]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/xfs/linux-2.6/xfs_super.c
[XFS] Kill off xfs_statvfs.
[linux-2.6-omap-h63xx.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_vnodeops.h"
50 #include "xfs_vfsops.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59 #include <linux/freezer.h>
60
61 static struct quotactl_ops xfs_quotactl_operations;
62 static struct super_operations xfs_super_operations;
63 static kmem_zone_t *xfs_vnode_zone;
64 static kmem_zone_t *xfs_ioend_zone;
65 mempool_t *xfs_ioend_pool;
66
67 STATIC struct xfs_mount_args *
68 xfs_args_allocate(
69         struct super_block      *sb,
70         int                     silent)
71 {
72         struct xfs_mount_args   *args;
73
74         args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
75         args->logbufs = args->logbufsize = -1;
76         strncpy(args->fsname, sb->s_id, MAXNAMELEN);
77
78         /* Copy the already-parsed mount(2) flags we're interested in */
79         if (sb->s_flags & MS_DIRSYNC)
80                 args->flags |= XFSMNT_DIRSYNC;
81         if (sb->s_flags & MS_SYNCHRONOUS)
82                 args->flags |= XFSMNT_WSYNC;
83         if (silent)
84                 args->flags |= XFSMNT_QUIET;
85         args->flags |= XFSMNT_32BITINODES;
86
87         return args;
88 }
89
90 __uint64_t
91 xfs_max_file_offset(
92         unsigned int            blockshift)
93 {
94         unsigned int            pagefactor = 1;
95         unsigned int            bitshift = BITS_PER_LONG - 1;
96
97         /* Figure out maximum filesize, on Linux this can depend on
98          * the filesystem blocksize (on 32 bit platforms).
99          * __block_prepare_write does this in an [unsigned] long...
100          *      page->index << (PAGE_CACHE_SHIFT - bbits)
101          * So, for page sized blocks (4K on 32 bit platforms),
102          * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
103          *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
104          * but for smaller blocksizes it is less (bbits = log2 bsize).
105          * Note1: get_block_t takes a long (implicit cast from above)
106          * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
107          * can optionally convert the [unsigned] long from above into
108          * an [unsigned] long long.
109          */
110
111 #if BITS_PER_LONG == 32
112 # if defined(CONFIG_LBD)
113         ASSERT(sizeof(sector_t) == 8);
114         pagefactor = PAGE_CACHE_SIZE;
115         bitshift = BITS_PER_LONG;
116 # else
117         pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
118 # endif
119 #endif
120
121         return (((__uint64_t)pagefactor) << bitshift) - 1;
122 }
123
124 STATIC_INLINE void
125 xfs_set_inodeops(
126         struct inode            *inode)
127 {
128         switch (inode->i_mode & S_IFMT) {
129         case S_IFREG:
130                 inode->i_op = &xfs_inode_operations;
131                 inode->i_fop = &xfs_file_operations;
132                 inode->i_mapping->a_ops = &xfs_address_space_operations;
133                 break;
134         case S_IFDIR:
135                 inode->i_op = &xfs_dir_inode_operations;
136                 inode->i_fop = &xfs_dir_file_operations;
137                 break;
138         case S_IFLNK:
139                 inode->i_op = &xfs_symlink_inode_operations;
140                 if (inode->i_blocks)
141                         inode->i_mapping->a_ops = &xfs_address_space_operations;
142                 break;
143         default:
144                 inode->i_op = &xfs_inode_operations;
145                 init_special_inode(inode, inode->i_mode, inode->i_rdev);
146                 break;
147         }
148 }
149
150 STATIC_INLINE void
151 xfs_revalidate_inode(
152         xfs_mount_t             *mp,
153         bhv_vnode_t             *vp,
154         xfs_inode_t             *ip)
155 {
156         struct inode            *inode = vn_to_inode(vp);
157
158         inode->i_mode   = ip->i_d.di_mode;
159         inode->i_nlink  = ip->i_d.di_nlink;
160         inode->i_uid    = ip->i_d.di_uid;
161         inode->i_gid    = ip->i_d.di_gid;
162
163         switch (inode->i_mode & S_IFMT) {
164         case S_IFBLK:
165         case S_IFCHR:
166                 inode->i_rdev =
167                         MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
168                               sysv_minor(ip->i_df.if_u2.if_rdev));
169                 break;
170         default:
171                 inode->i_rdev = 0;
172                 break;
173         }
174
175         inode->i_generation = ip->i_d.di_gen;
176         i_size_write(inode, ip->i_d.di_size);
177         inode->i_blocks =
178                 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179         inode->i_atime.tv_sec   = ip->i_d.di_atime.t_sec;
180         inode->i_atime.tv_nsec  = ip->i_d.di_atime.t_nsec;
181         inode->i_mtime.tv_sec   = ip->i_d.di_mtime.t_sec;
182         inode->i_mtime.tv_nsec  = ip->i_d.di_mtime.t_nsec;
183         inode->i_ctime.tv_sec   = ip->i_d.di_ctime.t_sec;
184         inode->i_ctime.tv_nsec  = ip->i_d.di_ctime.t_nsec;
185         if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186                 inode->i_flags |= S_IMMUTABLE;
187         else
188                 inode->i_flags &= ~S_IMMUTABLE;
189         if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190                 inode->i_flags |= S_APPEND;
191         else
192                 inode->i_flags &= ~S_APPEND;
193         if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194                 inode->i_flags |= S_SYNC;
195         else
196                 inode->i_flags &= ~S_SYNC;
197         if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198                 inode->i_flags |= S_NOATIME;
199         else
200                 inode->i_flags &= ~S_NOATIME;
201         xfs_iflags_clear(ip, XFS_IMODIFIED);
202 }
203
204 void
205 xfs_initialize_vnode(
206         struct xfs_mount        *mp,
207         bhv_vnode_t             *vp,
208         struct xfs_inode        *ip)
209 {
210         struct inode            *inode = vn_to_inode(vp);
211
212         if (!ip->i_vnode) {
213                 ip->i_vnode = vp;
214                 inode->i_private = ip;
215         }
216
217         /*
218          * We need to set the ops vectors, and unlock the inode, but if
219          * we have been called during the new inode create process, it is
220          * too early to fill in the Linux inode.  We will get called a
221          * second time once the inode is properly set up, and then we can
222          * finish our work.
223          */
224         if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
225                 xfs_revalidate_inode(mp, vp, ip);
226                 xfs_set_inodeops(inode);
227
228                 xfs_iflags_clear(ip, XFS_INEW);
229                 barrier();
230
231                 unlock_new_inode(inode);
232         }
233 }
234
235 int
236 xfs_blkdev_get(
237         xfs_mount_t             *mp,
238         const char              *name,
239         struct block_device     **bdevp)
240 {
241         int                     error = 0;
242
243         *bdevp = open_bdev_excl(name, 0, mp);
244         if (IS_ERR(*bdevp)) {
245                 error = PTR_ERR(*bdevp);
246                 printk("XFS: Invalid device [%s], error=%d\n", name, error);
247         }
248
249         return -error;
250 }
251
252 void
253 xfs_blkdev_put(
254         struct block_device     *bdev)
255 {
256         if (bdev)
257                 close_bdev_excl(bdev);
258 }
259
260 /*
261  * Try to write out the superblock using barriers.
262  */
263 STATIC int
264 xfs_barrier_test(
265         xfs_mount_t     *mp)
266 {
267         xfs_buf_t       *sbp = xfs_getsb(mp, 0);
268         int             error;
269
270         XFS_BUF_UNDONE(sbp);
271         XFS_BUF_UNREAD(sbp);
272         XFS_BUF_UNDELAYWRITE(sbp);
273         XFS_BUF_WRITE(sbp);
274         XFS_BUF_UNASYNC(sbp);
275         XFS_BUF_ORDERED(sbp);
276
277         xfsbdstrat(mp, sbp);
278         error = xfs_iowait(sbp);
279
280         /*
281          * Clear all the flags we set and possible error state in the
282          * buffer.  We only did the write to try out whether barriers
283          * worked and shouldn't leave any traces in the superblock
284          * buffer.
285          */
286         XFS_BUF_DONE(sbp);
287         XFS_BUF_ERROR(sbp, 0);
288         XFS_BUF_UNORDERED(sbp);
289
290         xfs_buf_relse(sbp);
291         return error;
292 }
293
294 void
295 xfs_mountfs_check_barriers(xfs_mount_t *mp)
296 {
297         int error;
298
299         if (mp->m_logdev_targp != mp->m_ddev_targp) {
300                 xfs_fs_cmn_err(CE_NOTE, mp,
301                   "Disabling barriers, not supported with external log device");
302                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
303                 return;
304         }
305
306         if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
307                                         QUEUE_ORDERED_NONE) {
308                 xfs_fs_cmn_err(CE_NOTE, mp,
309                   "Disabling barriers, not supported by the underlying device");
310                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
311                 return;
312         }
313
314         if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
315                 xfs_fs_cmn_err(CE_NOTE, mp,
316                   "Disabling barriers, underlying device is readonly");
317                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
318                 return;
319         }
320
321         error = xfs_barrier_test(mp);
322         if (error) {
323                 xfs_fs_cmn_err(CE_NOTE, mp,
324                   "Disabling barriers, trial barrier write failed");
325                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
326                 return;
327         }
328 }
329
330 void
331 xfs_blkdev_issue_flush(
332         xfs_buftarg_t           *buftarg)
333 {
334         blkdev_issue_flush(buftarg->bt_bdev, NULL);
335 }
336
337 STATIC struct inode *
338 xfs_fs_alloc_inode(
339         struct super_block      *sb)
340 {
341         bhv_vnode_t             *vp;
342
343         vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
344         if (unlikely(!vp))
345                 return NULL;
346         return vn_to_inode(vp);
347 }
348
349 STATIC void
350 xfs_fs_destroy_inode(
351         struct inode            *inode)
352 {
353         kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
354 }
355
356 STATIC void
357 xfs_fs_inode_init_once(
358         kmem_zone_t             *zonep,
359         void                    *vnode)
360 {
361         inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
362 }
363
364 STATIC int
365 xfs_init_zones(void)
366 {
367         xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
368                                         KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
369                                         KM_ZONE_SPREAD,
370                                         xfs_fs_inode_init_once);
371         if (!xfs_vnode_zone)
372                 goto out;
373
374         xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
375         if (!xfs_ioend_zone)
376                 goto out_destroy_vnode_zone;
377
378         xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
379                                                   xfs_ioend_zone);
380         if (!xfs_ioend_pool)
381                 goto out_free_ioend_zone;
382         return 0;
383
384  out_free_ioend_zone:
385         kmem_zone_destroy(xfs_ioend_zone);
386  out_destroy_vnode_zone:
387         kmem_zone_destroy(xfs_vnode_zone);
388  out:
389         return -ENOMEM;
390 }
391
392 STATIC void
393 xfs_destroy_zones(void)
394 {
395         mempool_destroy(xfs_ioend_pool);
396         kmem_zone_destroy(xfs_vnode_zone);
397         kmem_zone_destroy(xfs_ioend_zone);
398 }
399
400 /*
401  * Attempt to flush the inode, this will actually fail
402  * if the inode is pinned, but we dirty the inode again
403  * at the point when it is unpinned after a log write,
404  * since this is when the inode itself becomes flushable.
405  */
406 STATIC int
407 xfs_fs_write_inode(
408         struct inode            *inode,
409         int                     sync)
410 {
411         int                     error = 0, flags = FLUSH_INODE;
412
413         xfs_itrace_entry(XFS_I(inode));
414         if (sync) {
415                 filemap_fdatawait(inode->i_mapping);
416                 flags |= FLUSH_SYNC;
417         }
418         error = xfs_inode_flush(XFS_I(inode), flags);
419         /*
420          * if we failed to write out the inode then mark
421          * it dirty again so we'll try again later.
422          */
423         if (error)
424                 mark_inode_dirty_sync(inode);
425
426         return -error;
427 }
428
429 STATIC void
430 xfs_fs_clear_inode(
431         struct inode            *inode)
432 {
433         xfs_inode_t             *ip = XFS_I(inode);
434
435         /*
436          * ip can be null when xfs_iget_core calls xfs_idestroy if we
437          * find an inode with di_mode == 0 but without IGET_CREATE set.
438          */
439         if (ip) {
440                 xfs_itrace_entry(ip);
441                 XFS_STATS_INC(vn_rele);
442                 XFS_STATS_INC(vn_remove);
443                 XFS_STATS_INC(vn_reclaim);
444                 XFS_STATS_DEC(vn_active);
445
446                 xfs_inactive(ip);
447                 xfs_iflags_clear(ip, XFS_IMODIFIED);
448                 if (xfs_reclaim(ip))
449                         panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
450         }
451
452         ASSERT(XFS_I(inode) == NULL);
453 }
454
455 /*
456  * Enqueue a work item to be picked up by the vfs xfssyncd thread.
457  * Doing this has two advantages:
458  * - It saves on stack space, which is tight in certain situations
459  * - It can be used (with care) as a mechanism to avoid deadlocks.
460  * Flushing while allocating in a full filesystem requires both.
461  */
462 STATIC void
463 xfs_syncd_queue_work(
464         struct xfs_mount *mp,
465         void            *data,
466         void            (*syncer)(struct xfs_mount *, void *))
467 {
468         struct bhv_vfs_sync_work *work;
469
470         work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
471         INIT_LIST_HEAD(&work->w_list);
472         work->w_syncer = syncer;
473         work->w_data = data;
474         work->w_mount = mp;
475         spin_lock(&mp->m_sync_lock);
476         list_add_tail(&work->w_list, &mp->m_sync_list);
477         spin_unlock(&mp->m_sync_lock);
478         wake_up_process(mp->m_sync_task);
479 }
480
481 /*
482  * Flush delayed allocate data, attempting to free up reserved space
483  * from existing allocations.  At this point a new allocation attempt
484  * has failed with ENOSPC and we are in the process of scratching our
485  * heads, looking about for more room...
486  */
487 STATIC void
488 xfs_flush_inode_work(
489         struct xfs_mount *mp,
490         void            *arg)
491 {
492         struct inode    *inode = arg;
493         filemap_flush(inode->i_mapping);
494         iput(inode);
495 }
496
497 void
498 xfs_flush_inode(
499         xfs_inode_t     *ip)
500 {
501         struct inode    *inode = ip->i_vnode;
502
503         igrab(inode);
504         xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
505         delay(msecs_to_jiffies(500));
506 }
507
508 /*
509  * This is the "bigger hammer" version of xfs_flush_inode_work...
510  * (IOW, "If at first you don't succeed, use a Bigger Hammer").
511  */
512 STATIC void
513 xfs_flush_device_work(
514         struct xfs_mount *mp,
515         void            *arg)
516 {
517         struct inode    *inode = arg;
518         sync_blockdev(mp->m_super->s_bdev);
519         iput(inode);
520 }
521
522 void
523 xfs_flush_device(
524         xfs_inode_t     *ip)
525 {
526         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
527
528         igrab(inode);
529         xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
530         delay(msecs_to_jiffies(500));
531         xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
532 }
533
534 STATIC void
535 xfs_sync_worker(
536         struct xfs_mount *mp,
537         void            *unused)
538 {
539         int             error;
540
541         if (!(mp->m_flags & XFS_MOUNT_RDONLY))
542                 error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR |
543                                      SYNC_REFCACHE | SYNC_SUPER);
544         mp->m_sync_seq++;
545         wake_up(&mp->m_wait_single_sync_task);
546 }
547
548 STATIC int
549 xfssyncd(
550         void                    *arg)
551 {
552         struct xfs_mount        *mp = arg;
553         long                    timeleft;
554         bhv_vfs_sync_work_t     *work, *n;
555         LIST_HEAD               (tmp);
556
557         set_freezable();
558         timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
559         for (;;) {
560                 timeleft = schedule_timeout_interruptible(timeleft);
561                 /* swsusp */
562                 try_to_freeze();
563                 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
564                         break;
565
566                 spin_lock(&mp->m_sync_lock);
567                 /*
568                  * We can get woken by laptop mode, to do a sync -
569                  * that's the (only!) case where the list would be
570                  * empty with time remaining.
571                  */
572                 if (!timeleft || list_empty(&mp->m_sync_list)) {
573                         if (!timeleft)
574                                 timeleft = xfs_syncd_centisecs *
575                                                         msecs_to_jiffies(10);
576                         INIT_LIST_HEAD(&mp->m_sync_work.w_list);
577                         list_add_tail(&mp->m_sync_work.w_list,
578                                         &mp->m_sync_list);
579                 }
580                 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
581                         list_move(&work->w_list, &tmp);
582                 spin_unlock(&mp->m_sync_lock);
583
584                 list_for_each_entry_safe(work, n, &tmp, w_list) {
585                         (*work->w_syncer)(mp, work->w_data);
586                         list_del(&work->w_list);
587                         if (work == &mp->m_sync_work)
588                                 continue;
589                         kmem_free(work, sizeof(struct bhv_vfs_sync_work));
590                 }
591         }
592
593         return 0;
594 }
595
596 STATIC void
597 xfs_fs_put_super(
598         struct super_block      *sb)
599 {
600         struct xfs_mount        *mp = XFS_M(sb);
601         int                     error;
602
603         kthread_stop(mp->m_sync_task);
604
605         xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
606         error = xfs_unmount(mp, 0, NULL);
607         if (error)
608                 printk("XFS: unmount got error=%d\n", error);
609 }
610
611 STATIC void
612 xfs_fs_write_super(
613         struct super_block      *sb)
614 {
615         if (!(sb->s_flags & MS_RDONLY))
616                 xfs_sync(XFS_M(sb), SYNC_FSDATA);
617         sb->s_dirt = 0;
618 }
619
620 STATIC int
621 xfs_fs_sync_super(
622         struct super_block      *sb,
623         int                     wait)
624 {
625         struct xfs_mount        *mp = XFS_M(sb);
626         int                     error;
627         int                     flags;
628
629         /*
630          * Treat a sync operation like a freeze.  This is to work
631          * around a race in sync_inodes() which works in two phases
632          * - an asynchronous flush, which can write out an inode
633          * without waiting for file size updates to complete, and a
634          * synchronous flush, which wont do anything because the
635          * async flush removed the inode's dirty flag.  Also
636          * sync_inodes() will not see any files that just have
637          * outstanding transactions to be flushed because we don't
638          * dirty the Linux inode until after the transaction I/O
639          * completes.
640          */
641         if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
642                 /*
643                  * First stage of freeze - no more writers will make progress
644                  * now we are here, so we flush delwri and delalloc buffers
645                  * here, then wait for all I/O to complete.  Data is frozen at
646                  * that point. Metadata is not frozen, transactions can still
647                  * occur here so don't bother flushing the buftarg (i.e
648                  * SYNC_QUIESCE) because it'll just get dirty again.
649                  */
650                 flags = SYNC_DATA_QUIESCE;
651         } else
652                 flags = SYNC_FSDATA;
653
654         error = xfs_sync(mp, flags);
655         sb->s_dirt = 0;
656
657         if (unlikely(laptop_mode)) {
658                 int     prev_sync_seq = mp->m_sync_seq;
659
660                 /*
661                  * The disk must be active because we're syncing.
662                  * We schedule xfssyncd now (now that the disk is
663                  * active) instead of later (when it might not be).
664                  */
665                 wake_up_process(mp->m_sync_task);
666                 /*
667                  * We have to wait for the sync iteration to complete.
668                  * If we don't, the disk activity caused by the sync
669                  * will come after the sync is completed, and that
670                  * triggers another sync from laptop mode.
671                  */
672                 wait_event(mp->m_wait_single_sync_task,
673                                 mp->m_sync_seq != prev_sync_seq);
674         }
675
676         return -error;
677 }
678
679 STATIC int
680 xfs_fs_statfs(
681         struct dentry           *dentry,
682         struct kstatfs          *statp)
683 {
684         struct xfs_mount        *mp = XFS_M(dentry->d_sb);
685         xfs_sb_t                *sbp = &mp->m_sb;
686         __uint64_t              fakeinos, id;
687         xfs_extlen_t            lsize;
688
689         statp->f_type = XFS_SB_MAGIC;
690         statp->f_namelen = MAXNAMELEN - 1;
691
692         id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
693         statp->f_fsid.val[0] = (u32)id;
694         statp->f_fsid.val[1] = (u32)(id >> 32);
695
696         xfs_icsb_sync_counters_flags(mp, XFS_ICSB_LAZY_COUNT);
697
698         spin_lock(&mp->m_sb_lock);
699         statp->f_bsize = sbp->sb_blocksize;
700         lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
701         statp->f_blocks = sbp->sb_dblocks - lsize;
702         statp->f_bfree = statp->f_bavail =
703                                 sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
704         fakeinos = statp->f_bfree << sbp->sb_inopblog;
705 #if XFS_BIG_INUMS
706         fakeinos += mp->m_inoadd;
707 #endif
708         statp->f_files =
709             MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
710         if (mp->m_maxicount)
711 #if XFS_BIG_INUMS
712                 if (!mp->m_inoadd)
713 #endif
714                         statp->f_files = min_t(typeof(statp->f_files),
715                                                 statp->f_files,
716                                                 mp->m_maxicount);
717         statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
718         spin_unlock(&mp->m_sb_lock);
719
720         XFS_QM_DQSTATVFS(XFS_I(dentry->d_inode), statp);
721         return 0;
722 }
723
724 STATIC int
725 xfs_fs_remount(
726         struct super_block      *sb,
727         int                     *flags,
728         char                    *options)
729 {
730         struct xfs_mount        *mp = XFS_M(sb);
731         struct xfs_mount_args   *args = xfs_args_allocate(sb, 0);
732         int                     error;
733
734         error = xfs_parseargs(mp, options, args, 1);
735         if (!error)
736                 error = xfs_mntupdate(mp, flags, args);
737         kmem_free(args, sizeof(*args));
738         return -error;
739 }
740
741 STATIC void
742 xfs_fs_lockfs(
743         struct super_block      *sb)
744 {
745         xfs_freeze(XFS_M(sb));
746 }
747
748 STATIC int
749 xfs_fs_show_options(
750         struct seq_file         *m,
751         struct vfsmount         *mnt)
752 {
753         return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
754 }
755
756 STATIC int
757 xfs_fs_quotasync(
758         struct super_block      *sb,
759         int                     type)
760 {
761         return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
762 }
763
764 STATIC int
765 xfs_fs_getxstate(
766         struct super_block      *sb,
767         struct fs_quota_stat    *fqs)
768 {
769         return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
770 }
771
772 STATIC int
773 xfs_fs_setxstate(
774         struct super_block      *sb,
775         unsigned int            flags,
776         int                     op)
777 {
778         return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
779 }
780
781 STATIC int
782 xfs_fs_getxquota(
783         struct super_block      *sb,
784         int                     type,
785         qid_t                   id,
786         struct fs_disk_quota    *fdq)
787 {
788         return -XFS_QM_QUOTACTL(XFS_M(sb),
789                                  (type == USRQUOTA) ? Q_XGETQUOTA :
790                                   ((type == GRPQUOTA) ? Q_XGETGQUOTA :
791                                    Q_XGETPQUOTA), id, (caddr_t)fdq);
792 }
793
794 STATIC int
795 xfs_fs_setxquota(
796         struct super_block      *sb,
797         int                     type,
798         qid_t                   id,
799         struct fs_disk_quota    *fdq)
800 {
801         return -XFS_QM_QUOTACTL(XFS_M(sb),
802                                  (type == USRQUOTA) ? Q_XSETQLIM :
803                                   ((type == GRPQUOTA) ? Q_XSETGQLIM :
804                                    Q_XSETPQLIM), id, (caddr_t)fdq);
805 }
806
807 STATIC int
808 xfs_fs_fill_super(
809         struct super_block      *sb,
810         void                    *data,
811         int                     silent)
812 {
813         struct inode            *rootvp;
814         struct xfs_mount        *mp = NULL;
815         struct xfs_mount_args   *args = xfs_args_allocate(sb, silent);
816         int                     error;
817
818         mp = xfs_mount_init();
819
820         INIT_LIST_HEAD(&mp->m_sync_list);
821         spin_lock_init(&mp->m_sync_lock);
822         init_waitqueue_head(&mp->m_wait_single_sync_task);
823
824         mp->m_super = sb;
825         sb->s_fs_info = mp;
826
827         if (sb->s_flags & MS_RDONLY)
828                 mp->m_flags |= XFS_MOUNT_RDONLY;
829
830         error = xfs_parseargs(mp, (char *)data, args, 0);
831         if (error)
832                 goto fail_vfsop;
833
834         sb_min_blocksize(sb, BBSIZE);
835         sb->s_export_op = &xfs_export_operations;
836         sb->s_qcop = &xfs_quotactl_operations;
837         sb->s_op = &xfs_super_operations;
838
839         error = xfs_mount(mp, args, NULL);
840         if (error)
841                 goto fail_vfsop;
842
843         sb->s_dirt = 1;
844         sb->s_magic = XFS_SB_MAGIC;
845         sb->s_blocksize = mp->m_sb.sb_blocksize;
846         sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
847         sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
848         sb->s_time_gran = 1;
849         set_posix_acl_flag(sb);
850
851         error = xfs_root(mp, &rootvp);
852         if (error)
853                 goto fail_unmount;
854
855         sb->s_root = d_alloc_root(vn_to_inode(rootvp));
856         if (!sb->s_root) {
857                 error = ENOMEM;
858                 goto fail_vnrele;
859         }
860         if (is_bad_inode(sb->s_root->d_inode)) {
861                 error = EINVAL;
862                 goto fail_vnrele;
863         }
864
865         mp->m_sync_work.w_syncer = xfs_sync_worker;
866         mp->m_sync_work.w_mount = mp;
867         mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
868         if (IS_ERR(mp->m_sync_task)) {
869                 error = -PTR_ERR(mp->m_sync_task);
870                 goto fail_vnrele;
871         }
872
873         xfs_itrace_exit(XFS_I(sb->s_root->d_inode));
874
875         kmem_free(args, sizeof(*args));
876         return 0;
877
878 fail_vnrele:
879         if (sb->s_root) {
880                 dput(sb->s_root);
881                 sb->s_root = NULL;
882         } else {
883                 VN_RELE(rootvp);
884         }
885
886 fail_unmount:
887         xfs_unmount(mp, 0, NULL);
888
889 fail_vfsop:
890         kmem_free(args, sizeof(*args));
891         return -error;
892 }
893
894 STATIC int
895 xfs_fs_get_sb(
896         struct file_system_type *fs_type,
897         int                     flags,
898         const char              *dev_name,
899         void                    *data,
900         struct vfsmount         *mnt)
901 {
902         return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
903                            mnt);
904 }
905
906 static struct super_operations xfs_super_operations = {
907         .alloc_inode            = xfs_fs_alloc_inode,
908         .destroy_inode          = xfs_fs_destroy_inode,
909         .write_inode            = xfs_fs_write_inode,
910         .clear_inode            = xfs_fs_clear_inode,
911         .put_super              = xfs_fs_put_super,
912         .write_super            = xfs_fs_write_super,
913         .sync_fs                = xfs_fs_sync_super,
914         .write_super_lockfs     = xfs_fs_lockfs,
915         .statfs                 = xfs_fs_statfs,
916         .remount_fs             = xfs_fs_remount,
917         .show_options           = xfs_fs_show_options,
918 };
919
920 static struct quotactl_ops xfs_quotactl_operations = {
921         .quota_sync             = xfs_fs_quotasync,
922         .get_xstate             = xfs_fs_getxstate,
923         .set_xstate             = xfs_fs_setxstate,
924         .get_xquota             = xfs_fs_getxquota,
925         .set_xquota             = xfs_fs_setxquota,
926 };
927
928 static struct file_system_type xfs_fs_type = {
929         .owner                  = THIS_MODULE,
930         .name                   = "xfs",
931         .get_sb                 = xfs_fs_get_sb,
932         .kill_sb                = kill_block_super,
933         .fs_flags               = FS_REQUIRES_DEV,
934 };
935
936
937 STATIC int __init
938 init_xfs_fs( void )
939 {
940         int                     error;
941         static char             message[] __initdata = KERN_INFO \
942                 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
943
944         printk(message);
945
946         ktrace_init(64);
947
948         error = xfs_init_zones();
949         if (error < 0)
950                 goto undo_zones;
951
952         error = xfs_buf_init();
953         if (error < 0)
954                 goto undo_buffers;
955
956         vn_init();
957         xfs_init();
958         uuid_init();
959         vfs_initquota();
960
961         error = register_filesystem(&xfs_fs_type);
962         if (error)
963                 goto undo_register;
964         return 0;
965
966 undo_register:
967         xfs_buf_terminate();
968
969 undo_buffers:
970         xfs_destroy_zones();
971
972 undo_zones:
973         return error;
974 }
975
976 STATIC void __exit
977 exit_xfs_fs( void )
978 {
979         vfs_exitquota();
980         unregister_filesystem(&xfs_fs_type);
981         xfs_cleanup();
982         xfs_buf_terminate();
983         xfs_destroy_zones();
984         ktrace_uninit();
985 }
986
987 module_init(init_xfs_fs);
988 module_exit(exit_xfs_fs);
989
990 MODULE_AUTHOR("Silicon Graphics, Inc.");
991 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
992 MODULE_LICENSE("GPL");