]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/xfs/xfs_log_recover.c
[XFS] remove most calls to VN_RELE
[linux-2.6-omap-h63xx.git] / fs / xfs / xfs_log_recover.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49 #include "xfs_utils.h"
50
51 STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 STATIC void     xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54                                                xlog_recover_item_t *item);
55 #if defined(DEBUG)
56 STATIC void     xlog_recover_check_summary(xlog_t *);
57 STATIC void     xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
58 #else
59 #define xlog_recover_check_summary(log)
60 #define xlog_recover_check_ail(mp, lip, gen)
61 #endif
62
63
64 /*
65  * Sector aligned buffer routines for buffer create/read/write/access
66  */
67
68 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)   \
69         ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
70         ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
71 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)   ((bno) & ~(log)->l_sectbb_mask)
72
73 xfs_buf_t *
74 xlog_get_bp(
75         xlog_t          *log,
76         int             num_bblks)
77 {
78         ASSERT(num_bblks > 0);
79
80         if (log->l_sectbb_log) {
81                 if (num_bblks > 1)
82                         num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
83                 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
84         }
85         return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
86 }
87
88 void
89 xlog_put_bp(
90         xfs_buf_t       *bp)
91 {
92         xfs_buf_free(bp);
93 }
94
95
96 /*
97  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
98  */
99 int
100 xlog_bread(
101         xlog_t          *log,
102         xfs_daddr_t     blk_no,
103         int             nbblks,
104         xfs_buf_t       *bp)
105 {
106         int             error;
107
108         if (log->l_sectbb_log) {
109                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
110                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
111         }
112
113         ASSERT(nbblks > 0);
114         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
115         ASSERT(bp);
116
117         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
118         XFS_BUF_READ(bp);
119         XFS_BUF_BUSY(bp);
120         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
121         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
122
123         xfsbdstrat(log->l_mp, bp);
124         if ((error = xfs_iowait(bp)))
125                 xfs_ioerror_alert("xlog_bread", log->l_mp,
126                                   bp, XFS_BUF_ADDR(bp));
127         return error;
128 }
129
130 /*
131  * Write out the buffer at the given block for the given number of blocks.
132  * The buffer is kept locked across the write and is returned locked.
133  * This can only be used for synchronous log writes.
134  */
135 STATIC int
136 xlog_bwrite(
137         xlog_t          *log,
138         xfs_daddr_t     blk_no,
139         int             nbblks,
140         xfs_buf_t       *bp)
141 {
142         int             error;
143
144         if (log->l_sectbb_log) {
145                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
146                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
147         }
148
149         ASSERT(nbblks > 0);
150         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
151
152         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
153         XFS_BUF_ZEROFLAGS(bp);
154         XFS_BUF_BUSY(bp);
155         XFS_BUF_HOLD(bp);
156         XFS_BUF_PSEMA(bp, PRIBIO);
157         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
158         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
159
160         if ((error = xfs_bwrite(log->l_mp, bp)))
161                 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
162                                   bp, XFS_BUF_ADDR(bp));
163         return error;
164 }
165
166 STATIC xfs_caddr_t
167 xlog_align(
168         xlog_t          *log,
169         xfs_daddr_t     blk_no,
170         int             nbblks,
171         xfs_buf_t       *bp)
172 {
173         xfs_caddr_t     ptr;
174
175         if (!log->l_sectbb_log)
176                 return XFS_BUF_PTR(bp);
177
178         ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
179         ASSERT(XFS_BUF_SIZE(bp) >=
180                 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
181         return ptr;
182 }
183
184 #ifdef DEBUG
185 /*
186  * dump debug superblock and log record information
187  */
188 STATIC void
189 xlog_header_check_dump(
190         xfs_mount_t             *mp,
191         xlog_rec_header_t       *head)
192 {
193         int                     b;
194
195         cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __FUNCTION__);
196         for (b = 0; b < 16; b++)
197                 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
198         cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
199         cmn_err(CE_DEBUG, "    log : uuid = ");
200         for (b = 0; b < 16; b++)
201                 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
202         cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
203 }
204 #else
205 #define xlog_header_check_dump(mp, head)
206 #endif
207
208 /*
209  * check log record header for recovery
210  */
211 STATIC int
212 xlog_header_check_recover(
213         xfs_mount_t             *mp,
214         xlog_rec_header_t       *head)
215 {
216         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
217
218         /*
219          * IRIX doesn't write the h_fmt field and leaves it zeroed
220          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
221          * a dirty log created in IRIX.
222          */
223         if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
224                 xlog_warn(
225         "XFS: dirty log written in incompatible format - can't recover");
226                 xlog_header_check_dump(mp, head);
227                 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
228                                  XFS_ERRLEVEL_HIGH, mp);
229                 return XFS_ERROR(EFSCORRUPTED);
230         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
231                 xlog_warn(
232         "XFS: dirty log entry has mismatched uuid - can't recover");
233                 xlog_header_check_dump(mp, head);
234                 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
235                                  XFS_ERRLEVEL_HIGH, mp);
236                 return XFS_ERROR(EFSCORRUPTED);
237         }
238         return 0;
239 }
240
241 /*
242  * read the head block of the log and check the header
243  */
244 STATIC int
245 xlog_header_check_mount(
246         xfs_mount_t             *mp,
247         xlog_rec_header_t       *head)
248 {
249         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
250
251         if (uuid_is_nil(&head->h_fs_uuid)) {
252                 /*
253                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
254                  * h_fs_uuid is nil, we assume this log was last mounted
255                  * by IRIX and continue.
256                  */
257                 xlog_warn("XFS: nil uuid in log - IRIX style log");
258         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
259                 xlog_warn("XFS: log has mismatched uuid - can't recover");
260                 xlog_header_check_dump(mp, head);
261                 XFS_ERROR_REPORT("xlog_header_check_mount",
262                                  XFS_ERRLEVEL_HIGH, mp);
263                 return XFS_ERROR(EFSCORRUPTED);
264         }
265         return 0;
266 }
267
268 STATIC void
269 xlog_recover_iodone(
270         struct xfs_buf  *bp)
271 {
272         xfs_mount_t     *mp;
273
274         ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
275
276         if (XFS_BUF_GETERROR(bp)) {
277                 /*
278                  * We're not going to bother about retrying
279                  * this during recovery. One strike!
280                  */
281                 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
282                 xfs_ioerror_alert("xlog_recover_iodone",
283                                   mp, bp, XFS_BUF_ADDR(bp));
284                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
285         }
286         XFS_BUF_SET_FSPRIVATE(bp, NULL);
287         XFS_BUF_CLR_IODONE_FUNC(bp);
288         xfs_biodone(bp);
289 }
290
291 /*
292  * This routine finds (to an approximation) the first block in the physical
293  * log which contains the given cycle.  It uses a binary search algorithm.
294  * Note that the algorithm can not be perfect because the disk will not
295  * necessarily be perfect.
296  */
297 STATIC int
298 xlog_find_cycle_start(
299         xlog_t          *log,
300         xfs_buf_t       *bp,
301         xfs_daddr_t     first_blk,
302         xfs_daddr_t     *last_blk,
303         uint            cycle)
304 {
305         xfs_caddr_t     offset;
306         xfs_daddr_t     mid_blk;
307         uint            mid_cycle;
308         int             error;
309
310         mid_blk = BLK_AVG(first_blk, *last_blk);
311         while (mid_blk != first_blk && mid_blk != *last_blk) {
312                 if ((error = xlog_bread(log, mid_blk, 1, bp)))
313                         return error;
314                 offset = xlog_align(log, mid_blk, 1, bp);
315                 mid_cycle = xlog_get_cycle(offset);
316                 if (mid_cycle == cycle) {
317                         *last_blk = mid_blk;
318                         /* last_half_cycle == mid_cycle */
319                 } else {
320                         first_blk = mid_blk;
321                         /* first_half_cycle == mid_cycle */
322                 }
323                 mid_blk = BLK_AVG(first_blk, *last_blk);
324         }
325         ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
326                (mid_blk == *last_blk && mid_blk-1 == first_blk));
327
328         return 0;
329 }
330
331 /*
332  * Check that the range of blocks does not contain the cycle number
333  * given.  The scan needs to occur from front to back and the ptr into the
334  * region must be updated since a later routine will need to perform another
335  * test.  If the region is completely good, we end up returning the same
336  * last block number.
337  *
338  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
339  * since we don't ever expect logs to get this large.
340  */
341 STATIC int
342 xlog_find_verify_cycle(
343         xlog_t          *log,
344         xfs_daddr_t     start_blk,
345         int             nbblks,
346         uint            stop_on_cycle_no,
347         xfs_daddr_t     *new_blk)
348 {
349         xfs_daddr_t     i, j;
350         uint            cycle;
351         xfs_buf_t       *bp;
352         xfs_daddr_t     bufblks;
353         xfs_caddr_t     buf = NULL;
354         int             error = 0;
355
356         bufblks = 1 << ffs(nbblks);
357
358         while (!(bp = xlog_get_bp(log, bufblks))) {
359                 /* can't get enough memory to do everything in one big buffer */
360                 bufblks >>= 1;
361                 if (bufblks <= log->l_sectbb_log)
362                         return ENOMEM;
363         }
364
365         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
366                 int     bcount;
367
368                 bcount = min(bufblks, (start_blk + nbblks - i));
369
370                 if ((error = xlog_bread(log, i, bcount, bp)))
371                         goto out;
372
373                 buf = xlog_align(log, i, bcount, bp);
374                 for (j = 0; j < bcount; j++) {
375                         cycle = xlog_get_cycle(buf);
376                         if (cycle == stop_on_cycle_no) {
377                                 *new_blk = i+j;
378                                 goto out;
379                         }
380
381                         buf += BBSIZE;
382                 }
383         }
384
385         *new_blk = -1;
386
387 out:
388         xlog_put_bp(bp);
389         return error;
390 }
391
392 /*
393  * Potentially backup over partial log record write.
394  *
395  * In the typical case, last_blk is the number of the block directly after
396  * a good log record.  Therefore, we subtract one to get the block number
397  * of the last block in the given buffer.  extra_bblks contains the number
398  * of blocks we would have read on a previous read.  This happens when the
399  * last log record is split over the end of the physical log.
400  *
401  * extra_bblks is the number of blocks potentially verified on a previous
402  * call to this routine.
403  */
404 STATIC int
405 xlog_find_verify_log_record(
406         xlog_t                  *log,
407         xfs_daddr_t             start_blk,
408         xfs_daddr_t             *last_blk,
409         int                     extra_bblks)
410 {
411         xfs_daddr_t             i;
412         xfs_buf_t               *bp;
413         xfs_caddr_t             offset = NULL;
414         xlog_rec_header_t       *head = NULL;
415         int                     error = 0;
416         int                     smallmem = 0;
417         int                     num_blks = *last_blk - start_blk;
418         int                     xhdrs;
419
420         ASSERT(start_blk != 0 || *last_blk != start_blk);
421
422         if (!(bp = xlog_get_bp(log, num_blks))) {
423                 if (!(bp = xlog_get_bp(log, 1)))
424                         return ENOMEM;
425                 smallmem = 1;
426         } else {
427                 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
428                         goto out;
429                 offset = xlog_align(log, start_blk, num_blks, bp);
430                 offset += ((num_blks - 1) << BBSHIFT);
431         }
432
433         for (i = (*last_blk) - 1; i >= 0; i--) {
434                 if (i < start_blk) {
435                         /* valid log record not found */
436                         xlog_warn(
437                 "XFS: Log inconsistent (didn't find previous header)");
438                         ASSERT(0);
439                         error = XFS_ERROR(EIO);
440                         goto out;
441                 }
442
443                 if (smallmem) {
444                         if ((error = xlog_bread(log, i, 1, bp)))
445                                 goto out;
446                         offset = xlog_align(log, i, 1, bp);
447                 }
448
449                 head = (xlog_rec_header_t *)offset;
450
451                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
452                         break;
453
454                 if (!smallmem)
455                         offset -= BBSIZE;
456         }
457
458         /*
459          * We hit the beginning of the physical log & still no header.  Return
460          * to caller.  If caller can handle a return of -1, then this routine
461          * will be called again for the end of the physical log.
462          */
463         if (i == -1) {
464                 error = -1;
465                 goto out;
466         }
467
468         /*
469          * We have the final block of the good log (the first block
470          * of the log record _before_ the head. So we check the uuid.
471          */
472         if ((error = xlog_header_check_mount(log->l_mp, head)))
473                 goto out;
474
475         /*
476          * We may have found a log record header before we expected one.
477          * last_blk will be the 1st block # with a given cycle #.  We may end
478          * up reading an entire log record.  In this case, we don't want to
479          * reset last_blk.  Only when last_blk points in the middle of a log
480          * record do we update last_blk.
481          */
482         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
483                 uint    h_size = be32_to_cpu(head->h_size);
484
485                 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
486                 if (h_size % XLOG_HEADER_CYCLE_SIZE)
487                         xhdrs++;
488         } else {
489                 xhdrs = 1;
490         }
491
492         if (*last_blk - i + extra_bblks !=
493             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
494                 *last_blk = i;
495
496 out:
497         xlog_put_bp(bp);
498         return error;
499 }
500
501 /*
502  * Head is defined to be the point of the log where the next log write
503  * write could go.  This means that incomplete LR writes at the end are
504  * eliminated when calculating the head.  We aren't guaranteed that previous
505  * LR have complete transactions.  We only know that a cycle number of
506  * current cycle number -1 won't be present in the log if we start writing
507  * from our current block number.
508  *
509  * last_blk contains the block number of the first block with a given
510  * cycle number.
511  *
512  * Return: zero if normal, non-zero if error.
513  */
514 STATIC int
515 xlog_find_head(
516         xlog_t          *log,
517         xfs_daddr_t     *return_head_blk)
518 {
519         xfs_buf_t       *bp;
520         xfs_caddr_t     offset;
521         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
522         int             num_scan_bblks;
523         uint            first_half_cycle, last_half_cycle;
524         uint            stop_on_cycle;
525         int             error, log_bbnum = log->l_logBBsize;
526
527         /* Is the end of the log device zeroed? */
528         if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
529                 *return_head_blk = first_blk;
530
531                 /* Is the whole lot zeroed? */
532                 if (!first_blk) {
533                         /* Linux XFS shouldn't generate totally zeroed logs -
534                          * mkfs etc write a dummy unmount record to a fresh
535                          * log so we can store the uuid in there
536                          */
537                         xlog_warn("XFS: totally zeroed log");
538                 }
539
540                 return 0;
541         } else if (error) {
542                 xlog_warn("XFS: empty log check failed");
543                 return error;
544         }
545
546         first_blk = 0;                  /* get cycle # of 1st block */
547         bp = xlog_get_bp(log, 1);
548         if (!bp)
549                 return ENOMEM;
550         if ((error = xlog_bread(log, 0, 1, bp)))
551                 goto bp_err;
552         offset = xlog_align(log, 0, 1, bp);
553         first_half_cycle = xlog_get_cycle(offset);
554
555         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
556         if ((error = xlog_bread(log, last_blk, 1, bp)))
557                 goto bp_err;
558         offset = xlog_align(log, last_blk, 1, bp);
559         last_half_cycle = xlog_get_cycle(offset);
560         ASSERT(last_half_cycle != 0);
561
562         /*
563          * If the 1st half cycle number is equal to the last half cycle number,
564          * then the entire log is stamped with the same cycle number.  In this
565          * case, head_blk can't be set to zero (which makes sense).  The below
566          * math doesn't work out properly with head_blk equal to zero.  Instead,
567          * we set it to log_bbnum which is an invalid block number, but this
568          * value makes the math correct.  If head_blk doesn't changed through
569          * all the tests below, *head_blk is set to zero at the very end rather
570          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
571          * in a circular file.
572          */
573         if (first_half_cycle == last_half_cycle) {
574                 /*
575                  * In this case we believe that the entire log should have
576                  * cycle number last_half_cycle.  We need to scan backwards
577                  * from the end verifying that there are no holes still
578                  * containing last_half_cycle - 1.  If we find such a hole,
579                  * then the start of that hole will be the new head.  The
580                  * simple case looks like
581                  *        x | x ... | x - 1 | x
582                  * Another case that fits this picture would be
583                  *        x | x + 1 | x ... | x
584                  * In this case the head really is somewhere at the end of the
585                  * log, as one of the latest writes at the beginning was
586                  * incomplete.
587                  * One more case is
588                  *        x | x + 1 | x ... | x - 1 | x
589                  * This is really the combination of the above two cases, and
590                  * the head has to end up at the start of the x-1 hole at the
591                  * end of the log.
592                  *
593                  * In the 256k log case, we will read from the beginning to the
594                  * end of the log and search for cycle numbers equal to x-1.
595                  * We don't worry about the x+1 blocks that we encounter,
596                  * because we know that they cannot be the head since the log
597                  * started with x.
598                  */
599                 head_blk = log_bbnum;
600                 stop_on_cycle = last_half_cycle - 1;
601         } else {
602                 /*
603                  * In this case we want to find the first block with cycle
604                  * number matching last_half_cycle.  We expect the log to be
605                  * some variation on
606                  *        x + 1 ... | x ...
607                  * The first block with cycle number x (last_half_cycle) will
608                  * be where the new head belongs.  First we do a binary search
609                  * for the first occurrence of last_half_cycle.  The binary
610                  * search may not be totally accurate, so then we scan back
611                  * from there looking for occurrences of last_half_cycle before
612                  * us.  If that backwards scan wraps around the beginning of
613                  * the log, then we look for occurrences of last_half_cycle - 1
614                  * at the end of the log.  The cases we're looking for look
615                  * like
616                  *        x + 1 ... | x | x + 1 | x ...
617                  *                               ^ binary search stopped here
618                  * or
619                  *        x + 1 ... | x ... | x - 1 | x
620                  *        <---------> less than scan distance
621                  */
622                 stop_on_cycle = last_half_cycle;
623                 if ((error = xlog_find_cycle_start(log, bp, first_blk,
624                                                 &head_blk, last_half_cycle)))
625                         goto bp_err;
626         }
627
628         /*
629          * Now validate the answer.  Scan back some number of maximum possible
630          * blocks and make sure each one has the expected cycle number.  The
631          * maximum is determined by the total possible amount of buffering
632          * in the in-core log.  The following number can be made tighter if
633          * we actually look at the block size of the filesystem.
634          */
635         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
636         if (head_blk >= num_scan_bblks) {
637                 /*
638                  * We are guaranteed that the entire check can be performed
639                  * in one buffer.
640                  */
641                 start_blk = head_blk - num_scan_bblks;
642                 if ((error = xlog_find_verify_cycle(log,
643                                                 start_blk, num_scan_bblks,
644                                                 stop_on_cycle, &new_blk)))
645                         goto bp_err;
646                 if (new_blk != -1)
647                         head_blk = new_blk;
648         } else {                /* need to read 2 parts of log */
649                 /*
650                  * We are going to scan backwards in the log in two parts.
651                  * First we scan the physical end of the log.  In this part
652                  * of the log, we are looking for blocks with cycle number
653                  * last_half_cycle - 1.
654                  * If we find one, then we know that the log starts there, as
655                  * we've found a hole that didn't get written in going around
656                  * the end of the physical log.  The simple case for this is
657                  *        x + 1 ... | x ... | x - 1 | x
658                  *        <---------> less than scan distance
659                  * If all of the blocks at the end of the log have cycle number
660                  * last_half_cycle, then we check the blocks at the start of
661                  * the log looking for occurrences of last_half_cycle.  If we
662                  * find one, then our current estimate for the location of the
663                  * first occurrence of last_half_cycle is wrong and we move
664                  * back to the hole we've found.  This case looks like
665                  *        x + 1 ... | x | x + 1 | x ...
666                  *                               ^ binary search stopped here
667                  * Another case we need to handle that only occurs in 256k
668                  * logs is
669                  *        x + 1 ... | x ... | x+1 | x ...
670                  *                   ^ binary search stops here
671                  * In a 256k log, the scan at the end of the log will see the
672                  * x + 1 blocks.  We need to skip past those since that is
673                  * certainly not the head of the log.  By searching for
674                  * last_half_cycle-1 we accomplish that.
675                  */
676                 start_blk = log_bbnum - num_scan_bblks + head_blk;
677                 ASSERT(head_blk <= INT_MAX &&
678                         (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
679                 if ((error = xlog_find_verify_cycle(log, start_blk,
680                                         num_scan_bblks - (int)head_blk,
681                                         (stop_on_cycle - 1), &new_blk)))
682                         goto bp_err;
683                 if (new_blk != -1) {
684                         head_blk = new_blk;
685                         goto bad_blk;
686                 }
687
688                 /*
689                  * Scan beginning of log now.  The last part of the physical
690                  * log is good.  This scan needs to verify that it doesn't find
691                  * the last_half_cycle.
692                  */
693                 start_blk = 0;
694                 ASSERT(head_blk <= INT_MAX);
695                 if ((error = xlog_find_verify_cycle(log,
696                                         start_blk, (int)head_blk,
697                                         stop_on_cycle, &new_blk)))
698                         goto bp_err;
699                 if (new_blk != -1)
700                         head_blk = new_blk;
701         }
702
703  bad_blk:
704         /*
705          * Now we need to make sure head_blk is not pointing to a block in
706          * the middle of a log record.
707          */
708         num_scan_bblks = XLOG_REC_SHIFT(log);
709         if (head_blk >= num_scan_bblks) {
710                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711
712                 /* start ptr at last block ptr before head_blk */
713                 if ((error = xlog_find_verify_log_record(log, start_blk,
714                                                         &head_blk, 0)) == -1) {
715                         error = XFS_ERROR(EIO);
716                         goto bp_err;
717                 } else if (error)
718                         goto bp_err;
719         } else {
720                 start_blk = 0;
721                 ASSERT(head_blk <= INT_MAX);
722                 if ((error = xlog_find_verify_log_record(log, start_blk,
723                                                         &head_blk, 0)) == -1) {
724                         /* We hit the beginning of the log during our search */
725                         start_blk = log_bbnum - num_scan_bblks + head_blk;
726                         new_blk = log_bbnum;
727                         ASSERT(start_blk <= INT_MAX &&
728                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
729                         ASSERT(head_blk <= INT_MAX);
730                         if ((error = xlog_find_verify_log_record(log,
731                                                         start_blk, &new_blk,
732                                                         (int)head_blk)) == -1) {
733                                 error = XFS_ERROR(EIO);
734                                 goto bp_err;
735                         } else if (error)
736                                 goto bp_err;
737                         if (new_blk != log_bbnum)
738                                 head_blk = new_blk;
739                 } else if (error)
740                         goto bp_err;
741         }
742
743         xlog_put_bp(bp);
744         if (head_blk == log_bbnum)
745                 *return_head_blk = 0;
746         else
747                 *return_head_blk = head_blk;
748         /*
749          * When returning here, we have a good block number.  Bad block
750          * means that during a previous crash, we didn't have a clean break
751          * from cycle number N to cycle number N-1.  In this case, we need
752          * to find the first block with cycle number N-1.
753          */
754         return 0;
755
756  bp_err:
757         xlog_put_bp(bp);
758
759         if (error)
760             xlog_warn("XFS: failed to find log head");
761         return error;
762 }
763
764 /*
765  * Find the sync block number or the tail of the log.
766  *
767  * This will be the block number of the last record to have its
768  * associated buffers synced to disk.  Every log record header has
769  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
770  * to get a sync block number.  The only concern is to figure out which
771  * log record header to believe.
772  *
773  * The following algorithm uses the log record header with the largest
774  * lsn.  The entire log record does not need to be valid.  We only care
775  * that the header is valid.
776  *
777  * We could speed up search by using current head_blk buffer, but it is not
778  * available.
779  */
780 int
781 xlog_find_tail(
782         xlog_t                  *log,
783         xfs_daddr_t             *head_blk,
784         xfs_daddr_t             *tail_blk)
785 {
786         xlog_rec_header_t       *rhead;
787         xlog_op_header_t        *op_head;
788         xfs_caddr_t             offset = NULL;
789         xfs_buf_t               *bp;
790         int                     error, i, found;
791         xfs_daddr_t             umount_data_blk;
792         xfs_daddr_t             after_umount_blk;
793         xfs_lsn_t               tail_lsn;
794         int                     hblks;
795
796         found = 0;
797
798         /*
799          * Find previous log record
800          */
801         if ((error = xlog_find_head(log, head_blk)))
802                 return error;
803
804         bp = xlog_get_bp(log, 1);
805         if (!bp)
806                 return ENOMEM;
807         if (*head_blk == 0) {                           /* special case */
808                 if ((error = xlog_bread(log, 0, 1, bp)))
809                         goto bread_err;
810                 offset = xlog_align(log, 0, 1, bp);
811                 if (xlog_get_cycle(offset) == 0) {
812                         *tail_blk = 0;
813                         /* leave all other log inited values alone */
814                         goto exit;
815                 }
816         }
817
818         /*
819          * Search backwards looking for log record header block
820          */
821         ASSERT(*head_blk < INT_MAX);
822         for (i = (int)(*head_blk) - 1; i >= 0; i--) {
823                 if ((error = xlog_bread(log, i, 1, bp)))
824                         goto bread_err;
825                 offset = xlog_align(log, i, 1, bp);
826                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
827                         found = 1;
828                         break;
829                 }
830         }
831         /*
832          * If we haven't found the log record header block, start looking
833          * again from the end of the physical log.  XXXmiken: There should be
834          * a check here to make sure we didn't search more than N blocks in
835          * the previous code.
836          */
837         if (!found) {
838                 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
839                         if ((error = xlog_bread(log, i, 1, bp)))
840                                 goto bread_err;
841                         offset = xlog_align(log, i, 1, bp);
842                         if (XLOG_HEADER_MAGIC_NUM ==
843                             be32_to_cpu(*(__be32 *)offset)) {
844                                 found = 2;
845                                 break;
846                         }
847                 }
848         }
849         if (!found) {
850                 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
851                 ASSERT(0);
852                 return XFS_ERROR(EIO);
853         }
854
855         /* find blk_no of tail of log */
856         rhead = (xlog_rec_header_t *)offset;
857         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
858
859         /*
860          * Reset log values according to the state of the log when we
861          * crashed.  In the case where head_blk == 0, we bump curr_cycle
862          * one because the next write starts a new cycle rather than
863          * continuing the cycle of the last good log record.  At this
864          * point we have guaranteed that all partial log records have been
865          * accounted for.  Therefore, we know that the last good log record
866          * written was complete and ended exactly on the end boundary
867          * of the physical log.
868          */
869         log->l_prev_block = i;
870         log->l_curr_block = (int)*head_blk;
871         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
872         if (found == 2)
873                 log->l_curr_cycle++;
874         log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
875         log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
876         log->l_grant_reserve_cycle = log->l_curr_cycle;
877         log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
878         log->l_grant_write_cycle = log->l_curr_cycle;
879         log->l_grant_write_bytes = BBTOB(log->l_curr_block);
880
881         /*
882          * Look for unmount record.  If we find it, then we know there
883          * was a clean unmount.  Since 'i' could be the last block in
884          * the physical log, we convert to a log block before comparing
885          * to the head_blk.
886          *
887          * Save the current tail lsn to use to pass to
888          * xlog_clear_stale_blocks() below.  We won't want to clear the
889          * unmount record if there is one, so we pass the lsn of the
890          * unmount record rather than the block after it.
891          */
892         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
893                 int     h_size = be32_to_cpu(rhead->h_size);
894                 int     h_version = be32_to_cpu(rhead->h_version);
895
896                 if ((h_version & XLOG_VERSION_2) &&
897                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
898                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
899                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
900                                 hblks++;
901                 } else {
902                         hblks = 1;
903                 }
904         } else {
905                 hblks = 1;
906         }
907         after_umount_blk = (i + hblks + (int)
908                 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
909         tail_lsn = log->l_tail_lsn;
910         if (*head_blk == after_umount_blk &&
911             be32_to_cpu(rhead->h_num_logops) == 1) {
912                 umount_data_blk = (i + hblks) % log->l_logBBsize;
913                 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
914                         goto bread_err;
915                 }
916                 offset = xlog_align(log, umount_data_blk, 1, bp);
917                 op_head = (xlog_op_header_t *)offset;
918                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
919                         /*
920                          * Set tail and last sync so that newly written
921                          * log records will point recovery to after the
922                          * current unmount record.
923                          */
924                         log->l_tail_lsn =
925                                 xlog_assign_lsn(log->l_curr_cycle,
926                                                 after_umount_blk);
927                         log->l_last_sync_lsn =
928                                 xlog_assign_lsn(log->l_curr_cycle,
929                                                 after_umount_blk);
930                         *tail_blk = after_umount_blk;
931
932                         /*
933                          * Note that the unmount was clean. If the unmount
934                          * was not clean, we need to know this to rebuild the
935                          * superblock counters from the perag headers if we
936                          * have a filesystem using non-persistent counters.
937                          */
938                         log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
939                 }
940         }
941
942         /*
943          * Make sure that there are no blocks in front of the head
944          * with the same cycle number as the head.  This can happen
945          * because we allow multiple outstanding log writes concurrently,
946          * and the later writes might make it out before earlier ones.
947          *
948          * We use the lsn from before modifying it so that we'll never
949          * overwrite the unmount record after a clean unmount.
950          *
951          * Do this only if we are going to recover the filesystem
952          *
953          * NOTE: This used to say "if (!readonly)"
954          * However on Linux, we can & do recover a read-only filesystem.
955          * We only skip recovery if NORECOVERY is specified on mount,
956          * in which case we would not be here.
957          *
958          * But... if the -device- itself is readonly, just skip this.
959          * We can't recover this device anyway, so it won't matter.
960          */
961         if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
962                 error = xlog_clear_stale_blocks(log, tail_lsn);
963         }
964
965 bread_err:
966 exit:
967         xlog_put_bp(bp);
968
969         if (error)
970                 xlog_warn("XFS: failed to locate log tail");
971         return error;
972 }
973
974 /*
975  * Is the log zeroed at all?
976  *
977  * The last binary search should be changed to perform an X block read
978  * once X becomes small enough.  You can then search linearly through
979  * the X blocks.  This will cut down on the number of reads we need to do.
980  *
981  * If the log is partially zeroed, this routine will pass back the blkno
982  * of the first block with cycle number 0.  It won't have a complete LR
983  * preceding it.
984  *
985  * Return:
986  *      0  => the log is completely written to
987  *      -1 => use *blk_no as the first block of the log
988  *      >0 => error has occurred
989  */
990 STATIC int
991 xlog_find_zeroed(
992         xlog_t          *log,
993         xfs_daddr_t     *blk_no)
994 {
995         xfs_buf_t       *bp;
996         xfs_caddr_t     offset;
997         uint            first_cycle, last_cycle;
998         xfs_daddr_t     new_blk, last_blk, start_blk;
999         xfs_daddr_t     num_scan_bblks;
1000         int             error, log_bbnum = log->l_logBBsize;
1001
1002         *blk_no = 0;
1003
1004         /* check totally zeroed log */
1005         bp = xlog_get_bp(log, 1);
1006         if (!bp)
1007                 return ENOMEM;
1008         if ((error = xlog_bread(log, 0, 1, bp)))
1009                 goto bp_err;
1010         offset = xlog_align(log, 0, 1, bp);
1011         first_cycle = xlog_get_cycle(offset);
1012         if (first_cycle == 0) {         /* completely zeroed log */
1013                 *blk_no = 0;
1014                 xlog_put_bp(bp);
1015                 return -1;
1016         }
1017
1018         /* check partially zeroed log */
1019         if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1020                 goto bp_err;
1021         offset = xlog_align(log, log_bbnum-1, 1, bp);
1022         last_cycle = xlog_get_cycle(offset);
1023         if (last_cycle != 0) {          /* log completely written to */
1024                 xlog_put_bp(bp);
1025                 return 0;
1026         } else if (first_cycle != 1) {
1027                 /*
1028                  * If the cycle of the last block is zero, the cycle of
1029                  * the first block must be 1. If it's not, maybe we're
1030                  * not looking at a log... Bail out.
1031                  */
1032                 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1033                 return XFS_ERROR(EINVAL);
1034         }
1035
1036         /* we have a partially zeroed log */
1037         last_blk = log_bbnum-1;
1038         if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1039                 goto bp_err;
1040
1041         /*
1042          * Validate the answer.  Because there is no way to guarantee that
1043          * the entire log is made up of log records which are the same size,
1044          * we scan over the defined maximum blocks.  At this point, the maximum
1045          * is not chosen to mean anything special.   XXXmiken
1046          */
1047         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1048         ASSERT(num_scan_bblks <= INT_MAX);
1049
1050         if (last_blk < num_scan_bblks)
1051                 num_scan_bblks = last_blk;
1052         start_blk = last_blk - num_scan_bblks;
1053
1054         /*
1055          * We search for any instances of cycle number 0 that occur before
1056          * our current estimate of the head.  What we're trying to detect is
1057          *        1 ... | 0 | 1 | 0...
1058          *                       ^ binary search ends here
1059          */
1060         if ((error = xlog_find_verify_cycle(log, start_blk,
1061                                          (int)num_scan_bblks, 0, &new_blk)))
1062                 goto bp_err;
1063         if (new_blk != -1)
1064                 last_blk = new_blk;
1065
1066         /*
1067          * Potentially backup over partial log record write.  We don't need
1068          * to search the end of the log because we know it is zero.
1069          */
1070         if ((error = xlog_find_verify_log_record(log, start_blk,
1071                                 &last_blk, 0)) == -1) {
1072             error = XFS_ERROR(EIO);
1073             goto bp_err;
1074         } else if (error)
1075             goto bp_err;
1076
1077         *blk_no = last_blk;
1078 bp_err:
1079         xlog_put_bp(bp);
1080         if (error)
1081                 return error;
1082         return -1;
1083 }
1084
1085 /*
1086  * These are simple subroutines used by xlog_clear_stale_blocks() below
1087  * to initialize a buffer full of empty log record headers and write
1088  * them into the log.
1089  */
1090 STATIC void
1091 xlog_add_record(
1092         xlog_t                  *log,
1093         xfs_caddr_t             buf,
1094         int                     cycle,
1095         int                     block,
1096         int                     tail_cycle,
1097         int                     tail_block)
1098 {
1099         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1100
1101         memset(buf, 0, BBSIZE);
1102         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1103         recp->h_cycle = cpu_to_be32(cycle);
1104         recp->h_version = cpu_to_be32(
1105                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1106         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1107         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1108         recp->h_fmt = cpu_to_be32(XLOG_FMT);
1109         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1110 }
1111
1112 STATIC int
1113 xlog_write_log_records(
1114         xlog_t          *log,
1115         int             cycle,
1116         int             start_block,
1117         int             blocks,
1118         int             tail_cycle,
1119         int             tail_block)
1120 {
1121         xfs_caddr_t     offset;
1122         xfs_buf_t       *bp;
1123         int             balign, ealign;
1124         int             sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1125         int             end_block = start_block + blocks;
1126         int             bufblks;
1127         int             error = 0;
1128         int             i, j = 0;
1129
1130         bufblks = 1 << ffs(blocks);
1131         while (!(bp = xlog_get_bp(log, bufblks))) {
1132                 bufblks >>= 1;
1133                 if (bufblks <= log->l_sectbb_log)
1134                         return ENOMEM;
1135         }
1136
1137         /* We may need to do a read at the start to fill in part of
1138          * the buffer in the starting sector not covered by the first
1139          * write below.
1140          */
1141         balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1142         if (balign != start_block) {
1143                 if ((error = xlog_bread(log, start_block, 1, bp))) {
1144                         xlog_put_bp(bp);
1145                         return error;
1146                 }
1147                 j = start_block - balign;
1148         }
1149
1150         for (i = start_block; i < end_block; i += bufblks) {
1151                 int             bcount, endcount;
1152
1153                 bcount = min(bufblks, end_block - start_block);
1154                 endcount = bcount - j;
1155
1156                 /* We may need to do a read at the end to fill in part of
1157                  * the buffer in the final sector not covered by the write.
1158                  * If this is the same sector as the above read, skip it.
1159                  */
1160                 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1161                 if (j == 0 && (start_block + endcount > ealign)) {
1162                         offset = XFS_BUF_PTR(bp);
1163                         balign = BBTOB(ealign - start_block);
1164                         XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1165                         if ((error = xlog_bread(log, ealign, sectbb, bp)))
1166                                 break;
1167                         XFS_BUF_SET_PTR(bp, offset, bufblks);
1168                 }
1169
1170                 offset = xlog_align(log, start_block, endcount, bp);
1171                 for (; j < endcount; j++) {
1172                         xlog_add_record(log, offset, cycle, i+j,
1173                                         tail_cycle, tail_block);
1174                         offset += BBSIZE;
1175                 }
1176                 error = xlog_bwrite(log, start_block, endcount, bp);
1177                 if (error)
1178                         break;
1179                 start_block += endcount;
1180                 j = 0;
1181         }
1182         xlog_put_bp(bp);
1183         return error;
1184 }
1185
1186 /*
1187  * This routine is called to blow away any incomplete log writes out
1188  * in front of the log head.  We do this so that we won't become confused
1189  * if we come up, write only a little bit more, and then crash again.
1190  * If we leave the partial log records out there, this situation could
1191  * cause us to think those partial writes are valid blocks since they
1192  * have the current cycle number.  We get rid of them by overwriting them
1193  * with empty log records with the old cycle number rather than the
1194  * current one.
1195  *
1196  * The tail lsn is passed in rather than taken from
1197  * the log so that we will not write over the unmount record after a
1198  * clean unmount in a 512 block log.  Doing so would leave the log without
1199  * any valid log records in it until a new one was written.  If we crashed
1200  * during that time we would not be able to recover.
1201  */
1202 STATIC int
1203 xlog_clear_stale_blocks(
1204         xlog_t          *log,
1205         xfs_lsn_t       tail_lsn)
1206 {
1207         int             tail_cycle, head_cycle;
1208         int             tail_block, head_block;
1209         int             tail_distance, max_distance;
1210         int             distance;
1211         int             error;
1212
1213         tail_cycle = CYCLE_LSN(tail_lsn);
1214         tail_block = BLOCK_LSN(tail_lsn);
1215         head_cycle = log->l_curr_cycle;
1216         head_block = log->l_curr_block;
1217
1218         /*
1219          * Figure out the distance between the new head of the log
1220          * and the tail.  We want to write over any blocks beyond the
1221          * head that we may have written just before the crash, but
1222          * we don't want to overwrite the tail of the log.
1223          */
1224         if (head_cycle == tail_cycle) {
1225                 /*
1226                  * The tail is behind the head in the physical log,
1227                  * so the distance from the head to the tail is the
1228                  * distance from the head to the end of the log plus
1229                  * the distance from the beginning of the log to the
1230                  * tail.
1231                  */
1232                 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1233                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1234                                          XFS_ERRLEVEL_LOW, log->l_mp);
1235                         return XFS_ERROR(EFSCORRUPTED);
1236                 }
1237                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1238         } else {
1239                 /*
1240                  * The head is behind the tail in the physical log,
1241                  * so the distance from the head to the tail is just
1242                  * the tail block minus the head block.
1243                  */
1244                 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1245                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1246                                          XFS_ERRLEVEL_LOW, log->l_mp);
1247                         return XFS_ERROR(EFSCORRUPTED);
1248                 }
1249                 tail_distance = tail_block - head_block;
1250         }
1251
1252         /*
1253          * If the head is right up against the tail, we can't clear
1254          * anything.
1255          */
1256         if (tail_distance <= 0) {
1257                 ASSERT(tail_distance == 0);
1258                 return 0;
1259         }
1260
1261         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1262         /*
1263          * Take the smaller of the maximum amount of outstanding I/O
1264          * we could have and the distance to the tail to clear out.
1265          * We take the smaller so that we don't overwrite the tail and
1266          * we don't waste all day writing from the head to the tail
1267          * for no reason.
1268          */
1269         max_distance = MIN(max_distance, tail_distance);
1270
1271         if ((head_block + max_distance) <= log->l_logBBsize) {
1272                 /*
1273                  * We can stomp all the blocks we need to without
1274                  * wrapping around the end of the log.  Just do it
1275                  * in a single write.  Use the cycle number of the
1276                  * current cycle minus one so that the log will look like:
1277                  *     n ... | n - 1 ...
1278                  */
1279                 error = xlog_write_log_records(log, (head_cycle - 1),
1280                                 head_block, max_distance, tail_cycle,
1281                                 tail_block);
1282                 if (error)
1283                         return error;
1284         } else {
1285                 /*
1286                  * We need to wrap around the end of the physical log in
1287                  * order to clear all the blocks.  Do it in two separate
1288                  * I/Os.  The first write should be from the head to the
1289                  * end of the physical log, and it should use the current
1290                  * cycle number minus one just like above.
1291                  */
1292                 distance = log->l_logBBsize - head_block;
1293                 error = xlog_write_log_records(log, (head_cycle - 1),
1294                                 head_block, distance, tail_cycle,
1295                                 tail_block);
1296
1297                 if (error)
1298                         return error;
1299
1300                 /*
1301                  * Now write the blocks at the start of the physical log.
1302                  * This writes the remainder of the blocks we want to clear.
1303                  * It uses the current cycle number since we're now on the
1304                  * same cycle as the head so that we get:
1305                  *    n ... n ... | n - 1 ...
1306                  *    ^^^^^ blocks we're writing
1307                  */
1308                 distance = max_distance - (log->l_logBBsize - head_block);
1309                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1310                                 tail_cycle, tail_block);
1311                 if (error)
1312                         return error;
1313         }
1314
1315         return 0;
1316 }
1317
1318 /******************************************************************************
1319  *
1320  *              Log recover routines
1321  *
1322  ******************************************************************************
1323  */
1324
1325 STATIC xlog_recover_t *
1326 xlog_recover_find_tid(
1327         xlog_recover_t          *q,
1328         xlog_tid_t              tid)
1329 {
1330         xlog_recover_t          *p = q;
1331
1332         while (p != NULL) {
1333                 if (p->r_log_tid == tid)
1334                     break;
1335                 p = p->r_next;
1336         }
1337         return p;
1338 }
1339
1340 STATIC void
1341 xlog_recover_put_hashq(
1342         xlog_recover_t          **q,
1343         xlog_recover_t          *trans)
1344 {
1345         trans->r_next = *q;
1346         *q = trans;
1347 }
1348
1349 STATIC void
1350 xlog_recover_add_item(
1351         xlog_recover_item_t     **itemq)
1352 {
1353         xlog_recover_item_t     *item;
1354
1355         item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1356         xlog_recover_insert_item_backq(itemq, item);
1357 }
1358
1359 STATIC int
1360 xlog_recover_add_to_cont_trans(
1361         xlog_recover_t          *trans,
1362         xfs_caddr_t             dp,
1363         int                     len)
1364 {
1365         xlog_recover_item_t     *item;
1366         xfs_caddr_t             ptr, old_ptr;
1367         int                     old_len;
1368
1369         item = trans->r_itemq;
1370         if (item == NULL) {
1371                 /* finish copying rest of trans header */
1372                 xlog_recover_add_item(&trans->r_itemq);
1373                 ptr = (xfs_caddr_t) &trans->r_theader +
1374                                 sizeof(xfs_trans_header_t) - len;
1375                 memcpy(ptr, dp, len); /* d, s, l */
1376                 return 0;
1377         }
1378         item = item->ri_prev;
1379
1380         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1381         old_len = item->ri_buf[item->ri_cnt-1].i_len;
1382
1383         ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1384         memcpy(&ptr[old_len], dp, len); /* d, s, l */
1385         item->ri_buf[item->ri_cnt-1].i_len += len;
1386         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1387         return 0;
1388 }
1389
1390 /*
1391  * The next region to add is the start of a new region.  It could be
1392  * a whole region or it could be the first part of a new region.  Because
1393  * of this, the assumption here is that the type and size fields of all
1394  * format structures fit into the first 32 bits of the structure.
1395  *
1396  * This works because all regions must be 32 bit aligned.  Therefore, we
1397  * either have both fields or we have neither field.  In the case we have
1398  * neither field, the data part of the region is zero length.  We only have
1399  * a log_op_header and can throw away the header since a new one will appear
1400  * later.  If we have at least 4 bytes, then we can determine how many regions
1401  * will appear in the current log item.
1402  */
1403 STATIC int
1404 xlog_recover_add_to_trans(
1405         xlog_recover_t          *trans,
1406         xfs_caddr_t             dp,
1407         int                     len)
1408 {
1409         xfs_inode_log_format_t  *in_f;                  /* any will do */
1410         xlog_recover_item_t     *item;
1411         xfs_caddr_t             ptr;
1412
1413         if (!len)
1414                 return 0;
1415         item = trans->r_itemq;
1416         if (item == NULL) {
1417                 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1418                 if (len == sizeof(xfs_trans_header_t))
1419                         xlog_recover_add_item(&trans->r_itemq);
1420                 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1421                 return 0;
1422         }
1423
1424         ptr = kmem_alloc(len, KM_SLEEP);
1425         memcpy(ptr, dp, len);
1426         in_f = (xfs_inode_log_format_t *)ptr;
1427
1428         if (item->ri_prev->ri_total != 0 &&
1429              item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1430                 xlog_recover_add_item(&trans->r_itemq);
1431         }
1432         item = trans->r_itemq;
1433         item = item->ri_prev;
1434
1435         if (item->ri_total == 0) {              /* first region to be added */
1436                 item->ri_total  = in_f->ilf_size;
1437                 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1438                 item->ri_buf = kmem_zalloc((item->ri_total *
1439                                             sizeof(xfs_log_iovec_t)), KM_SLEEP);
1440         }
1441         ASSERT(item->ri_total > item->ri_cnt);
1442         /* Description region is ri_buf[0] */
1443         item->ri_buf[item->ri_cnt].i_addr = ptr;
1444         item->ri_buf[item->ri_cnt].i_len  = len;
1445         item->ri_cnt++;
1446         return 0;
1447 }
1448
1449 STATIC void
1450 xlog_recover_new_tid(
1451         xlog_recover_t          **q,
1452         xlog_tid_t              tid,
1453         xfs_lsn_t               lsn)
1454 {
1455         xlog_recover_t          *trans;
1456
1457         trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1458         trans->r_log_tid   = tid;
1459         trans->r_lsn       = lsn;
1460         xlog_recover_put_hashq(q, trans);
1461 }
1462
1463 STATIC int
1464 xlog_recover_unlink_tid(
1465         xlog_recover_t          **q,
1466         xlog_recover_t          *trans)
1467 {
1468         xlog_recover_t          *tp;
1469         int                     found = 0;
1470
1471         ASSERT(trans != NULL);
1472         if (trans == *q) {
1473                 *q = (*q)->r_next;
1474         } else {
1475                 tp = *q;
1476                 while (tp) {
1477                         if (tp->r_next == trans) {
1478                                 found = 1;
1479                                 break;
1480                         }
1481                         tp = tp->r_next;
1482                 }
1483                 if (!found) {
1484                         xlog_warn(
1485                              "XFS: xlog_recover_unlink_tid: trans not found");
1486                         ASSERT(0);
1487                         return XFS_ERROR(EIO);
1488                 }
1489                 tp->r_next = tp->r_next->r_next;
1490         }
1491         return 0;
1492 }
1493
1494 STATIC void
1495 xlog_recover_insert_item_backq(
1496         xlog_recover_item_t     **q,
1497         xlog_recover_item_t     *item)
1498 {
1499         if (*q == NULL) {
1500                 item->ri_prev = item->ri_next = item;
1501                 *q = item;
1502         } else {
1503                 item->ri_next           = *q;
1504                 item->ri_prev           = (*q)->ri_prev;
1505                 (*q)->ri_prev           = item;
1506                 item->ri_prev->ri_next  = item;
1507         }
1508 }
1509
1510 STATIC void
1511 xlog_recover_insert_item_frontq(
1512         xlog_recover_item_t     **q,
1513         xlog_recover_item_t     *item)
1514 {
1515         xlog_recover_insert_item_backq(q, item);
1516         *q = item;
1517 }
1518
1519 STATIC int
1520 xlog_recover_reorder_trans(
1521         xlog_recover_t          *trans)
1522 {
1523         xlog_recover_item_t     *first_item, *itemq, *itemq_next;
1524         xfs_buf_log_format_t    *buf_f;
1525         ushort                  flags = 0;
1526
1527         first_item = itemq = trans->r_itemq;
1528         trans->r_itemq = NULL;
1529         do {
1530                 itemq_next = itemq->ri_next;
1531                 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1532
1533                 switch (ITEM_TYPE(itemq)) {
1534                 case XFS_LI_BUF:
1535                         flags = buf_f->blf_flags;
1536                         if (!(flags & XFS_BLI_CANCEL)) {
1537                                 xlog_recover_insert_item_frontq(&trans->r_itemq,
1538                                                                 itemq);
1539                                 break;
1540                         }
1541                 case XFS_LI_INODE:
1542                 case XFS_LI_DQUOT:
1543                 case XFS_LI_QUOTAOFF:
1544                 case XFS_LI_EFD:
1545                 case XFS_LI_EFI:
1546                         xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1547                         break;
1548                 default:
1549                         xlog_warn(
1550         "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1551                         ASSERT(0);
1552                         return XFS_ERROR(EIO);
1553                 }
1554                 itemq = itemq_next;
1555         } while (first_item != itemq);
1556         return 0;
1557 }
1558
1559 /*
1560  * Build up the table of buf cancel records so that we don't replay
1561  * cancelled data in the second pass.  For buffer records that are
1562  * not cancel records, there is nothing to do here so we just return.
1563  *
1564  * If we get a cancel record which is already in the table, this indicates
1565  * that the buffer was cancelled multiple times.  In order to ensure
1566  * that during pass 2 we keep the record in the table until we reach its
1567  * last occurrence in the log, we keep a reference count in the cancel
1568  * record in the table to tell us how many times we expect to see this
1569  * record during the second pass.
1570  */
1571 STATIC void
1572 xlog_recover_do_buffer_pass1(
1573         xlog_t                  *log,
1574         xfs_buf_log_format_t    *buf_f)
1575 {
1576         xfs_buf_cancel_t        *bcp;
1577         xfs_buf_cancel_t        *nextp;
1578         xfs_buf_cancel_t        *prevp;
1579         xfs_buf_cancel_t        **bucket;
1580         xfs_daddr_t             blkno = 0;
1581         uint                    len = 0;
1582         ushort                  flags = 0;
1583
1584         switch (buf_f->blf_type) {
1585         case XFS_LI_BUF:
1586                 blkno = buf_f->blf_blkno;
1587                 len = buf_f->blf_len;
1588                 flags = buf_f->blf_flags;
1589                 break;
1590         }
1591
1592         /*
1593          * If this isn't a cancel buffer item, then just return.
1594          */
1595         if (!(flags & XFS_BLI_CANCEL))
1596                 return;
1597
1598         /*
1599          * Insert an xfs_buf_cancel record into the hash table of
1600          * them.  If there is already an identical record, bump
1601          * its reference count.
1602          */
1603         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1604                                           XLOG_BC_TABLE_SIZE];
1605         /*
1606          * If the hash bucket is empty then just insert a new record into
1607          * the bucket.
1608          */
1609         if (*bucket == NULL) {
1610                 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1611                                                      KM_SLEEP);
1612                 bcp->bc_blkno = blkno;
1613                 bcp->bc_len = len;
1614                 bcp->bc_refcount = 1;
1615                 bcp->bc_next = NULL;
1616                 *bucket = bcp;
1617                 return;
1618         }
1619
1620         /*
1621          * The hash bucket is not empty, so search for duplicates of our
1622          * record.  If we find one them just bump its refcount.  If not
1623          * then add us at the end of the list.
1624          */
1625         prevp = NULL;
1626         nextp = *bucket;
1627         while (nextp != NULL) {
1628                 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1629                         nextp->bc_refcount++;
1630                         return;
1631                 }
1632                 prevp = nextp;
1633                 nextp = nextp->bc_next;
1634         }
1635         ASSERT(prevp != NULL);
1636         bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1637                                              KM_SLEEP);
1638         bcp->bc_blkno = blkno;
1639         bcp->bc_len = len;
1640         bcp->bc_refcount = 1;
1641         bcp->bc_next = NULL;
1642         prevp->bc_next = bcp;
1643 }
1644
1645 /*
1646  * Check to see whether the buffer being recovered has a corresponding
1647  * entry in the buffer cancel record table.  If it does then return 1
1648  * so that it will be cancelled, otherwise return 0.  If the buffer is
1649  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1650  * the refcount on the entry in the table and remove it from the table
1651  * if this is the last reference.
1652  *
1653  * We remove the cancel record from the table when we encounter its
1654  * last occurrence in the log so that if the same buffer is re-used
1655  * again after its last cancellation we actually replay the changes
1656  * made at that point.
1657  */
1658 STATIC int
1659 xlog_check_buffer_cancelled(
1660         xlog_t                  *log,
1661         xfs_daddr_t             blkno,
1662         uint                    len,
1663         ushort                  flags)
1664 {
1665         xfs_buf_cancel_t        *bcp;
1666         xfs_buf_cancel_t        *prevp;
1667         xfs_buf_cancel_t        **bucket;
1668
1669         if (log->l_buf_cancel_table == NULL) {
1670                 /*
1671                  * There is nothing in the table built in pass one,
1672                  * so this buffer must not be cancelled.
1673                  */
1674                 ASSERT(!(flags & XFS_BLI_CANCEL));
1675                 return 0;
1676         }
1677
1678         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1679                                           XLOG_BC_TABLE_SIZE];
1680         bcp = *bucket;
1681         if (bcp == NULL) {
1682                 /*
1683                  * There is no corresponding entry in the table built
1684                  * in pass one, so this buffer has not been cancelled.
1685                  */
1686                 ASSERT(!(flags & XFS_BLI_CANCEL));
1687                 return 0;
1688         }
1689
1690         /*
1691          * Search for an entry in the buffer cancel table that
1692          * matches our buffer.
1693          */
1694         prevp = NULL;
1695         while (bcp != NULL) {
1696                 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1697                         /*
1698                          * We've go a match, so return 1 so that the
1699                          * recovery of this buffer is cancelled.
1700                          * If this buffer is actually a buffer cancel
1701                          * log item, then decrement the refcount on the
1702                          * one in the table and remove it if this is the
1703                          * last reference.
1704                          */
1705                         if (flags & XFS_BLI_CANCEL) {
1706                                 bcp->bc_refcount--;
1707                                 if (bcp->bc_refcount == 0) {
1708                                         if (prevp == NULL) {
1709                                                 *bucket = bcp->bc_next;
1710                                         } else {
1711                                                 prevp->bc_next = bcp->bc_next;
1712                                         }
1713                                         kmem_free(bcp,
1714                                                   sizeof(xfs_buf_cancel_t));
1715                                 }
1716                         }
1717                         return 1;
1718                 }
1719                 prevp = bcp;
1720                 bcp = bcp->bc_next;
1721         }
1722         /*
1723          * We didn't find a corresponding entry in the table, so
1724          * return 0 so that the buffer is NOT cancelled.
1725          */
1726         ASSERT(!(flags & XFS_BLI_CANCEL));
1727         return 0;
1728 }
1729
1730 STATIC int
1731 xlog_recover_do_buffer_pass2(
1732         xlog_t                  *log,
1733         xfs_buf_log_format_t    *buf_f)
1734 {
1735         xfs_daddr_t             blkno = 0;
1736         ushort                  flags = 0;
1737         uint                    len = 0;
1738
1739         switch (buf_f->blf_type) {
1740         case XFS_LI_BUF:
1741                 blkno = buf_f->blf_blkno;
1742                 flags = buf_f->blf_flags;
1743                 len = buf_f->blf_len;
1744                 break;
1745         }
1746
1747         return xlog_check_buffer_cancelled(log, blkno, len, flags);
1748 }
1749
1750 /*
1751  * Perform recovery for a buffer full of inodes.  In these buffers,
1752  * the only data which should be recovered is that which corresponds
1753  * to the di_next_unlinked pointers in the on disk inode structures.
1754  * The rest of the data for the inodes is always logged through the
1755  * inodes themselves rather than the inode buffer and is recovered
1756  * in xlog_recover_do_inode_trans().
1757  *
1758  * The only time when buffers full of inodes are fully recovered is
1759  * when the buffer is full of newly allocated inodes.  In this case
1760  * the buffer will not be marked as an inode buffer and so will be
1761  * sent to xlog_recover_do_reg_buffer() below during recovery.
1762  */
1763 STATIC int
1764 xlog_recover_do_inode_buffer(
1765         xfs_mount_t             *mp,
1766         xlog_recover_item_t     *item,
1767         xfs_buf_t               *bp,
1768         xfs_buf_log_format_t    *buf_f)
1769 {
1770         int                     i;
1771         int                     item_index;
1772         int                     bit;
1773         int                     nbits;
1774         int                     reg_buf_offset;
1775         int                     reg_buf_bytes;
1776         int                     next_unlinked_offset;
1777         int                     inodes_per_buf;
1778         xfs_agino_t             *logged_nextp;
1779         xfs_agino_t             *buffer_nextp;
1780         unsigned int            *data_map = NULL;
1781         unsigned int            map_size = 0;
1782
1783         switch (buf_f->blf_type) {
1784         case XFS_LI_BUF:
1785                 data_map = buf_f->blf_data_map;
1786                 map_size = buf_f->blf_map_size;
1787                 break;
1788         }
1789         /*
1790          * Set the variables corresponding to the current region to
1791          * 0 so that we'll initialize them on the first pass through
1792          * the loop.
1793          */
1794         reg_buf_offset = 0;
1795         reg_buf_bytes = 0;
1796         bit = 0;
1797         nbits = 0;
1798         item_index = 0;
1799         inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1800         for (i = 0; i < inodes_per_buf; i++) {
1801                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1802                         offsetof(xfs_dinode_t, di_next_unlinked);
1803
1804                 while (next_unlinked_offset >=
1805                        (reg_buf_offset + reg_buf_bytes)) {
1806                         /*
1807                          * The next di_next_unlinked field is beyond
1808                          * the current logged region.  Find the next
1809                          * logged region that contains or is beyond
1810                          * the current di_next_unlinked field.
1811                          */
1812                         bit += nbits;
1813                         bit = xfs_next_bit(data_map, map_size, bit);
1814
1815                         /*
1816                          * If there are no more logged regions in the
1817                          * buffer, then we're done.
1818                          */
1819                         if (bit == -1) {
1820                                 return 0;
1821                         }
1822
1823                         nbits = xfs_contig_bits(data_map, map_size,
1824                                                          bit);
1825                         ASSERT(nbits > 0);
1826                         reg_buf_offset = bit << XFS_BLI_SHIFT;
1827                         reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1828                         item_index++;
1829                 }
1830
1831                 /*
1832                  * If the current logged region starts after the current
1833                  * di_next_unlinked field, then move on to the next
1834                  * di_next_unlinked field.
1835                  */
1836                 if (next_unlinked_offset < reg_buf_offset) {
1837                         continue;
1838                 }
1839
1840                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1841                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1842                 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1843
1844                 /*
1845                  * The current logged region contains a copy of the
1846                  * current di_next_unlinked field.  Extract its value
1847                  * and copy it to the buffer copy.
1848                  */
1849                 logged_nextp = (xfs_agino_t *)
1850                                ((char *)(item->ri_buf[item_index].i_addr) +
1851                                 (next_unlinked_offset - reg_buf_offset));
1852                 if (unlikely(*logged_nextp == 0)) {
1853                         xfs_fs_cmn_err(CE_ALERT, mp,
1854                                 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1855                                 item, bp);
1856                         XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1857                                          XFS_ERRLEVEL_LOW, mp);
1858                         return XFS_ERROR(EFSCORRUPTED);
1859                 }
1860
1861                 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1862                                               next_unlinked_offset);
1863                 *buffer_nextp = *logged_nextp;
1864         }
1865
1866         return 0;
1867 }
1868
1869 /*
1870  * Perform a 'normal' buffer recovery.  Each logged region of the
1871  * buffer should be copied over the corresponding region in the
1872  * given buffer.  The bitmap in the buf log format structure indicates
1873  * where to place the logged data.
1874  */
1875 /*ARGSUSED*/
1876 STATIC void
1877 xlog_recover_do_reg_buffer(
1878         xlog_recover_item_t     *item,
1879         xfs_buf_t               *bp,
1880         xfs_buf_log_format_t    *buf_f)
1881 {
1882         int                     i;
1883         int                     bit;
1884         int                     nbits;
1885         unsigned int            *data_map = NULL;
1886         unsigned int            map_size = 0;
1887         int                     error;
1888
1889         switch (buf_f->blf_type) {
1890         case XFS_LI_BUF:
1891                 data_map = buf_f->blf_data_map;
1892                 map_size = buf_f->blf_map_size;
1893                 break;
1894         }
1895         bit = 0;
1896         i = 1;  /* 0 is the buf format structure */
1897         while (1) {
1898                 bit = xfs_next_bit(data_map, map_size, bit);
1899                 if (bit == -1)
1900                         break;
1901                 nbits = xfs_contig_bits(data_map, map_size, bit);
1902                 ASSERT(nbits > 0);
1903                 ASSERT(item->ri_buf[i].i_addr != NULL);
1904                 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1905                 ASSERT(XFS_BUF_COUNT(bp) >=
1906                        ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1907
1908                 /*
1909                  * Do a sanity check if this is a dquot buffer. Just checking
1910                  * the first dquot in the buffer should do. XXXThis is
1911                  * probably a good thing to do for other buf types also.
1912                  */
1913                 error = 0;
1914                 if (buf_f->blf_flags &
1915                    (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1916                         error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1917                                                item->ri_buf[i].i_addr,
1918                                                -1, 0, XFS_QMOPT_DOWARN,
1919                                                "dquot_buf_recover");
1920                 }
1921                 if (!error)
1922                         memcpy(xfs_buf_offset(bp,
1923                                 (uint)bit << XFS_BLI_SHIFT),    /* dest */
1924                                 item->ri_buf[i].i_addr,         /* source */
1925                                 nbits<<XFS_BLI_SHIFT);          /* length */
1926                 i++;
1927                 bit += nbits;
1928         }
1929
1930         /* Shouldn't be any more regions */
1931         ASSERT(i == item->ri_total);
1932 }
1933
1934 /*
1935  * Do some primitive error checking on ondisk dquot data structures.
1936  */
1937 int
1938 xfs_qm_dqcheck(
1939         xfs_disk_dquot_t *ddq,
1940         xfs_dqid_t       id,
1941         uint             type,    /* used only when IO_dorepair is true */
1942         uint             flags,
1943         char             *str)
1944 {
1945         xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1946         int             errs = 0;
1947
1948         /*
1949          * We can encounter an uninitialized dquot buffer for 2 reasons:
1950          * 1. If we crash while deleting the quotainode(s), and those blks got
1951          *    used for user data. This is because we take the path of regular
1952          *    file deletion; however, the size field of quotainodes is never
1953          *    updated, so all the tricks that we play in itruncate_finish
1954          *    don't quite matter.
1955          *
1956          * 2. We don't play the quota buffers when there's a quotaoff logitem.
1957          *    But the allocation will be replayed so we'll end up with an
1958          *    uninitialized quota block.
1959          *
1960          * This is all fine; things are still consistent, and we haven't lost
1961          * any quota information. Just don't complain about bad dquot blks.
1962          */
1963         if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1964                 if (flags & XFS_QMOPT_DOWARN)
1965                         cmn_err(CE_ALERT,
1966                         "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1967                         str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1968                 errs++;
1969         }
1970         if (ddq->d_version != XFS_DQUOT_VERSION) {
1971                 if (flags & XFS_QMOPT_DOWARN)
1972                         cmn_err(CE_ALERT,
1973                         "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1974                         str, id, ddq->d_version, XFS_DQUOT_VERSION);
1975                 errs++;
1976         }
1977
1978         if (ddq->d_flags != XFS_DQ_USER &&
1979             ddq->d_flags != XFS_DQ_PROJ &&
1980             ddq->d_flags != XFS_DQ_GROUP) {
1981                 if (flags & XFS_QMOPT_DOWARN)
1982                         cmn_err(CE_ALERT,
1983                         "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1984                         str, id, ddq->d_flags);
1985                 errs++;
1986         }
1987
1988         if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1989                 if (flags & XFS_QMOPT_DOWARN)
1990                         cmn_err(CE_ALERT,
1991                         "%s : ondisk-dquot 0x%p, ID mismatch: "
1992                         "0x%x expected, found id 0x%x",
1993                         str, ddq, id, be32_to_cpu(ddq->d_id));
1994                 errs++;
1995         }
1996
1997         if (!errs && ddq->d_id) {
1998                 if (ddq->d_blk_softlimit &&
1999                     be64_to_cpu(ddq->d_bcount) >=
2000                                 be64_to_cpu(ddq->d_blk_softlimit)) {
2001                         if (!ddq->d_btimer) {
2002                                 if (flags & XFS_QMOPT_DOWARN)
2003                                         cmn_err(CE_ALERT,
2004                                         "%s : Dquot ID 0x%x (0x%p) "
2005                                         "BLK TIMER NOT STARTED",
2006                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2007                                 errs++;
2008                         }
2009                 }
2010                 if (ddq->d_ino_softlimit &&
2011                     be64_to_cpu(ddq->d_icount) >=
2012                                 be64_to_cpu(ddq->d_ino_softlimit)) {
2013                         if (!ddq->d_itimer) {
2014                                 if (flags & XFS_QMOPT_DOWARN)
2015                                         cmn_err(CE_ALERT,
2016                                         "%s : Dquot ID 0x%x (0x%p) "
2017                                         "INODE TIMER NOT STARTED",
2018                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2019                                 errs++;
2020                         }
2021                 }
2022                 if (ddq->d_rtb_softlimit &&
2023                     be64_to_cpu(ddq->d_rtbcount) >=
2024                                 be64_to_cpu(ddq->d_rtb_softlimit)) {
2025                         if (!ddq->d_rtbtimer) {
2026                                 if (flags & XFS_QMOPT_DOWARN)
2027                                         cmn_err(CE_ALERT,
2028                                         "%s : Dquot ID 0x%x (0x%p) "
2029                                         "RTBLK TIMER NOT STARTED",
2030                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2031                                 errs++;
2032                         }
2033                 }
2034         }
2035
2036         if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2037                 return errs;
2038
2039         if (flags & XFS_QMOPT_DOWARN)
2040                 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2041
2042         /*
2043          * Typically, a repair is only requested by quotacheck.
2044          */
2045         ASSERT(id != -1);
2046         ASSERT(flags & XFS_QMOPT_DQREPAIR);
2047         memset(d, 0, sizeof(xfs_dqblk_t));
2048
2049         d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2050         d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2051         d->dd_diskdq.d_flags = type;
2052         d->dd_diskdq.d_id = cpu_to_be32(id);
2053
2054         return errs;
2055 }
2056
2057 /*
2058  * Perform a dquot buffer recovery.
2059  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2060  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2061  * Else, treat it as a regular buffer and do recovery.
2062  */
2063 STATIC void
2064 xlog_recover_do_dquot_buffer(
2065         xfs_mount_t             *mp,
2066         xlog_t                  *log,
2067         xlog_recover_item_t     *item,
2068         xfs_buf_t               *bp,
2069         xfs_buf_log_format_t    *buf_f)
2070 {
2071         uint                    type;
2072
2073         /*
2074          * Filesystems are required to send in quota flags at mount time.
2075          */
2076         if (mp->m_qflags == 0) {
2077                 return;
2078         }
2079
2080         type = 0;
2081         if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2082                 type |= XFS_DQ_USER;
2083         if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2084                 type |= XFS_DQ_PROJ;
2085         if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2086                 type |= XFS_DQ_GROUP;
2087         /*
2088          * This type of quotas was turned off, so ignore this buffer
2089          */
2090         if (log->l_quotaoffs_flag & type)
2091                 return;
2092
2093         xlog_recover_do_reg_buffer(item, bp, buf_f);
2094 }
2095
2096 /*
2097  * This routine replays a modification made to a buffer at runtime.
2098  * There are actually two types of buffer, regular and inode, which
2099  * are handled differently.  Inode buffers are handled differently
2100  * in that we only recover a specific set of data from them, namely
2101  * the inode di_next_unlinked fields.  This is because all other inode
2102  * data is actually logged via inode records and any data we replay
2103  * here which overlaps that may be stale.
2104  *
2105  * When meta-data buffers are freed at run time we log a buffer item
2106  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2107  * of the buffer in the log should not be replayed at recovery time.
2108  * This is so that if the blocks covered by the buffer are reused for
2109  * file data before we crash we don't end up replaying old, freed
2110  * meta-data into a user's file.
2111  *
2112  * To handle the cancellation of buffer log items, we make two passes
2113  * over the log during recovery.  During the first we build a table of
2114  * those buffers which have been cancelled, and during the second we
2115  * only replay those buffers which do not have corresponding cancel
2116  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2117  * for more details on the implementation of the table of cancel records.
2118  */
2119 STATIC int
2120 xlog_recover_do_buffer_trans(
2121         xlog_t                  *log,
2122         xlog_recover_item_t     *item,
2123         int                     pass)
2124 {
2125         xfs_buf_log_format_t    *buf_f;
2126         xfs_mount_t             *mp;
2127         xfs_buf_t               *bp;
2128         int                     error;
2129         int                     cancel;
2130         xfs_daddr_t             blkno;
2131         int                     len;
2132         ushort                  flags;
2133
2134         buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2135
2136         if (pass == XLOG_RECOVER_PASS1) {
2137                 /*
2138                  * In this pass we're only looking for buf items
2139                  * with the XFS_BLI_CANCEL bit set.
2140                  */
2141                 xlog_recover_do_buffer_pass1(log, buf_f);
2142                 return 0;
2143         } else {
2144                 /*
2145                  * In this pass we want to recover all the buffers
2146                  * which have not been cancelled and are not
2147                  * cancellation buffers themselves.  The routine
2148                  * we call here will tell us whether or not to
2149                  * continue with the replay of this buffer.
2150                  */
2151                 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2152                 if (cancel) {
2153                         return 0;
2154                 }
2155         }
2156         switch (buf_f->blf_type) {
2157         case XFS_LI_BUF:
2158                 blkno = buf_f->blf_blkno;
2159                 len = buf_f->blf_len;
2160                 flags = buf_f->blf_flags;
2161                 break;
2162         default:
2163                 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2164                         "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2165                         buf_f->blf_type, log->l_mp->m_logname ?
2166                         log->l_mp->m_logname : "internal");
2167                 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2168                                  XFS_ERRLEVEL_LOW, log->l_mp);
2169                 return XFS_ERROR(EFSCORRUPTED);
2170         }
2171
2172         mp = log->l_mp;
2173         if (flags & XFS_BLI_INODE_BUF) {
2174                 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2175                                                                 XFS_BUF_LOCK);
2176         } else {
2177                 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2178         }
2179         if (XFS_BUF_ISERROR(bp)) {
2180                 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2181                                   bp, blkno);
2182                 error = XFS_BUF_GETERROR(bp);
2183                 xfs_buf_relse(bp);
2184                 return error;
2185         }
2186
2187         error = 0;
2188         if (flags & XFS_BLI_INODE_BUF) {
2189                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2190         } else if (flags &
2191                   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2192                 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2193         } else {
2194                 xlog_recover_do_reg_buffer(item, bp, buf_f);
2195         }
2196         if (error)
2197                 return XFS_ERROR(error);
2198
2199         /*
2200          * Perform delayed write on the buffer.  Asynchronous writes will be
2201          * slower when taking into account all the buffers to be flushed.
2202          *
2203          * Also make sure that only inode buffers with good sizes stay in
2204          * the buffer cache.  The kernel moves inodes in buffers of 1 block
2205          * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2206          * buffers in the log can be a different size if the log was generated
2207          * by an older kernel using unclustered inode buffers or a newer kernel
2208          * running with a different inode cluster size.  Regardless, if the
2209          * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2210          * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2211          * the buffer out of the buffer cache so that the buffer won't
2212          * overlap with future reads of those inodes.
2213          */
2214         if (XFS_DINODE_MAGIC ==
2215             be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2216             (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2217                         (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2218                 XFS_BUF_STALE(bp);
2219                 error = xfs_bwrite(mp, bp);
2220         } else {
2221                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2222                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2223                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2224                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2225                 xfs_bdwrite(mp, bp);
2226         }
2227
2228         return (error);
2229 }
2230
2231 STATIC int
2232 xlog_recover_do_inode_trans(
2233         xlog_t                  *log,
2234         xlog_recover_item_t     *item,
2235         int                     pass)
2236 {
2237         xfs_inode_log_format_t  *in_f;
2238         xfs_mount_t             *mp;
2239         xfs_buf_t               *bp;
2240         xfs_imap_t              imap;
2241         xfs_dinode_t            *dip;
2242         xfs_ino_t               ino;
2243         int                     len;
2244         xfs_caddr_t             src;
2245         xfs_caddr_t             dest;
2246         int                     error;
2247         int                     attr_index;
2248         uint                    fields;
2249         xfs_icdinode_t          *dicp;
2250         int                     need_free = 0;
2251
2252         if (pass == XLOG_RECOVER_PASS1) {
2253                 return 0;
2254         }
2255
2256         if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2257                 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2258         } else {
2259                 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2260                         sizeof(xfs_inode_log_format_t), KM_SLEEP);
2261                 need_free = 1;
2262                 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2263                 if (error)
2264                         goto error;
2265         }
2266         ino = in_f->ilf_ino;
2267         mp = log->l_mp;
2268         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2269                 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2270                 imap.im_len = in_f->ilf_len;
2271                 imap.im_boffset = in_f->ilf_boffset;
2272         } else {
2273                 /*
2274                  * It's an old inode format record.  We don't know where
2275                  * its cluster is located on disk, and we can't allow
2276                  * xfs_imap() to figure it out because the inode btrees
2277                  * are not ready to be used.  Therefore do not pass the
2278                  * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2279                  * us only the single block in which the inode lives
2280                  * rather than its cluster, so we must make sure to
2281                  * invalidate the buffer when we write it out below.
2282                  */
2283                 imap.im_blkno = 0;
2284                 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2285         }
2286
2287         /*
2288          * Inode buffers can be freed, look out for it,
2289          * and do not replay the inode.
2290          */
2291         if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2292                 error = 0;
2293                 goto error;
2294         }
2295
2296         bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2297                                                                 XFS_BUF_LOCK);
2298         if (XFS_BUF_ISERROR(bp)) {
2299                 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2300                                   bp, imap.im_blkno);
2301                 error = XFS_BUF_GETERROR(bp);
2302                 xfs_buf_relse(bp);
2303                 goto error;
2304         }
2305         error = 0;
2306         ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2307         dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2308
2309         /*
2310          * Make sure the place we're flushing out to really looks
2311          * like an inode!
2312          */
2313         if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
2314                 xfs_buf_relse(bp);
2315                 xfs_fs_cmn_err(CE_ALERT, mp,
2316                         "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2317                         dip, bp, ino);
2318                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2319                                  XFS_ERRLEVEL_LOW, mp);
2320                 error = EFSCORRUPTED;
2321                 goto error;
2322         }
2323         dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2324         if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2325                 xfs_buf_relse(bp);
2326                 xfs_fs_cmn_err(CE_ALERT, mp,
2327                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2328                         item, ino);
2329                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2330                                  XFS_ERRLEVEL_LOW, mp);
2331                 error = EFSCORRUPTED;
2332                 goto error;
2333         }
2334
2335         /* Skip replay when the on disk inode is newer than the log one */
2336         if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
2337                 /*
2338                  * Deal with the wrap case, DI_MAX_FLUSH is less
2339                  * than smaller numbers
2340                  */
2341                 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2342                     dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2343                         /* do nothing */
2344                 } else {
2345                         xfs_buf_relse(bp);
2346                         error = 0;
2347                         goto error;
2348                 }
2349         }
2350         /* Take the opportunity to reset the flush iteration count */
2351         dicp->di_flushiter = 0;
2352
2353         if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2354                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2355                     (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2356                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2357                                          XFS_ERRLEVEL_LOW, mp, dicp);
2358                         xfs_buf_relse(bp);
2359                         xfs_fs_cmn_err(CE_ALERT, mp,
2360                                 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2361                                 item, dip, bp, ino);
2362                         error = EFSCORRUPTED;
2363                         goto error;
2364                 }
2365         } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2366                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2367                     (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2368                     (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2369                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2370                                              XFS_ERRLEVEL_LOW, mp, dicp);
2371                         xfs_buf_relse(bp);
2372                         xfs_fs_cmn_err(CE_ALERT, mp,
2373                                 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2374                                 item, dip, bp, ino);
2375                         error = EFSCORRUPTED;
2376                         goto error;
2377                 }
2378         }
2379         if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2380                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2381                                      XFS_ERRLEVEL_LOW, mp, dicp);
2382                 xfs_buf_relse(bp);
2383                 xfs_fs_cmn_err(CE_ALERT, mp,
2384                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2385                         item, dip, bp, ino,
2386                         dicp->di_nextents + dicp->di_anextents,
2387                         dicp->di_nblocks);
2388                 error = EFSCORRUPTED;
2389                 goto error;
2390         }
2391         if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2392                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2393                                      XFS_ERRLEVEL_LOW, mp, dicp);
2394                 xfs_buf_relse(bp);
2395                 xfs_fs_cmn_err(CE_ALERT, mp,
2396                         "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2397                         item, dip, bp, ino, dicp->di_forkoff);
2398                 error = EFSCORRUPTED;
2399                 goto error;
2400         }
2401         if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2402                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2403                                      XFS_ERRLEVEL_LOW, mp, dicp);
2404                 xfs_buf_relse(bp);
2405                 xfs_fs_cmn_err(CE_ALERT, mp,
2406                         "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2407                         item->ri_buf[1].i_len, item);
2408                 error = EFSCORRUPTED;
2409                 goto error;
2410         }
2411
2412         /* The core is in in-core format */
2413         xfs_dinode_to_disk(&dip->di_core,
2414                 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2415
2416         /* the rest is in on-disk format */
2417         if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2418                 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2419                         item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2420                         item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2421         }
2422
2423         fields = in_f->ilf_fields;
2424         switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2425         case XFS_ILOG_DEV:
2426                 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
2427                 break;
2428         case XFS_ILOG_UUID:
2429                 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2430                 break;
2431         }
2432
2433         if (in_f->ilf_size == 2)
2434                 goto write_inode_buffer;
2435         len = item->ri_buf[2].i_len;
2436         src = item->ri_buf[2].i_addr;
2437         ASSERT(in_f->ilf_size <= 4);
2438         ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2439         ASSERT(!(fields & XFS_ILOG_DFORK) ||
2440                (len == in_f->ilf_dsize));
2441
2442         switch (fields & XFS_ILOG_DFORK) {
2443         case XFS_ILOG_DDATA:
2444         case XFS_ILOG_DEXT:
2445                 memcpy(&dip->di_u, src, len);
2446                 break;
2447
2448         case XFS_ILOG_DBROOT:
2449                 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2450                                  &(dip->di_u.di_bmbt),
2451                                  XFS_DFORK_DSIZE(dip, mp));
2452                 break;
2453
2454         default:
2455                 /*
2456                  * There are no data fork flags set.
2457                  */
2458                 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2459                 break;
2460         }
2461
2462         /*
2463          * If we logged any attribute data, recover it.  There may or
2464          * may not have been any other non-core data logged in this
2465          * transaction.
2466          */
2467         if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2468                 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2469                         attr_index = 3;
2470                 } else {
2471                         attr_index = 2;
2472                 }
2473                 len = item->ri_buf[attr_index].i_len;
2474                 src = item->ri_buf[attr_index].i_addr;
2475                 ASSERT(len == in_f->ilf_asize);
2476
2477                 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2478                 case XFS_ILOG_ADATA:
2479                 case XFS_ILOG_AEXT:
2480                         dest = XFS_DFORK_APTR(dip);
2481                         ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2482                         memcpy(dest, src, len);
2483                         break;
2484
2485                 case XFS_ILOG_ABROOT:
2486                         dest = XFS_DFORK_APTR(dip);
2487                         xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2488                                          (xfs_bmdr_block_t*)dest,
2489                                          XFS_DFORK_ASIZE(dip, mp));
2490                         break;
2491
2492                 default:
2493                         xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2494                         ASSERT(0);
2495                         xfs_buf_relse(bp);
2496                         error = EIO;
2497                         goto error;
2498                 }
2499         }
2500
2501 write_inode_buffer:
2502         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2503                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2504                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2505                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2506                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2507                 xfs_bdwrite(mp, bp);
2508         } else {
2509                 XFS_BUF_STALE(bp);
2510                 error = xfs_bwrite(mp, bp);
2511         }
2512
2513 error:
2514         if (need_free)
2515                 kmem_free(in_f, sizeof(*in_f));
2516         return XFS_ERROR(error);
2517 }
2518
2519 /*
2520  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2521  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2522  * of that type.
2523  */
2524 STATIC int
2525 xlog_recover_do_quotaoff_trans(
2526         xlog_t                  *log,
2527         xlog_recover_item_t     *item,
2528         int                     pass)
2529 {
2530         xfs_qoff_logformat_t    *qoff_f;
2531
2532         if (pass == XLOG_RECOVER_PASS2) {
2533                 return (0);
2534         }
2535
2536         qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2537         ASSERT(qoff_f);
2538
2539         /*
2540          * The logitem format's flag tells us if this was user quotaoff,
2541          * group/project quotaoff or both.
2542          */
2543         if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2544                 log->l_quotaoffs_flag |= XFS_DQ_USER;
2545         if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2546                 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2547         if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2548                 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2549
2550         return (0);
2551 }
2552
2553 /*
2554  * Recover a dquot record
2555  */
2556 STATIC int
2557 xlog_recover_do_dquot_trans(
2558         xlog_t                  *log,
2559         xlog_recover_item_t     *item,
2560         int                     pass)
2561 {
2562         xfs_mount_t             *mp;
2563         xfs_buf_t               *bp;
2564         struct xfs_disk_dquot   *ddq, *recddq;
2565         int                     error;
2566         xfs_dq_logformat_t      *dq_f;
2567         uint                    type;
2568
2569         if (pass == XLOG_RECOVER_PASS1) {
2570                 return 0;
2571         }
2572         mp = log->l_mp;
2573
2574         /*
2575          * Filesystems are required to send in quota flags at mount time.
2576          */
2577         if (mp->m_qflags == 0)
2578                 return (0);
2579
2580         recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2581         ASSERT(recddq);
2582         /*
2583          * This type of quotas was turned off, so ignore this record.
2584          */
2585         type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2586         ASSERT(type);
2587         if (log->l_quotaoffs_flag & type)
2588                 return (0);
2589
2590         /*
2591          * At this point we know that quota was _not_ turned off.
2592          * Since the mount flags are not indicating to us otherwise, this
2593          * must mean that quota is on, and the dquot needs to be replayed.
2594          * Remember that we may not have fully recovered the superblock yet,
2595          * so we can't do the usual trick of looking at the SB quota bits.
2596          *
2597          * The other possibility, of course, is that the quota subsystem was
2598          * removed since the last mount - ENOSYS.
2599          */
2600         dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2601         ASSERT(dq_f);
2602         if ((error = xfs_qm_dqcheck(recddq,
2603                            dq_f->qlf_id,
2604                            0, XFS_QMOPT_DOWARN,
2605                            "xlog_recover_do_dquot_trans (log copy)"))) {
2606                 return XFS_ERROR(EIO);
2607         }
2608         ASSERT(dq_f->qlf_len == 1);
2609
2610         error = xfs_read_buf(mp, mp->m_ddev_targp,
2611                              dq_f->qlf_blkno,
2612                              XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2613                              0, &bp);
2614         if (error) {
2615                 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2616                                   bp, dq_f->qlf_blkno);
2617                 return error;
2618         }
2619         ASSERT(bp);
2620         ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2621
2622         /*
2623          * At least the magic num portion should be on disk because this
2624          * was among a chunk of dquots created earlier, and we did some
2625          * minimal initialization then.
2626          */
2627         if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2628                            "xlog_recover_do_dquot_trans")) {
2629                 xfs_buf_relse(bp);
2630                 return XFS_ERROR(EIO);
2631         }
2632
2633         memcpy(ddq, recddq, item->ri_buf[1].i_len);
2634
2635         ASSERT(dq_f->qlf_size == 2);
2636         ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2637                XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2638         XFS_BUF_SET_FSPRIVATE(bp, mp);
2639         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2640         xfs_bdwrite(mp, bp);
2641
2642         return (0);
2643 }
2644
2645 /*
2646  * This routine is called to create an in-core extent free intent
2647  * item from the efi format structure which was logged on disk.
2648  * It allocates an in-core efi, copies the extents from the format
2649  * structure into it, and adds the efi to the AIL with the given
2650  * LSN.
2651  */
2652 STATIC int
2653 xlog_recover_do_efi_trans(
2654         xlog_t                  *log,
2655         xlog_recover_item_t     *item,
2656         xfs_lsn_t               lsn,
2657         int                     pass)
2658 {
2659         int                     error;
2660         xfs_mount_t             *mp;
2661         xfs_efi_log_item_t      *efip;
2662         xfs_efi_log_format_t    *efi_formatp;
2663
2664         if (pass == XLOG_RECOVER_PASS1) {
2665                 return 0;
2666         }
2667
2668         efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2669
2670         mp = log->l_mp;
2671         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2672         if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2673                                          &(efip->efi_format)))) {
2674                 xfs_efi_item_free(efip);
2675                 return error;
2676         }
2677         efip->efi_next_extent = efi_formatp->efi_nextents;
2678         efip->efi_flags |= XFS_EFI_COMMITTED;
2679
2680         spin_lock(&mp->m_ail_lock);
2681         /*
2682          * xfs_trans_update_ail() drops the AIL lock.
2683          */
2684         xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
2685         return 0;
2686 }
2687
2688
2689 /*
2690  * This routine is called when an efd format structure is found in
2691  * a committed transaction in the log.  It's purpose is to cancel
2692  * the corresponding efi if it was still in the log.  To do this
2693  * it searches the AIL for the efi with an id equal to that in the
2694  * efd format structure.  If we find it, we remove the efi from the
2695  * AIL and free it.
2696  */
2697 STATIC void
2698 xlog_recover_do_efd_trans(
2699         xlog_t                  *log,
2700         xlog_recover_item_t     *item,
2701         int                     pass)
2702 {
2703         xfs_mount_t             *mp;
2704         xfs_efd_log_format_t    *efd_formatp;
2705         xfs_efi_log_item_t      *efip = NULL;
2706         xfs_log_item_t          *lip;
2707         int                     gen;
2708         __uint64_t              efi_id;
2709
2710         if (pass == XLOG_RECOVER_PASS1) {
2711                 return;
2712         }
2713
2714         efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2715         ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2716                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2717                (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2718                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2719         efi_id = efd_formatp->efd_efi_id;
2720
2721         /*
2722          * Search for the efi with the id in the efd format structure
2723          * in the AIL.
2724          */
2725         mp = log->l_mp;
2726         spin_lock(&mp->m_ail_lock);
2727         lip = xfs_trans_first_ail(mp, &gen);
2728         while (lip != NULL) {
2729                 if (lip->li_type == XFS_LI_EFI) {
2730                         efip = (xfs_efi_log_item_t *)lip;
2731                         if (efip->efi_format.efi_id == efi_id) {
2732                                 /*
2733                                  * xfs_trans_delete_ail() drops the
2734                                  * AIL lock.
2735                                  */
2736                                 xfs_trans_delete_ail(mp, lip);
2737                                 xfs_efi_item_free(efip);
2738                                 return;
2739                         }
2740                 }
2741                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2742         }
2743         spin_unlock(&mp->m_ail_lock);
2744 }
2745
2746 /*
2747  * Perform the transaction
2748  *
2749  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2750  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2751  */
2752 STATIC int
2753 xlog_recover_do_trans(
2754         xlog_t                  *log,
2755         xlog_recover_t          *trans,
2756         int                     pass)
2757 {
2758         int                     error = 0;
2759         xlog_recover_item_t     *item, *first_item;
2760
2761         if ((error = xlog_recover_reorder_trans(trans)))
2762                 return error;
2763         first_item = item = trans->r_itemq;
2764         do {
2765                 /*
2766                  * we don't need to worry about the block number being
2767                  * truncated in > 1 TB buffers because in user-land,
2768                  * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2769                  * the blknos will get through the user-mode buffer
2770                  * cache properly.  The only bad case is o32 kernels
2771                  * where xfs_daddr_t is 32-bits but mount will warn us
2772                  * off a > 1 TB filesystem before we get here.
2773                  */
2774                 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2775                         if  ((error = xlog_recover_do_buffer_trans(log, item,
2776                                                                  pass)))
2777                                 break;
2778                 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2779                         if ((error = xlog_recover_do_inode_trans(log, item,
2780                                                                 pass)))
2781                                 break;
2782                 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2783                         if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2784                                                   pass)))
2785                                 break;
2786                 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2787                         xlog_recover_do_efd_trans(log, item, pass);
2788                 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2789                         if ((error = xlog_recover_do_dquot_trans(log, item,
2790                                                                    pass)))
2791                                         break;
2792                 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2793                         if ((error = xlog_recover_do_quotaoff_trans(log, item,
2794                                                                    pass)))
2795                                         break;
2796                 } else {
2797                         xlog_warn("XFS: xlog_recover_do_trans");
2798                         ASSERT(0);
2799                         error = XFS_ERROR(EIO);
2800                         break;
2801                 }
2802                 item = item->ri_next;
2803         } while (first_item != item);
2804
2805         return error;
2806 }
2807
2808 /*
2809  * Free up any resources allocated by the transaction
2810  *
2811  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2812  */
2813 STATIC void
2814 xlog_recover_free_trans(
2815         xlog_recover_t          *trans)
2816 {
2817         xlog_recover_item_t     *first_item, *item, *free_item;
2818         int                     i;
2819
2820         item = first_item = trans->r_itemq;
2821         do {
2822                 free_item = item;
2823                 item = item->ri_next;
2824                  /* Free the regions in the item. */
2825                 for (i = 0; i < free_item->ri_cnt; i++) {
2826                         kmem_free(free_item->ri_buf[i].i_addr,
2827                                   free_item->ri_buf[i].i_len);
2828                 }
2829                 /* Free the item itself */
2830                 kmem_free(free_item->ri_buf,
2831                           (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2832                 kmem_free(free_item, sizeof(xlog_recover_item_t));
2833         } while (first_item != item);
2834         /* Free the transaction recover structure */
2835         kmem_free(trans, sizeof(xlog_recover_t));
2836 }
2837
2838 STATIC int
2839 xlog_recover_commit_trans(
2840         xlog_t                  *log,
2841         xlog_recover_t          **q,
2842         xlog_recover_t          *trans,
2843         int                     pass)
2844 {
2845         int                     error;
2846
2847         if ((error = xlog_recover_unlink_tid(q, trans)))
2848                 return error;
2849         if ((error = xlog_recover_do_trans(log, trans, pass)))
2850                 return error;
2851         xlog_recover_free_trans(trans);                 /* no error */
2852         return 0;
2853 }
2854
2855 STATIC int
2856 xlog_recover_unmount_trans(
2857         xlog_recover_t          *trans)
2858 {
2859         /* Do nothing now */
2860         xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2861         return 0;
2862 }
2863
2864 /*
2865  * There are two valid states of the r_state field.  0 indicates that the
2866  * transaction structure is in a normal state.  We have either seen the
2867  * start of the transaction or the last operation we added was not a partial
2868  * operation.  If the last operation we added to the transaction was a
2869  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2870  *
2871  * NOTE: skip LRs with 0 data length.
2872  */
2873 STATIC int
2874 xlog_recover_process_data(
2875         xlog_t                  *log,
2876         xlog_recover_t          *rhash[],
2877         xlog_rec_header_t       *rhead,
2878         xfs_caddr_t             dp,
2879         int                     pass)
2880 {
2881         xfs_caddr_t             lp;
2882         int                     num_logops;
2883         xlog_op_header_t        *ohead;
2884         xlog_recover_t          *trans;
2885         xlog_tid_t              tid;
2886         int                     error;
2887         unsigned long           hash;
2888         uint                    flags;
2889
2890         lp = dp + be32_to_cpu(rhead->h_len);
2891         num_logops = be32_to_cpu(rhead->h_num_logops);
2892
2893         /* check the log format matches our own - else we can't recover */
2894         if (xlog_header_check_recover(log->l_mp, rhead))
2895                 return (XFS_ERROR(EIO));
2896
2897         while ((dp < lp) && num_logops) {
2898                 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2899                 ohead = (xlog_op_header_t *)dp;
2900                 dp += sizeof(xlog_op_header_t);
2901                 if (ohead->oh_clientid != XFS_TRANSACTION &&
2902                     ohead->oh_clientid != XFS_LOG) {
2903                         xlog_warn(
2904                 "XFS: xlog_recover_process_data: bad clientid");
2905                         ASSERT(0);
2906                         return (XFS_ERROR(EIO));
2907                 }
2908                 tid = be32_to_cpu(ohead->oh_tid);
2909                 hash = XLOG_RHASH(tid);
2910                 trans = xlog_recover_find_tid(rhash[hash], tid);
2911                 if (trans == NULL) {               /* not found; add new tid */
2912                         if (ohead->oh_flags & XLOG_START_TRANS)
2913                                 xlog_recover_new_tid(&rhash[hash], tid,
2914                                         be64_to_cpu(rhead->h_lsn));
2915                 } else {
2916                         if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2917                                 xlog_warn(
2918                         "XFS: xlog_recover_process_data: bad length");
2919                                 WARN_ON(1);
2920                                 return (XFS_ERROR(EIO));
2921                         }
2922                         flags = ohead->oh_flags & ~XLOG_END_TRANS;
2923                         if (flags & XLOG_WAS_CONT_TRANS)
2924                                 flags &= ~XLOG_CONTINUE_TRANS;
2925                         switch (flags) {
2926                         case XLOG_COMMIT_TRANS:
2927                                 error = xlog_recover_commit_trans(log,
2928                                                 &rhash[hash], trans, pass);
2929                                 break;
2930                         case XLOG_UNMOUNT_TRANS:
2931                                 error = xlog_recover_unmount_trans(trans);
2932                                 break;
2933                         case XLOG_WAS_CONT_TRANS:
2934                                 error = xlog_recover_add_to_cont_trans(trans,
2935                                                 dp, be32_to_cpu(ohead->oh_len));
2936                                 break;
2937                         case XLOG_START_TRANS:
2938                                 xlog_warn(
2939                         "XFS: xlog_recover_process_data: bad transaction");
2940                                 ASSERT(0);
2941                                 error = XFS_ERROR(EIO);
2942                                 break;
2943                         case 0:
2944                         case XLOG_CONTINUE_TRANS:
2945                                 error = xlog_recover_add_to_trans(trans,
2946                                                 dp, be32_to_cpu(ohead->oh_len));
2947                                 break;
2948                         default:
2949                                 xlog_warn(
2950                         "XFS: xlog_recover_process_data: bad flag");
2951                                 ASSERT(0);
2952                                 error = XFS_ERROR(EIO);
2953                                 break;
2954                         }
2955                         if (error)
2956                                 return error;
2957                 }
2958                 dp += be32_to_cpu(ohead->oh_len);
2959                 num_logops--;
2960         }
2961         return 0;
2962 }
2963
2964 /*
2965  * Process an extent free intent item that was recovered from
2966  * the log.  We need to free the extents that it describes.
2967  */
2968 STATIC void
2969 xlog_recover_process_efi(
2970         xfs_mount_t             *mp,
2971         xfs_efi_log_item_t      *efip)
2972 {
2973         xfs_efd_log_item_t      *efdp;
2974         xfs_trans_t             *tp;
2975         int                     i;
2976         xfs_extent_t            *extp;
2977         xfs_fsblock_t           startblock_fsb;
2978
2979         ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2980
2981         /*
2982          * First check the validity of the extents described by the
2983          * EFI.  If any are bad, then assume that all are bad and
2984          * just toss the EFI.
2985          */
2986         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2987                 extp = &(efip->efi_format.efi_extents[i]);
2988                 startblock_fsb = XFS_BB_TO_FSB(mp,
2989                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
2990                 if ((startblock_fsb == 0) ||
2991                     (extp->ext_len == 0) ||
2992                     (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2993                     (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2994                         /*
2995                          * This will pull the EFI from the AIL and
2996                          * free the memory associated with it.
2997                          */
2998                         xfs_efi_release(efip, efip->efi_format.efi_nextents);
2999                         return;
3000                 }
3001         }
3002
3003         tp = xfs_trans_alloc(mp, 0);
3004         xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3005         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3006
3007         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3008                 extp = &(efip->efi_format.efi_extents[i]);
3009                 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3010                 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3011                                          extp->ext_len);
3012         }
3013
3014         efip->efi_flags |= XFS_EFI_RECOVERED;
3015         xfs_trans_commit(tp, 0);
3016 }
3017
3018 /*
3019  * Verify that once we've encountered something other than an EFI
3020  * in the AIL that there are no more EFIs in the AIL.
3021  */
3022 #if defined(DEBUG)
3023 STATIC void
3024 xlog_recover_check_ail(
3025         xfs_mount_t             *mp,
3026         xfs_log_item_t          *lip,
3027         int                     gen)
3028 {
3029         int                     orig_gen = gen;
3030
3031         do {
3032                 ASSERT(lip->li_type != XFS_LI_EFI);
3033                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3034                 /*
3035                  * The check will be bogus if we restart from the
3036                  * beginning of the AIL, so ASSERT that we don't.
3037                  * We never should since we're holding the AIL lock
3038                  * the entire time.
3039                  */
3040                 ASSERT(gen == orig_gen);
3041         } while (lip != NULL);
3042 }
3043 #endif  /* DEBUG */
3044
3045 /*
3046  * When this is called, all of the EFIs which did not have
3047  * corresponding EFDs should be in the AIL.  What we do now
3048  * is free the extents associated with each one.
3049  *
3050  * Since we process the EFIs in normal transactions, they
3051  * will be removed at some point after the commit.  This prevents
3052  * us from just walking down the list processing each one.
3053  * We'll use a flag in the EFI to skip those that we've already
3054  * processed and use the AIL iteration mechanism's generation
3055  * count to try to speed this up at least a bit.
3056  *
3057  * When we start, we know that the EFIs are the only things in
3058  * the AIL.  As we process them, however, other items are added
3059  * to the AIL.  Since everything added to the AIL must come after
3060  * everything already in the AIL, we stop processing as soon as
3061  * we see something other than an EFI in the AIL.
3062  */
3063 STATIC void
3064 xlog_recover_process_efis(
3065         xlog_t                  *log)
3066 {
3067         xfs_log_item_t          *lip;
3068         xfs_efi_log_item_t      *efip;
3069         int                     gen;
3070         xfs_mount_t             *mp;
3071
3072         mp = log->l_mp;
3073         spin_lock(&mp->m_ail_lock);
3074
3075         lip = xfs_trans_first_ail(mp, &gen);
3076         while (lip != NULL) {
3077                 /*
3078                  * We're done when we see something other than an EFI.
3079                  */
3080                 if (lip->li_type != XFS_LI_EFI) {
3081                         xlog_recover_check_ail(mp, lip, gen);
3082                         break;
3083                 }
3084
3085                 /*
3086                  * Skip EFIs that we've already processed.
3087                  */
3088                 efip = (xfs_efi_log_item_t *)lip;
3089                 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3090                         lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3091                         continue;
3092                 }
3093
3094                 spin_unlock(&mp->m_ail_lock);
3095                 xlog_recover_process_efi(mp, efip);
3096                 spin_lock(&mp->m_ail_lock);
3097                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3098         }
3099         spin_unlock(&mp->m_ail_lock);
3100 }
3101
3102 /*
3103  * This routine performs a transaction to null out a bad inode pointer
3104  * in an agi unlinked inode hash bucket.
3105  */
3106 STATIC void
3107 xlog_recover_clear_agi_bucket(
3108         xfs_mount_t     *mp,
3109         xfs_agnumber_t  agno,
3110         int             bucket)
3111 {
3112         xfs_trans_t     *tp;
3113         xfs_agi_t       *agi;
3114         xfs_buf_t       *agibp;
3115         int             offset;
3116         int             error;
3117
3118         tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3119         xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3120
3121         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3122                                    XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3123                                    XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3124         if (error) {
3125                 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3126                 return;
3127         }
3128
3129         agi = XFS_BUF_TO_AGI(agibp);
3130         if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3131                 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3132                 return;
3133         }
3134
3135         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3136         offset = offsetof(xfs_agi_t, agi_unlinked) +
3137                  (sizeof(xfs_agino_t) * bucket);
3138         xfs_trans_log_buf(tp, agibp, offset,
3139                           (offset + sizeof(xfs_agino_t) - 1));
3140
3141         (void) xfs_trans_commit(tp, 0);
3142 }
3143
3144 /*
3145  * xlog_iunlink_recover
3146  *
3147  * This is called during recovery to process any inodes which
3148  * we unlinked but not freed when the system crashed.  These
3149  * inodes will be on the lists in the AGI blocks.  What we do
3150  * here is scan all the AGIs and fully truncate and free any
3151  * inodes found on the lists.  Each inode is removed from the
3152  * lists when it has been fully truncated and is freed.  The
3153  * freeing of the inode and its removal from the list must be
3154  * atomic.
3155  */
3156 void
3157 xlog_recover_process_iunlinks(
3158         xlog_t          *log)
3159 {
3160         xfs_mount_t     *mp;
3161         xfs_agnumber_t  agno;
3162         xfs_agi_t       *agi;
3163         xfs_buf_t       *agibp;
3164         xfs_buf_t       *ibp;
3165         xfs_dinode_t    *dip;
3166         xfs_inode_t     *ip;
3167         xfs_agino_t     agino;
3168         xfs_ino_t       ino;
3169         int             bucket;
3170         int             error;
3171         uint            mp_dmevmask;
3172
3173         mp = log->l_mp;
3174
3175         /*
3176          * Prevent any DMAPI event from being sent while in this function.
3177          */
3178         mp_dmevmask = mp->m_dmevmask;
3179         mp->m_dmevmask = 0;
3180
3181         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3182                 /*
3183                  * Find the agi for this ag.
3184                  */
3185                 agibp = xfs_buf_read(mp->m_ddev_targp,
3186                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3187                                 XFS_FSS_TO_BB(mp, 1), 0);
3188                 if (XFS_BUF_ISERROR(agibp)) {
3189                         xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3190                                 log->l_mp, agibp,
3191                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3192                 }
3193                 agi = XFS_BUF_TO_AGI(agibp);
3194                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3195
3196                 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3197
3198                         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3199                         while (agino != NULLAGINO) {
3200
3201                                 /*
3202                                  * Release the agi buffer so that it can
3203                                  * be acquired in the normal course of the
3204                                  * transaction to truncate and free the inode.
3205                                  */
3206                                 xfs_buf_relse(agibp);
3207
3208                                 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3209                                 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3210                                 ASSERT(error || (ip != NULL));
3211
3212                                 if (!error) {
3213                                         /*
3214                                          * Get the on disk inode to find the
3215                                          * next inode in the bucket.
3216                                          */
3217                                         error = xfs_itobp(mp, NULL, ip, &dip,
3218                                                         &ibp, 0, 0,
3219                                                         XFS_BUF_LOCK);
3220                                         ASSERT(error || (dip != NULL));
3221                                 }
3222
3223                                 if (!error) {
3224                                         ASSERT(ip->i_d.di_nlink == 0);
3225
3226                                         /* setup for the next pass */
3227                                         agino = be32_to_cpu(
3228                                                         dip->di_next_unlinked);
3229                                         xfs_buf_relse(ibp);
3230                                         /*
3231                                          * Prevent any DMAPI event from
3232                                          * being sent when the
3233                                          * reference on the inode is
3234                                          * dropped.
3235                                          */
3236                                         ip->i_d.di_dmevmask = 0;
3237
3238                                         /*
3239                                          * If this is a new inode, handle
3240                                          * it specially.  Otherwise,
3241                                          * just drop our reference to the
3242                                          * inode.  If there are no
3243                                          * other references, this will
3244                                          * send the inode to
3245                                          * xfs_inactive() which will
3246                                          * truncate the file and free
3247                                          * the inode.
3248                                          */
3249                                         if (ip->i_d.di_mode == 0)
3250                                                 xfs_iput_new(ip, 0);
3251                                         else
3252                                                 IRELE(ip);
3253                                 } else {
3254                                         /*
3255                                          * We can't read in the inode
3256                                          * this bucket points to, or
3257                                          * this inode is messed up.  Just
3258                                          * ditch this bucket of inodes.  We
3259                                          * will lose some inodes and space,
3260                                          * but at least we won't hang.  Call
3261                                          * xlog_recover_clear_agi_bucket()
3262                                          * to perform a transaction to clear
3263                                          * the inode pointer in the bucket.
3264                                          */
3265                                         xlog_recover_clear_agi_bucket(mp, agno,
3266                                                         bucket);
3267
3268                                         agino = NULLAGINO;
3269                                 }
3270
3271                                 /*
3272                                  * Reacquire the agibuffer and continue around
3273                                  * the loop.
3274                                  */
3275                                 agibp = xfs_buf_read(mp->m_ddev_targp,
3276                                                 XFS_AG_DADDR(mp, agno,
3277                                                         XFS_AGI_DADDR(mp)),
3278                                                 XFS_FSS_TO_BB(mp, 1), 0);
3279                                 if (XFS_BUF_ISERROR(agibp)) {
3280                                         xfs_ioerror_alert(
3281                                 "xlog_recover_process_iunlinks(#2)",
3282                                                 log->l_mp, agibp,
3283                                                 XFS_AG_DADDR(mp, agno,
3284                                                         XFS_AGI_DADDR(mp)));
3285                                 }
3286                                 agi = XFS_BUF_TO_AGI(agibp);
3287                                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3288                                         agi->agi_magicnum));
3289                         }
3290                 }
3291
3292                 /*
3293                  * Release the buffer for the current agi so we can
3294                  * go on to the next one.
3295                  */
3296                 xfs_buf_relse(agibp);
3297         }
3298
3299         mp->m_dmevmask = mp_dmevmask;
3300 }
3301
3302
3303 #ifdef DEBUG
3304 STATIC void
3305 xlog_pack_data_checksum(
3306         xlog_t          *log,
3307         xlog_in_core_t  *iclog,
3308         int             size)
3309 {
3310         int             i;
3311         __be32          *up;
3312         uint            chksum = 0;
3313
3314         up = (__be32 *)iclog->ic_datap;
3315         /* divide length by 4 to get # words */
3316         for (i = 0; i < (size >> 2); i++) {
3317                 chksum ^= be32_to_cpu(*up);
3318                 up++;
3319         }
3320         iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3321 }
3322 #else
3323 #define xlog_pack_data_checksum(log, iclog, size)
3324 #endif
3325
3326 /*
3327  * Stamp cycle number in every block
3328  */
3329 void
3330 xlog_pack_data(
3331         xlog_t                  *log,
3332         xlog_in_core_t          *iclog,
3333         int                     roundoff)
3334 {
3335         int                     i, j, k;
3336         int                     size = iclog->ic_offset + roundoff;
3337         __be32                  cycle_lsn;
3338         xfs_caddr_t             dp;
3339         xlog_in_core_2_t        *xhdr;
3340
3341         xlog_pack_data_checksum(log, iclog, size);
3342
3343         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3344
3345         dp = iclog->ic_datap;
3346         for (i = 0; i < BTOBB(size) &&
3347                 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3348                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3349                 *(__be32 *)dp = cycle_lsn;
3350                 dp += BBSIZE;
3351         }
3352
3353         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3354                 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3355                 for ( ; i < BTOBB(size); i++) {
3356                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3357                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3358                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3359                         *(__be32 *)dp = cycle_lsn;
3360                         dp += BBSIZE;
3361                 }
3362
3363                 for (i = 1; i < log->l_iclog_heads; i++) {
3364                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3365                 }
3366         }
3367 }
3368
3369 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3370 STATIC void
3371 xlog_unpack_data_checksum(
3372         xlog_rec_header_t       *rhead,
3373         xfs_caddr_t             dp,
3374         xlog_t                  *log)
3375 {
3376         __be32                  *up = (__be32 *)dp;
3377         uint                    chksum = 0;
3378         int                     i;
3379
3380         /* divide length by 4 to get # words */
3381         for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3382                 chksum ^= be32_to_cpu(*up);
3383                 up++;
3384         }
3385         if (chksum != be32_to_cpu(rhead->h_chksum)) {
3386             if (rhead->h_chksum ||
3387                 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3388                     cmn_err(CE_DEBUG,
3389                         "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3390                             be32_to_cpu(rhead->h_chksum), chksum);
3391                     cmn_err(CE_DEBUG,
3392 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3393                     if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3394                             cmn_err(CE_DEBUG,
3395                                 "XFS: LogR this is a LogV2 filesystem\n");
3396                     }
3397                     log->l_flags |= XLOG_CHKSUM_MISMATCH;
3398             }
3399         }
3400 }
3401 #else
3402 #define xlog_unpack_data_checksum(rhead, dp, log)
3403 #endif
3404
3405 STATIC void
3406 xlog_unpack_data(
3407         xlog_rec_header_t       *rhead,
3408         xfs_caddr_t             dp,
3409         xlog_t                  *log)
3410 {
3411         int                     i, j, k;
3412         xlog_in_core_2_t        *xhdr;
3413
3414         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3415                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3416                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3417                 dp += BBSIZE;
3418         }
3419
3420         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3421                 xhdr = (xlog_in_core_2_t *)rhead;
3422                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3423                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3424                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3425                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3426                         dp += BBSIZE;
3427                 }
3428         }
3429
3430         xlog_unpack_data_checksum(rhead, dp, log);
3431 }
3432
3433 STATIC int
3434 xlog_valid_rec_header(
3435         xlog_t                  *log,
3436         xlog_rec_header_t       *rhead,
3437         xfs_daddr_t             blkno)
3438 {
3439         int                     hlen;
3440
3441         if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3442                 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3443                                 XFS_ERRLEVEL_LOW, log->l_mp);
3444                 return XFS_ERROR(EFSCORRUPTED);
3445         }
3446         if (unlikely(
3447             (!rhead->h_version ||
3448             (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3449                 xlog_warn("XFS: %s: unrecognised log version (%d).",
3450                         __FUNCTION__, be32_to_cpu(rhead->h_version));
3451                 return XFS_ERROR(EIO);
3452         }
3453
3454         /* LR body must have data or it wouldn't have been written */
3455         hlen = be32_to_cpu(rhead->h_len);
3456         if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3457                 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3458                                 XFS_ERRLEVEL_LOW, log->l_mp);
3459                 return XFS_ERROR(EFSCORRUPTED);
3460         }
3461         if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3462                 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3463                                 XFS_ERRLEVEL_LOW, log->l_mp);
3464                 return XFS_ERROR(EFSCORRUPTED);
3465         }
3466         return 0;
3467 }
3468
3469 /*
3470  * Read the log from tail to head and process the log records found.
3471  * Handle the two cases where the tail and head are in the same cycle
3472  * and where the active portion of the log wraps around the end of
3473  * the physical log separately.  The pass parameter is passed through
3474  * to the routines called to process the data and is not looked at
3475  * here.
3476  */
3477 STATIC int
3478 xlog_do_recovery_pass(
3479         xlog_t                  *log,
3480         xfs_daddr_t             head_blk,
3481         xfs_daddr_t             tail_blk,
3482         int                     pass)
3483 {
3484         xlog_rec_header_t       *rhead;
3485         xfs_daddr_t             blk_no;
3486         xfs_caddr_t             bufaddr, offset;
3487         xfs_buf_t               *hbp, *dbp;
3488         int                     error = 0, h_size;
3489         int                     bblks, split_bblks;
3490         int                     hblks, split_hblks, wrapped_hblks;
3491         xlog_recover_t          *rhash[XLOG_RHASH_SIZE];
3492
3493         ASSERT(head_blk != tail_blk);
3494
3495         /*
3496          * Read the header of the tail block and get the iclog buffer size from
3497          * h_size.  Use this to tell how many sectors make up the log header.
3498          */
3499         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3500                 /*
3501                  * When using variable length iclogs, read first sector of
3502                  * iclog header and extract the header size from it.  Get a
3503                  * new hbp that is the correct size.
3504                  */
3505                 hbp = xlog_get_bp(log, 1);
3506                 if (!hbp)
3507                         return ENOMEM;
3508                 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3509                         goto bread_err1;
3510                 offset = xlog_align(log, tail_blk, 1, hbp);
3511                 rhead = (xlog_rec_header_t *)offset;
3512                 error = xlog_valid_rec_header(log, rhead, tail_blk);
3513                 if (error)
3514                         goto bread_err1;
3515                 h_size = be32_to_cpu(rhead->h_size);
3516                 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3517                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3518                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3519                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
3520                                 hblks++;
3521                         xlog_put_bp(hbp);
3522                         hbp = xlog_get_bp(log, hblks);
3523                 } else {
3524                         hblks = 1;
3525                 }
3526         } else {
3527                 ASSERT(log->l_sectbb_log == 0);
3528                 hblks = 1;
3529                 hbp = xlog_get_bp(log, 1);
3530                 h_size = XLOG_BIG_RECORD_BSIZE;
3531         }
3532
3533         if (!hbp)
3534                 return ENOMEM;
3535         dbp = xlog_get_bp(log, BTOBB(h_size));
3536         if (!dbp) {
3537                 xlog_put_bp(hbp);
3538                 return ENOMEM;
3539         }
3540
3541         memset(rhash, 0, sizeof(rhash));
3542         if (tail_blk <= head_blk) {
3543                 for (blk_no = tail_blk; blk_no < head_blk; ) {
3544                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3545                                 goto bread_err2;
3546                         offset = xlog_align(log, blk_no, hblks, hbp);
3547                         rhead = (xlog_rec_header_t *)offset;
3548                         error = xlog_valid_rec_header(log, rhead, blk_no);
3549                         if (error)
3550                                 goto bread_err2;
3551
3552                         /* blocks in data section */
3553                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3554                         error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3555                         if (error)
3556                                 goto bread_err2;
3557                         offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3558                         xlog_unpack_data(rhead, offset, log);
3559                         if ((error = xlog_recover_process_data(log,
3560                                                 rhash, rhead, offset, pass)))
3561                                 goto bread_err2;
3562                         blk_no += bblks + hblks;
3563                 }
3564         } else {
3565                 /*
3566                  * Perform recovery around the end of the physical log.
3567                  * When the head is not on the same cycle number as the tail,
3568                  * we can't do a sequential recovery as above.
3569                  */
3570                 blk_no = tail_blk;
3571                 while (blk_no < log->l_logBBsize) {
3572                         /*
3573                          * Check for header wrapping around physical end-of-log
3574                          */
3575                         offset = NULL;
3576                         split_hblks = 0;
3577                         wrapped_hblks = 0;
3578                         if (blk_no + hblks <= log->l_logBBsize) {
3579                                 /* Read header in one read */
3580                                 error = xlog_bread(log, blk_no, hblks, hbp);
3581                                 if (error)
3582                                         goto bread_err2;
3583                                 offset = xlog_align(log, blk_no, hblks, hbp);
3584                         } else {
3585                                 /* This LR is split across physical log end */
3586                                 if (blk_no != log->l_logBBsize) {
3587                                         /* some data before physical log end */
3588                                         ASSERT(blk_no <= INT_MAX);
3589                                         split_hblks = log->l_logBBsize - (int)blk_no;
3590                                         ASSERT(split_hblks > 0);
3591                                         if ((error = xlog_bread(log, blk_no,
3592                                                         split_hblks, hbp)))
3593                                                 goto bread_err2;
3594                                         offset = xlog_align(log, blk_no,
3595                                                         split_hblks, hbp);
3596                                 }
3597                                 /*
3598                                  * Note: this black magic still works with
3599                                  * large sector sizes (non-512) only because:
3600                                  * - we increased the buffer size originally
3601                                  *   by 1 sector giving us enough extra space
3602                                  *   for the second read;
3603                                  * - the log start is guaranteed to be sector
3604                                  *   aligned;
3605                                  * - we read the log end (LR header start)
3606                                  *   _first_, then the log start (LR header end)
3607                                  *   - order is important.
3608                                  */
3609                                 bufaddr = XFS_BUF_PTR(hbp);
3610                                 XFS_BUF_SET_PTR(hbp,
3611                                                 bufaddr + BBTOB(split_hblks),
3612                                                 BBTOB(hblks - split_hblks));
3613                                 wrapped_hblks = hblks - split_hblks;
3614                                 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3615                                 if (error)
3616                                         goto bread_err2;
3617                                 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3618                                 if (!offset)
3619                                         offset = xlog_align(log, 0,
3620                                                         wrapped_hblks, hbp);
3621                         }
3622                         rhead = (xlog_rec_header_t *)offset;
3623                         error = xlog_valid_rec_header(log, rhead,
3624                                                 split_hblks ? blk_no : 0);
3625                         if (error)
3626                                 goto bread_err2;
3627
3628                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3629                         blk_no += hblks;
3630
3631                         /* Read in data for log record */
3632                         if (blk_no + bblks <= log->l_logBBsize) {
3633                                 error = xlog_bread(log, blk_no, bblks, dbp);
3634                                 if (error)
3635                                         goto bread_err2;
3636                                 offset = xlog_align(log, blk_no, bblks, dbp);
3637                         } else {
3638                                 /* This log record is split across the
3639                                  * physical end of log */
3640                                 offset = NULL;
3641                                 split_bblks = 0;
3642                                 if (blk_no != log->l_logBBsize) {
3643                                         /* some data is before the physical
3644                                          * end of log */
3645                                         ASSERT(!wrapped_hblks);
3646                                         ASSERT(blk_no <= INT_MAX);
3647                                         split_bblks =
3648                                                 log->l_logBBsize - (int)blk_no;
3649                                         ASSERT(split_bblks > 0);
3650                                         if ((error = xlog_bread(log, blk_no,
3651                                                         split_bblks, dbp)))
3652                                                 goto bread_err2;
3653                                         offset = xlog_align(log, blk_no,
3654                                                         split_bblks, dbp);
3655                                 }
3656                                 /*
3657                                  * Note: this black magic still works with
3658                                  * large sector sizes (non-512) only because:
3659                                  * - we increased the buffer size originally
3660                                  *   by 1 sector giving us enough extra space
3661                                  *   for the second read;
3662                                  * - the log start is guaranteed to be sector
3663                                  *   aligned;
3664                                  * - we read the log end (LR header start)
3665                                  *   _first_, then the log start (LR header end)
3666                                  *   - order is important.
3667                                  */
3668                                 bufaddr = XFS_BUF_PTR(dbp);
3669                                 XFS_BUF_SET_PTR(dbp,
3670                                                 bufaddr + BBTOB(split_bblks),
3671                                                 BBTOB(bblks - split_bblks));
3672                                 if ((error = xlog_bread(log, wrapped_hblks,
3673                                                 bblks - split_bblks, dbp)))
3674                                         goto bread_err2;
3675                                 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3676                                 if (!offset)
3677                                         offset = xlog_align(log, wrapped_hblks,
3678                                                 bblks - split_bblks, dbp);
3679                         }
3680                         xlog_unpack_data(rhead, offset, log);
3681                         if ((error = xlog_recover_process_data(log, rhash,
3682                                                         rhead, offset, pass)))
3683                                 goto bread_err2;
3684                         blk_no += bblks;
3685                 }
3686
3687                 ASSERT(blk_no >= log->l_logBBsize);
3688                 blk_no -= log->l_logBBsize;
3689
3690                 /* read first part of physical log */
3691                 while (blk_no < head_blk) {
3692                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3693                                 goto bread_err2;
3694                         offset = xlog_align(log, blk_no, hblks, hbp);
3695                         rhead = (xlog_rec_header_t *)offset;
3696                         error = xlog_valid_rec_header(log, rhead, blk_no);
3697                         if (error)
3698                                 goto bread_err2;
3699                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3700                         if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3701                                 goto bread_err2;
3702                         offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3703                         xlog_unpack_data(rhead, offset, log);
3704                         if ((error = xlog_recover_process_data(log, rhash,
3705                                                         rhead, offset, pass)))
3706                                 goto bread_err2;
3707                         blk_no += bblks + hblks;
3708                 }
3709         }
3710
3711  bread_err2:
3712         xlog_put_bp(dbp);
3713  bread_err1:
3714         xlog_put_bp(hbp);
3715         return error;
3716 }
3717
3718 /*
3719  * Do the recovery of the log.  We actually do this in two phases.
3720  * The two passes are necessary in order to implement the function
3721  * of cancelling a record written into the log.  The first pass
3722  * determines those things which have been cancelled, and the
3723  * second pass replays log items normally except for those which
3724  * have been cancelled.  The handling of the replay and cancellations
3725  * takes place in the log item type specific routines.
3726  *
3727  * The table of items which have cancel records in the log is allocated
3728  * and freed at this level, since only here do we know when all of
3729  * the log recovery has been completed.
3730  */
3731 STATIC int
3732 xlog_do_log_recovery(
3733         xlog_t          *log,
3734         xfs_daddr_t     head_blk,
3735         xfs_daddr_t     tail_blk)
3736 {
3737         int             error;
3738
3739         ASSERT(head_blk != tail_blk);
3740
3741         /*
3742          * First do a pass to find all of the cancelled buf log items.
3743          * Store them in the buf_cancel_table for use in the second pass.
3744          */
3745         log->l_buf_cancel_table =
3746                 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3747                                                  sizeof(xfs_buf_cancel_t*),
3748                                                  KM_SLEEP);
3749         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3750                                       XLOG_RECOVER_PASS1);
3751         if (error != 0) {
3752                 kmem_free(log->l_buf_cancel_table,
3753                           XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3754                 log->l_buf_cancel_table = NULL;
3755                 return error;
3756         }
3757         /*
3758          * Then do a second pass to actually recover the items in the log.
3759          * When it is complete free the table of buf cancel items.
3760          */
3761         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3762                                       XLOG_RECOVER_PASS2);
3763 #ifdef DEBUG
3764         if (!error) {
3765                 int     i;
3766
3767                 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3768                         ASSERT(log->l_buf_cancel_table[i] == NULL);
3769         }
3770 #endif  /* DEBUG */
3771
3772         kmem_free(log->l_buf_cancel_table,
3773                   XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3774         log->l_buf_cancel_table = NULL;
3775
3776         return error;
3777 }
3778
3779 /*
3780  * Do the actual recovery
3781  */
3782 STATIC int
3783 xlog_do_recover(
3784         xlog_t          *log,
3785         xfs_daddr_t     head_blk,
3786         xfs_daddr_t     tail_blk)
3787 {
3788         int             error;
3789         xfs_buf_t       *bp;
3790         xfs_sb_t        *sbp;
3791
3792         /*
3793          * First replay the images in the log.
3794          */
3795         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3796         if (error) {
3797                 return error;
3798         }
3799
3800         XFS_bflush(log->l_mp->m_ddev_targp);
3801
3802         /*
3803          * If IO errors happened during recovery, bail out.
3804          */
3805         if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3806                 return (EIO);
3807         }
3808
3809         /*
3810          * We now update the tail_lsn since much of the recovery has completed
3811          * and there may be space available to use.  If there were no extent
3812          * or iunlinks, we can free up the entire log and set the tail_lsn to
3813          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3814          * lsn of the last known good LR on disk.  If there are extent frees
3815          * or iunlinks they will have some entries in the AIL; so we look at
3816          * the AIL to determine how to set the tail_lsn.
3817          */
3818         xlog_assign_tail_lsn(log->l_mp);
3819
3820         /*
3821          * Now that we've finished replaying all buffer and inode
3822          * updates, re-read in the superblock.
3823          */
3824         bp = xfs_getsb(log->l_mp, 0);
3825         XFS_BUF_UNDONE(bp);
3826         ASSERT(!(XFS_BUF_ISWRITE(bp)));
3827         ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3828         XFS_BUF_READ(bp);
3829         XFS_BUF_UNASYNC(bp);
3830         xfsbdstrat(log->l_mp, bp);
3831         if ((error = xfs_iowait(bp))) {
3832                 xfs_ioerror_alert("xlog_do_recover",
3833                                   log->l_mp, bp, XFS_BUF_ADDR(bp));
3834                 ASSERT(0);
3835                 xfs_buf_relse(bp);
3836                 return error;
3837         }
3838
3839         /* Convert superblock from on-disk format */
3840         sbp = &log->l_mp->m_sb;
3841         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3842         ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3843         ASSERT(xfs_sb_good_version(sbp));
3844         xfs_buf_relse(bp);
3845
3846         /* We've re-read the superblock so re-initialize per-cpu counters */
3847         xfs_icsb_reinit_counters(log->l_mp);
3848
3849         xlog_recover_check_summary(log);
3850
3851         /* Normal transactions can now occur */
3852         log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3853         return 0;
3854 }
3855
3856 /*
3857  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3858  *
3859  * Return error or zero.
3860  */
3861 int
3862 xlog_recover(
3863         xlog_t          *log)
3864 {
3865         xfs_daddr_t     head_blk, tail_blk;
3866         int             error;
3867
3868         /* find the tail of the log */
3869         if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3870                 return error;
3871
3872         if (tail_blk != head_blk) {
3873                 /* There used to be a comment here:
3874                  *
3875                  * disallow recovery on read-only mounts.  note -- mount
3876                  * checks for ENOSPC and turns it into an intelligent
3877                  * error message.
3878                  * ...but this is no longer true.  Now, unless you specify
3879                  * NORECOVERY (in which case this function would never be
3880                  * called), we just go ahead and recover.  We do this all
3881                  * under the vfs layer, so we can get away with it unless
3882                  * the device itself is read-only, in which case we fail.
3883                  */
3884                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3885                         return error;
3886                 }
3887
3888                 cmn_err(CE_NOTE,
3889                         "Starting XFS recovery on filesystem: %s (logdev: %s)",
3890                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3891                         log->l_mp->m_logname : "internal");
3892
3893                 error = xlog_do_recover(log, head_blk, tail_blk);
3894                 log->l_flags |= XLOG_RECOVERY_NEEDED;
3895         }
3896         return error;
3897 }
3898
3899 /*
3900  * In the first part of recovery we replay inodes and buffers and build
3901  * up the list of extent free items which need to be processed.  Here
3902  * we process the extent free items and clean up the on disk unlinked
3903  * inode lists.  This is separated from the first part of recovery so
3904  * that the root and real-time bitmap inodes can be read in from disk in
3905  * between the two stages.  This is necessary so that we can free space
3906  * in the real-time portion of the file system.
3907  */
3908 int
3909 xlog_recover_finish(
3910         xlog_t          *log,
3911         int             mfsi_flags)
3912 {
3913         /*
3914          * Now we're ready to do the transactions needed for the
3915          * rest of recovery.  Start with completing all the extent
3916          * free intent records and then process the unlinked inode
3917          * lists.  At this point, we essentially run in normal mode
3918          * except that we're still performing recovery actions
3919          * rather than accepting new requests.
3920          */
3921         if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3922                 xlog_recover_process_efis(log);
3923                 /*
3924                  * Sync the log to get all the EFIs out of the AIL.
3925                  * This isn't absolutely necessary, but it helps in
3926                  * case the unlink transactions would have problems
3927                  * pushing the EFIs out of the way.
3928                  */
3929                 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3930                               (XFS_LOG_FORCE | XFS_LOG_SYNC));
3931
3932                 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3933                         xlog_recover_process_iunlinks(log);
3934                 }
3935
3936                 xlog_recover_check_summary(log);
3937
3938                 cmn_err(CE_NOTE,
3939                         "Ending XFS recovery on filesystem: %s (logdev: %s)",
3940                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3941                         log->l_mp->m_logname : "internal");
3942                 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3943         } else {
3944                 cmn_err(CE_DEBUG,
3945                         "!Ending clean XFS mount for filesystem: %s\n",
3946                         log->l_mp->m_fsname);
3947         }
3948         return 0;
3949 }
3950
3951
3952 #if defined(DEBUG)
3953 /*
3954  * Read all of the agf and agi counters and check that they
3955  * are consistent with the superblock counters.
3956  */
3957 void
3958 xlog_recover_check_summary(
3959         xlog_t          *log)
3960 {
3961         xfs_mount_t     *mp;
3962         xfs_agf_t       *agfp;
3963         xfs_agi_t       *agip;
3964         xfs_buf_t       *agfbp;
3965         xfs_buf_t       *agibp;
3966         xfs_daddr_t     agfdaddr;
3967         xfs_daddr_t     agidaddr;
3968         xfs_buf_t       *sbbp;
3969 #ifdef XFS_LOUD_RECOVERY
3970         xfs_sb_t        *sbp;
3971 #endif
3972         xfs_agnumber_t  agno;
3973         __uint64_t      freeblks;
3974         __uint64_t      itotal;
3975         __uint64_t      ifree;
3976
3977         mp = log->l_mp;
3978
3979         freeblks = 0LL;
3980         itotal = 0LL;
3981         ifree = 0LL;
3982         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3983                 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
3984                 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
3985                                 XFS_FSS_TO_BB(mp, 1), 0);
3986                 if (XFS_BUF_ISERROR(agfbp)) {
3987                         xfs_ioerror_alert("xlog_recover_check_summary(agf)",
3988                                                 mp, agfbp, agfdaddr);
3989                 }
3990                 agfp = XFS_BUF_TO_AGF(agfbp);
3991                 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
3992                 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
3993                 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
3994
3995                 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3996                             be32_to_cpu(agfp->agf_flcount);
3997                 xfs_buf_relse(agfbp);
3998
3999                 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4000                 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4001                                 XFS_FSS_TO_BB(mp, 1), 0);
4002                 if (XFS_BUF_ISERROR(agibp)) {
4003                         xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4004                                           mp, agibp, agidaddr);
4005                 }
4006                 agip = XFS_BUF_TO_AGI(agibp);
4007                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4008                 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4009                 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4010
4011                 itotal += be32_to_cpu(agip->agi_count);
4012                 ifree += be32_to_cpu(agip->agi_freecount);
4013                 xfs_buf_relse(agibp);
4014         }
4015
4016         sbbp = xfs_getsb(mp, 0);
4017 #ifdef XFS_LOUD_RECOVERY
4018         sbp = &mp->m_sb;
4019         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4020         cmn_err(CE_NOTE,
4021                 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4022                 sbp->sb_icount, itotal);
4023         cmn_err(CE_NOTE,
4024                 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4025                 sbp->sb_ifree, ifree);
4026         cmn_err(CE_NOTE,
4027                 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4028                 sbp->sb_fdblocks, freeblks);
4029 #if 0
4030         /*
4031          * This is turned off until I account for the allocation
4032          * btree blocks which live in free space.
4033          */
4034         ASSERT(sbp->sb_icount == itotal);
4035         ASSERT(sbp->sb_ifree == ifree);
4036         ASSERT(sbp->sb_fdblocks == freeblks);
4037 #endif
4038 #endif
4039         xfs_buf_relse(sbbp);
4040 }
4041 #endif /* DEBUG */