]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/xfs/xfs_mount.c
fca3f8af67465f474f89f15ca3e754b7bce21d7a
[linux-2.6-omap-h63xx.git] / fs / xfs / xfs_mount.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47
48 STATIC int      xfs_mount_log_sb(xfs_mount_t *, __int64_t);
49 STATIC int      xfs_uuid_mount(xfs_mount_t *);
50 STATIC void     xfs_unmountfs_wait(xfs_mount_t *);
51
52
53 #ifdef HAVE_PERCPU_SB
54 STATIC void     xfs_icsb_destroy_counters(xfs_mount_t *);
55 STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
56                                                 int);
57 STATIC void     xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
58                                                 int);
59 STATIC int      xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
60                                                 int64_t, int);
61 STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
62
63 #else
64
65 #define xfs_icsb_destroy_counters(mp)                   do { } while (0)
66 #define xfs_icsb_balance_counter(mp, a, b)              do { } while (0)
67 #define xfs_icsb_balance_counter_locked(mp, a, b)       do { } while (0)
68 #define xfs_icsb_modify_counters(mp, a, b, c)           do { } while (0)
69
70 #endif
71
72 static const struct {
73         short offset;
74         short type;     /* 0 = integer
75                          * 1 = binary / string (no translation)
76                          */
77 } xfs_sb_info[] = {
78     { offsetof(xfs_sb_t, sb_magicnum),   0 },
79     { offsetof(xfs_sb_t, sb_blocksize),  0 },
80     { offsetof(xfs_sb_t, sb_dblocks),    0 },
81     { offsetof(xfs_sb_t, sb_rblocks),    0 },
82     { offsetof(xfs_sb_t, sb_rextents),   0 },
83     { offsetof(xfs_sb_t, sb_uuid),       1 },
84     { offsetof(xfs_sb_t, sb_logstart),   0 },
85     { offsetof(xfs_sb_t, sb_rootino),    0 },
86     { offsetof(xfs_sb_t, sb_rbmino),     0 },
87     { offsetof(xfs_sb_t, sb_rsumino),    0 },
88     { offsetof(xfs_sb_t, sb_rextsize),   0 },
89     { offsetof(xfs_sb_t, sb_agblocks),   0 },
90     { offsetof(xfs_sb_t, sb_agcount),    0 },
91     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
92     { offsetof(xfs_sb_t, sb_logblocks),  0 },
93     { offsetof(xfs_sb_t, sb_versionnum), 0 },
94     { offsetof(xfs_sb_t, sb_sectsize),   0 },
95     { offsetof(xfs_sb_t, sb_inodesize),  0 },
96     { offsetof(xfs_sb_t, sb_inopblock),  0 },
97     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
98     { offsetof(xfs_sb_t, sb_blocklog),   0 },
99     { offsetof(xfs_sb_t, sb_sectlog),    0 },
100     { offsetof(xfs_sb_t, sb_inodelog),   0 },
101     { offsetof(xfs_sb_t, sb_inopblog),   0 },
102     { offsetof(xfs_sb_t, sb_agblklog),   0 },
103     { offsetof(xfs_sb_t, sb_rextslog),   0 },
104     { offsetof(xfs_sb_t, sb_inprogress), 0 },
105     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
106     { offsetof(xfs_sb_t, sb_icount),     0 },
107     { offsetof(xfs_sb_t, sb_ifree),      0 },
108     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
109     { offsetof(xfs_sb_t, sb_frextents),  0 },
110     { offsetof(xfs_sb_t, sb_uquotino),   0 },
111     { offsetof(xfs_sb_t, sb_gquotino),   0 },
112     { offsetof(xfs_sb_t, sb_qflags),     0 },
113     { offsetof(xfs_sb_t, sb_flags),      0 },
114     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
115     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
116     { offsetof(xfs_sb_t, sb_unit),       0 },
117     { offsetof(xfs_sb_t, sb_width),      0 },
118     { offsetof(xfs_sb_t, sb_dirblklog),  0 },
119     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
120     { offsetof(xfs_sb_t, sb_logsectsize),0 },
121     { offsetof(xfs_sb_t, sb_logsunit),   0 },
122     { offsetof(xfs_sb_t, sb_features2),  0 },
123     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
124     { sizeof(xfs_sb_t),                  0 }
125 };
126
127 /*
128  * Return a pointer to an initialized xfs_mount structure.
129  */
130 xfs_mount_t *
131 xfs_mount_init(void)
132 {
133         xfs_mount_t *mp;
134
135         mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
136
137         if (xfs_icsb_init_counters(mp)) {
138                 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
139         }
140
141         spin_lock_init(&mp->m_sb_lock);
142         mutex_init(&mp->m_ilock);
143         mutex_init(&mp->m_growlock);
144         atomic_set(&mp->m_active_trans, 0);
145
146         return mp;
147 }
148
149 /*
150  * Free up the resources associated with a mount structure.  Assume that
151  * the structure was initially zeroed, so we can tell which fields got
152  * initialized.
153  */
154 void
155 xfs_mount_free(
156         xfs_mount_t     *mp)
157 {
158         if (mp->m_perag) {
159                 int     agno;
160
161                 for (agno = 0; agno < mp->m_maxagi; agno++)
162                         if (mp->m_perag[agno].pagb_list)
163                                 kmem_free(mp->m_perag[agno].pagb_list);
164                 kmem_free(mp->m_perag);
165         }
166
167         spinlock_destroy(&mp->m_ail_lock);
168         spinlock_destroy(&mp->m_sb_lock);
169         mutex_destroy(&mp->m_ilock);
170         mutex_destroy(&mp->m_growlock);
171         if (mp->m_quotainfo)
172                 XFS_QM_DONE(mp);
173
174         if (mp->m_fsname != NULL)
175                 kmem_free(mp->m_fsname);
176         if (mp->m_rtname != NULL)
177                 kmem_free(mp->m_rtname);
178         if (mp->m_logname != NULL)
179                 kmem_free(mp->m_logname);
180
181         xfs_icsb_destroy_counters(mp);
182 }
183
184 /*
185  * Check size of device based on the (data/realtime) block count.
186  * Note: this check is used by the growfs code as well as mount.
187  */
188 int
189 xfs_sb_validate_fsb_count(
190         xfs_sb_t        *sbp,
191         __uint64_t      nblocks)
192 {
193         ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
194         ASSERT(sbp->sb_blocklog >= BBSHIFT);
195
196 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
197         if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
198                 return E2BIG;
199 #else                  /* Limited by UINT_MAX of sectors */
200         if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
201                 return E2BIG;
202 #endif
203         return 0;
204 }
205
206 /*
207  * Check the validity of the SB found.
208  */
209 STATIC int
210 xfs_mount_validate_sb(
211         xfs_mount_t     *mp,
212         xfs_sb_t        *sbp,
213         int             flags)
214 {
215         /*
216          * If the log device and data device have the
217          * same device number, the log is internal.
218          * Consequently, the sb_logstart should be non-zero.  If
219          * we have a zero sb_logstart in this case, we may be trying to mount
220          * a volume filesystem in a non-volume manner.
221          */
222         if (sbp->sb_magicnum != XFS_SB_MAGIC) {
223                 xfs_fs_mount_cmn_err(flags, "bad magic number");
224                 return XFS_ERROR(EWRONGFS);
225         }
226
227         if (!xfs_sb_good_version(sbp)) {
228                 xfs_fs_mount_cmn_err(flags, "bad version");
229                 return XFS_ERROR(EWRONGFS);
230         }
231
232         if (unlikely(
233             sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
234                 xfs_fs_mount_cmn_err(flags,
235                         "filesystem is marked as having an external log; "
236                         "specify logdev on the\nmount command line.");
237                 return XFS_ERROR(EINVAL);
238         }
239
240         if (unlikely(
241             sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
242                 xfs_fs_mount_cmn_err(flags,
243                         "filesystem is marked as having an internal log; "
244                         "do not specify logdev on\nthe mount command line.");
245                 return XFS_ERROR(EINVAL);
246         }
247
248         /*
249          * More sanity checking. These were stolen directly from
250          * xfs_repair.
251          */
252         if (unlikely(
253             sbp->sb_agcount <= 0                                        ||
254             sbp->sb_sectsize < XFS_MIN_SECTORSIZE                       ||
255             sbp->sb_sectsize > XFS_MAX_SECTORSIZE                       ||
256             sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG                    ||
257             sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG                    ||
258             sbp->sb_blocksize < XFS_MIN_BLOCKSIZE                       ||
259             sbp->sb_blocksize > XFS_MAX_BLOCKSIZE                       ||
260             sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG                    ||
261             sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG                    ||
262             sbp->sb_inodesize < XFS_DINODE_MIN_SIZE                     ||
263             sbp->sb_inodesize > XFS_DINODE_MAX_SIZE                     ||
264             sbp->sb_inodelog < XFS_DINODE_MIN_LOG                       ||
265             sbp->sb_inodelog > XFS_DINODE_MAX_LOG                       ||
266             (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)   ||
267             (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)  ||
268             (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)  ||
269             (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
270                 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
271                 return XFS_ERROR(EFSCORRUPTED);
272         }
273
274         /*
275          * Sanity check AG count, size fields against data size field
276          */
277         if (unlikely(
278             sbp->sb_dblocks == 0 ||
279             sbp->sb_dblocks >
280              (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
281             sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
282                               sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
283                 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
284                 return XFS_ERROR(EFSCORRUPTED);
285         }
286
287         if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
288             xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
289                 xfs_fs_mount_cmn_err(flags,
290                         "file system too large to be mounted on this system.");
291                 return XFS_ERROR(E2BIG);
292         }
293
294         if (unlikely(sbp->sb_inprogress)) {
295                 xfs_fs_mount_cmn_err(flags, "file system busy");
296                 return XFS_ERROR(EFSCORRUPTED);
297         }
298
299         /*
300          * Version 1 directory format has never worked on Linux.
301          */
302         if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
303                 xfs_fs_mount_cmn_err(flags,
304                         "file system using version 1 directory format");
305                 return XFS_ERROR(ENOSYS);
306         }
307
308         /*
309          * Until this is fixed only page-sized or smaller data blocks work.
310          */
311         if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
312                 xfs_fs_mount_cmn_err(flags,
313                         "file system with blocksize %d bytes",
314                         sbp->sb_blocksize);
315                 xfs_fs_mount_cmn_err(flags,
316                         "only pagesize (%ld) or less will currently work.",
317                         PAGE_SIZE);
318                 return XFS_ERROR(ENOSYS);
319         }
320
321         return 0;
322 }
323
324 STATIC void
325 xfs_initialize_perag_icache(
326         xfs_perag_t     *pag)
327 {
328         if (!pag->pag_ici_init) {
329                 rwlock_init(&pag->pag_ici_lock);
330                 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
331                 pag->pag_ici_init = 1;
332         }
333 }
334
335 xfs_agnumber_t
336 xfs_initialize_perag(
337         xfs_mount_t     *mp,
338         xfs_agnumber_t  agcount)
339 {
340         xfs_agnumber_t  index, max_metadata;
341         xfs_perag_t     *pag;
342         xfs_agino_t     agino;
343         xfs_ino_t       ino;
344         xfs_sb_t        *sbp = &mp->m_sb;
345         xfs_ino_t       max_inum = XFS_MAXINUMBER_32;
346
347         /* Check to see if the filesystem can overflow 32 bit inodes */
348         agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
349         ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
350
351         /* Clear the mount flag if no inode can overflow 32 bits
352          * on this filesystem, or if specifically requested..
353          */
354         if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
355                 mp->m_flags |= XFS_MOUNT_32BITINODES;
356         } else {
357                 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
358         }
359
360         /* If we can overflow then setup the ag headers accordingly */
361         if (mp->m_flags & XFS_MOUNT_32BITINODES) {
362                 /* Calculate how much should be reserved for inodes to
363                  * meet the max inode percentage.
364                  */
365                 if (mp->m_maxicount) {
366                         __uint64_t      icount;
367
368                         icount = sbp->sb_dblocks * sbp->sb_imax_pct;
369                         do_div(icount, 100);
370                         icount += sbp->sb_agblocks - 1;
371                         do_div(icount, sbp->sb_agblocks);
372                         max_metadata = icount;
373                 } else {
374                         max_metadata = agcount;
375                 }
376                 for (index = 0; index < agcount; index++) {
377                         ino = XFS_AGINO_TO_INO(mp, index, agino);
378                         if (ino > max_inum) {
379                                 index++;
380                                 break;
381                         }
382
383                         /* This ag is preferred for inodes */
384                         pag = &mp->m_perag[index];
385                         pag->pagi_inodeok = 1;
386                         if (index < max_metadata)
387                                 pag->pagf_metadata = 1;
388                         xfs_initialize_perag_icache(pag);
389                 }
390         } else {
391                 /* Setup default behavior for smaller filesystems */
392                 for (index = 0; index < agcount; index++) {
393                         pag = &mp->m_perag[index];
394                         pag->pagi_inodeok = 1;
395                         xfs_initialize_perag_icache(pag);
396                 }
397         }
398         return index;
399 }
400
401 void
402 xfs_sb_from_disk(
403         xfs_sb_t        *to,
404         xfs_dsb_t       *from)
405 {
406         to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
407         to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
408         to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
409         to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
410         to->sb_rextents = be64_to_cpu(from->sb_rextents);
411         memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
412         to->sb_logstart = be64_to_cpu(from->sb_logstart);
413         to->sb_rootino = be64_to_cpu(from->sb_rootino);
414         to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
415         to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
416         to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
417         to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
418         to->sb_agcount = be32_to_cpu(from->sb_agcount);
419         to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
420         to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
421         to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
422         to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
423         to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
424         to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
425         memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
426         to->sb_blocklog = from->sb_blocklog;
427         to->sb_sectlog = from->sb_sectlog;
428         to->sb_inodelog = from->sb_inodelog;
429         to->sb_inopblog = from->sb_inopblog;
430         to->sb_agblklog = from->sb_agblklog;
431         to->sb_rextslog = from->sb_rextslog;
432         to->sb_inprogress = from->sb_inprogress;
433         to->sb_imax_pct = from->sb_imax_pct;
434         to->sb_icount = be64_to_cpu(from->sb_icount);
435         to->sb_ifree = be64_to_cpu(from->sb_ifree);
436         to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
437         to->sb_frextents = be64_to_cpu(from->sb_frextents);
438         to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
439         to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
440         to->sb_qflags = be16_to_cpu(from->sb_qflags);
441         to->sb_flags = from->sb_flags;
442         to->sb_shared_vn = from->sb_shared_vn;
443         to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
444         to->sb_unit = be32_to_cpu(from->sb_unit);
445         to->sb_width = be32_to_cpu(from->sb_width);
446         to->sb_dirblklog = from->sb_dirblklog;
447         to->sb_logsectlog = from->sb_logsectlog;
448         to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
449         to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
450         to->sb_features2 = be32_to_cpu(from->sb_features2);
451         to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
452 }
453
454 /*
455  * Copy in core superblock to ondisk one.
456  *
457  * The fields argument is mask of superblock fields to copy.
458  */
459 void
460 xfs_sb_to_disk(
461         xfs_dsb_t       *to,
462         xfs_sb_t        *from,
463         __int64_t       fields)
464 {
465         xfs_caddr_t     to_ptr = (xfs_caddr_t)to;
466         xfs_caddr_t     from_ptr = (xfs_caddr_t)from;
467         xfs_sb_field_t  f;
468         int             first;
469         int             size;
470
471         ASSERT(fields);
472         if (!fields)
473                 return;
474
475         while (fields) {
476                 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
477                 first = xfs_sb_info[f].offset;
478                 size = xfs_sb_info[f + 1].offset - first;
479
480                 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
481
482                 if (size == 1 || xfs_sb_info[f].type == 1) {
483                         memcpy(to_ptr + first, from_ptr + first, size);
484                 } else {
485                         switch (size) {
486                         case 2:
487                                 *(__be16 *)(to_ptr + first) =
488                                         cpu_to_be16(*(__u16 *)(from_ptr + first));
489                                 break;
490                         case 4:
491                                 *(__be32 *)(to_ptr + first) =
492                                         cpu_to_be32(*(__u32 *)(from_ptr + first));
493                                 break;
494                         case 8:
495                                 *(__be64 *)(to_ptr + first) =
496                                         cpu_to_be64(*(__u64 *)(from_ptr + first));
497                                 break;
498                         default:
499                                 ASSERT(0);
500                         }
501                 }
502
503                 fields &= ~(1LL << f);
504         }
505 }
506
507 /*
508  * xfs_readsb
509  *
510  * Does the initial read of the superblock.
511  */
512 int
513 xfs_readsb(xfs_mount_t *mp, int flags)
514 {
515         unsigned int    sector_size;
516         unsigned int    extra_flags;
517         xfs_buf_t       *bp;
518         int             error;
519
520         ASSERT(mp->m_sb_bp == NULL);
521         ASSERT(mp->m_ddev_targp != NULL);
522
523         /*
524          * Allocate a (locked) buffer to hold the superblock.
525          * This will be kept around at all times to optimize
526          * access to the superblock.
527          */
528         sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
529         extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
530
531         bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
532                                 BTOBB(sector_size), extra_flags);
533         if (!bp || XFS_BUF_ISERROR(bp)) {
534                 xfs_fs_mount_cmn_err(flags, "SB read failed");
535                 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
536                 goto fail;
537         }
538         ASSERT(XFS_BUF_ISBUSY(bp));
539         ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
540
541         /*
542          * Initialize the mount structure from the superblock.
543          * But first do some basic consistency checking.
544          */
545         xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
546
547         error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
548         if (error) {
549                 xfs_fs_mount_cmn_err(flags, "SB validate failed");
550                 goto fail;
551         }
552
553         /*
554          * We must be able to do sector-sized and sector-aligned IO.
555          */
556         if (sector_size > mp->m_sb.sb_sectsize) {
557                 xfs_fs_mount_cmn_err(flags,
558                         "device supports only %u byte sectors (not %u)",
559                         sector_size, mp->m_sb.sb_sectsize);
560                 error = ENOSYS;
561                 goto fail;
562         }
563
564         /*
565          * If device sector size is smaller than the superblock size,
566          * re-read the superblock so the buffer is correctly sized.
567          */
568         if (sector_size < mp->m_sb.sb_sectsize) {
569                 XFS_BUF_UNMANAGE(bp);
570                 xfs_buf_relse(bp);
571                 sector_size = mp->m_sb.sb_sectsize;
572                 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
573                                         BTOBB(sector_size), extra_flags);
574                 if (!bp || XFS_BUF_ISERROR(bp)) {
575                         xfs_fs_mount_cmn_err(flags, "SB re-read failed");
576                         error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
577                         goto fail;
578                 }
579                 ASSERT(XFS_BUF_ISBUSY(bp));
580                 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
581         }
582
583         /* Initialize per-cpu counters */
584         xfs_icsb_reinit_counters(mp);
585
586         mp->m_sb_bp = bp;
587         xfs_buf_relse(bp);
588         ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
589         return 0;
590
591  fail:
592         if (bp) {
593                 XFS_BUF_UNMANAGE(bp);
594                 xfs_buf_relse(bp);
595         }
596         return error;
597 }
598
599
600 /*
601  * xfs_mount_common
602  *
603  * Mount initialization code establishing various mount
604  * fields from the superblock associated with the given
605  * mount structure
606  */
607 STATIC void
608 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
609 {
610         int     i;
611
612         mp->m_agfrotor = mp->m_agirotor = 0;
613         spin_lock_init(&mp->m_agirotor_lock);
614         mp->m_maxagi = mp->m_sb.sb_agcount;
615         mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
616         mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
617         mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
618         mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
619         mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
620         mp->m_litino = sbp->sb_inodesize -
621                 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
622         mp->m_blockmask = sbp->sb_blocksize - 1;
623         mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
624         mp->m_blockwmask = mp->m_blockwsize - 1;
625         INIT_LIST_HEAD(&mp->m_del_inodes);
626
627         /*
628          * Setup for attributes, in case they get created.
629          * This value is for inodes getting attributes for the first time,
630          * the per-inode value is for old attribute values.
631          */
632         ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
633         switch (sbp->sb_inodesize) {
634         case 256:
635                 mp->m_attroffset = XFS_LITINO(mp) -
636                                    XFS_BMDR_SPACE_CALC(MINABTPTRS);
637                 break;
638         case 512:
639         case 1024:
640         case 2048:
641                 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
642                 break;
643         default:
644                 ASSERT(0);
645         }
646         ASSERT(mp->m_attroffset < XFS_LITINO(mp));
647
648         for (i = 0; i < 2; i++) {
649                 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
650                         xfs_alloc, i == 0);
651                 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
652                         xfs_alloc, i == 0);
653         }
654         for (i = 0; i < 2; i++) {
655                 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
656                         xfs_bmbt, i == 0);
657                 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
658                         xfs_bmbt, i == 0);
659         }
660         for (i = 0; i < 2; i++) {
661                 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
662                         xfs_inobt, i == 0);
663                 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
664                         xfs_inobt, i == 0);
665         }
666
667         mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
668         mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
669                                         sbp->sb_inopblock);
670         mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
671 }
672
673 /*
674  * xfs_initialize_perag_data
675  *
676  * Read in each per-ag structure so we can count up the number of
677  * allocated inodes, free inodes and used filesystem blocks as this
678  * information is no longer persistent in the superblock. Once we have
679  * this information, write it into the in-core superblock structure.
680  */
681 STATIC int
682 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
683 {
684         xfs_agnumber_t  index;
685         xfs_perag_t     *pag;
686         xfs_sb_t        *sbp = &mp->m_sb;
687         uint64_t        ifree = 0;
688         uint64_t        ialloc = 0;
689         uint64_t        bfree = 0;
690         uint64_t        bfreelst = 0;
691         uint64_t        btree = 0;
692         int             error;
693
694         for (index = 0; index < agcount; index++) {
695                 /*
696                  * read the agf, then the agi. This gets us
697                  * all the inforamtion we need and populates the
698                  * per-ag structures for us.
699                  */
700                 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
701                 if (error)
702                         return error;
703
704                 error = xfs_ialloc_pagi_init(mp, NULL, index);
705                 if (error)
706                         return error;
707                 pag = &mp->m_perag[index];
708                 ifree += pag->pagi_freecount;
709                 ialloc += pag->pagi_count;
710                 bfree += pag->pagf_freeblks;
711                 bfreelst += pag->pagf_flcount;
712                 btree += pag->pagf_btreeblks;
713         }
714         /*
715          * Overwrite incore superblock counters with just-read data
716          */
717         spin_lock(&mp->m_sb_lock);
718         sbp->sb_ifree = ifree;
719         sbp->sb_icount = ialloc;
720         sbp->sb_fdblocks = bfree + bfreelst + btree;
721         spin_unlock(&mp->m_sb_lock);
722
723         /* Fixup the per-cpu counters as well. */
724         xfs_icsb_reinit_counters(mp);
725
726         return 0;
727 }
728
729 /*
730  * Update alignment values based on mount options and sb values
731  */
732 STATIC int
733 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
734 {
735         xfs_sb_t        *sbp = &(mp->m_sb);
736
737         if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
738                 /*
739                  * If stripe unit and stripe width are not multiples
740                  * of the fs blocksize turn off alignment.
741                  */
742                 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
743                     (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
744                         if (mp->m_flags & XFS_MOUNT_RETERR) {
745                                 cmn_err(CE_WARN,
746                                         "XFS: alignment check 1 failed");
747                                 return XFS_ERROR(EINVAL);
748                         }
749                         mp->m_dalign = mp->m_swidth = 0;
750                 } else {
751                         /*
752                          * Convert the stripe unit and width to FSBs.
753                          */
754                         mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
755                         if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
756                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
757                                         return XFS_ERROR(EINVAL);
758                                 }
759                                 xfs_fs_cmn_err(CE_WARN, mp,
760 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
761                                         mp->m_dalign, mp->m_swidth,
762                                         sbp->sb_agblocks);
763
764                                 mp->m_dalign = 0;
765                                 mp->m_swidth = 0;
766                         } else if (mp->m_dalign) {
767                                 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
768                         } else {
769                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
770                                         xfs_fs_cmn_err(CE_WARN, mp,
771 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
772                                                 mp->m_dalign,
773                                                 mp->m_blockmask +1);
774                                         return XFS_ERROR(EINVAL);
775                                 }
776                                 mp->m_swidth = 0;
777                         }
778                 }
779
780                 /*
781                  * Update superblock with new values
782                  * and log changes
783                  */
784                 if (xfs_sb_version_hasdalign(sbp)) {
785                         if (sbp->sb_unit != mp->m_dalign) {
786                                 sbp->sb_unit = mp->m_dalign;
787                                 *update_flags |= XFS_SB_UNIT;
788                         }
789                         if (sbp->sb_width != mp->m_swidth) {
790                                 sbp->sb_width = mp->m_swidth;
791                                 *update_flags |= XFS_SB_WIDTH;
792                         }
793                 }
794         } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
795                     xfs_sb_version_hasdalign(&mp->m_sb)) {
796                         mp->m_dalign = sbp->sb_unit;
797                         mp->m_swidth = sbp->sb_width;
798         }
799
800         return 0;
801 }
802
803 /*
804  * Set the maximum inode count for this filesystem
805  */
806 STATIC void
807 xfs_set_maxicount(xfs_mount_t *mp)
808 {
809         xfs_sb_t        *sbp = &(mp->m_sb);
810         __uint64_t      icount;
811
812         if (sbp->sb_imax_pct) {
813                 /*
814                  * Make sure the maximum inode count is a multiple
815                  * of the units we allocate inodes in.
816                  */
817                 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
818                 do_div(icount, 100);
819                 do_div(icount, mp->m_ialloc_blks);
820                 mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
821                                    sbp->sb_inopblog;
822         } else {
823                 mp->m_maxicount = 0;
824         }
825 }
826
827 /*
828  * Set the default minimum read and write sizes unless
829  * already specified in a mount option.
830  * We use smaller I/O sizes when the file system
831  * is being used for NFS service (wsync mount option).
832  */
833 STATIC void
834 xfs_set_rw_sizes(xfs_mount_t *mp)
835 {
836         xfs_sb_t        *sbp = &(mp->m_sb);
837         int             readio_log, writeio_log;
838
839         if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
840                 if (mp->m_flags & XFS_MOUNT_WSYNC) {
841                         readio_log = XFS_WSYNC_READIO_LOG;
842                         writeio_log = XFS_WSYNC_WRITEIO_LOG;
843                 } else {
844                         readio_log = XFS_READIO_LOG_LARGE;
845                         writeio_log = XFS_WRITEIO_LOG_LARGE;
846                 }
847         } else {
848                 readio_log = mp->m_readio_log;
849                 writeio_log = mp->m_writeio_log;
850         }
851
852         if (sbp->sb_blocklog > readio_log) {
853                 mp->m_readio_log = sbp->sb_blocklog;
854         } else {
855                 mp->m_readio_log = readio_log;
856         }
857         mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
858         if (sbp->sb_blocklog > writeio_log) {
859                 mp->m_writeio_log = sbp->sb_blocklog;
860         } else {
861                 mp->m_writeio_log = writeio_log;
862         }
863         mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
864 }
865
866 /*
867  * Set whether we're using inode alignment.
868  */
869 STATIC void
870 xfs_set_inoalignment(xfs_mount_t *mp)
871 {
872         if (xfs_sb_version_hasalign(&mp->m_sb) &&
873             mp->m_sb.sb_inoalignmt >=
874             XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
875                 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
876         else
877                 mp->m_inoalign_mask = 0;
878         /*
879          * If we are using stripe alignment, check whether
880          * the stripe unit is a multiple of the inode alignment
881          */
882         if (mp->m_dalign && mp->m_inoalign_mask &&
883             !(mp->m_dalign & mp->m_inoalign_mask))
884                 mp->m_sinoalign = mp->m_dalign;
885         else
886                 mp->m_sinoalign = 0;
887 }
888
889 /*
890  * Check that the data (and log if separate) are an ok size.
891  */
892 STATIC int
893 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
894 {
895         xfs_buf_t       *bp;
896         xfs_daddr_t     d;
897         int             error;
898
899         d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
900         if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
901                 cmn_err(CE_WARN, "XFS: size check 1 failed");
902                 return XFS_ERROR(E2BIG);
903         }
904         error = xfs_read_buf(mp, mp->m_ddev_targp,
905                              d - XFS_FSS_TO_BB(mp, 1),
906                              XFS_FSS_TO_BB(mp, 1), 0, &bp);
907         if (!error) {
908                 xfs_buf_relse(bp);
909         } else {
910                 cmn_err(CE_WARN, "XFS: size check 2 failed");
911                 if (error == ENOSPC)
912                         error = XFS_ERROR(E2BIG);
913                 return error;
914         }
915
916         if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
917             mp->m_logdev_targp != mp->m_ddev_targp) {
918                 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
919                 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
920                         cmn_err(CE_WARN, "XFS: size check 3 failed");
921                         return XFS_ERROR(E2BIG);
922                 }
923                 error = xfs_read_buf(mp, mp->m_logdev_targp,
924                                      d - XFS_FSB_TO_BB(mp, 1),
925                                      XFS_FSB_TO_BB(mp, 1), 0, &bp);
926                 if (!error) {
927                         xfs_buf_relse(bp);
928                 } else {
929                         cmn_err(CE_WARN, "XFS: size check 3 failed");
930                         if (error == ENOSPC)
931                                 error = XFS_ERROR(E2BIG);
932                         return error;
933                 }
934         }
935         return 0;
936 }
937
938 /*
939  * xfs_mountfs
940  *
941  * This function does the following on an initial mount of a file system:
942  *      - reads the superblock from disk and init the mount struct
943  *      - if we're a 32-bit kernel, do a size check on the superblock
944  *              so we don't mount terabyte filesystems
945  *      - init mount struct realtime fields
946  *      - allocate inode hash table for fs
947  *      - init directory manager
948  *      - perform recovery and init the log manager
949  */
950 int
951 xfs_mountfs(
952         xfs_mount_t     *mp,
953         int             mfsi_flags)
954 {
955         xfs_sb_t        *sbp = &(mp->m_sb);
956         xfs_inode_t     *rip;
957         __uint64_t      resblks;
958         __int64_t       update_flags = 0LL;
959         uint            quotamount, quotaflags;
960         int             agno;
961         int             uuid_mounted = 0;
962         int             error = 0;
963
964         xfs_mount_common(mp, sbp);
965
966         /*
967          * Check for a mismatched features2 values.  Older kernels
968          * read & wrote into the wrong sb offset for sb_features2
969          * on some platforms due to xfs_sb_t not being 64bit size aligned
970          * when sb_features2 was added, which made older superblock
971          * reading/writing routines swap it as a 64-bit value.
972          *
973          * For backwards compatibility, we make both slots equal.
974          *
975          * If we detect a mismatched field, we OR the set bits into the
976          * existing features2 field in case it has already been modified; we
977          * don't want to lose any features.  We then update the bad location
978          * with the ORed value so that older kernels will see any features2
979          * flags, and mark the two fields as needing updates once the
980          * transaction subsystem is online.
981          */
982         if (xfs_sb_has_mismatched_features2(sbp)) {
983                 cmn_err(CE_WARN,
984                         "XFS: correcting sb_features alignment problem");
985                 sbp->sb_features2 |= sbp->sb_bad_features2;
986                 sbp->sb_bad_features2 = sbp->sb_features2;
987                 update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
988
989                 /*
990                  * Re-check for ATTR2 in case it was found in bad_features2
991                  * slot.
992                  */
993                 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
994                    !(mp->m_flags & XFS_MOUNT_NOATTR2))
995                         mp->m_flags |= XFS_MOUNT_ATTR2;
996         }
997
998         if (xfs_sb_version_hasattr2(&mp->m_sb) &&
999            (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1000                 xfs_sb_version_removeattr2(&mp->m_sb);
1001                 update_flags |= XFS_SB_FEATURES2;
1002
1003                 /* update sb_versionnum for the clearing of the morebits */
1004                 if (!sbp->sb_features2)
1005                         update_flags |= XFS_SB_VERSIONNUM;
1006         }
1007
1008         /*
1009          * Check if sb_agblocks is aligned at stripe boundary
1010          * If sb_agblocks is NOT aligned turn off m_dalign since
1011          * allocator alignment is within an ag, therefore ag has
1012          * to be aligned at stripe boundary.
1013          */
1014         error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
1015         if (error)
1016                 goto error1;
1017
1018         xfs_alloc_compute_maxlevels(mp);
1019         xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1020         xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1021         xfs_ialloc_compute_maxlevels(mp);
1022
1023         xfs_set_maxicount(mp);
1024
1025         mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1026
1027         /*
1028          * XFS uses the uuid from the superblock as the unique
1029          * identifier for fsid.  We can not use the uuid from the volume
1030          * since a single partition filesystem is identical to a single
1031          * partition volume/filesystem.
1032          */
1033         if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
1034             (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
1035                 if (xfs_uuid_mount(mp)) {
1036                         error = XFS_ERROR(EINVAL);
1037                         goto error1;
1038                 }
1039                 uuid_mounted=1;
1040         }
1041
1042         /*
1043          * Set the minimum read and write sizes
1044          */
1045         xfs_set_rw_sizes(mp);
1046
1047         /*
1048          * Set the inode cluster size.
1049          * This may still be overridden by the file system
1050          * block size if it is larger than the chosen cluster size.
1051          */
1052         mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1053
1054         /*
1055          * Set inode alignment fields
1056          */
1057         xfs_set_inoalignment(mp);
1058
1059         /*
1060          * Check that the data (and log if separate) are an ok size.
1061          */
1062         error = xfs_check_sizes(mp, mfsi_flags);
1063         if (error)
1064                 goto error1;
1065
1066         /*
1067          * Initialize realtime fields in the mount structure
1068          */
1069         error = xfs_rtmount_init(mp);
1070         if (error) {
1071                 cmn_err(CE_WARN, "XFS: RT mount failed");
1072                 goto error1;
1073         }
1074
1075         /*
1076          * For client case we are done now
1077          */
1078         if (mfsi_flags & XFS_MFSI_CLIENT) {
1079                 return 0;
1080         }
1081
1082         /*
1083          *  Copies the low order bits of the timestamp and the randomly
1084          *  set "sequence" number out of a UUID.
1085          */
1086         uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1087
1088         mp->m_dmevmask = 0;     /* not persistent; set after each mount */
1089
1090         xfs_dir_mount(mp);
1091
1092         /*
1093          * Initialize the attribute manager's entries.
1094          */
1095         mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1096
1097         /*
1098          * Initialize the precomputed transaction reservations values.
1099          */
1100         xfs_trans_init(mp);
1101
1102         /*
1103          * Allocate and initialize the per-ag data.
1104          */
1105         init_rwsem(&mp->m_peraglock);
1106         mp->m_perag =
1107                 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1108
1109         mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1110
1111         /*
1112          * log's mount-time initialization. Perform 1st part recovery if needed
1113          */
1114         if (likely(sbp->sb_logblocks > 0)) {    /* check for volume case */
1115                 error = xfs_log_mount(mp, mp->m_logdev_targp,
1116                                       XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1117                                       XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1118                 if (error) {
1119                         cmn_err(CE_WARN, "XFS: log mount failed");
1120                         goto error2;
1121                 }
1122         } else {        /* No log has been defined */
1123                 cmn_err(CE_WARN, "XFS: no log defined");
1124                 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1125                 error = XFS_ERROR(EFSCORRUPTED);
1126                 goto error2;
1127         }
1128
1129         /*
1130          * Now the log is mounted, we know if it was an unclean shutdown or
1131          * not. If it was, with the first phase of recovery has completed, we
1132          * have consistent AG blocks on disk. We have not recovered EFIs yet,
1133          * but they are recovered transactionally in the second recovery phase
1134          * later.
1135          *
1136          * Hence we can safely re-initialise incore superblock counters from
1137          * the per-ag data. These may not be correct if the filesystem was not
1138          * cleanly unmounted, so we need to wait for recovery to finish before
1139          * doing this.
1140          *
1141          * If the filesystem was cleanly unmounted, then we can trust the
1142          * values in the superblock to be correct and we don't need to do
1143          * anything here.
1144          *
1145          * If we are currently making the filesystem, the initialisation will
1146          * fail as the perag data is in an undefined state.
1147          */
1148
1149         if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1150             !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1151              !mp->m_sb.sb_inprogress) {
1152                 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1153                 if (error) {
1154                         goto error2;
1155                 }
1156         }
1157         /*
1158          * Get and sanity-check the root inode.
1159          * Save the pointer to it in the mount structure.
1160          */
1161         error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1162         if (error) {
1163                 cmn_err(CE_WARN, "XFS: failed to read root inode");
1164                 goto error3;
1165         }
1166
1167         ASSERT(rip != NULL);
1168
1169         if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1170                 cmn_err(CE_WARN, "XFS: corrupted root inode");
1171                 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1172                         XFS_BUFTARG_NAME(mp->m_ddev_targp),
1173                         (unsigned long long)rip->i_ino);
1174                 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1175                 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1176                                  mp);
1177                 error = XFS_ERROR(EFSCORRUPTED);
1178                 goto error4;
1179         }
1180         mp->m_rootip = rip;     /* save it */
1181
1182         xfs_iunlock(rip, XFS_ILOCK_EXCL);
1183
1184         /*
1185          * Initialize realtime inode pointers in the mount structure
1186          */
1187         error = xfs_rtmount_inodes(mp);
1188         if (error) {
1189                 /*
1190                  * Free up the root inode.
1191                  */
1192                 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1193                 goto error4;
1194         }
1195
1196         /*
1197          * If fs is not mounted readonly, then update the superblock changes.
1198          */
1199         if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1200                 error = xfs_mount_log_sb(mp, update_flags);
1201                 if (error) {
1202                         cmn_err(CE_WARN, "XFS: failed to write sb changes");
1203                         goto error4;
1204                 }
1205         }
1206
1207         /*
1208          * Initialise the XFS quota management subsystem for this mount
1209          */
1210         error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1211         if (error)
1212                 goto error4;
1213
1214         /*
1215          * Finish recovering the file system.  This part needed to be
1216          * delayed until after the root and real-time bitmap inodes
1217          * were consistently read in.
1218          */
1219         error = xfs_log_mount_finish(mp, mfsi_flags);
1220         if (error) {
1221                 cmn_err(CE_WARN, "XFS: log mount finish failed");
1222                 goto error4;
1223         }
1224
1225         /*
1226          * Complete the quota initialisation, post-log-replay component.
1227          */
1228         error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1229         if (error)
1230                 goto error4;
1231
1232         /*
1233          * Now we are mounted, reserve a small amount of unused space for
1234          * privileged transactions. This is needed so that transaction
1235          * space required for critical operations can dip into this pool
1236          * when at ENOSPC. This is needed for operations like create with
1237          * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1238          * are not allowed to use this reserved space.
1239          *
1240          * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1241          * This may drive us straight to ENOSPC on mount, but that implies
1242          * we were already there on the last unmount. Warn if this occurs.
1243          */
1244         resblks = mp->m_sb.sb_dblocks;
1245         do_div(resblks, 20);
1246         resblks = min_t(__uint64_t, resblks, 1024);
1247         error = xfs_reserve_blocks(mp, &resblks, NULL);
1248         if (error)
1249                 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1250                                 "Continuing without a reserve pool.");
1251
1252         return 0;
1253
1254  error4:
1255         /*
1256          * Free up the root inode.
1257          */
1258         IRELE(rip);
1259  error3:
1260         xfs_log_unmount_dealloc(mp);
1261  error2:
1262         for (agno = 0; agno < sbp->sb_agcount; agno++)
1263                 if (mp->m_perag[agno].pagb_list)
1264                         kmem_free(mp->m_perag[agno].pagb_list);
1265         kmem_free(mp->m_perag);
1266         mp->m_perag = NULL;
1267         /* FALLTHROUGH */
1268  error1:
1269         if (uuid_mounted)
1270                 uuid_table_remove(&mp->m_sb.sb_uuid);
1271         xfs_freesb(mp);
1272         return error;
1273 }
1274
1275 /*
1276  * xfs_unmountfs
1277  *
1278  * This flushes out the inodes,dquots and the superblock, unmounts the
1279  * log and makes sure that incore structures are freed.
1280  */
1281 int
1282 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1283 {
1284         __uint64_t      resblks;
1285         int             error = 0;
1286
1287         /*
1288          * We can potentially deadlock here if we have an inode cluster
1289          * that has been freed has it's buffer still pinned in memory because
1290          * the transaction is still sitting in a iclog. The stale inodes
1291          * on that buffer will have their flush locks held until the
1292          * transaction hits the disk and the callbacks run. the inode
1293          * flush takes the flush lock unconditionally and with nothing to
1294          * push out the iclog we will never get that unlocked. hence we
1295          * need to force the log first.
1296          */
1297         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1298         xfs_iflush_all(mp);
1299
1300         XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1301
1302         /*
1303          * Flush out the log synchronously so that we know for sure
1304          * that nothing is pinned.  This is important because bflush()
1305          * will skip pinned buffers.
1306          */
1307         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1308
1309         xfs_binval(mp->m_ddev_targp);
1310         if (mp->m_rtdev_targp) {
1311                 xfs_binval(mp->m_rtdev_targp);
1312         }
1313
1314         /*
1315          * Unreserve any blocks we have so that when we unmount we don't account
1316          * the reserved free space as used. This is really only necessary for
1317          * lazy superblock counting because it trusts the incore superblock
1318          * counters to be aboslutely correct on clean unmount.
1319          *
1320          * We don't bother correcting this elsewhere for lazy superblock
1321          * counting because on mount of an unclean filesystem we reconstruct the
1322          * correct counter value and this is irrelevant.
1323          *
1324          * For non-lazy counter filesystems, this doesn't matter at all because
1325          * we only every apply deltas to the superblock and hence the incore
1326          * value does not matter....
1327          */
1328         resblks = 0;
1329         error = xfs_reserve_blocks(mp, &resblks, NULL);
1330         if (error)
1331                 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1332                                 "Freespace may not be correct on next mount.");
1333
1334         error = xfs_log_sbcount(mp, 1);
1335         if (error)
1336                 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1337                                 "Freespace may not be correct on next mount.");
1338         xfs_unmountfs_writesb(mp);
1339         xfs_unmountfs_wait(mp);                 /* wait for async bufs */
1340         xfs_log_unmount(mp);                    /* Done! No more fs ops. */
1341
1342         xfs_freesb(mp);
1343
1344         /*
1345          * All inodes from this mount point should be freed.
1346          */
1347         ASSERT(mp->m_inodes == NULL);
1348
1349         xfs_unmountfs_close(mp, cr);
1350         if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1351                 uuid_table_remove(&mp->m_sb.sb_uuid);
1352
1353 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1354         xfs_errortag_clearall(mp, 0);
1355 #endif
1356         xfs_mount_free(mp);
1357         return 0;
1358 }
1359
1360 void
1361 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1362 {
1363         if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1364                 xfs_free_buftarg(mp->m_logdev_targp, 1);
1365         if (mp->m_rtdev_targp)
1366                 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1367         xfs_free_buftarg(mp->m_ddev_targp, 0);
1368 }
1369
1370 STATIC void
1371 xfs_unmountfs_wait(xfs_mount_t *mp)
1372 {
1373         if (mp->m_logdev_targp != mp->m_ddev_targp)
1374                 xfs_wait_buftarg(mp->m_logdev_targp);
1375         if (mp->m_rtdev_targp)
1376                 xfs_wait_buftarg(mp->m_rtdev_targp);
1377         xfs_wait_buftarg(mp->m_ddev_targp);
1378 }
1379
1380 int
1381 xfs_fs_writable(xfs_mount_t *mp)
1382 {
1383         return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1384                 (mp->m_flags & XFS_MOUNT_RDONLY));
1385 }
1386
1387 /*
1388  * xfs_log_sbcount
1389  *
1390  * Called either periodically to keep the on disk superblock values
1391  * roughly up to date or from unmount to make sure the values are
1392  * correct on a clean unmount.
1393  *
1394  * Note this code can be called during the process of freezing, so
1395  * we may need to use the transaction allocator which does not not
1396  * block when the transaction subsystem is in its frozen state.
1397  */
1398 int
1399 xfs_log_sbcount(
1400         xfs_mount_t     *mp,
1401         uint            sync)
1402 {
1403         xfs_trans_t     *tp;
1404         int             error;
1405
1406         if (!xfs_fs_writable(mp))
1407                 return 0;
1408
1409         xfs_icsb_sync_counters(mp, 0);
1410
1411         /*
1412          * we don't need to do this if we are updating the superblock
1413          * counters on every modification.
1414          */
1415         if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1416                 return 0;
1417
1418         tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1419         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1420                                         XFS_DEFAULT_LOG_COUNT);
1421         if (error) {
1422                 xfs_trans_cancel(tp, 0);
1423                 return error;
1424         }
1425
1426         xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1427         if (sync)
1428                 xfs_trans_set_sync(tp);
1429         error = xfs_trans_commit(tp, 0);
1430         return error;
1431 }
1432
1433 STATIC void
1434 xfs_mark_shared_ro(
1435         xfs_mount_t     *mp,
1436         xfs_buf_t       *bp)
1437 {
1438         xfs_dsb_t       *sb = XFS_BUF_TO_SBP(bp);
1439         __uint16_t      version;
1440
1441         if (!(sb->sb_flags & XFS_SBF_READONLY))
1442                 sb->sb_flags |= XFS_SBF_READONLY;
1443
1444         version = be16_to_cpu(sb->sb_versionnum);
1445         if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1446             !(version & XFS_SB_VERSION_SHAREDBIT))
1447                 version |= XFS_SB_VERSION_SHAREDBIT;
1448         sb->sb_versionnum = cpu_to_be16(version);
1449 }
1450
1451 int
1452 xfs_unmountfs_writesb(xfs_mount_t *mp)
1453 {
1454         xfs_buf_t       *sbp;
1455         int             error = 0;
1456
1457         /*
1458          * skip superblock write if fs is read-only, or
1459          * if we are doing a forced umount.
1460          */
1461         if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1462                 XFS_FORCED_SHUTDOWN(mp))) {
1463
1464                 sbp = xfs_getsb(mp, 0);
1465
1466                 /*
1467                  * mark shared-readonly if desired
1468                  */
1469                 if (mp->m_mk_sharedro)
1470                         xfs_mark_shared_ro(mp, sbp);
1471
1472                 XFS_BUF_UNDONE(sbp);
1473                 XFS_BUF_UNREAD(sbp);
1474                 XFS_BUF_UNDELAYWRITE(sbp);
1475                 XFS_BUF_WRITE(sbp);
1476                 XFS_BUF_UNASYNC(sbp);
1477                 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1478                 xfsbdstrat(mp, sbp);
1479                 error = xfs_iowait(sbp);
1480                 if (error)
1481                         xfs_ioerror_alert("xfs_unmountfs_writesb",
1482                                           mp, sbp, XFS_BUF_ADDR(sbp));
1483                 if (error && mp->m_mk_sharedro)
1484                         xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting.  Filesystem may not be marked shared readonly");
1485                 xfs_buf_relse(sbp);
1486         }
1487         return error;
1488 }
1489
1490 /*
1491  * xfs_mod_sb() can be used to copy arbitrary changes to the
1492  * in-core superblock into the superblock buffer to be logged.
1493  * It does not provide the higher level of locking that is
1494  * needed to protect the in-core superblock from concurrent
1495  * access.
1496  */
1497 void
1498 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1499 {
1500         xfs_buf_t       *bp;
1501         int             first;
1502         int             last;
1503         xfs_mount_t     *mp;
1504         xfs_sb_field_t  f;
1505
1506         ASSERT(fields);
1507         if (!fields)
1508                 return;
1509         mp = tp->t_mountp;
1510         bp = xfs_trans_getsb(tp, mp, 0);
1511         first = sizeof(xfs_sb_t);
1512         last = 0;
1513
1514         /* translate/copy */
1515
1516         xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1517
1518         /* find modified range */
1519
1520         f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1521         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1522         first = xfs_sb_info[f].offset;
1523
1524         f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1525         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1526         last = xfs_sb_info[f + 1].offset - 1;
1527
1528         xfs_trans_log_buf(tp, bp, first, last);
1529 }
1530
1531
1532 /*
1533  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1534  * a delta to a specified field in the in-core superblock.  Simply
1535  * switch on the field indicated and apply the delta to that field.
1536  * Fields are not allowed to dip below zero, so if the delta would
1537  * do this do not apply it and return EINVAL.
1538  *
1539  * The m_sb_lock must be held when this routine is called.
1540  */
1541 int
1542 xfs_mod_incore_sb_unlocked(
1543         xfs_mount_t     *mp,
1544         xfs_sb_field_t  field,
1545         int64_t         delta,
1546         int             rsvd)
1547 {
1548         int             scounter;       /* short counter for 32 bit fields */
1549         long long       lcounter;       /* long counter for 64 bit fields */
1550         long long       res_used, rem;
1551
1552         /*
1553          * With the in-core superblock spin lock held, switch
1554          * on the indicated field.  Apply the delta to the
1555          * proper field.  If the fields value would dip below
1556          * 0, then do not apply the delta and return EINVAL.
1557          */
1558         switch (field) {
1559         case XFS_SBS_ICOUNT:
1560                 lcounter = (long long)mp->m_sb.sb_icount;
1561                 lcounter += delta;
1562                 if (lcounter < 0) {
1563                         ASSERT(0);
1564                         return XFS_ERROR(EINVAL);
1565                 }
1566                 mp->m_sb.sb_icount = lcounter;
1567                 return 0;
1568         case XFS_SBS_IFREE:
1569                 lcounter = (long long)mp->m_sb.sb_ifree;
1570                 lcounter += delta;
1571                 if (lcounter < 0) {
1572                         ASSERT(0);
1573                         return XFS_ERROR(EINVAL);
1574                 }
1575                 mp->m_sb.sb_ifree = lcounter;
1576                 return 0;
1577         case XFS_SBS_FDBLOCKS:
1578                 lcounter = (long long)
1579                         mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1580                 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1581
1582                 if (delta > 0) {                /* Putting blocks back */
1583                         if (res_used > delta) {
1584                                 mp->m_resblks_avail += delta;
1585                         } else {
1586                                 rem = delta - res_used;
1587                                 mp->m_resblks_avail = mp->m_resblks;
1588                                 lcounter += rem;
1589                         }
1590                 } else {                                /* Taking blocks away */
1591
1592                         lcounter += delta;
1593
1594                 /*
1595                  * If were out of blocks, use any available reserved blocks if
1596                  * were allowed to.
1597                  */
1598
1599                         if (lcounter < 0) {
1600                                 if (rsvd) {
1601                                         lcounter = (long long)mp->m_resblks_avail + delta;
1602                                         if (lcounter < 0) {
1603                                                 return XFS_ERROR(ENOSPC);
1604                                         }
1605                                         mp->m_resblks_avail = lcounter;
1606                                         return 0;
1607                                 } else {        /* not reserved */
1608                                         return XFS_ERROR(ENOSPC);
1609                                 }
1610                         }
1611                 }
1612
1613                 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1614                 return 0;
1615         case XFS_SBS_FREXTENTS:
1616                 lcounter = (long long)mp->m_sb.sb_frextents;
1617                 lcounter += delta;
1618                 if (lcounter < 0) {
1619                         return XFS_ERROR(ENOSPC);
1620                 }
1621                 mp->m_sb.sb_frextents = lcounter;
1622                 return 0;
1623         case XFS_SBS_DBLOCKS:
1624                 lcounter = (long long)mp->m_sb.sb_dblocks;
1625                 lcounter += delta;
1626                 if (lcounter < 0) {
1627                         ASSERT(0);
1628                         return XFS_ERROR(EINVAL);
1629                 }
1630                 mp->m_sb.sb_dblocks = lcounter;
1631                 return 0;
1632         case XFS_SBS_AGCOUNT:
1633                 scounter = mp->m_sb.sb_agcount;
1634                 scounter += delta;
1635                 if (scounter < 0) {
1636                         ASSERT(0);
1637                         return XFS_ERROR(EINVAL);
1638                 }
1639                 mp->m_sb.sb_agcount = scounter;
1640                 return 0;
1641         case XFS_SBS_IMAX_PCT:
1642                 scounter = mp->m_sb.sb_imax_pct;
1643                 scounter += delta;
1644                 if (scounter < 0) {
1645                         ASSERT(0);
1646                         return XFS_ERROR(EINVAL);
1647                 }
1648                 mp->m_sb.sb_imax_pct = scounter;
1649                 return 0;
1650         case XFS_SBS_REXTSIZE:
1651                 scounter = mp->m_sb.sb_rextsize;
1652                 scounter += delta;
1653                 if (scounter < 0) {
1654                         ASSERT(0);
1655                         return XFS_ERROR(EINVAL);
1656                 }
1657                 mp->m_sb.sb_rextsize = scounter;
1658                 return 0;
1659         case XFS_SBS_RBMBLOCKS:
1660                 scounter = mp->m_sb.sb_rbmblocks;
1661                 scounter += delta;
1662                 if (scounter < 0) {
1663                         ASSERT(0);
1664                         return XFS_ERROR(EINVAL);
1665                 }
1666                 mp->m_sb.sb_rbmblocks = scounter;
1667                 return 0;
1668         case XFS_SBS_RBLOCKS:
1669                 lcounter = (long long)mp->m_sb.sb_rblocks;
1670                 lcounter += delta;
1671                 if (lcounter < 0) {
1672                         ASSERT(0);
1673                         return XFS_ERROR(EINVAL);
1674                 }
1675                 mp->m_sb.sb_rblocks = lcounter;
1676                 return 0;
1677         case XFS_SBS_REXTENTS:
1678                 lcounter = (long long)mp->m_sb.sb_rextents;
1679                 lcounter += delta;
1680                 if (lcounter < 0) {
1681                         ASSERT(0);
1682                         return XFS_ERROR(EINVAL);
1683                 }
1684                 mp->m_sb.sb_rextents = lcounter;
1685                 return 0;
1686         case XFS_SBS_REXTSLOG:
1687                 scounter = mp->m_sb.sb_rextslog;
1688                 scounter += delta;
1689                 if (scounter < 0) {
1690                         ASSERT(0);
1691                         return XFS_ERROR(EINVAL);
1692                 }
1693                 mp->m_sb.sb_rextslog = scounter;
1694                 return 0;
1695         default:
1696                 ASSERT(0);
1697                 return XFS_ERROR(EINVAL);
1698         }
1699 }
1700
1701 /*
1702  * xfs_mod_incore_sb() is used to change a field in the in-core
1703  * superblock structure by the specified delta.  This modification
1704  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1705  * routine to do the work.
1706  */
1707 int
1708 xfs_mod_incore_sb(
1709         xfs_mount_t     *mp,
1710         xfs_sb_field_t  field,
1711         int64_t         delta,
1712         int             rsvd)
1713 {
1714         int     status;
1715
1716         /* check for per-cpu counters */
1717         switch (field) {
1718 #ifdef HAVE_PERCPU_SB
1719         case XFS_SBS_ICOUNT:
1720         case XFS_SBS_IFREE:
1721         case XFS_SBS_FDBLOCKS:
1722                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1723                         status = xfs_icsb_modify_counters(mp, field,
1724                                                         delta, rsvd);
1725                         break;
1726                 }
1727                 /* FALLTHROUGH */
1728 #endif
1729         default:
1730                 spin_lock(&mp->m_sb_lock);
1731                 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1732                 spin_unlock(&mp->m_sb_lock);
1733                 break;
1734         }
1735
1736         return status;
1737 }
1738
1739 /*
1740  * xfs_mod_incore_sb_batch() is used to change more than one field
1741  * in the in-core superblock structure at a time.  This modification
1742  * is protected by a lock internal to this module.  The fields and
1743  * changes to those fields are specified in the array of xfs_mod_sb
1744  * structures passed in.
1745  *
1746  * Either all of the specified deltas will be applied or none of
1747  * them will.  If any modified field dips below 0, then all modifications
1748  * will be backed out and EINVAL will be returned.
1749  */
1750 int
1751 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1752 {
1753         int             status=0;
1754         xfs_mod_sb_t    *msbp;
1755
1756         /*
1757          * Loop through the array of mod structures and apply each
1758          * individually.  If any fail, then back out all those
1759          * which have already been applied.  Do all of this within
1760          * the scope of the m_sb_lock so that all of the changes will
1761          * be atomic.
1762          */
1763         spin_lock(&mp->m_sb_lock);
1764         msbp = &msb[0];
1765         for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1766                 /*
1767                  * Apply the delta at index n.  If it fails, break
1768                  * from the loop so we'll fall into the undo loop
1769                  * below.
1770                  */
1771                 switch (msbp->msb_field) {
1772 #ifdef HAVE_PERCPU_SB
1773                 case XFS_SBS_ICOUNT:
1774                 case XFS_SBS_IFREE:
1775                 case XFS_SBS_FDBLOCKS:
1776                         if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1777                                 spin_unlock(&mp->m_sb_lock);
1778                                 status = xfs_icsb_modify_counters(mp,
1779                                                         msbp->msb_field,
1780                                                         msbp->msb_delta, rsvd);
1781                                 spin_lock(&mp->m_sb_lock);
1782                                 break;
1783                         }
1784                         /* FALLTHROUGH */
1785 #endif
1786                 default:
1787                         status = xfs_mod_incore_sb_unlocked(mp,
1788                                                 msbp->msb_field,
1789                                                 msbp->msb_delta, rsvd);
1790                         break;
1791                 }
1792
1793                 if (status != 0) {
1794                         break;
1795                 }
1796         }
1797
1798         /*
1799          * If we didn't complete the loop above, then back out
1800          * any changes made to the superblock.  If you add code
1801          * between the loop above and here, make sure that you
1802          * preserve the value of status. Loop back until
1803          * we step below the beginning of the array.  Make sure
1804          * we don't touch anything back there.
1805          */
1806         if (status != 0) {
1807                 msbp--;
1808                 while (msbp >= msb) {
1809                         switch (msbp->msb_field) {
1810 #ifdef HAVE_PERCPU_SB
1811                         case XFS_SBS_ICOUNT:
1812                         case XFS_SBS_IFREE:
1813                         case XFS_SBS_FDBLOCKS:
1814                                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1815                                         spin_unlock(&mp->m_sb_lock);
1816                                         status = xfs_icsb_modify_counters(mp,
1817                                                         msbp->msb_field,
1818                                                         -(msbp->msb_delta),
1819                                                         rsvd);
1820                                         spin_lock(&mp->m_sb_lock);
1821                                         break;
1822                                 }
1823                                 /* FALLTHROUGH */
1824 #endif
1825                         default:
1826                                 status = xfs_mod_incore_sb_unlocked(mp,
1827                                                         msbp->msb_field,
1828                                                         -(msbp->msb_delta),
1829                                                         rsvd);
1830                                 break;
1831                         }
1832                         ASSERT(status == 0);
1833                         msbp--;
1834                 }
1835         }
1836         spin_unlock(&mp->m_sb_lock);
1837         return status;
1838 }
1839
1840 /*
1841  * xfs_getsb() is called to obtain the buffer for the superblock.
1842  * The buffer is returned locked and read in from disk.
1843  * The buffer should be released with a call to xfs_brelse().
1844  *
1845  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1846  * the superblock buffer if it can be locked without sleeping.
1847  * If it can't then we'll return NULL.
1848  */
1849 xfs_buf_t *
1850 xfs_getsb(
1851         xfs_mount_t     *mp,
1852         int             flags)
1853 {
1854         xfs_buf_t       *bp;
1855
1856         ASSERT(mp->m_sb_bp != NULL);
1857         bp = mp->m_sb_bp;
1858         if (flags & XFS_BUF_TRYLOCK) {
1859                 if (!XFS_BUF_CPSEMA(bp)) {
1860                         return NULL;
1861                 }
1862         } else {
1863                 XFS_BUF_PSEMA(bp, PRIBIO);
1864         }
1865         XFS_BUF_HOLD(bp);
1866         ASSERT(XFS_BUF_ISDONE(bp));
1867         return bp;
1868 }
1869
1870 /*
1871  * Used to free the superblock along various error paths.
1872  */
1873 void
1874 xfs_freesb(
1875         xfs_mount_t     *mp)
1876 {
1877         xfs_buf_t       *bp;
1878
1879         /*
1880          * Use xfs_getsb() so that the buffer will be locked
1881          * when we call xfs_buf_relse().
1882          */
1883         bp = xfs_getsb(mp, 0);
1884         XFS_BUF_UNMANAGE(bp);
1885         xfs_buf_relse(bp);
1886         mp->m_sb_bp = NULL;
1887 }
1888
1889 /*
1890  * See if the UUID is unique among mounted XFS filesystems.
1891  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1892  */
1893 STATIC int
1894 xfs_uuid_mount(
1895         xfs_mount_t     *mp)
1896 {
1897         if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1898                 cmn_err(CE_WARN,
1899                         "XFS: Filesystem %s has nil UUID - can't mount",
1900                         mp->m_fsname);
1901                 return -1;
1902         }
1903         if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1904                 cmn_err(CE_WARN,
1905                         "XFS: Filesystem %s has duplicate UUID - can't mount",
1906                         mp->m_fsname);
1907                 return -1;
1908         }
1909         return 0;
1910 }
1911
1912 /*
1913  * Used to log changes to the superblock unit and width fields which could
1914  * be altered by the mount options, as well as any potential sb_features2
1915  * fixup. Only the first superblock is updated.
1916  */
1917 STATIC int
1918 xfs_mount_log_sb(
1919         xfs_mount_t     *mp,
1920         __int64_t       fields)
1921 {
1922         xfs_trans_t     *tp;
1923         int             error;
1924
1925         ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1926                          XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1927                          XFS_SB_VERSIONNUM));
1928
1929         tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1930         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1931                                 XFS_DEFAULT_LOG_COUNT);
1932         if (error) {
1933                 xfs_trans_cancel(tp, 0);
1934                 return error;
1935         }
1936         xfs_mod_sb(tp, fields);
1937         error = xfs_trans_commit(tp, 0);
1938         return error;
1939 }
1940
1941
1942 #ifdef HAVE_PERCPU_SB
1943 /*
1944  * Per-cpu incore superblock counters
1945  *
1946  * Simple concept, difficult implementation
1947  *
1948  * Basically, replace the incore superblock counters with a distributed per cpu
1949  * counter for contended fields (e.g.  free block count).
1950  *
1951  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1952  * hence needs to be accurately read when we are running low on space. Hence
1953  * there is a method to enable and disable the per-cpu counters based on how
1954  * much "stuff" is available in them.
1955  *
1956  * Basically, a counter is enabled if there is enough free resource to justify
1957  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1958  * ENOSPC), then we disable the counters to synchronise all callers and
1959  * re-distribute the available resources.
1960  *
1961  * If, once we redistributed the available resources, we still get a failure,
1962  * we disable the per-cpu counter and go through the slow path.
1963  *
1964  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1965  * when we disable a per-cpu counter, we need to drain it's resources back to
1966  * the global superblock. We do this after disabling the counter to prevent
1967  * more threads from queueing up on the counter.
1968  *
1969  * Essentially, this means that we still need a lock in the fast path to enable
1970  * synchronisation between the global counters and the per-cpu counters. This
1971  * is not a problem because the lock will be local to a CPU almost all the time
1972  * and have little contention except when we get to ENOSPC conditions.
1973  *
1974  * Basically, this lock becomes a barrier that enables us to lock out the fast
1975  * path while we do things like enabling and disabling counters and
1976  * synchronising the counters.
1977  *
1978  * Locking rules:
1979  *
1980  *      1. m_sb_lock before picking up per-cpu locks
1981  *      2. per-cpu locks always picked up via for_each_online_cpu() order
1982  *      3. accurate counter sync requires m_sb_lock + per cpu locks
1983  *      4. modifying per-cpu counters requires holding per-cpu lock
1984  *      5. modifying global counters requires holding m_sb_lock
1985  *      6. enabling or disabling a counter requires holding the m_sb_lock 
1986  *         and _none_ of the per-cpu locks.
1987  *
1988  * Disabled counters are only ever re-enabled by a balance operation
1989  * that results in more free resources per CPU than a given threshold.
1990  * To ensure counters don't remain disabled, they are rebalanced when
1991  * the global resource goes above a higher threshold (i.e. some hysteresis
1992  * is present to prevent thrashing).
1993  */
1994
1995 #ifdef CONFIG_HOTPLUG_CPU
1996 /*
1997  * hot-plug CPU notifier support.
1998  *
1999  * We need a notifier per filesystem as we need to be able to identify
2000  * the filesystem to balance the counters out. This is achieved by
2001  * having a notifier block embedded in the xfs_mount_t and doing pointer
2002  * magic to get the mount pointer from the notifier block address.
2003  */
2004 STATIC int
2005 xfs_icsb_cpu_notify(
2006         struct notifier_block *nfb,
2007         unsigned long action,
2008         void *hcpu)
2009 {
2010         xfs_icsb_cnts_t *cntp;
2011         xfs_mount_t     *mp;
2012
2013         mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2014         cntp = (xfs_icsb_cnts_t *)
2015                         per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2016         switch (action) {
2017         case CPU_UP_PREPARE:
2018         case CPU_UP_PREPARE_FROZEN:
2019                 /* Easy Case - initialize the area and locks, and
2020                  * then rebalance when online does everything else for us. */
2021                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2022                 break;
2023         case CPU_ONLINE:
2024         case CPU_ONLINE_FROZEN:
2025                 xfs_icsb_lock(mp);
2026                 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2027                 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2028                 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2029                 xfs_icsb_unlock(mp);
2030                 break;
2031         case CPU_DEAD:
2032         case CPU_DEAD_FROZEN:
2033                 /* Disable all the counters, then fold the dead cpu's
2034                  * count into the total on the global superblock and
2035                  * re-enable the counters. */
2036                 xfs_icsb_lock(mp);
2037                 spin_lock(&mp->m_sb_lock);
2038                 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2039                 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2040                 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2041
2042                 mp->m_sb.sb_icount += cntp->icsb_icount;
2043                 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2044                 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2045
2046                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2047
2048                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2049                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2050                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2051                 spin_unlock(&mp->m_sb_lock);
2052                 xfs_icsb_unlock(mp);
2053                 break;
2054         }
2055
2056         return NOTIFY_OK;
2057 }
2058 #endif /* CONFIG_HOTPLUG_CPU */
2059
2060 int
2061 xfs_icsb_init_counters(
2062         xfs_mount_t     *mp)
2063 {
2064         xfs_icsb_cnts_t *cntp;
2065         int             i;
2066
2067         mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2068         if (mp->m_sb_cnts == NULL)
2069                 return -ENOMEM;
2070
2071 #ifdef CONFIG_HOTPLUG_CPU
2072         mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2073         mp->m_icsb_notifier.priority = 0;
2074         register_hotcpu_notifier(&mp->m_icsb_notifier);
2075 #endif /* CONFIG_HOTPLUG_CPU */
2076
2077         for_each_online_cpu(i) {
2078                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2079                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2080         }
2081
2082         mutex_init(&mp->m_icsb_mutex);
2083
2084         /*
2085          * start with all counters disabled so that the
2086          * initial balance kicks us off correctly
2087          */
2088         mp->m_icsb_counters = -1;
2089         return 0;
2090 }
2091
2092 void
2093 xfs_icsb_reinit_counters(
2094         xfs_mount_t     *mp)
2095 {
2096         xfs_icsb_lock(mp);
2097         /*
2098          * start with all counters disabled so that the
2099          * initial balance kicks us off correctly
2100          */
2101         mp->m_icsb_counters = -1;
2102         xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2103         xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2104         xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2105         xfs_icsb_unlock(mp);
2106 }
2107
2108 STATIC void
2109 xfs_icsb_destroy_counters(
2110         xfs_mount_t     *mp)
2111 {
2112         if (mp->m_sb_cnts) {
2113                 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2114                 free_percpu(mp->m_sb_cnts);
2115         }
2116         mutex_destroy(&mp->m_icsb_mutex);
2117 }
2118
2119 STATIC_INLINE void
2120 xfs_icsb_lock_cntr(
2121         xfs_icsb_cnts_t *icsbp)
2122 {
2123         while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2124                 ndelay(1000);
2125         }
2126 }
2127
2128 STATIC_INLINE void
2129 xfs_icsb_unlock_cntr(
2130         xfs_icsb_cnts_t *icsbp)
2131 {
2132         clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2133 }
2134
2135
2136 STATIC_INLINE void
2137 xfs_icsb_lock_all_counters(
2138         xfs_mount_t     *mp)
2139 {
2140         xfs_icsb_cnts_t *cntp;
2141         int             i;
2142
2143         for_each_online_cpu(i) {
2144                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2145                 xfs_icsb_lock_cntr(cntp);
2146         }
2147 }
2148
2149 STATIC_INLINE void
2150 xfs_icsb_unlock_all_counters(
2151         xfs_mount_t     *mp)
2152 {
2153         xfs_icsb_cnts_t *cntp;
2154         int             i;
2155
2156         for_each_online_cpu(i) {
2157                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2158                 xfs_icsb_unlock_cntr(cntp);
2159         }
2160 }
2161
2162 STATIC void
2163 xfs_icsb_count(
2164         xfs_mount_t     *mp,
2165         xfs_icsb_cnts_t *cnt,
2166         int             flags)
2167 {
2168         xfs_icsb_cnts_t *cntp;
2169         int             i;
2170
2171         memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2172
2173         if (!(flags & XFS_ICSB_LAZY_COUNT))
2174                 xfs_icsb_lock_all_counters(mp);
2175
2176         for_each_online_cpu(i) {
2177                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2178                 cnt->icsb_icount += cntp->icsb_icount;
2179                 cnt->icsb_ifree += cntp->icsb_ifree;
2180                 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2181         }
2182
2183         if (!(flags & XFS_ICSB_LAZY_COUNT))
2184                 xfs_icsb_unlock_all_counters(mp);
2185 }
2186
2187 STATIC int
2188 xfs_icsb_counter_disabled(
2189         xfs_mount_t     *mp,
2190         xfs_sb_field_t  field)
2191 {
2192         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2193         return test_bit(field, &mp->m_icsb_counters);
2194 }
2195
2196 STATIC void
2197 xfs_icsb_disable_counter(
2198         xfs_mount_t     *mp,
2199         xfs_sb_field_t  field)
2200 {
2201         xfs_icsb_cnts_t cnt;
2202
2203         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2204
2205         /*
2206          * If we are already disabled, then there is nothing to do
2207          * here. We check before locking all the counters to avoid
2208          * the expensive lock operation when being called in the
2209          * slow path and the counter is already disabled. This is
2210          * safe because the only time we set or clear this state is under
2211          * the m_icsb_mutex.
2212          */
2213         if (xfs_icsb_counter_disabled(mp, field))
2214                 return;
2215
2216         xfs_icsb_lock_all_counters(mp);
2217         if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2218                 /* drain back to superblock */
2219
2220                 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2221                 switch(field) {
2222                 case XFS_SBS_ICOUNT:
2223                         mp->m_sb.sb_icount = cnt.icsb_icount;
2224                         break;
2225                 case XFS_SBS_IFREE:
2226                         mp->m_sb.sb_ifree = cnt.icsb_ifree;
2227                         break;
2228                 case XFS_SBS_FDBLOCKS:
2229                         mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2230                         break;
2231                 default:
2232                         BUG();
2233                 }
2234         }
2235
2236         xfs_icsb_unlock_all_counters(mp);
2237 }
2238
2239 STATIC void
2240 xfs_icsb_enable_counter(
2241         xfs_mount_t     *mp,
2242         xfs_sb_field_t  field,
2243         uint64_t        count,
2244         uint64_t        resid)
2245 {
2246         xfs_icsb_cnts_t *cntp;
2247         int             i;
2248
2249         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2250
2251         xfs_icsb_lock_all_counters(mp);
2252         for_each_online_cpu(i) {
2253                 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2254                 switch (field) {
2255                 case XFS_SBS_ICOUNT:
2256                         cntp->icsb_icount = count + resid;
2257                         break;
2258                 case XFS_SBS_IFREE:
2259                         cntp->icsb_ifree = count + resid;
2260                         break;
2261                 case XFS_SBS_FDBLOCKS:
2262                         cntp->icsb_fdblocks = count + resid;
2263                         break;
2264                 default:
2265                         BUG();
2266                         break;
2267                 }
2268                 resid = 0;
2269         }
2270         clear_bit(field, &mp->m_icsb_counters);
2271         xfs_icsb_unlock_all_counters(mp);
2272 }
2273
2274 void
2275 xfs_icsb_sync_counters_locked(
2276         xfs_mount_t     *mp,
2277         int             flags)
2278 {
2279         xfs_icsb_cnts_t cnt;
2280
2281         xfs_icsb_count(mp, &cnt, flags);
2282
2283         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2284                 mp->m_sb.sb_icount = cnt.icsb_icount;
2285         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2286                 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2287         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2288                 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2289 }
2290
2291 /*
2292  * Accurate update of per-cpu counters to incore superblock
2293  */
2294 void
2295 xfs_icsb_sync_counters(
2296         xfs_mount_t     *mp,
2297         int             flags)
2298 {
2299         spin_lock(&mp->m_sb_lock);
2300         xfs_icsb_sync_counters_locked(mp, flags);
2301         spin_unlock(&mp->m_sb_lock);
2302 }
2303
2304 /*
2305  * Balance and enable/disable counters as necessary.
2306  *
2307  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2308  * chosen to be the same number as single on disk allocation chunk per CPU, and
2309  * free blocks is something far enough zero that we aren't going thrash when we
2310  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2311  * prevent looping endlessly when xfs_alloc_space asks for more than will
2312  * be distributed to a single CPU but each CPU has enough blocks to be
2313  * reenabled.
2314  *
2315  * Note that we can be called when counters are already disabled.
2316  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2317  * prevent locking every per-cpu counter needlessly.
2318  */
2319
2320 #define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
2321 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2322                 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2323 STATIC void
2324 xfs_icsb_balance_counter_locked(
2325         xfs_mount_t     *mp,
2326         xfs_sb_field_t  field,
2327         int             min_per_cpu)
2328 {
2329         uint64_t        count, resid;
2330         int             weight = num_online_cpus();
2331         uint64_t        min = (uint64_t)min_per_cpu;
2332
2333         /* disable counter and sync counter */
2334         xfs_icsb_disable_counter(mp, field);
2335
2336         /* update counters  - first CPU gets residual*/
2337         switch (field) {
2338         case XFS_SBS_ICOUNT:
2339                 count = mp->m_sb.sb_icount;
2340                 resid = do_div(count, weight);
2341                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2342                         return;
2343                 break;
2344         case XFS_SBS_IFREE:
2345                 count = mp->m_sb.sb_ifree;
2346                 resid = do_div(count, weight);
2347                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2348                         return;
2349                 break;
2350         case XFS_SBS_FDBLOCKS:
2351                 count = mp->m_sb.sb_fdblocks;
2352                 resid = do_div(count, weight);
2353                 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2354                         return;
2355                 break;
2356         default:
2357                 BUG();
2358                 count = resid = 0;      /* quiet, gcc */
2359                 break;
2360         }
2361
2362         xfs_icsb_enable_counter(mp, field, count, resid);
2363 }
2364
2365 STATIC void
2366 xfs_icsb_balance_counter(
2367         xfs_mount_t     *mp,
2368         xfs_sb_field_t  fields,
2369         int             min_per_cpu)
2370 {
2371         spin_lock(&mp->m_sb_lock);
2372         xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2373         spin_unlock(&mp->m_sb_lock);
2374 }
2375
2376 STATIC int
2377 xfs_icsb_modify_counters(
2378         xfs_mount_t     *mp,
2379         xfs_sb_field_t  field,
2380         int64_t         delta,
2381         int             rsvd)
2382 {
2383         xfs_icsb_cnts_t *icsbp;
2384         long long       lcounter;       /* long counter for 64 bit fields */
2385         int             cpu, ret = 0;
2386
2387         might_sleep();
2388 again:
2389         cpu = get_cpu();
2390         icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2391
2392         /*
2393          * if the counter is disabled, go to slow path
2394          */
2395         if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2396                 goto slow_path;
2397         xfs_icsb_lock_cntr(icsbp);
2398         if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2399                 xfs_icsb_unlock_cntr(icsbp);
2400                 goto slow_path;
2401         }
2402
2403         switch (field) {
2404         case XFS_SBS_ICOUNT:
2405                 lcounter = icsbp->icsb_icount;
2406                 lcounter += delta;
2407                 if (unlikely(lcounter < 0))
2408                         goto balance_counter;
2409                 icsbp->icsb_icount = lcounter;
2410                 break;
2411
2412         case XFS_SBS_IFREE:
2413                 lcounter = icsbp->icsb_ifree;
2414                 lcounter += delta;
2415                 if (unlikely(lcounter < 0))
2416                         goto balance_counter;
2417                 icsbp->icsb_ifree = lcounter;
2418                 break;
2419
2420         case XFS_SBS_FDBLOCKS:
2421                 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2422
2423                 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2424                 lcounter += delta;
2425                 if (unlikely(lcounter < 0))
2426                         goto balance_counter;
2427                 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2428                 break;
2429         default:
2430                 BUG();
2431                 break;
2432         }
2433         xfs_icsb_unlock_cntr(icsbp);
2434         put_cpu();
2435         return 0;
2436
2437 slow_path:
2438         put_cpu();
2439
2440         /*
2441          * serialise with a mutex so we don't burn lots of cpu on
2442          * the superblock lock. We still need to hold the superblock
2443          * lock, however, when we modify the global structures.
2444          */
2445         xfs_icsb_lock(mp);
2446
2447         /*
2448          * Now running atomically.
2449          *
2450          * If the counter is enabled, someone has beaten us to rebalancing.
2451          * Drop the lock and try again in the fast path....
2452          */
2453         if (!(xfs_icsb_counter_disabled(mp, field))) {
2454                 xfs_icsb_unlock(mp);
2455                 goto again;
2456         }
2457
2458         /*
2459          * The counter is currently disabled. Because we are
2460          * running atomically here, we know a rebalance cannot
2461          * be in progress. Hence we can go straight to operating
2462          * on the global superblock. We do not call xfs_mod_incore_sb()
2463          * here even though we need to get the m_sb_lock. Doing so
2464          * will cause us to re-enter this function and deadlock.
2465          * Hence we get the m_sb_lock ourselves and then call
2466          * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2467          * directly on the global counters.
2468          */
2469         spin_lock(&mp->m_sb_lock);
2470         ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2471         spin_unlock(&mp->m_sb_lock);
2472
2473         /*
2474          * Now that we've modified the global superblock, we
2475          * may be able to re-enable the distributed counters
2476          * (e.g. lots of space just got freed). After that
2477          * we are done.
2478          */
2479         if (ret != ENOSPC)
2480                 xfs_icsb_balance_counter(mp, field, 0);
2481         xfs_icsb_unlock(mp);
2482         return ret;
2483
2484 balance_counter:
2485         xfs_icsb_unlock_cntr(icsbp);
2486         put_cpu();
2487
2488         /*
2489          * We may have multiple threads here if multiple per-cpu
2490          * counters run dry at the same time. This will mean we can
2491          * do more balances than strictly necessary but it is not
2492          * the common slowpath case.
2493          */
2494         xfs_icsb_lock(mp);
2495
2496         /*
2497          * running atomically.
2498          *
2499          * This will leave the counter in the correct state for future
2500          * accesses. After the rebalance, we simply try again and our retry
2501          * will either succeed through the fast path or slow path without
2502          * another balance operation being required.
2503          */
2504         xfs_icsb_balance_counter(mp, field, delta);
2505         xfs_icsb_unlock(mp);
2506         goto again;
2507 }
2508
2509 #endif