]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/xfs/xfs_mount.c
[XFS] Add xfs_icsb_sync_counters_locked for when m_sb_lock already held
[linux-2.6-omap-h63xx.git] / fs / xfs / xfs_mount.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47
48 STATIC int      xfs_mount_log_sb(xfs_mount_t *, __int64_t);
49 STATIC int      xfs_uuid_mount(xfs_mount_t *);
50 STATIC void     xfs_uuid_unmount(xfs_mount_t *mp);
51 STATIC void     xfs_unmountfs_wait(xfs_mount_t *);
52
53
54 #ifdef HAVE_PERCPU_SB
55 STATIC void     xfs_icsb_destroy_counters(xfs_mount_t *);
56 STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
57                                                 int, int);
58 STATIC int      xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59                                                 int64_t, int);
60 STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
61
62 #else
63
64 #define xfs_icsb_destroy_counters(mp)                   do { } while (0)
65 #define xfs_icsb_balance_counter(mp, a, b, c)           do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c)           do { } while (0)
67
68 #endif
69
70 static const struct {
71         short offset;
72         short type;     /* 0 = integer
73                          * 1 = binary / string (no translation)
74                          */
75 } xfs_sb_info[] = {
76     { offsetof(xfs_sb_t, sb_magicnum),   0 },
77     { offsetof(xfs_sb_t, sb_blocksize),  0 },
78     { offsetof(xfs_sb_t, sb_dblocks),    0 },
79     { offsetof(xfs_sb_t, sb_rblocks),    0 },
80     { offsetof(xfs_sb_t, sb_rextents),   0 },
81     { offsetof(xfs_sb_t, sb_uuid),       1 },
82     { offsetof(xfs_sb_t, sb_logstart),   0 },
83     { offsetof(xfs_sb_t, sb_rootino),    0 },
84     { offsetof(xfs_sb_t, sb_rbmino),     0 },
85     { offsetof(xfs_sb_t, sb_rsumino),    0 },
86     { offsetof(xfs_sb_t, sb_rextsize),   0 },
87     { offsetof(xfs_sb_t, sb_agblocks),   0 },
88     { offsetof(xfs_sb_t, sb_agcount),    0 },
89     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
90     { offsetof(xfs_sb_t, sb_logblocks),  0 },
91     { offsetof(xfs_sb_t, sb_versionnum), 0 },
92     { offsetof(xfs_sb_t, sb_sectsize),   0 },
93     { offsetof(xfs_sb_t, sb_inodesize),  0 },
94     { offsetof(xfs_sb_t, sb_inopblock),  0 },
95     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
96     { offsetof(xfs_sb_t, sb_blocklog),   0 },
97     { offsetof(xfs_sb_t, sb_sectlog),    0 },
98     { offsetof(xfs_sb_t, sb_inodelog),   0 },
99     { offsetof(xfs_sb_t, sb_inopblog),   0 },
100     { offsetof(xfs_sb_t, sb_agblklog),   0 },
101     { offsetof(xfs_sb_t, sb_rextslog),   0 },
102     { offsetof(xfs_sb_t, sb_inprogress), 0 },
103     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
104     { offsetof(xfs_sb_t, sb_icount),     0 },
105     { offsetof(xfs_sb_t, sb_ifree),      0 },
106     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
107     { offsetof(xfs_sb_t, sb_frextents),  0 },
108     { offsetof(xfs_sb_t, sb_uquotino),   0 },
109     { offsetof(xfs_sb_t, sb_gquotino),   0 },
110     { offsetof(xfs_sb_t, sb_qflags),     0 },
111     { offsetof(xfs_sb_t, sb_flags),      0 },
112     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
113     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
114     { offsetof(xfs_sb_t, sb_unit),       0 },
115     { offsetof(xfs_sb_t, sb_width),      0 },
116     { offsetof(xfs_sb_t, sb_dirblklog),  0 },
117     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
118     { offsetof(xfs_sb_t, sb_logsectsize),0 },
119     { offsetof(xfs_sb_t, sb_logsunit),   0 },
120     { offsetof(xfs_sb_t, sb_features2),  0 },
121     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
122     { sizeof(xfs_sb_t),                  0 }
123 };
124
125 /*
126  * Return a pointer to an initialized xfs_mount structure.
127  */
128 xfs_mount_t *
129 xfs_mount_init(void)
130 {
131         xfs_mount_t *mp;
132
133         mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
134
135         if (xfs_icsb_init_counters(mp)) {
136                 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
137         }
138
139         spin_lock_init(&mp->m_sb_lock);
140         mutex_init(&mp->m_ilock);
141         mutex_init(&mp->m_growlock);
142         atomic_set(&mp->m_active_trans, 0);
143
144         return mp;
145 }
146
147 /*
148  * Free up the resources associated with a mount structure.  Assume that
149  * the structure was initially zeroed, so we can tell which fields got
150  * initialized.
151  */
152 void
153 xfs_mount_free(
154         xfs_mount_t     *mp)
155 {
156         if (mp->m_perag) {
157                 int     agno;
158
159                 for (agno = 0; agno < mp->m_maxagi; agno++)
160                         if (mp->m_perag[agno].pagb_list)
161                                 kmem_free(mp->m_perag[agno].pagb_list,
162                                                 sizeof(xfs_perag_busy_t) *
163                                                         XFS_PAGB_NUM_SLOTS);
164                 kmem_free(mp->m_perag,
165                           sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
166         }
167
168         spinlock_destroy(&mp->m_ail_lock);
169         spinlock_destroy(&mp->m_sb_lock);
170         mutex_destroy(&mp->m_ilock);
171         mutex_destroy(&mp->m_growlock);
172         if (mp->m_quotainfo)
173                 XFS_QM_DONE(mp);
174
175         if (mp->m_fsname != NULL)
176                 kmem_free(mp->m_fsname, mp->m_fsname_len);
177         if (mp->m_rtname != NULL)
178                 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
179         if (mp->m_logname != NULL)
180                 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
181
182         xfs_icsb_destroy_counters(mp);
183 }
184
185 /*
186  * Check size of device based on the (data/realtime) block count.
187  * Note: this check is used by the growfs code as well as mount.
188  */
189 int
190 xfs_sb_validate_fsb_count(
191         xfs_sb_t        *sbp,
192         __uint64_t      nblocks)
193 {
194         ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
195         ASSERT(sbp->sb_blocklog >= BBSHIFT);
196
197 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
198         if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
199                 return E2BIG;
200 #else                  /* Limited by UINT_MAX of sectors */
201         if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
202                 return E2BIG;
203 #endif
204         return 0;
205 }
206
207 /*
208  * Check the validity of the SB found.
209  */
210 STATIC int
211 xfs_mount_validate_sb(
212         xfs_mount_t     *mp,
213         xfs_sb_t        *sbp,
214         int             flags)
215 {
216         /*
217          * If the log device and data device have the
218          * same device number, the log is internal.
219          * Consequently, the sb_logstart should be non-zero.  If
220          * we have a zero sb_logstart in this case, we may be trying to mount
221          * a volume filesystem in a non-volume manner.
222          */
223         if (sbp->sb_magicnum != XFS_SB_MAGIC) {
224                 xfs_fs_mount_cmn_err(flags, "bad magic number");
225                 return XFS_ERROR(EWRONGFS);
226         }
227
228         if (!xfs_sb_good_version(sbp)) {
229                 xfs_fs_mount_cmn_err(flags, "bad version");
230                 return XFS_ERROR(EWRONGFS);
231         }
232
233         if (unlikely(
234             sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
235                 xfs_fs_mount_cmn_err(flags,
236                         "filesystem is marked as having an external log; "
237                         "specify logdev on the\nmount command line.");
238                 return XFS_ERROR(EINVAL);
239         }
240
241         if (unlikely(
242             sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
243                 xfs_fs_mount_cmn_err(flags,
244                         "filesystem is marked as having an internal log; "
245                         "do not specify logdev on\nthe mount command line.");
246                 return XFS_ERROR(EINVAL);
247         }
248
249         /*
250          * More sanity checking. These were stolen directly from
251          * xfs_repair.
252          */
253         if (unlikely(
254             sbp->sb_agcount <= 0                                        ||
255             sbp->sb_sectsize < XFS_MIN_SECTORSIZE                       ||
256             sbp->sb_sectsize > XFS_MAX_SECTORSIZE                       ||
257             sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG                    ||
258             sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG                    ||
259             sbp->sb_blocksize < XFS_MIN_BLOCKSIZE                       ||
260             sbp->sb_blocksize > XFS_MAX_BLOCKSIZE                       ||
261             sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG                    ||
262             sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG                    ||
263             sbp->sb_inodesize < XFS_DINODE_MIN_SIZE                     ||
264             sbp->sb_inodesize > XFS_DINODE_MAX_SIZE                     ||
265             sbp->sb_inodelog < XFS_DINODE_MIN_LOG                       ||
266             sbp->sb_inodelog > XFS_DINODE_MAX_LOG                       ||
267             (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)   ||
268             (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)  ||
269             (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)  ||
270             (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
271                 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
272                 return XFS_ERROR(EFSCORRUPTED);
273         }
274
275         /*
276          * Sanity check AG count, size fields against data size field
277          */
278         if (unlikely(
279             sbp->sb_dblocks == 0 ||
280             sbp->sb_dblocks >
281              (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
282             sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
283                               sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
284                 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
285                 return XFS_ERROR(EFSCORRUPTED);
286         }
287
288         if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
289             xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
290                 xfs_fs_mount_cmn_err(flags,
291                         "file system too large to be mounted on this system.");
292                 return XFS_ERROR(E2BIG);
293         }
294
295         if (unlikely(sbp->sb_inprogress)) {
296                 xfs_fs_mount_cmn_err(flags, "file system busy");
297                 return XFS_ERROR(EFSCORRUPTED);
298         }
299
300         /*
301          * Version 1 directory format has never worked on Linux.
302          */
303         if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
304                 xfs_fs_mount_cmn_err(flags,
305                         "file system using version 1 directory format");
306                 return XFS_ERROR(ENOSYS);
307         }
308
309         /*
310          * Until this is fixed only page-sized or smaller data blocks work.
311          */
312         if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
313                 xfs_fs_mount_cmn_err(flags,
314                         "file system with blocksize %d bytes",
315                         sbp->sb_blocksize);
316                 xfs_fs_mount_cmn_err(flags,
317                         "only pagesize (%ld) or less will currently work.",
318                         PAGE_SIZE);
319                 return XFS_ERROR(ENOSYS);
320         }
321
322         return 0;
323 }
324
325 STATIC void
326 xfs_initialize_perag_icache(
327         xfs_perag_t     *pag)
328 {
329         if (!pag->pag_ici_init) {
330                 rwlock_init(&pag->pag_ici_lock);
331                 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
332                 pag->pag_ici_init = 1;
333         }
334 }
335
336 xfs_agnumber_t
337 xfs_initialize_perag(
338         xfs_mount_t     *mp,
339         xfs_agnumber_t  agcount)
340 {
341         xfs_agnumber_t  index, max_metadata;
342         xfs_perag_t     *pag;
343         xfs_agino_t     agino;
344         xfs_ino_t       ino;
345         xfs_sb_t        *sbp = &mp->m_sb;
346         xfs_ino_t       max_inum = XFS_MAXINUMBER_32;
347
348         /* Check to see if the filesystem can overflow 32 bit inodes */
349         agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
350         ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
351
352         /* Clear the mount flag if no inode can overflow 32 bits
353          * on this filesystem, or if specifically requested..
354          */
355         if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
356                 mp->m_flags |= XFS_MOUNT_32BITINODES;
357         } else {
358                 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
359         }
360
361         /* If we can overflow then setup the ag headers accordingly */
362         if (mp->m_flags & XFS_MOUNT_32BITINODES) {
363                 /* Calculate how much should be reserved for inodes to
364                  * meet the max inode percentage.
365                  */
366                 if (mp->m_maxicount) {
367                         __uint64_t      icount;
368
369                         icount = sbp->sb_dblocks * sbp->sb_imax_pct;
370                         do_div(icount, 100);
371                         icount += sbp->sb_agblocks - 1;
372                         do_div(icount, sbp->sb_agblocks);
373                         max_metadata = icount;
374                 } else {
375                         max_metadata = agcount;
376                 }
377                 for (index = 0; index < agcount; index++) {
378                         ino = XFS_AGINO_TO_INO(mp, index, agino);
379                         if (ino > max_inum) {
380                                 index++;
381                                 break;
382                         }
383
384                         /* This ag is preferred for inodes */
385                         pag = &mp->m_perag[index];
386                         pag->pagi_inodeok = 1;
387                         if (index < max_metadata)
388                                 pag->pagf_metadata = 1;
389                         xfs_initialize_perag_icache(pag);
390                 }
391         } else {
392                 /* Setup default behavior for smaller filesystems */
393                 for (index = 0; index < agcount; index++) {
394                         pag = &mp->m_perag[index];
395                         pag->pagi_inodeok = 1;
396                         xfs_initialize_perag_icache(pag);
397                 }
398         }
399         return index;
400 }
401
402 void
403 xfs_sb_from_disk(
404         xfs_sb_t        *to,
405         xfs_dsb_t       *from)
406 {
407         to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
408         to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
409         to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
410         to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
411         to->sb_rextents = be64_to_cpu(from->sb_rextents);
412         memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
413         to->sb_logstart = be64_to_cpu(from->sb_logstart);
414         to->sb_rootino = be64_to_cpu(from->sb_rootino);
415         to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
416         to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
417         to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
418         to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
419         to->sb_agcount = be32_to_cpu(from->sb_agcount);
420         to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
421         to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
422         to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
423         to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
424         to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
425         to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
426         memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
427         to->sb_blocklog = from->sb_blocklog;
428         to->sb_sectlog = from->sb_sectlog;
429         to->sb_inodelog = from->sb_inodelog;
430         to->sb_inopblog = from->sb_inopblog;
431         to->sb_agblklog = from->sb_agblklog;
432         to->sb_rextslog = from->sb_rextslog;
433         to->sb_inprogress = from->sb_inprogress;
434         to->sb_imax_pct = from->sb_imax_pct;
435         to->sb_icount = be64_to_cpu(from->sb_icount);
436         to->sb_ifree = be64_to_cpu(from->sb_ifree);
437         to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
438         to->sb_frextents = be64_to_cpu(from->sb_frextents);
439         to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
440         to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
441         to->sb_qflags = be16_to_cpu(from->sb_qflags);
442         to->sb_flags = from->sb_flags;
443         to->sb_shared_vn = from->sb_shared_vn;
444         to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
445         to->sb_unit = be32_to_cpu(from->sb_unit);
446         to->sb_width = be32_to_cpu(from->sb_width);
447         to->sb_dirblklog = from->sb_dirblklog;
448         to->sb_logsectlog = from->sb_logsectlog;
449         to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
450         to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
451         to->sb_features2 = be32_to_cpu(from->sb_features2);
452         to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
453 }
454
455 /*
456  * Copy in core superblock to ondisk one.
457  *
458  * The fields argument is mask of superblock fields to copy.
459  */
460 void
461 xfs_sb_to_disk(
462         xfs_dsb_t       *to,
463         xfs_sb_t        *from,
464         __int64_t       fields)
465 {
466         xfs_caddr_t     to_ptr = (xfs_caddr_t)to;
467         xfs_caddr_t     from_ptr = (xfs_caddr_t)from;
468         xfs_sb_field_t  f;
469         int             first;
470         int             size;
471
472         ASSERT(fields);
473         if (!fields)
474                 return;
475
476         while (fields) {
477                 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
478                 first = xfs_sb_info[f].offset;
479                 size = xfs_sb_info[f + 1].offset - first;
480
481                 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
482
483                 if (size == 1 || xfs_sb_info[f].type == 1) {
484                         memcpy(to_ptr + first, from_ptr + first, size);
485                 } else {
486                         switch (size) {
487                         case 2:
488                                 *(__be16 *)(to_ptr + first) =
489                                         cpu_to_be16(*(__u16 *)(from_ptr + first));
490                                 break;
491                         case 4:
492                                 *(__be32 *)(to_ptr + first) =
493                                         cpu_to_be32(*(__u32 *)(from_ptr + first));
494                                 break;
495                         case 8:
496                                 *(__be64 *)(to_ptr + first) =
497                                         cpu_to_be64(*(__u64 *)(from_ptr + first));
498                                 break;
499                         default:
500                                 ASSERT(0);
501                         }
502                 }
503
504                 fields &= ~(1LL << f);
505         }
506 }
507
508 /*
509  * xfs_readsb
510  *
511  * Does the initial read of the superblock.
512  */
513 int
514 xfs_readsb(xfs_mount_t *mp, int flags)
515 {
516         unsigned int    sector_size;
517         unsigned int    extra_flags;
518         xfs_buf_t       *bp;
519         int             error;
520
521         ASSERT(mp->m_sb_bp == NULL);
522         ASSERT(mp->m_ddev_targp != NULL);
523
524         /*
525          * Allocate a (locked) buffer to hold the superblock.
526          * This will be kept around at all times to optimize
527          * access to the superblock.
528          */
529         sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
530         extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
531
532         bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
533                                 BTOBB(sector_size), extra_flags);
534         if (!bp || XFS_BUF_ISERROR(bp)) {
535                 xfs_fs_mount_cmn_err(flags, "SB read failed");
536                 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
537                 goto fail;
538         }
539         ASSERT(XFS_BUF_ISBUSY(bp));
540         ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
541
542         /*
543          * Initialize the mount structure from the superblock.
544          * But first do some basic consistency checking.
545          */
546         xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
547
548         error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
549         if (error) {
550                 xfs_fs_mount_cmn_err(flags, "SB validate failed");
551                 goto fail;
552         }
553
554         /*
555          * We must be able to do sector-sized and sector-aligned IO.
556          */
557         if (sector_size > mp->m_sb.sb_sectsize) {
558                 xfs_fs_mount_cmn_err(flags,
559                         "device supports only %u byte sectors (not %u)",
560                         sector_size, mp->m_sb.sb_sectsize);
561                 error = ENOSYS;
562                 goto fail;
563         }
564
565         /*
566          * If device sector size is smaller than the superblock size,
567          * re-read the superblock so the buffer is correctly sized.
568          */
569         if (sector_size < mp->m_sb.sb_sectsize) {
570                 XFS_BUF_UNMANAGE(bp);
571                 xfs_buf_relse(bp);
572                 sector_size = mp->m_sb.sb_sectsize;
573                 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
574                                         BTOBB(sector_size), extra_flags);
575                 if (!bp || XFS_BUF_ISERROR(bp)) {
576                         xfs_fs_mount_cmn_err(flags, "SB re-read failed");
577                         error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
578                         goto fail;
579                 }
580                 ASSERT(XFS_BUF_ISBUSY(bp));
581                 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
582         }
583
584         /* Initialize per-cpu counters */
585         xfs_icsb_reinit_counters(mp);
586
587         mp->m_sb_bp = bp;
588         xfs_buf_relse(bp);
589         ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
590         return 0;
591
592  fail:
593         if (bp) {
594                 XFS_BUF_UNMANAGE(bp);
595                 xfs_buf_relse(bp);
596         }
597         return error;
598 }
599
600
601 /*
602  * xfs_mount_common
603  *
604  * Mount initialization code establishing various mount
605  * fields from the superblock associated with the given
606  * mount structure
607  */
608 STATIC void
609 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
610 {
611         int     i;
612
613         mp->m_agfrotor = mp->m_agirotor = 0;
614         spin_lock_init(&mp->m_agirotor_lock);
615         mp->m_maxagi = mp->m_sb.sb_agcount;
616         mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
617         mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
618         mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
619         mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
620         mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
621         mp->m_litino = sbp->sb_inodesize -
622                 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
623         mp->m_blockmask = sbp->sb_blocksize - 1;
624         mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
625         mp->m_blockwmask = mp->m_blockwsize - 1;
626         INIT_LIST_HEAD(&mp->m_del_inodes);
627
628         /*
629          * Setup for attributes, in case they get created.
630          * This value is for inodes getting attributes for the first time,
631          * the per-inode value is for old attribute values.
632          */
633         ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
634         switch (sbp->sb_inodesize) {
635         case 256:
636                 mp->m_attroffset = XFS_LITINO(mp) -
637                                    XFS_BMDR_SPACE_CALC(MINABTPTRS);
638                 break;
639         case 512:
640         case 1024:
641         case 2048:
642                 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
643                 break;
644         default:
645                 ASSERT(0);
646         }
647         ASSERT(mp->m_attroffset < XFS_LITINO(mp));
648
649         for (i = 0; i < 2; i++) {
650                 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
651                         xfs_alloc, i == 0);
652                 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
653                         xfs_alloc, i == 0);
654         }
655         for (i = 0; i < 2; i++) {
656                 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
657                         xfs_bmbt, i == 0);
658                 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
659                         xfs_bmbt, i == 0);
660         }
661         for (i = 0; i < 2; i++) {
662                 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
663                         xfs_inobt, i == 0);
664                 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
665                         xfs_inobt, i == 0);
666         }
667
668         mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
669         mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
670                                         sbp->sb_inopblock);
671         mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
672 }
673
674 /*
675  * xfs_initialize_perag_data
676  *
677  * Read in each per-ag structure so we can count up the number of
678  * allocated inodes, free inodes and used filesystem blocks as this
679  * information is no longer persistent in the superblock. Once we have
680  * this information, write it into the in-core superblock structure.
681  */
682 STATIC int
683 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
684 {
685         xfs_agnumber_t  index;
686         xfs_perag_t     *pag;
687         xfs_sb_t        *sbp = &mp->m_sb;
688         uint64_t        ifree = 0;
689         uint64_t        ialloc = 0;
690         uint64_t        bfree = 0;
691         uint64_t        bfreelst = 0;
692         uint64_t        btree = 0;
693         int             error;
694
695         for (index = 0; index < agcount; index++) {
696                 /*
697                  * read the agf, then the agi. This gets us
698                  * all the inforamtion we need and populates the
699                  * per-ag structures for us.
700                  */
701                 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
702                 if (error)
703                         return error;
704
705                 error = xfs_ialloc_pagi_init(mp, NULL, index);
706                 if (error)
707                         return error;
708                 pag = &mp->m_perag[index];
709                 ifree += pag->pagi_freecount;
710                 ialloc += pag->pagi_count;
711                 bfree += pag->pagf_freeblks;
712                 bfreelst += pag->pagf_flcount;
713                 btree += pag->pagf_btreeblks;
714         }
715         /*
716          * Overwrite incore superblock counters with just-read data
717          */
718         spin_lock(&mp->m_sb_lock);
719         sbp->sb_ifree = ifree;
720         sbp->sb_icount = ialloc;
721         sbp->sb_fdblocks = bfree + bfreelst + btree;
722         spin_unlock(&mp->m_sb_lock);
723
724         /* Fixup the per-cpu counters as well. */
725         xfs_icsb_reinit_counters(mp);
726
727         return 0;
728 }
729
730 /*
731  * Update alignment values based on mount options and sb values
732  */
733 STATIC int
734 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
735 {
736         xfs_sb_t        *sbp = &(mp->m_sb);
737
738         if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
739                 /*
740                  * If stripe unit and stripe width are not multiples
741                  * of the fs blocksize turn off alignment.
742                  */
743                 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
744                     (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
745                         if (mp->m_flags & XFS_MOUNT_RETERR) {
746                                 cmn_err(CE_WARN,
747                                         "XFS: alignment check 1 failed");
748                                 return XFS_ERROR(EINVAL);
749                         }
750                         mp->m_dalign = mp->m_swidth = 0;
751                 } else {
752                         /*
753                          * Convert the stripe unit and width to FSBs.
754                          */
755                         mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
756                         if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
757                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
758                                         return XFS_ERROR(EINVAL);
759                                 }
760                                 xfs_fs_cmn_err(CE_WARN, mp,
761 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
762                                         mp->m_dalign, mp->m_swidth,
763                                         sbp->sb_agblocks);
764
765                                 mp->m_dalign = 0;
766                                 mp->m_swidth = 0;
767                         } else if (mp->m_dalign) {
768                                 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
769                         } else {
770                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
771                                         xfs_fs_cmn_err(CE_WARN, mp,
772 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
773                                                 mp->m_dalign,
774                                                 mp->m_blockmask +1);
775                                         return XFS_ERROR(EINVAL);
776                                 }
777                                 mp->m_swidth = 0;
778                         }
779                 }
780
781                 /*
782                  * Update superblock with new values
783                  * and log changes
784                  */
785                 if (xfs_sb_version_hasdalign(sbp)) {
786                         if (sbp->sb_unit != mp->m_dalign) {
787                                 sbp->sb_unit = mp->m_dalign;
788                                 *update_flags |= XFS_SB_UNIT;
789                         }
790                         if (sbp->sb_width != mp->m_swidth) {
791                                 sbp->sb_width = mp->m_swidth;
792                                 *update_flags |= XFS_SB_WIDTH;
793                         }
794                 }
795         } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
796                     xfs_sb_version_hasdalign(&mp->m_sb)) {
797                         mp->m_dalign = sbp->sb_unit;
798                         mp->m_swidth = sbp->sb_width;
799         }
800
801         return 0;
802 }
803
804 /*
805  * Set the maximum inode count for this filesystem
806  */
807 STATIC void
808 xfs_set_maxicount(xfs_mount_t *mp)
809 {
810         xfs_sb_t        *sbp = &(mp->m_sb);
811         __uint64_t      icount;
812
813         if (sbp->sb_imax_pct) {
814                 /*
815                  * Make sure the maximum inode count is a multiple
816                  * of the units we allocate inodes in.
817                  */
818                 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
819                 do_div(icount, 100);
820                 do_div(icount, mp->m_ialloc_blks);
821                 mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
822                                    sbp->sb_inopblog;
823         } else {
824                 mp->m_maxicount = 0;
825         }
826 }
827
828 /*
829  * Set the default minimum read and write sizes unless
830  * already specified in a mount option.
831  * We use smaller I/O sizes when the file system
832  * is being used for NFS service (wsync mount option).
833  */
834 STATIC void
835 xfs_set_rw_sizes(xfs_mount_t *mp)
836 {
837         xfs_sb_t        *sbp = &(mp->m_sb);
838         int             readio_log, writeio_log;
839
840         if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
841                 if (mp->m_flags & XFS_MOUNT_WSYNC) {
842                         readio_log = XFS_WSYNC_READIO_LOG;
843                         writeio_log = XFS_WSYNC_WRITEIO_LOG;
844                 } else {
845                         readio_log = XFS_READIO_LOG_LARGE;
846                         writeio_log = XFS_WRITEIO_LOG_LARGE;
847                 }
848         } else {
849                 readio_log = mp->m_readio_log;
850                 writeio_log = mp->m_writeio_log;
851         }
852
853         if (sbp->sb_blocklog > readio_log) {
854                 mp->m_readio_log = sbp->sb_blocklog;
855         } else {
856                 mp->m_readio_log = readio_log;
857         }
858         mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
859         if (sbp->sb_blocklog > writeio_log) {
860                 mp->m_writeio_log = sbp->sb_blocklog;
861         } else {
862                 mp->m_writeio_log = writeio_log;
863         }
864         mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
865 }
866
867 /*
868  * Set whether we're using inode alignment.
869  */
870 STATIC void
871 xfs_set_inoalignment(xfs_mount_t *mp)
872 {
873         if (xfs_sb_version_hasalign(&mp->m_sb) &&
874             mp->m_sb.sb_inoalignmt >=
875             XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
876                 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
877         else
878                 mp->m_inoalign_mask = 0;
879         /*
880          * If we are using stripe alignment, check whether
881          * the stripe unit is a multiple of the inode alignment
882          */
883         if (mp->m_dalign && mp->m_inoalign_mask &&
884             !(mp->m_dalign & mp->m_inoalign_mask))
885                 mp->m_sinoalign = mp->m_dalign;
886         else
887                 mp->m_sinoalign = 0;
888 }
889
890 /*
891  * Check that the data (and log if separate) are an ok size.
892  */
893 STATIC int
894 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
895 {
896         xfs_buf_t       *bp;
897         xfs_daddr_t     d;
898         int             error;
899
900         d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
901         if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
902                 cmn_err(CE_WARN, "XFS: size check 1 failed");
903                 return XFS_ERROR(E2BIG);
904         }
905         error = xfs_read_buf(mp, mp->m_ddev_targp,
906                              d - XFS_FSS_TO_BB(mp, 1),
907                              XFS_FSS_TO_BB(mp, 1), 0, &bp);
908         if (!error) {
909                 xfs_buf_relse(bp);
910         } else {
911                 cmn_err(CE_WARN, "XFS: size check 2 failed");
912                 if (error == ENOSPC)
913                         error = XFS_ERROR(E2BIG);
914                 return error;
915         }
916
917         if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
918             mp->m_logdev_targp != mp->m_ddev_targp) {
919                 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
920                 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
921                         cmn_err(CE_WARN, "XFS: size check 3 failed");
922                         return XFS_ERROR(E2BIG);
923                 }
924                 error = xfs_read_buf(mp, mp->m_logdev_targp,
925                                      d - XFS_FSB_TO_BB(mp, 1),
926                                      XFS_FSB_TO_BB(mp, 1), 0, &bp);
927                 if (!error) {
928                         xfs_buf_relse(bp);
929                 } else {
930                         cmn_err(CE_WARN, "XFS: size check 3 failed");
931                         if (error == ENOSPC)
932                                 error = XFS_ERROR(E2BIG);
933                         return error;
934                 }
935         }
936         return 0;
937 }
938
939 /*
940  * xfs_mountfs
941  *
942  * This function does the following on an initial mount of a file system:
943  *      - reads the superblock from disk and init the mount struct
944  *      - if we're a 32-bit kernel, do a size check on the superblock
945  *              so we don't mount terabyte filesystems
946  *      - init mount struct realtime fields
947  *      - allocate inode hash table for fs
948  *      - init directory manager
949  *      - perform recovery and init the log manager
950  */
951 int
952 xfs_mountfs(
953         xfs_mount_t     *mp,
954         int             mfsi_flags)
955 {
956         xfs_sb_t        *sbp = &(mp->m_sb);
957         xfs_inode_t     *rip;
958         __uint64_t      resblks;
959         __int64_t       update_flags = 0LL;
960         uint            quotamount, quotaflags;
961         int             agno;
962         int             uuid_mounted = 0;
963         int             error = 0;
964
965         xfs_mount_common(mp, sbp);
966
967         /*
968          * Check for a mismatched features2 values.  Older kernels
969          * read & wrote into the wrong sb offset for sb_features2
970          * on some platforms due to xfs_sb_t not being 64bit size aligned
971          * when sb_features2 was added, which made older superblock
972          * reading/writing routines swap it as a 64-bit value.
973          *
974          * For backwards compatibility, we make both slots equal.
975          *
976          * If we detect a mismatched field, we OR the set bits into the
977          * existing features2 field in case it has already been modified; we
978          * don't want to lose any features.  We then update the bad location
979          * with the ORed value so that older kernels will see any features2
980          * flags, and mark the two fields as needing updates once the
981          * transaction subsystem is online.
982          */
983         if (xfs_sb_has_mismatched_features2(sbp)) {
984                 cmn_err(CE_WARN,
985                         "XFS: correcting sb_features alignment problem");
986                 sbp->sb_features2 |= sbp->sb_bad_features2;
987                 sbp->sb_bad_features2 = sbp->sb_features2;
988                 update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
989
990                 /*
991                  * Re-check for ATTR2 in case it was found in bad_features2
992                  * slot.
993                  */
994                 if (xfs_sb_version_hasattr2(&mp->m_sb))
995                         mp->m_flags |= XFS_MOUNT_ATTR2;
996
997         }
998
999         /*
1000          * Check if sb_agblocks is aligned at stripe boundary
1001          * If sb_agblocks is NOT aligned turn off m_dalign since
1002          * allocator alignment is within an ag, therefore ag has
1003          * to be aligned at stripe boundary.
1004          */
1005         error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
1006         if (error)
1007                 goto error1;
1008
1009         xfs_alloc_compute_maxlevels(mp);
1010         xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1011         xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1012         xfs_ialloc_compute_maxlevels(mp);
1013
1014         xfs_set_maxicount(mp);
1015
1016         mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1017
1018         /*
1019          * XFS uses the uuid from the superblock as the unique
1020          * identifier for fsid.  We can not use the uuid from the volume
1021          * since a single partition filesystem is identical to a single
1022          * partition volume/filesystem.
1023          */
1024         if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
1025             (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
1026                 if (xfs_uuid_mount(mp)) {
1027                         error = XFS_ERROR(EINVAL);
1028                         goto error1;
1029                 }
1030                 uuid_mounted=1;
1031         }
1032
1033         /*
1034          * Set the minimum read and write sizes
1035          */
1036         xfs_set_rw_sizes(mp);
1037
1038         /*
1039          * Set the inode cluster size.
1040          * This may still be overridden by the file system
1041          * block size if it is larger than the chosen cluster size.
1042          */
1043         mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1044
1045         /*
1046          * Set inode alignment fields
1047          */
1048         xfs_set_inoalignment(mp);
1049
1050         /*
1051          * Check that the data (and log if separate) are an ok size.
1052          */
1053         error = xfs_check_sizes(mp, mfsi_flags);
1054         if (error)
1055                 goto error1;
1056
1057         /*
1058          * Initialize realtime fields in the mount structure
1059          */
1060         error = xfs_rtmount_init(mp);
1061         if (error) {
1062                 cmn_err(CE_WARN, "XFS: RT mount failed");
1063                 goto error1;
1064         }
1065
1066         /*
1067          * For client case we are done now
1068          */
1069         if (mfsi_flags & XFS_MFSI_CLIENT) {
1070                 return 0;
1071         }
1072
1073         /*
1074          *  Copies the low order bits of the timestamp and the randomly
1075          *  set "sequence" number out of a UUID.
1076          */
1077         uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1078
1079         mp->m_dmevmask = 0;     /* not persistent; set after each mount */
1080
1081         xfs_dir_mount(mp);
1082
1083         /*
1084          * Initialize the attribute manager's entries.
1085          */
1086         mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1087
1088         /*
1089          * Initialize the precomputed transaction reservations values.
1090          */
1091         xfs_trans_init(mp);
1092
1093         /*
1094          * Allocate and initialize the per-ag data.
1095          */
1096         init_rwsem(&mp->m_peraglock);
1097         mp->m_perag =
1098                 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1099
1100         mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1101
1102         /*
1103          * log's mount-time initialization. Perform 1st part recovery if needed
1104          */
1105         if (likely(sbp->sb_logblocks > 0)) {    /* check for volume case */
1106                 error = xfs_log_mount(mp, mp->m_logdev_targp,
1107                                       XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1108                                       XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1109                 if (error) {
1110                         cmn_err(CE_WARN, "XFS: log mount failed");
1111                         goto error2;
1112                 }
1113         } else {        /* No log has been defined */
1114                 cmn_err(CE_WARN, "XFS: no log defined");
1115                 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1116                 error = XFS_ERROR(EFSCORRUPTED);
1117                 goto error2;
1118         }
1119
1120         /*
1121          * Now the log is mounted, we know if it was an unclean shutdown or
1122          * not. If it was, with the first phase of recovery has completed, we
1123          * have consistent AG blocks on disk. We have not recovered EFIs yet,
1124          * but they are recovered transactionally in the second recovery phase
1125          * later.
1126          *
1127          * Hence we can safely re-initialise incore superblock counters from
1128          * the per-ag data. These may not be correct if the filesystem was not
1129          * cleanly unmounted, so we need to wait for recovery to finish before
1130          * doing this.
1131          *
1132          * If the filesystem was cleanly unmounted, then we can trust the
1133          * values in the superblock to be correct and we don't need to do
1134          * anything here.
1135          *
1136          * If we are currently making the filesystem, the initialisation will
1137          * fail as the perag data is in an undefined state.
1138          */
1139
1140         if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1141             !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1142              !mp->m_sb.sb_inprogress) {
1143                 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1144                 if (error) {
1145                         goto error2;
1146                 }
1147         }
1148         /*
1149          * Get and sanity-check the root inode.
1150          * Save the pointer to it in the mount structure.
1151          */
1152         error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1153         if (error) {
1154                 cmn_err(CE_WARN, "XFS: failed to read root inode");
1155                 goto error3;
1156         }
1157
1158         ASSERT(rip != NULL);
1159
1160         if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1161                 cmn_err(CE_WARN, "XFS: corrupted root inode");
1162                 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1163                         XFS_BUFTARG_NAME(mp->m_ddev_targp),
1164                         (unsigned long long)rip->i_ino);
1165                 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1166                 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1167                                  mp);
1168                 error = XFS_ERROR(EFSCORRUPTED);
1169                 goto error4;
1170         }
1171         mp->m_rootip = rip;     /* save it */
1172
1173         xfs_iunlock(rip, XFS_ILOCK_EXCL);
1174
1175         /*
1176          * Initialize realtime inode pointers in the mount structure
1177          */
1178         error = xfs_rtmount_inodes(mp);
1179         if (error) {
1180                 /*
1181                  * Free up the root inode.
1182                  */
1183                 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1184                 goto error4;
1185         }
1186
1187         /*
1188          * If fs is not mounted readonly, then update the superblock changes.
1189          */
1190         if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1191                 error = xfs_mount_log_sb(mp, update_flags);
1192                 if (error) {
1193                         cmn_err(CE_WARN, "XFS: failed to write sb changes");
1194                         goto error4;
1195                 }
1196         }
1197
1198         /*
1199          * Initialise the XFS quota management subsystem for this mount
1200          */
1201         error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1202         if (error)
1203                 goto error4;
1204
1205         /*
1206          * Finish recovering the file system.  This part needed to be
1207          * delayed until after the root and real-time bitmap inodes
1208          * were consistently read in.
1209          */
1210         error = xfs_log_mount_finish(mp, mfsi_flags);
1211         if (error) {
1212                 cmn_err(CE_WARN, "XFS: log mount finish failed");
1213                 goto error4;
1214         }
1215
1216         /*
1217          * Complete the quota initialisation, post-log-replay component.
1218          */
1219         error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1220         if (error)
1221                 goto error4;
1222
1223         /*
1224          * Now we are mounted, reserve a small amount of unused space for
1225          * privileged transactions. This is needed so that transaction
1226          * space required for critical operations can dip into this pool
1227          * when at ENOSPC. This is needed for operations like create with
1228          * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1229          * are not allowed to use this reserved space.
1230          *
1231          * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1232          * This may drive us straight to ENOSPC on mount, but that implies
1233          * we were already there on the last unmount. Warn if this occurs.
1234          */
1235         resblks = mp->m_sb.sb_dblocks;
1236         do_div(resblks, 20);
1237         resblks = min_t(__uint64_t, resblks, 1024);
1238         error = xfs_reserve_blocks(mp, &resblks, NULL);
1239         if (error)
1240                 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1241                                 "Continuing without a reserve pool.");
1242
1243         return 0;
1244
1245  error4:
1246         /*
1247          * Free up the root inode.
1248          */
1249         IRELE(rip);
1250  error3:
1251         xfs_log_unmount_dealloc(mp);
1252  error2:
1253         for (agno = 0; agno < sbp->sb_agcount; agno++)
1254                 if (mp->m_perag[agno].pagb_list)
1255                         kmem_free(mp->m_perag[agno].pagb_list,
1256                           sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1257         kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1258         mp->m_perag = NULL;
1259         /* FALLTHROUGH */
1260  error1:
1261         if (uuid_mounted)
1262                 xfs_uuid_unmount(mp);
1263         xfs_freesb(mp);
1264         return error;
1265 }
1266
1267 /*
1268  * xfs_unmountfs
1269  *
1270  * This flushes out the inodes,dquots and the superblock, unmounts the
1271  * log and makes sure that incore structures are freed.
1272  */
1273 int
1274 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1275 {
1276         __uint64_t      resblks;
1277         int             error = 0;
1278
1279         /*
1280          * We can potentially deadlock here if we have an inode cluster
1281          * that has been freed has it's buffer still pinned in memory because
1282          * the transaction is still sitting in a iclog. The stale inodes
1283          * on that buffer will have their flush locks held until the
1284          * transaction hits the disk and the callbacks run. the inode
1285          * flush takes the flush lock unconditionally and with nothing to
1286          * push out the iclog we will never get that unlocked. hence we
1287          * need to force the log first.
1288          */
1289         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1290         xfs_iflush_all(mp);
1291
1292         XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1293
1294         /*
1295          * Flush out the log synchronously so that we know for sure
1296          * that nothing is pinned.  This is important because bflush()
1297          * will skip pinned buffers.
1298          */
1299         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1300
1301         xfs_binval(mp->m_ddev_targp);
1302         if (mp->m_rtdev_targp) {
1303                 xfs_binval(mp->m_rtdev_targp);
1304         }
1305
1306         /*
1307          * Unreserve any blocks we have so that when we unmount we don't account
1308          * the reserved free space as used. This is really only necessary for
1309          * lazy superblock counting because it trusts the incore superblock
1310          * counters to be aboslutely correct on clean unmount.
1311          *
1312          * We don't bother correcting this elsewhere for lazy superblock
1313          * counting because on mount of an unclean filesystem we reconstruct the
1314          * correct counter value and this is irrelevant.
1315          *
1316          * For non-lazy counter filesystems, this doesn't matter at all because
1317          * we only every apply deltas to the superblock and hence the incore
1318          * value does not matter....
1319          */
1320         resblks = 0;
1321         error = xfs_reserve_blocks(mp, &resblks, NULL);
1322         if (error)
1323                 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1324                                 "Freespace may not be correct on next mount.");
1325
1326         error = xfs_log_sbcount(mp, 1);
1327         if (error)
1328                 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1329                                 "Freespace may not be correct on next mount.");
1330         xfs_unmountfs_writesb(mp);
1331         xfs_unmountfs_wait(mp);                 /* wait for async bufs */
1332         xfs_log_unmount(mp);                    /* Done! No more fs ops. */
1333
1334         xfs_freesb(mp);
1335
1336         /*
1337          * All inodes from this mount point should be freed.
1338          */
1339         ASSERT(mp->m_inodes == NULL);
1340
1341         xfs_unmountfs_close(mp, cr);
1342         if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1343                 xfs_uuid_unmount(mp);
1344
1345 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1346         xfs_errortag_clearall(mp, 0);
1347 #endif
1348         xfs_mount_free(mp);
1349         return 0;
1350 }
1351
1352 void
1353 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1354 {
1355         if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1356                 xfs_free_buftarg(mp->m_logdev_targp, 1);
1357         if (mp->m_rtdev_targp)
1358                 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1359         xfs_free_buftarg(mp->m_ddev_targp, 0);
1360 }
1361
1362 STATIC void
1363 xfs_unmountfs_wait(xfs_mount_t *mp)
1364 {
1365         if (mp->m_logdev_targp != mp->m_ddev_targp)
1366                 xfs_wait_buftarg(mp->m_logdev_targp);
1367         if (mp->m_rtdev_targp)
1368                 xfs_wait_buftarg(mp->m_rtdev_targp);
1369         xfs_wait_buftarg(mp->m_ddev_targp);
1370 }
1371
1372 int
1373 xfs_fs_writable(xfs_mount_t *mp)
1374 {
1375         return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1376                 (mp->m_flags & XFS_MOUNT_RDONLY));
1377 }
1378
1379 /*
1380  * xfs_log_sbcount
1381  *
1382  * Called either periodically to keep the on disk superblock values
1383  * roughly up to date or from unmount to make sure the values are
1384  * correct on a clean unmount.
1385  *
1386  * Note this code can be called during the process of freezing, so
1387  * we may need to use the transaction allocator which does not not
1388  * block when the transaction subsystem is in its frozen state.
1389  */
1390 int
1391 xfs_log_sbcount(
1392         xfs_mount_t     *mp,
1393         uint            sync)
1394 {
1395         xfs_trans_t     *tp;
1396         int             error;
1397
1398         if (!xfs_fs_writable(mp))
1399                 return 0;
1400
1401         xfs_icsb_sync_counters(mp, 0);
1402
1403         /*
1404          * we don't need to do this if we are updating the superblock
1405          * counters on every modification.
1406          */
1407         if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1408                 return 0;
1409
1410         tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1411         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1412                                         XFS_DEFAULT_LOG_COUNT);
1413         if (error) {
1414                 xfs_trans_cancel(tp, 0);
1415                 return error;
1416         }
1417
1418         xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1419         if (sync)
1420                 xfs_trans_set_sync(tp);
1421         error = xfs_trans_commit(tp, 0);
1422         return error;
1423 }
1424
1425 STATIC void
1426 xfs_mark_shared_ro(
1427         xfs_mount_t     *mp,
1428         xfs_buf_t       *bp)
1429 {
1430         xfs_dsb_t       *sb = XFS_BUF_TO_SBP(bp);
1431         __uint16_t      version;
1432
1433         if (!(sb->sb_flags & XFS_SBF_READONLY))
1434                 sb->sb_flags |= XFS_SBF_READONLY;
1435
1436         version = be16_to_cpu(sb->sb_versionnum);
1437         if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1438             !(version & XFS_SB_VERSION_SHAREDBIT))
1439                 version |= XFS_SB_VERSION_SHAREDBIT;
1440         sb->sb_versionnum = cpu_to_be16(version);
1441 }
1442
1443 int
1444 xfs_unmountfs_writesb(xfs_mount_t *mp)
1445 {
1446         xfs_buf_t       *sbp;
1447         int             error = 0;
1448
1449         /*
1450          * skip superblock write if fs is read-only, or
1451          * if we are doing a forced umount.
1452          */
1453         if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1454                 XFS_FORCED_SHUTDOWN(mp))) {
1455
1456                 sbp = xfs_getsb(mp, 0);
1457
1458                 /*
1459                  * mark shared-readonly if desired
1460                  */
1461                 if (mp->m_mk_sharedro)
1462                         xfs_mark_shared_ro(mp, sbp);
1463
1464                 XFS_BUF_UNDONE(sbp);
1465                 XFS_BUF_UNREAD(sbp);
1466                 XFS_BUF_UNDELAYWRITE(sbp);
1467                 XFS_BUF_WRITE(sbp);
1468                 XFS_BUF_UNASYNC(sbp);
1469                 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1470                 xfsbdstrat(mp, sbp);
1471                 error = xfs_iowait(sbp);
1472                 if (error)
1473                         xfs_ioerror_alert("xfs_unmountfs_writesb",
1474                                           mp, sbp, XFS_BUF_ADDR(sbp));
1475                 if (error && mp->m_mk_sharedro)
1476                         xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting.  Filesystem may not be marked shared readonly");
1477                 xfs_buf_relse(sbp);
1478         }
1479         return error;
1480 }
1481
1482 /*
1483  * xfs_mod_sb() can be used to copy arbitrary changes to the
1484  * in-core superblock into the superblock buffer to be logged.
1485  * It does not provide the higher level of locking that is
1486  * needed to protect the in-core superblock from concurrent
1487  * access.
1488  */
1489 void
1490 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1491 {
1492         xfs_buf_t       *bp;
1493         int             first;
1494         int             last;
1495         xfs_mount_t     *mp;
1496         xfs_sb_field_t  f;
1497
1498         ASSERT(fields);
1499         if (!fields)
1500                 return;
1501         mp = tp->t_mountp;
1502         bp = xfs_trans_getsb(tp, mp, 0);
1503         first = sizeof(xfs_sb_t);
1504         last = 0;
1505
1506         /* translate/copy */
1507
1508         xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1509
1510         /* find modified range */
1511
1512         f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1513         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1514         first = xfs_sb_info[f].offset;
1515
1516         f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1517         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1518         last = xfs_sb_info[f + 1].offset - 1;
1519
1520         xfs_trans_log_buf(tp, bp, first, last);
1521 }
1522
1523
1524 /*
1525  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1526  * a delta to a specified field in the in-core superblock.  Simply
1527  * switch on the field indicated and apply the delta to that field.
1528  * Fields are not allowed to dip below zero, so if the delta would
1529  * do this do not apply it and return EINVAL.
1530  *
1531  * The m_sb_lock must be held when this routine is called.
1532  */
1533 int
1534 xfs_mod_incore_sb_unlocked(
1535         xfs_mount_t     *mp,
1536         xfs_sb_field_t  field,
1537         int64_t         delta,
1538         int             rsvd)
1539 {
1540         int             scounter;       /* short counter for 32 bit fields */
1541         long long       lcounter;       /* long counter for 64 bit fields */
1542         long long       res_used, rem;
1543
1544         /*
1545          * With the in-core superblock spin lock held, switch
1546          * on the indicated field.  Apply the delta to the
1547          * proper field.  If the fields value would dip below
1548          * 0, then do not apply the delta and return EINVAL.
1549          */
1550         switch (field) {
1551         case XFS_SBS_ICOUNT:
1552                 lcounter = (long long)mp->m_sb.sb_icount;
1553                 lcounter += delta;
1554                 if (lcounter < 0) {
1555                         ASSERT(0);
1556                         return XFS_ERROR(EINVAL);
1557                 }
1558                 mp->m_sb.sb_icount = lcounter;
1559                 return 0;
1560         case XFS_SBS_IFREE:
1561                 lcounter = (long long)mp->m_sb.sb_ifree;
1562                 lcounter += delta;
1563                 if (lcounter < 0) {
1564                         ASSERT(0);
1565                         return XFS_ERROR(EINVAL);
1566                 }
1567                 mp->m_sb.sb_ifree = lcounter;
1568                 return 0;
1569         case XFS_SBS_FDBLOCKS:
1570                 lcounter = (long long)
1571                         mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1572                 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1573
1574                 if (delta > 0) {                /* Putting blocks back */
1575                         if (res_used > delta) {
1576                                 mp->m_resblks_avail += delta;
1577                         } else {
1578                                 rem = delta - res_used;
1579                                 mp->m_resblks_avail = mp->m_resblks;
1580                                 lcounter += rem;
1581                         }
1582                 } else {                                /* Taking blocks away */
1583
1584                         lcounter += delta;
1585
1586                 /*
1587                  * If were out of blocks, use any available reserved blocks if
1588                  * were allowed to.
1589                  */
1590
1591                         if (lcounter < 0) {
1592                                 if (rsvd) {
1593                                         lcounter = (long long)mp->m_resblks_avail + delta;
1594                                         if (lcounter < 0) {
1595                                                 return XFS_ERROR(ENOSPC);
1596                                         }
1597                                         mp->m_resblks_avail = lcounter;
1598                                         return 0;
1599                                 } else {        /* not reserved */
1600                                         return XFS_ERROR(ENOSPC);
1601                                 }
1602                         }
1603                 }
1604
1605                 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1606                 return 0;
1607         case XFS_SBS_FREXTENTS:
1608                 lcounter = (long long)mp->m_sb.sb_frextents;
1609                 lcounter += delta;
1610                 if (lcounter < 0) {
1611                         return XFS_ERROR(ENOSPC);
1612                 }
1613                 mp->m_sb.sb_frextents = lcounter;
1614                 return 0;
1615         case XFS_SBS_DBLOCKS:
1616                 lcounter = (long long)mp->m_sb.sb_dblocks;
1617                 lcounter += delta;
1618                 if (lcounter < 0) {
1619                         ASSERT(0);
1620                         return XFS_ERROR(EINVAL);
1621                 }
1622                 mp->m_sb.sb_dblocks = lcounter;
1623                 return 0;
1624         case XFS_SBS_AGCOUNT:
1625                 scounter = mp->m_sb.sb_agcount;
1626                 scounter += delta;
1627                 if (scounter < 0) {
1628                         ASSERT(0);
1629                         return XFS_ERROR(EINVAL);
1630                 }
1631                 mp->m_sb.sb_agcount = scounter;
1632                 return 0;
1633         case XFS_SBS_IMAX_PCT:
1634                 scounter = mp->m_sb.sb_imax_pct;
1635                 scounter += delta;
1636                 if (scounter < 0) {
1637                         ASSERT(0);
1638                         return XFS_ERROR(EINVAL);
1639                 }
1640                 mp->m_sb.sb_imax_pct = scounter;
1641                 return 0;
1642         case XFS_SBS_REXTSIZE:
1643                 scounter = mp->m_sb.sb_rextsize;
1644                 scounter += delta;
1645                 if (scounter < 0) {
1646                         ASSERT(0);
1647                         return XFS_ERROR(EINVAL);
1648                 }
1649                 mp->m_sb.sb_rextsize = scounter;
1650                 return 0;
1651         case XFS_SBS_RBMBLOCKS:
1652                 scounter = mp->m_sb.sb_rbmblocks;
1653                 scounter += delta;
1654                 if (scounter < 0) {
1655                         ASSERT(0);
1656                         return XFS_ERROR(EINVAL);
1657                 }
1658                 mp->m_sb.sb_rbmblocks = scounter;
1659                 return 0;
1660         case XFS_SBS_RBLOCKS:
1661                 lcounter = (long long)mp->m_sb.sb_rblocks;
1662                 lcounter += delta;
1663                 if (lcounter < 0) {
1664                         ASSERT(0);
1665                         return XFS_ERROR(EINVAL);
1666                 }
1667                 mp->m_sb.sb_rblocks = lcounter;
1668                 return 0;
1669         case XFS_SBS_REXTENTS:
1670                 lcounter = (long long)mp->m_sb.sb_rextents;
1671                 lcounter += delta;
1672                 if (lcounter < 0) {
1673                         ASSERT(0);
1674                         return XFS_ERROR(EINVAL);
1675                 }
1676                 mp->m_sb.sb_rextents = lcounter;
1677                 return 0;
1678         case XFS_SBS_REXTSLOG:
1679                 scounter = mp->m_sb.sb_rextslog;
1680                 scounter += delta;
1681                 if (scounter < 0) {
1682                         ASSERT(0);
1683                         return XFS_ERROR(EINVAL);
1684                 }
1685                 mp->m_sb.sb_rextslog = scounter;
1686                 return 0;
1687         default:
1688                 ASSERT(0);
1689                 return XFS_ERROR(EINVAL);
1690         }
1691 }
1692
1693 /*
1694  * xfs_mod_incore_sb() is used to change a field in the in-core
1695  * superblock structure by the specified delta.  This modification
1696  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1697  * routine to do the work.
1698  */
1699 int
1700 xfs_mod_incore_sb(
1701         xfs_mount_t     *mp,
1702         xfs_sb_field_t  field,
1703         int64_t         delta,
1704         int             rsvd)
1705 {
1706         int     status;
1707
1708         /* check for per-cpu counters */
1709         switch (field) {
1710 #ifdef HAVE_PERCPU_SB
1711         case XFS_SBS_ICOUNT:
1712         case XFS_SBS_IFREE:
1713         case XFS_SBS_FDBLOCKS:
1714                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1715                         status = xfs_icsb_modify_counters(mp, field,
1716                                                         delta, rsvd);
1717                         break;
1718                 }
1719                 /* FALLTHROUGH */
1720 #endif
1721         default:
1722                 spin_lock(&mp->m_sb_lock);
1723                 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1724                 spin_unlock(&mp->m_sb_lock);
1725                 break;
1726         }
1727
1728         return status;
1729 }
1730
1731 /*
1732  * xfs_mod_incore_sb_batch() is used to change more than one field
1733  * in the in-core superblock structure at a time.  This modification
1734  * is protected by a lock internal to this module.  The fields and
1735  * changes to those fields are specified in the array of xfs_mod_sb
1736  * structures passed in.
1737  *
1738  * Either all of the specified deltas will be applied or none of
1739  * them will.  If any modified field dips below 0, then all modifications
1740  * will be backed out and EINVAL will be returned.
1741  */
1742 int
1743 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1744 {
1745         int             status=0;
1746         xfs_mod_sb_t    *msbp;
1747
1748         /*
1749          * Loop through the array of mod structures and apply each
1750          * individually.  If any fail, then back out all those
1751          * which have already been applied.  Do all of this within
1752          * the scope of the m_sb_lock so that all of the changes will
1753          * be atomic.
1754          */
1755         spin_lock(&mp->m_sb_lock);
1756         msbp = &msb[0];
1757         for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1758                 /*
1759                  * Apply the delta at index n.  If it fails, break
1760                  * from the loop so we'll fall into the undo loop
1761                  * below.
1762                  */
1763                 switch (msbp->msb_field) {
1764 #ifdef HAVE_PERCPU_SB
1765                 case XFS_SBS_ICOUNT:
1766                 case XFS_SBS_IFREE:
1767                 case XFS_SBS_FDBLOCKS:
1768                         if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1769                                 spin_unlock(&mp->m_sb_lock);
1770                                 status = xfs_icsb_modify_counters(mp,
1771                                                         msbp->msb_field,
1772                                                         msbp->msb_delta, rsvd);
1773                                 spin_lock(&mp->m_sb_lock);
1774                                 break;
1775                         }
1776                         /* FALLTHROUGH */
1777 #endif
1778                 default:
1779                         status = xfs_mod_incore_sb_unlocked(mp,
1780                                                 msbp->msb_field,
1781                                                 msbp->msb_delta, rsvd);
1782                         break;
1783                 }
1784
1785                 if (status != 0) {
1786                         break;
1787                 }
1788         }
1789
1790         /*
1791          * If we didn't complete the loop above, then back out
1792          * any changes made to the superblock.  If you add code
1793          * between the loop above and here, make sure that you
1794          * preserve the value of status. Loop back until
1795          * we step below the beginning of the array.  Make sure
1796          * we don't touch anything back there.
1797          */
1798         if (status != 0) {
1799                 msbp--;
1800                 while (msbp >= msb) {
1801                         switch (msbp->msb_field) {
1802 #ifdef HAVE_PERCPU_SB
1803                         case XFS_SBS_ICOUNT:
1804                         case XFS_SBS_IFREE:
1805                         case XFS_SBS_FDBLOCKS:
1806                                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1807                                         spin_unlock(&mp->m_sb_lock);
1808                                         status = xfs_icsb_modify_counters(mp,
1809                                                         msbp->msb_field,
1810                                                         -(msbp->msb_delta),
1811                                                         rsvd);
1812                                         spin_lock(&mp->m_sb_lock);
1813                                         break;
1814                                 }
1815                                 /* FALLTHROUGH */
1816 #endif
1817                         default:
1818                                 status = xfs_mod_incore_sb_unlocked(mp,
1819                                                         msbp->msb_field,
1820                                                         -(msbp->msb_delta),
1821                                                         rsvd);
1822                                 break;
1823                         }
1824                         ASSERT(status == 0);
1825                         msbp--;
1826                 }
1827         }
1828         spin_unlock(&mp->m_sb_lock);
1829         return status;
1830 }
1831
1832 /*
1833  * xfs_getsb() is called to obtain the buffer for the superblock.
1834  * The buffer is returned locked and read in from disk.
1835  * The buffer should be released with a call to xfs_brelse().
1836  *
1837  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1838  * the superblock buffer if it can be locked without sleeping.
1839  * If it can't then we'll return NULL.
1840  */
1841 xfs_buf_t *
1842 xfs_getsb(
1843         xfs_mount_t     *mp,
1844         int             flags)
1845 {
1846         xfs_buf_t       *bp;
1847
1848         ASSERT(mp->m_sb_bp != NULL);
1849         bp = mp->m_sb_bp;
1850         if (flags & XFS_BUF_TRYLOCK) {
1851                 if (!XFS_BUF_CPSEMA(bp)) {
1852                         return NULL;
1853                 }
1854         } else {
1855                 XFS_BUF_PSEMA(bp, PRIBIO);
1856         }
1857         XFS_BUF_HOLD(bp);
1858         ASSERT(XFS_BUF_ISDONE(bp));
1859         return bp;
1860 }
1861
1862 /*
1863  * Used to free the superblock along various error paths.
1864  */
1865 void
1866 xfs_freesb(
1867         xfs_mount_t     *mp)
1868 {
1869         xfs_buf_t       *bp;
1870
1871         /*
1872          * Use xfs_getsb() so that the buffer will be locked
1873          * when we call xfs_buf_relse().
1874          */
1875         bp = xfs_getsb(mp, 0);
1876         XFS_BUF_UNMANAGE(bp);
1877         xfs_buf_relse(bp);
1878         mp->m_sb_bp = NULL;
1879 }
1880
1881 /*
1882  * See if the UUID is unique among mounted XFS filesystems.
1883  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1884  */
1885 STATIC int
1886 xfs_uuid_mount(
1887         xfs_mount_t     *mp)
1888 {
1889         if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1890                 cmn_err(CE_WARN,
1891                         "XFS: Filesystem %s has nil UUID - can't mount",
1892                         mp->m_fsname);
1893                 return -1;
1894         }
1895         if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1896                 cmn_err(CE_WARN,
1897                         "XFS: Filesystem %s has duplicate UUID - can't mount",
1898                         mp->m_fsname);
1899                 return -1;
1900         }
1901         return 0;
1902 }
1903
1904 /*
1905  * Remove filesystem from the UUID table.
1906  */
1907 STATIC void
1908 xfs_uuid_unmount(
1909         xfs_mount_t     *mp)
1910 {
1911         uuid_table_remove(&mp->m_sb.sb_uuid);
1912 }
1913
1914 /*
1915  * Used to log changes to the superblock unit and width fields which could
1916  * be altered by the mount options, as well as any potential sb_features2
1917  * fixup. Only the first superblock is updated.
1918  */
1919 STATIC int
1920 xfs_mount_log_sb(
1921         xfs_mount_t     *mp,
1922         __int64_t       fields)
1923 {
1924         xfs_trans_t     *tp;
1925         int             error;
1926
1927         ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1928                          XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2));
1929
1930         tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1931         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1932                                 XFS_DEFAULT_LOG_COUNT);
1933         if (error) {
1934                 xfs_trans_cancel(tp, 0);
1935                 return error;
1936         }
1937         xfs_mod_sb(tp, fields);
1938         error = xfs_trans_commit(tp, 0);
1939         return error;
1940 }
1941
1942
1943 #ifdef HAVE_PERCPU_SB
1944 /*
1945  * Per-cpu incore superblock counters
1946  *
1947  * Simple concept, difficult implementation
1948  *
1949  * Basically, replace the incore superblock counters with a distributed per cpu
1950  * counter for contended fields (e.g.  free block count).
1951  *
1952  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1953  * hence needs to be accurately read when we are running low on space. Hence
1954  * there is a method to enable and disable the per-cpu counters based on how
1955  * much "stuff" is available in them.
1956  *
1957  * Basically, a counter is enabled if there is enough free resource to justify
1958  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1959  * ENOSPC), then we disable the counters to synchronise all callers and
1960  * re-distribute the available resources.
1961  *
1962  * If, once we redistributed the available resources, we still get a failure,
1963  * we disable the per-cpu counter and go through the slow path.
1964  *
1965  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1966  * when we disable a per-cpu counter, we need to drain it's resources back to
1967  * the global superblock. We do this after disabling the counter to prevent
1968  * more threads from queueing up on the counter.
1969  *
1970  * Essentially, this means that we still need a lock in the fast path to enable
1971  * synchronisation between the global counters and the per-cpu counters. This
1972  * is not a problem because the lock will be local to a CPU almost all the time
1973  * and have little contention except when we get to ENOSPC conditions.
1974  *
1975  * Basically, this lock becomes a barrier that enables us to lock out the fast
1976  * path while we do things like enabling and disabling counters and
1977  * synchronising the counters.
1978  *
1979  * Locking rules:
1980  *
1981  *      1. m_sb_lock before picking up per-cpu locks
1982  *      2. per-cpu locks always picked up via for_each_online_cpu() order
1983  *      3. accurate counter sync requires m_sb_lock + per cpu locks
1984  *      4. modifying per-cpu counters requires holding per-cpu lock
1985  *      5. modifying global counters requires holding m_sb_lock
1986  *      6. enabling or disabling a counter requires holding the m_sb_lock 
1987  *         and _none_ of the per-cpu locks.
1988  *
1989  * Disabled counters are only ever re-enabled by a balance operation
1990  * that results in more free resources per CPU than a given threshold.
1991  * To ensure counters don't remain disabled, they are rebalanced when
1992  * the global resource goes above a higher threshold (i.e. some hysteresis
1993  * is present to prevent thrashing).
1994  */
1995
1996 #ifdef CONFIG_HOTPLUG_CPU
1997 /*
1998  * hot-plug CPU notifier support.
1999  *
2000  * We need a notifier per filesystem as we need to be able to identify
2001  * the filesystem to balance the counters out. This is achieved by
2002  * having a notifier block embedded in the xfs_mount_t and doing pointer
2003  * magic to get the mount pointer from the notifier block address.
2004  */
2005 STATIC int
2006 xfs_icsb_cpu_notify(
2007         struct notifier_block *nfb,
2008         unsigned long action,
2009         void *hcpu)
2010 {
2011         xfs_icsb_cnts_t *cntp;
2012         xfs_mount_t     *mp;
2013
2014         mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2015         cntp = (xfs_icsb_cnts_t *)
2016                         per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2017         switch (action) {
2018         case CPU_UP_PREPARE:
2019         case CPU_UP_PREPARE_FROZEN:
2020                 /* Easy Case - initialize the area and locks, and
2021                  * then rebalance when online does everything else for us. */
2022                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2023                 break;
2024         case CPU_ONLINE:
2025         case CPU_ONLINE_FROZEN:
2026                 xfs_icsb_lock(mp);
2027                 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2028                 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2029                 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2030                 xfs_icsb_unlock(mp);
2031                 break;
2032         case CPU_DEAD:
2033         case CPU_DEAD_FROZEN:
2034                 /* Disable all the counters, then fold the dead cpu's
2035                  * count into the total on the global superblock and
2036                  * re-enable the counters. */
2037                 xfs_icsb_lock(mp);
2038                 spin_lock(&mp->m_sb_lock);
2039                 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2040                 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2041                 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2042
2043                 mp->m_sb.sb_icount += cntp->icsb_icount;
2044                 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2045                 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2046
2047                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2048
2049                 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT,
2050                                          XFS_ICSB_SB_LOCKED, 0);
2051                 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE,
2052                                          XFS_ICSB_SB_LOCKED, 0);
2053                 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS,
2054                                          XFS_ICSB_SB_LOCKED, 0);
2055                 spin_unlock(&mp->m_sb_lock);
2056                 xfs_icsb_unlock(mp);
2057                 break;
2058         }
2059
2060         return NOTIFY_OK;
2061 }
2062 #endif /* CONFIG_HOTPLUG_CPU */
2063
2064 int
2065 xfs_icsb_init_counters(
2066         xfs_mount_t     *mp)
2067 {
2068         xfs_icsb_cnts_t *cntp;
2069         int             i;
2070
2071         mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2072         if (mp->m_sb_cnts == NULL)
2073                 return -ENOMEM;
2074
2075 #ifdef CONFIG_HOTPLUG_CPU
2076         mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2077         mp->m_icsb_notifier.priority = 0;
2078         register_hotcpu_notifier(&mp->m_icsb_notifier);
2079 #endif /* CONFIG_HOTPLUG_CPU */
2080
2081         for_each_online_cpu(i) {
2082                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2083                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2084         }
2085
2086         mutex_init(&mp->m_icsb_mutex);
2087
2088         /*
2089          * start with all counters disabled so that the
2090          * initial balance kicks us off correctly
2091          */
2092         mp->m_icsb_counters = -1;
2093         return 0;
2094 }
2095
2096 void
2097 xfs_icsb_reinit_counters(
2098         xfs_mount_t     *mp)
2099 {
2100         xfs_icsb_lock(mp);
2101         /*
2102          * start with all counters disabled so that the
2103          * initial balance kicks us off correctly
2104          */
2105         mp->m_icsb_counters = -1;
2106         xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2107         xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2108         xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2109         xfs_icsb_unlock(mp);
2110 }
2111
2112 STATIC void
2113 xfs_icsb_destroy_counters(
2114         xfs_mount_t     *mp)
2115 {
2116         if (mp->m_sb_cnts) {
2117                 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2118                 free_percpu(mp->m_sb_cnts);
2119         }
2120         mutex_destroy(&mp->m_icsb_mutex);
2121 }
2122
2123 STATIC_INLINE void
2124 xfs_icsb_lock_cntr(
2125         xfs_icsb_cnts_t *icsbp)
2126 {
2127         while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2128                 ndelay(1000);
2129         }
2130 }
2131
2132 STATIC_INLINE void
2133 xfs_icsb_unlock_cntr(
2134         xfs_icsb_cnts_t *icsbp)
2135 {
2136         clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2137 }
2138
2139
2140 STATIC_INLINE void
2141 xfs_icsb_lock_all_counters(
2142         xfs_mount_t     *mp)
2143 {
2144         xfs_icsb_cnts_t *cntp;
2145         int             i;
2146
2147         for_each_online_cpu(i) {
2148                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2149                 xfs_icsb_lock_cntr(cntp);
2150         }
2151 }
2152
2153 STATIC_INLINE void
2154 xfs_icsb_unlock_all_counters(
2155         xfs_mount_t     *mp)
2156 {
2157         xfs_icsb_cnts_t *cntp;
2158         int             i;
2159
2160         for_each_online_cpu(i) {
2161                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2162                 xfs_icsb_unlock_cntr(cntp);
2163         }
2164 }
2165
2166 STATIC void
2167 xfs_icsb_count(
2168         xfs_mount_t     *mp,
2169         xfs_icsb_cnts_t *cnt,
2170         int             flags)
2171 {
2172         xfs_icsb_cnts_t *cntp;
2173         int             i;
2174
2175         memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2176
2177         if (!(flags & XFS_ICSB_LAZY_COUNT))
2178                 xfs_icsb_lock_all_counters(mp);
2179
2180         for_each_online_cpu(i) {
2181                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2182                 cnt->icsb_icount += cntp->icsb_icount;
2183                 cnt->icsb_ifree += cntp->icsb_ifree;
2184                 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2185         }
2186
2187         if (!(flags & XFS_ICSB_LAZY_COUNT))
2188                 xfs_icsb_unlock_all_counters(mp);
2189 }
2190
2191 STATIC int
2192 xfs_icsb_counter_disabled(
2193         xfs_mount_t     *mp,
2194         xfs_sb_field_t  field)
2195 {
2196         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2197         return test_bit(field, &mp->m_icsb_counters);
2198 }
2199
2200 STATIC void
2201 xfs_icsb_disable_counter(
2202         xfs_mount_t     *mp,
2203         xfs_sb_field_t  field)
2204 {
2205         xfs_icsb_cnts_t cnt;
2206
2207         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2208
2209         /*
2210          * If we are already disabled, then there is nothing to do
2211          * here. We check before locking all the counters to avoid
2212          * the expensive lock operation when being called in the
2213          * slow path and the counter is already disabled. This is
2214          * safe because the only time we set or clear this state is under
2215          * the m_icsb_mutex.
2216          */
2217         if (xfs_icsb_counter_disabled(mp, field))
2218                 return;
2219
2220         xfs_icsb_lock_all_counters(mp);
2221         if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2222                 /* drain back to superblock */
2223
2224                 xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT);
2225                 switch(field) {
2226                 case XFS_SBS_ICOUNT:
2227                         mp->m_sb.sb_icount = cnt.icsb_icount;
2228                         break;
2229                 case XFS_SBS_IFREE:
2230                         mp->m_sb.sb_ifree = cnt.icsb_ifree;
2231                         break;
2232                 case XFS_SBS_FDBLOCKS:
2233                         mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2234                         break;
2235                 default:
2236                         BUG();
2237                 }
2238         }
2239
2240         xfs_icsb_unlock_all_counters(mp);
2241 }
2242
2243 STATIC void
2244 xfs_icsb_enable_counter(
2245         xfs_mount_t     *mp,
2246         xfs_sb_field_t  field,
2247         uint64_t        count,
2248         uint64_t        resid)
2249 {
2250         xfs_icsb_cnts_t *cntp;
2251         int             i;
2252
2253         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2254
2255         xfs_icsb_lock_all_counters(mp);
2256         for_each_online_cpu(i) {
2257                 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2258                 switch (field) {
2259                 case XFS_SBS_ICOUNT:
2260                         cntp->icsb_icount = count + resid;
2261                         break;
2262                 case XFS_SBS_IFREE:
2263                         cntp->icsb_ifree = count + resid;
2264                         break;
2265                 case XFS_SBS_FDBLOCKS:
2266                         cntp->icsb_fdblocks = count + resid;
2267                         break;
2268                 default:
2269                         BUG();
2270                         break;
2271                 }
2272                 resid = 0;
2273         }
2274         clear_bit(field, &mp->m_icsb_counters);
2275         xfs_icsb_unlock_all_counters(mp);
2276 }
2277
2278 void
2279 xfs_icsb_sync_counters_locked(
2280         xfs_mount_t     *mp,
2281         int             flags)
2282 {
2283         xfs_icsb_cnts_t cnt;
2284
2285         xfs_icsb_count(mp, &cnt, flags);
2286
2287         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2288                 mp->m_sb.sb_icount = cnt.icsb_icount;
2289         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2290                 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2291         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2292                 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2293 }
2294
2295 /*
2296  * Accurate update of per-cpu counters to incore superblock
2297  */
2298 void
2299 xfs_icsb_sync_counters(
2300         xfs_mount_t     *mp,
2301         int             flags)
2302 {
2303         spin_lock(&mp->m_sb_lock);
2304         xfs_icsb_sync_counters_locked(mp, flags);
2305         spin_unlock(&mp->m_sb_lock);
2306 }
2307
2308 /*
2309  * Balance and enable/disable counters as necessary.
2310  *
2311  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2312  * chosen to be the same number as single on disk allocation chunk per CPU, and
2313  * free blocks is something far enough zero that we aren't going thrash when we
2314  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2315  * prevent looping endlessly when xfs_alloc_space asks for more than will
2316  * be distributed to a single CPU but each CPU has enough blocks to be
2317  * reenabled.
2318  *
2319  * Note that we can be called when counters are already disabled.
2320  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2321  * prevent locking every per-cpu counter needlessly.
2322  */
2323
2324 #define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
2325 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2326                 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2327 STATIC void
2328 xfs_icsb_balance_counter(
2329         xfs_mount_t     *mp,
2330         xfs_sb_field_t  field,
2331         int             flags,
2332         int             min_per_cpu)
2333 {
2334         uint64_t        count, resid;
2335         int             weight = num_online_cpus();
2336         uint64_t        min = (uint64_t)min_per_cpu;
2337
2338         if (!(flags & XFS_ICSB_SB_LOCKED))
2339                 spin_lock(&mp->m_sb_lock);
2340
2341         /* disable counter and sync counter */
2342         xfs_icsb_disable_counter(mp, field);
2343
2344         /* update counters  - first CPU gets residual*/
2345         switch (field) {
2346         case XFS_SBS_ICOUNT:
2347                 count = mp->m_sb.sb_icount;
2348                 resid = do_div(count, weight);
2349                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2350                         goto out;
2351                 break;
2352         case XFS_SBS_IFREE:
2353                 count = mp->m_sb.sb_ifree;
2354                 resid = do_div(count, weight);
2355                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2356                         goto out;
2357                 break;
2358         case XFS_SBS_FDBLOCKS:
2359                 count = mp->m_sb.sb_fdblocks;
2360                 resid = do_div(count, weight);
2361                 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2362                         goto out;
2363                 break;
2364         default:
2365                 BUG();
2366                 count = resid = 0;      /* quiet, gcc */
2367                 break;
2368         }
2369
2370         xfs_icsb_enable_counter(mp, field, count, resid);
2371 out:
2372         if (!(flags & XFS_ICSB_SB_LOCKED))
2373                 spin_unlock(&mp->m_sb_lock);
2374 }
2375
2376 STATIC int
2377 xfs_icsb_modify_counters(
2378         xfs_mount_t     *mp,
2379         xfs_sb_field_t  field,
2380         int64_t         delta,
2381         int             rsvd)
2382 {
2383         xfs_icsb_cnts_t *icsbp;
2384         long long       lcounter;       /* long counter for 64 bit fields */
2385         int             cpu, ret = 0;
2386
2387         might_sleep();
2388 again:
2389         cpu = get_cpu();
2390         icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2391
2392         /*
2393          * if the counter is disabled, go to slow path
2394          */
2395         if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2396                 goto slow_path;
2397         xfs_icsb_lock_cntr(icsbp);
2398         if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2399                 xfs_icsb_unlock_cntr(icsbp);
2400                 goto slow_path;
2401         }
2402
2403         switch (field) {
2404         case XFS_SBS_ICOUNT:
2405                 lcounter = icsbp->icsb_icount;
2406                 lcounter += delta;
2407                 if (unlikely(lcounter < 0))
2408                         goto balance_counter;
2409                 icsbp->icsb_icount = lcounter;
2410                 break;
2411
2412         case XFS_SBS_IFREE:
2413                 lcounter = icsbp->icsb_ifree;
2414                 lcounter += delta;
2415                 if (unlikely(lcounter < 0))
2416                         goto balance_counter;
2417                 icsbp->icsb_ifree = lcounter;
2418                 break;
2419
2420         case XFS_SBS_FDBLOCKS:
2421                 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2422
2423                 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2424                 lcounter += delta;
2425                 if (unlikely(lcounter < 0))
2426                         goto balance_counter;
2427                 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2428                 break;
2429         default:
2430                 BUG();
2431                 break;
2432         }
2433         xfs_icsb_unlock_cntr(icsbp);
2434         put_cpu();
2435         return 0;
2436
2437 slow_path:
2438         put_cpu();
2439
2440         /*
2441          * serialise with a mutex so we don't burn lots of cpu on
2442          * the superblock lock. We still need to hold the superblock
2443          * lock, however, when we modify the global structures.
2444          */
2445         xfs_icsb_lock(mp);
2446
2447         /*
2448          * Now running atomically.
2449          *
2450          * If the counter is enabled, someone has beaten us to rebalancing.
2451          * Drop the lock and try again in the fast path....
2452          */
2453         if (!(xfs_icsb_counter_disabled(mp, field))) {
2454                 xfs_icsb_unlock(mp);
2455                 goto again;
2456         }
2457
2458         /*
2459          * The counter is currently disabled. Because we are
2460          * running atomically here, we know a rebalance cannot
2461          * be in progress. Hence we can go straight to operating
2462          * on the global superblock. We do not call xfs_mod_incore_sb()
2463          * here even though we need to get the m_sb_lock. Doing so
2464          * will cause us to re-enter this function and deadlock.
2465          * Hence we get the m_sb_lock ourselves and then call
2466          * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2467          * directly on the global counters.
2468          */
2469         spin_lock(&mp->m_sb_lock);
2470         ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2471         spin_unlock(&mp->m_sb_lock);
2472
2473         /*
2474          * Now that we've modified the global superblock, we
2475          * may be able to re-enable the distributed counters
2476          * (e.g. lots of space just got freed). After that
2477          * we are done.
2478          */
2479         if (ret != ENOSPC)
2480                 xfs_icsb_balance_counter(mp, field, 0, 0);
2481         xfs_icsb_unlock(mp);
2482         return ret;
2483
2484 balance_counter:
2485         xfs_icsb_unlock_cntr(icsbp);
2486         put_cpu();
2487
2488         /*
2489          * We may have multiple threads here if multiple per-cpu
2490          * counters run dry at the same time. This will mean we can
2491          * do more balances than strictly necessary but it is not
2492          * the common slowpath case.
2493          */
2494         xfs_icsb_lock(mp);
2495
2496         /*
2497          * running atomically.
2498          *
2499          * This will leave the counter in the correct state for future
2500          * accesses. After the rebalance, we simply try again and our retry
2501          * will either succeed through the fast path or slow path without
2502          * another balance operation being required.
2503          */
2504         xfs_icsb_balance_counter(mp, field, 0, delta);
2505         xfs_icsb_unlock(mp);
2506         goto again;
2507 }
2508
2509 #endif