr2(x))
171 #define read_cr3()      (native_read_cr3())
172 #define write_cr3(x)    (native_write_cr3(x))
173 #define read_cr4()      (native_read_cr4())
174 #define read_cr4_safe() (native_read_cr4_safe())
175 #define write_cr4(x)    (native_write_cr4(x))
176 #define wbinvd()        (native_wbinvd())
177
178 /* Clear the 'TS' bit */
179 #define clts()          (native_clts())
180
181 #endif/* CONFIG_PARAVIRT */
182
183 /* Set the 'TS' bit */
184 #define stts() write_cr0(8 | read_cr0())
185
186 #endif  /* __KERNEL__ */
187
188 static inline unsigned long get_limit(unsigned long segment)
189 {
190         unsigned long __limit;
191         __asm__("lsll %1,%0"
192                 :"=r" (__limit):"r" (segment));
193         return __limit+1;
194 }
195
196 #define nop() __asm__ __volatile__ ("nop")
197
198 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
199
200 #define tas(ptr) (xchg((ptr),1))
201
202 struct __xchg_dummy { unsigned long a[100]; };
203 #define __xg(x) ((struct __xchg_dummy *)(x))
204
205
206 #ifdef CONFIG_X86_CMPXCHG64
207
208 /*
209  * The semantics of XCHGCMP8B are a bit strange, this is why
210  * there is a loop and the loading of %%eax and %%edx has to
211  * be inside. This inlines well in most cases, the cached
212  * cost is around ~38 cycles. (in the future we might want
213  * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
214  * might have an implicit FPU-save as a cost, so it's not
215  * clear which path to go.)
216  *
217  * cmpxchg8b must be used with the lock prefix here to allow
218  * the instruction to be executed atomically, see page 3-102
219  * of the instruction set reference 24319102.pdf. We need
220  * the reader side to see the coherent 64bit value.
221  */
222 static inline void __set_64bit (unsigned long long * ptr,
223                 unsigned int low, unsigned int high)
224 {
225         __asm__ __volatile__ (
226                 "\n1:\t"
227                 "movl (%0), %%eax\n\t"
228                 "movl 4(%0), %%edx\n\t"
229                 "lock cmpxchg8b (%0)\n\t"
230                 "jnz 1b"
231                 : /* no outputs */
232                 :       "D"(ptr),
233                         "b"(low),
234                         "c"(high)
235                 :       "ax","dx","memory");
236 }
237
238 static inline void __set_64bit_constant (unsigned long long *ptr,
239                                                  unsigned long long value)
240 {
241         __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
242 }
243 #define ll_low(x)       *(((unsigned int*)&(x))+0)
244 #define ll_high(x)      *(((unsigned int*)&(x))+1)
245
246 static inline void __set_64bit_var (unsigned long long *ptr,
247                          unsigned long long value)
248 {
249         __set_64bit(ptr,ll_low(value), ll_high(value));
250 }
251
252 #define set_64bit(ptr,value) \
253 (__builtin_constant_p(value) ? \
254  __set_64bit_constant(ptr, value) : \
255  __set_64bit_var(ptr, value) )
256
257 #define _set_64bit(ptr,value) \
258 (__builtin_constant_p(value) ? \
259  __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
260  __set_64bit(ptr, ll_low(value), ll_high(value)) )
261
262 #endif
263
264 /*
265  * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
266  * Note 2: xchg has side effect, so that attribute volatile is necessary,
267  *        but generally the primitive is invalid, *ptr is output argument. --ANK
268  */
269 static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
270 {
271         switch (size) {
272                 case 1:
273                         __asm__ __volatile__("xchgb %b0,%1"
274                                 :"=q" (x)
275                                 :"m" (*__xg(ptr)), "0" (x)
276                                 :"memory");
277                         break;
278                 case 2:
279                         __asm__ __volatile__("xchgw %w0,%1"
280                                 :"=r" (x)
281                                 :"m" (*__xg(ptr)), "0" (x)
282                                 :"memory");
283                         break;
284                 case 4:
285                         __asm__ __volatile__("xchgl %0,%1"
286                                 :"=r" (x)
287                                 :"m" (*__xg(ptr)), "0" (x)
288                                 :"memory");
289                         break;
290         }
291         return x;
292 }
293
294 /*
295  * Atomic compare and exchange.  Compare OLD with MEM, if identical,
296  * store NEW in MEM.  Return the initial value in MEM.  Success is
297  * indicated by comparing RETURN with OLD.
298  */
299
300 #ifdef CONFIG_X86_CMPXCHG
301 #define __HAVE_ARCH_CMPXCHG 1
302 #define cmpxchg(ptr,o,n)\
303         ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
304                                         (unsigned long)(n),sizeof(*(ptr))))
305 #define sync_cmpxchg(ptr,o,n)\
306         ((__typeof__(*(ptr)))__sync_cmpxchg((ptr),(unsigned long)(o),\
307                                         (unsigned long)(n),sizeof(*(ptr))))
308 #define cmpxchg_local(ptr,o,n)\
309         ((__typeof__(*(ptr)))__cmpxchg_local((ptr),(unsigned long)(o),\
310                                         (unsigned long)(n),sizeof(*(ptr))))
311 #endif
312
313 static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
314                                       unsigned long new, int size)
315 {
316         unsigned long prev;
317         switch (size) {
318         case 1:
319                 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
320                                      : "=a"(prev)
321                                      : "q"(new), "m"(*__xg(ptr)), "0"(old)
322                                      : "memory");
323                 return prev;
324         case 2:
325                 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
326                                      : "=a"(prev)
327                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
328                                      : "memory");
329                 return prev;
330         case 4:
331                 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
332                                      : "=a"(prev)
333                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
334                                      : "memory");
335                 return prev;
336         }
337         return old;
338 }
339
340 /*
341  * Always use locked operations when touching memory shared with a
342  * hypervisor, since the system may be SMP even if the guest kernel
343  * isn't.
344  */
345 static inline unsigned long __sync_cmpxchg(volatile void *ptr,
346                                             unsigned long old,
347                                             unsigned long new, int size)
348 {
349         unsigned long prev;
350         switch (size) {
351         case 1:
352                 __asm__ __volatile__("lock; cmpxchgb %b1,%2"
353                                      : "=a"(prev)
354                                      : "q"(new), "m"(*__xg(ptr)), "0"(old)
355                                      : "memory");
356                 return prev;
357         case 2:
358                 __asm__ __volatile__("lock; cmpxchgw %w1,%2"
359                                      : "=a"(prev)
360                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
361                                      : "memory");
362                 return prev;
363         case 4:
364                 __asm__ __volatile__("lock; cmpxchgl %1,%2"
365                                      : "=a"(prev)
366                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
367                                      : "memory");
368                 return prev;
369         }
370         return old;
371 }
372
373 static inline unsigned long __cmpxchg_local(volatile void *ptr,
374                         unsigned long old, unsigned long new, int size)
375 {
376         unsigned long prev;
377         switch (size) {
378         case 1:
379                 __asm__ __volatile__("cmpxchgb %b1,%2"
380                                      : "=a"(prev)
381                                      : "q"(new), "m"(*__xg(ptr)), "0"(old)
382                                      : "memory");
383                 return prev;
384         case 2:
385                 __asm__ __volatile__("cmpxchgw %w1,%2"
386                                      : "=a"(prev)
387                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
388                                      : "memory");
389                 return prev;
390         case 4:
391                 __asm__ __volatile__("cmpxchgl %1,%2"
392                                      : "=a"(prev)
393                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
394                                      : "memory");
395                 return prev;
396         }
397         return old;
398 }
399
400 #ifndef CONFIG_X86_CMPXCHG
401 /*
402  * Building a kernel capable running on 80386. It may be necessary to
403  * simulate the cmpxchg on the 80386 CPU. For that purpose we define
404  * a function for each of the sizes we support.
405  */
406
407 extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
408 extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
409 extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
410
411 static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
412                                       unsigned long new, int size)
413 {
414         switch (size) {
415         case 1:
416                 return cmpxchg_386_u8(ptr, old, new);
417         case 2:
418                 return cmpxchg_386_u16(ptr, old, new);
419         case 4:
420                 return cmpxchg_386_u32(ptr, old, new);
421         }
422         return old;
423 }
424
425 #define cmpxchg(ptr,o,n)                                                \
426 ({                                                                      \
427         __typeof__(*(ptr)) __ret;                                       \
428         if (likely(boot_cpu_data.x86 > 3))                              \
429                 __ret = __cmpxchg((ptr), (unsigned long)(o),            \
430                                         (unsigned long)(n), sizeof(*(ptr))); \
431         else                                                            \
432                 __ret = cmpxchg_386((ptr), (unsigned long)(o),          \
433                                         (unsigned long)(n), sizeof(*(ptr))); \
434         __ret;                                                          \
435 })
436 #define cmpxchg_local(ptr,o,n)                                          \
437 ({                                                                      \
438         __typeof__(*(ptr)) __ret;                                       \
439         if (likely(boot_cpu_data.x86 > 3))                              \
440                 __ret = __cmpxchg_local((ptr), (unsigned long)(o),      \
441                                         (unsigned long)(n), sizeof(*(ptr))); \
442         else                                                            \
443                 __ret = cmpxchg_386((ptr), (unsigned long)(o),          \
444                                         (unsigned long)(n), sizeof(*(ptr))); \
445         __ret;                                                          \
446 })
447 #endif
448
449 #ifdef CONFIG_X86_CMPXCHG64
450
451 static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
452                                       unsigned long long new)
453 {
454         unsigned long long prev;
455         __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
456                              : "=A"(prev)
457                              : "b"((unsigned long)new),
458                                "c"((unsigned long)(new >> 32)),
459                                "m"(*__xg(ptr)),
460                                "0"(old)
461                              : "memory");
462         return prev;
463 }
464
465 static inline unsigned long long __cmpxchg64_local(volatile void *ptr,
466                         unsigned long long old, unsigned long long new)
467 {
468         unsigned long long prev;
469         __asm__ __volatile__("cmpxchg8b %3"
470                              : "=A"(prev)
471                              : "b"((unsigned long)new),
472                                "c"((unsigned long)(new >> 32)),
473                                "m"(*__xg(ptr)),
474                                "0"(old)
475                              : "memory");
476         return prev;
477 }
478
479 #define cmpxchg64(ptr,o,n)\
480         ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
481                                         (unsigned long long)(n)))
482 #define cmpxchg64_local(ptr,o,n)\
483         ((__typeof__(*(ptr)))__cmpxchg64_local((ptr),(unsigned long long)(o),\
484                                         (unsigned long long)(n)))
485 #endif
486     
487 /*
488  * Force strict CPU ordering.
489  * And yes, this is required on UP too when we're talking
490  * to devices.
491  *
492  * For now, "wmb()" doesn't actually do anything, as all
493  * Intel CPU's follow what Intel calls a *Processor Order*,
494  * in which all writes are seen in the program order even
495  * outside the CPU.
496  *
497  * I expect future Intel CPU's to have a weaker ordering,
498  * but I'd also expect them to finally get their act together
499  * and add some real memory barriers if so.
500  *
501  * Some non intel clones support out of order store. wmb() ceases to be a
502  * nop for these.
503  */
504  
505
506 /* 
507  * Actually only lfence would be needed for mb() because all stores done 
508  * by the kernel should be already ordered. But keep a full barrier for now. 
509  */
510
511 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
512 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
513
514 /**
515  * read_barrier_depends - Flush all pending reads that subsequents reads
516  * depend on.
517  *
518  * No data-dependent reads from memory-like regions are ever reordered
519  * over this barrier.  All reads preceding this primitive are guaranteed
520  * to access memory (but not necessarily other CPUs' caches) before any
521  * reads following this primitive that depend on the data return by
522  * any of the preceding reads.  This primitive is much lighter weight than
523  * rmb() on most CPUs, and is never heavier weight than is
524  * rmb().
525  *
526  * These ordering constraints are respected by both the local CPU
527  * and the compiler.
528  *
529  * Ordering is not guaranteed by anything other than these primitives,
530  * not even by data dependencies.  See the documentation for
531  * memory_barrier() for examples and URLs to more information.
532  *
533  * For example, the following code would force ordering (the initial
534  * value of "a" is zero, "b" is one, and "p" is "&a"):
535  *
536  * <programlisting>
537  *      CPU 0                           CPU 1
538  *
539  *      b = 2;
540  *      memory_barrier();
541  *      p = &b;                         q = p;
542  *                                      read_barrier_depends();
543  *                                      d = *q;
544  * </programlisting>
545  *
546  * because the read of "*q" depends on the read of "p" and these
547  * two reads are separated by a read_barrier_depends().  However,
548  * the following code, with the same initial values for "a" and "b":
549  *
550  * <programlisting>
551  *      CPU 0                           CPU 1
552  *
553  *      a = 2;
554  *      memory_barrier();
555  *      b = 3;                          y = b;
556  *                                      read_barrier_depends();
557  *                                      x = a;
558  * </programlisting>
559  *
560  * does not enforce ordering, since there is no data dependency between
561  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
562  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
563  * in cases like this where there are no data dependencies.
564  **/
565
566 #define read_barrier_depends()  do { } while(0)
567
568 #ifdef CONFIG_X86_OOSTORE
569 /* Actually there are no OOO store capable CPUs for now that do SSE, 
570    but make it already an possibility. */
571 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
572 #else
573 #define wmb()   __asm__ __volatile__ ("": : :"memory")
574 #endif
575
576 #ifdef CONFIG_SMP
577 #define smp_mb()        mb()
578 #define smp_rmb()       rmb()
579 #define smp_wmb()       wmb()
580 #define smp_read_barrier_depends()      read_barrier_depends()
581 #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
582 #else
583 #define smp_mb()        barrier()
584 #define smp_rmb()       barrier()
585 #define smp_wmb()       barrier()
586 #define smp_read_barrier_depends()      do { } while(0)
587 #define set_mb(var, value) do { var = value; barrier(); } while (0)
588 #endif
589
590 #include <linux/irqflags.h>
591
592 /*
593  * disable hlt during certain critical i/o operations
594  */
595 #define HAVE_DISABLE_HLT
596 void disable_hlt(void);
597 void enable_hlt(void);
598
599 extern int es7000_plat;
600 void cpu_idle_wait(void);
601
602 /*
603  * On SMP systems, when the scheduler does migration-cost autodetection,
604  * it needs a way to flush as much of the CPU's caches as possible:
605  */
606 static inline void sched_cacheflush(void)
607 {
608         wbinvd();
609 }
610
611 extern unsigned long arch_align_stack(unsigned long sp);
612 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
613
614 void default_idle(void);
615
616 #endif