]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/xfs/linux-2.6/xfs_super.c
[PATCH] xfs warning fix
[linux-2.6-omap-h63xx.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_version.h"
50
51 #include <linux/namei.h>
52 #include <linux/init.h>
53 #include <linux/mount.h>
54 #include <linux/mempool.h>
55 #include <linux/writeback.h>
56 #include <linux/kthread.h>
57 #include <linux/freezer.h>
58
59 static struct quotactl_ops xfs_quotactl_operations;
60 static struct super_operations xfs_super_operations;
61 static kmem_zone_t *xfs_vnode_zone;
62 static kmem_zone_t *xfs_ioend_zone;
63 mempool_t *xfs_ioend_pool;
64
65 STATIC struct xfs_mount_args *
66 xfs_args_allocate(
67         struct super_block      *sb,
68         int                     silent)
69 {
70         struct xfs_mount_args   *args;
71
72         args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
73         args->logbufs = args->logbufsize = -1;
74         strncpy(args->fsname, sb->s_id, MAXNAMELEN);
75
76         /* Copy the already-parsed mount(2) flags we're interested in */
77         if (sb->s_flags & MS_DIRSYNC)
78                 args->flags |= XFSMNT_DIRSYNC;
79         if (sb->s_flags & MS_SYNCHRONOUS)
80                 args->flags |= XFSMNT_WSYNC;
81         if (silent)
82                 args->flags |= XFSMNT_QUIET;
83         args->flags |= XFSMNT_32BITINODES;
84
85         return args;
86 }
87
88 __uint64_t
89 xfs_max_file_offset(
90         unsigned int            blockshift)
91 {
92         unsigned int            pagefactor = 1;
93         unsigned int            bitshift = BITS_PER_LONG - 1;
94
95         /* Figure out maximum filesize, on Linux this can depend on
96          * the filesystem blocksize (on 32 bit platforms).
97          * __block_prepare_write does this in an [unsigned] long...
98          *      page->index << (PAGE_CACHE_SHIFT - bbits)
99          * So, for page sized blocks (4K on 32 bit platforms),
100          * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
101          *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
102          * but for smaller blocksizes it is less (bbits = log2 bsize).
103          * Note1: get_block_t takes a long (implicit cast from above)
104          * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
105          * can optionally convert the [unsigned] long from above into
106          * an [unsigned] long long.
107          */
108
109 #if BITS_PER_LONG == 32
110 # if defined(CONFIG_LBD)
111         ASSERT(sizeof(sector_t) == 8);
112         pagefactor = PAGE_CACHE_SIZE;
113         bitshift = BITS_PER_LONG;
114 # else
115         pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
116 # endif
117 #endif
118
119         return (((__uint64_t)pagefactor) << bitshift) - 1;
120 }
121
122 STATIC_INLINE void
123 xfs_set_inodeops(
124         struct inode            *inode)
125 {
126         switch (inode->i_mode & S_IFMT) {
127         case S_IFREG:
128                 inode->i_op = &xfs_inode_operations;
129                 inode->i_fop = &xfs_file_operations;
130                 inode->i_mapping->a_ops = &xfs_address_space_operations;
131                 break;
132         case S_IFDIR:
133                 inode->i_op = &xfs_dir_inode_operations;
134                 inode->i_fop = &xfs_dir_file_operations;
135                 break;
136         case S_IFLNK:
137                 inode->i_op = &xfs_symlink_inode_operations;
138                 if (inode->i_blocks)
139                         inode->i_mapping->a_ops = &xfs_address_space_operations;
140                 break;
141         default:
142                 inode->i_op = &xfs_inode_operations;
143                 init_special_inode(inode, inode->i_mode, inode->i_rdev);
144                 break;
145         }
146 }
147
148 STATIC_INLINE void
149 xfs_revalidate_inode(
150         xfs_mount_t             *mp,
151         bhv_vnode_t             *vp,
152         xfs_inode_t             *ip)
153 {
154         struct inode            *inode = vn_to_inode(vp);
155
156         inode->i_mode   = ip->i_d.di_mode;
157         inode->i_nlink  = ip->i_d.di_nlink;
158         inode->i_uid    = ip->i_d.di_uid;
159         inode->i_gid    = ip->i_d.di_gid;
160
161         switch (inode->i_mode & S_IFMT) {
162         case S_IFBLK:
163         case S_IFCHR:
164                 inode->i_rdev =
165                         MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
166                               sysv_minor(ip->i_df.if_u2.if_rdev));
167                 break;
168         default:
169                 inode->i_rdev = 0;
170                 break;
171         }
172
173         inode->i_generation = ip->i_d.di_gen;
174         i_size_write(inode, ip->i_d.di_size);
175         inode->i_blocks =
176                 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
177         inode->i_atime.tv_sec   = ip->i_d.di_atime.t_sec;
178         inode->i_atime.tv_nsec  = ip->i_d.di_atime.t_nsec;
179         inode->i_mtime.tv_sec   = ip->i_d.di_mtime.t_sec;
180         inode->i_mtime.tv_nsec  = ip->i_d.di_mtime.t_nsec;
181         inode->i_ctime.tv_sec   = ip->i_d.di_ctime.t_sec;
182         inode->i_ctime.tv_nsec  = ip->i_d.di_ctime.t_nsec;
183         if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
184                 inode->i_flags |= S_IMMUTABLE;
185         else
186                 inode->i_flags &= ~S_IMMUTABLE;
187         if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
188                 inode->i_flags |= S_APPEND;
189         else
190                 inode->i_flags &= ~S_APPEND;
191         if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
192                 inode->i_flags |= S_SYNC;
193         else
194                 inode->i_flags &= ~S_SYNC;
195         if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
196                 inode->i_flags |= S_NOATIME;
197         else
198                 inode->i_flags &= ~S_NOATIME;
199         vp->v_flag &= ~VMODIFIED;
200 }
201
202 void
203 xfs_initialize_vnode(
204         bhv_desc_t              *bdp,
205         bhv_vnode_t             *vp,
206         bhv_desc_t              *inode_bhv,
207         int                     unlock)
208 {
209         xfs_inode_t             *ip = XFS_BHVTOI(inode_bhv);
210         struct inode            *inode = vn_to_inode(vp);
211
212         if (!inode_bhv->bd_vobj) {
213                 vp->v_vfsp = bhvtovfs(bdp);
214                 bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
215                 bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
216         }
217
218         /*
219          * We need to set the ops vectors, and unlock the inode, but if
220          * we have been called during the new inode create process, it is
221          * too early to fill in the Linux inode.  We will get called a
222          * second time once the inode is properly set up, and then we can
223          * finish our work.
224          */
225         if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
226                 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
227                 xfs_set_inodeops(inode);
228
229                 xfs_iflags_clear(ip, XFS_INEW);
230                 barrier();
231
232                 unlock_new_inode(inode);
233         }
234 }
235
236 int
237 xfs_blkdev_get(
238         xfs_mount_t             *mp,
239         const char              *name,
240         struct block_device     **bdevp)
241 {
242         int                     error = 0;
243
244         *bdevp = open_bdev_excl(name, 0, mp);
245         if (IS_ERR(*bdevp)) {
246                 error = PTR_ERR(*bdevp);
247                 printk("XFS: Invalid device [%s], error=%d\n", name, error);
248         }
249
250         return -error;
251 }
252
253 void
254 xfs_blkdev_put(
255         struct block_device     *bdev)
256 {
257         if (bdev)
258                 close_bdev_excl(bdev);
259 }
260
261 /*
262  * Try to write out the superblock using barriers.
263  */
264 STATIC int
265 xfs_barrier_test(
266         xfs_mount_t     *mp)
267 {
268         xfs_buf_t       *sbp = xfs_getsb(mp, 0);
269         int             error;
270
271         XFS_BUF_UNDONE(sbp);
272         XFS_BUF_UNREAD(sbp);
273         XFS_BUF_UNDELAYWRITE(sbp);
274         XFS_BUF_WRITE(sbp);
275         XFS_BUF_UNASYNC(sbp);
276         XFS_BUF_ORDERED(sbp);
277
278         xfsbdstrat(mp, sbp);
279         error = xfs_iowait(sbp);
280
281         /*
282          * Clear all the flags we set and possible error state in the
283          * buffer.  We only did the write to try out whether barriers
284          * worked and shouldn't leave any traces in the superblock
285          * buffer.
286          */
287         XFS_BUF_DONE(sbp);
288         XFS_BUF_ERROR(sbp, 0);
289         XFS_BUF_UNORDERED(sbp);
290
291         xfs_buf_relse(sbp);
292         return error;
293 }
294
295 void
296 xfs_mountfs_check_barriers(xfs_mount_t *mp)
297 {
298         int error;
299
300         if (mp->m_logdev_targp != mp->m_ddev_targp) {
301                 xfs_fs_cmn_err(CE_NOTE, mp,
302                   "Disabling barriers, not supported with external log device");
303                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
304                 return;
305         }
306
307         if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
308                                         QUEUE_ORDERED_NONE) {
309                 xfs_fs_cmn_err(CE_NOTE, mp,
310                   "Disabling barriers, not supported by the underlying device");
311                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
312                 return;
313         }
314
315         if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
316                 xfs_fs_cmn_err(CE_NOTE, mp,
317                   "Disabling barriers, underlying device is readonly");
318                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
319                 return;
320         }
321
322         error = xfs_barrier_test(mp);
323         if (error) {
324                 xfs_fs_cmn_err(CE_NOTE, mp,
325                   "Disabling barriers, trial barrier write failed");
326                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
327                 return;
328         }
329 }
330
331 void
332 xfs_blkdev_issue_flush(
333         xfs_buftarg_t           *buftarg)
334 {
335         blkdev_issue_flush(buftarg->bt_bdev, NULL);
336 }
337
338 STATIC struct inode *
339 xfs_fs_alloc_inode(
340         struct super_block      *sb)
341 {
342         bhv_vnode_t             *vp;
343
344         vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
345         if (unlikely(!vp))
346                 return NULL;
347         return vn_to_inode(vp);
348 }
349
350 STATIC void
351 xfs_fs_destroy_inode(
352         struct inode            *inode)
353 {
354         kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
355 }
356
357 STATIC void
358 xfs_fs_inode_init_once(
359         void                    *vnode,
360         kmem_zone_t             *zonep,
361         unsigned long           flags)
362 {
363         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
364                       SLAB_CTOR_CONSTRUCTOR)
365                 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
366 }
367
368 STATIC int
369 xfs_init_zones(void)
370 {
371         xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
372                                         KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
373                                         KM_ZONE_SPREAD,
374                                         xfs_fs_inode_init_once);
375         if (!xfs_vnode_zone)
376                 goto out;
377
378         xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
379         if (!xfs_ioend_zone)
380                 goto out_destroy_vnode_zone;
381
382         xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
383                                                   xfs_ioend_zone);
384         if (!xfs_ioend_pool)
385                 goto out_free_ioend_zone;
386         return 0;
387
388  out_free_ioend_zone:
389         kmem_zone_destroy(xfs_ioend_zone);
390  out_destroy_vnode_zone:
391         kmem_zone_destroy(xfs_vnode_zone);
392  out:
393         return -ENOMEM;
394 }
395
396 STATIC void
397 xfs_destroy_zones(void)
398 {
399         mempool_destroy(xfs_ioend_pool);
400         kmem_zone_destroy(xfs_vnode_zone);
401         kmem_zone_destroy(xfs_ioend_zone);
402 }
403
404 /*
405  * Attempt to flush the inode, this will actually fail
406  * if the inode is pinned, but we dirty the inode again
407  * at the point when it is unpinned after a log write,
408  * since this is when the inode itself becomes flushable.
409  */
410 STATIC int
411 xfs_fs_write_inode(
412         struct inode            *inode,
413         int                     sync)
414 {
415         bhv_vnode_t             *vp = vn_from_inode(inode);
416         int                     error = 0, flags = FLUSH_INODE;
417
418         if (vp) {
419                 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
420                 if (sync)
421                         flags |= FLUSH_SYNC;
422                 error = bhv_vop_iflush(vp, flags);
423                 if (error == EAGAIN)
424                         error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
425         }
426         return -error;
427 }
428
429 STATIC void
430 xfs_fs_clear_inode(
431         struct inode            *inode)
432 {
433         bhv_vnode_t             *vp = vn_from_inode(inode);
434
435         vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
436
437         XFS_STATS_INC(vn_rele);
438         XFS_STATS_INC(vn_remove);
439         XFS_STATS_INC(vn_reclaim);
440         XFS_STATS_DEC(vn_active);
441
442         /*
443          * This can happen because xfs_iget_core calls xfs_idestroy if we
444          * find an inode with di_mode == 0 but without IGET_CREATE set.
445          */
446         if (VNHEAD(vp))
447                 bhv_vop_inactive(vp, NULL);
448
449         VN_LOCK(vp);
450         vp->v_flag &= ~VMODIFIED;
451         VN_UNLOCK(vp, 0);
452
453         if (VNHEAD(vp))
454                 if (bhv_vop_reclaim(vp))
455                         panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
456
457         ASSERT(VNHEAD(vp) == NULL);
458
459 #ifdef XFS_VNODE_TRACE
460         ktrace_free(vp->v_trace);
461 #endif
462 }
463
464 /*
465  * Enqueue a work item to be picked up by the vfs xfssyncd thread.
466  * Doing this has two advantages:
467  * - It saves on stack space, which is tight in certain situations
468  * - It can be used (with care) as a mechanism to avoid deadlocks.
469  * Flushing while allocating in a full filesystem requires both.
470  */
471 STATIC void
472 xfs_syncd_queue_work(
473         struct bhv_vfs  *vfs,
474         void            *data,
475         void            (*syncer)(bhv_vfs_t *, void *))
476 {
477         struct bhv_vfs_sync_work *work;
478
479         work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
480         INIT_LIST_HEAD(&work->w_list);
481         work->w_syncer = syncer;
482         work->w_data = data;
483         work->w_vfs = vfs;
484         spin_lock(&vfs->vfs_sync_lock);
485         list_add_tail(&work->w_list, &vfs->vfs_sync_list);
486         spin_unlock(&vfs->vfs_sync_lock);
487         wake_up_process(vfs->vfs_sync_task);
488 }
489
490 /*
491  * Flush delayed allocate data, attempting to free up reserved space
492  * from existing allocations.  At this point a new allocation attempt
493  * has failed with ENOSPC and we are in the process of scratching our
494  * heads, looking about for more room...
495  */
496 STATIC void
497 xfs_flush_inode_work(
498         bhv_vfs_t       *vfs,
499         void            *inode)
500 {
501         filemap_flush(((struct inode *)inode)->i_mapping);
502         iput((struct inode *)inode);
503 }
504
505 void
506 xfs_flush_inode(
507         xfs_inode_t     *ip)
508 {
509         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
510         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
511
512         igrab(inode);
513         xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
514         delay(msecs_to_jiffies(500));
515 }
516
517 /*
518  * This is the "bigger hammer" version of xfs_flush_inode_work...
519  * (IOW, "If at first you don't succeed, use a Bigger Hammer").
520  */
521 STATIC void
522 xfs_flush_device_work(
523         bhv_vfs_t       *vfs,
524         void            *inode)
525 {
526         sync_blockdev(vfs->vfs_super->s_bdev);
527         iput((struct inode *)inode);
528 }
529
530 void
531 xfs_flush_device(
532         xfs_inode_t     *ip)
533 {
534         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
535         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
536
537         igrab(inode);
538         xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
539         delay(msecs_to_jiffies(500));
540         xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
541 }
542
543 STATIC void
544 vfs_sync_worker(
545         bhv_vfs_t       *vfsp,
546         void            *unused)
547 {
548         int             error;
549
550         if (!(vfsp->vfs_flag & VFS_RDONLY))
551                 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
552                                         SYNC_ATTR | SYNC_REFCACHE, NULL);
553         vfsp->vfs_sync_seq++;
554         wake_up(&vfsp->vfs_wait_single_sync_task);
555 }
556
557 STATIC int
558 xfssyncd(
559         void                    *arg)
560 {
561         long                    timeleft;
562         bhv_vfs_t               *vfsp = (bhv_vfs_t *) arg;
563         bhv_vfs_sync_work_t     *work, *n;
564         LIST_HEAD               (tmp);
565
566         timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
567         for (;;) {
568                 timeleft = schedule_timeout_interruptible(timeleft);
569                 /* swsusp */
570                 try_to_freeze();
571                 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
572                         break;
573
574                 spin_lock(&vfsp->vfs_sync_lock);
575                 /*
576                  * We can get woken by laptop mode, to do a sync -
577                  * that's the (only!) case where the list would be
578                  * empty with time remaining.
579                  */
580                 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
581                         if (!timeleft)
582                                 timeleft = xfs_syncd_centisecs *
583                                                         msecs_to_jiffies(10);
584                         INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
585                         list_add_tail(&vfsp->vfs_sync_work.w_list,
586                                         &vfsp->vfs_sync_list);
587                 }
588                 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
589                         list_move(&work->w_list, &tmp);
590                 spin_unlock(&vfsp->vfs_sync_lock);
591
592                 list_for_each_entry_safe(work, n, &tmp, w_list) {
593                         (*work->w_syncer)(vfsp, work->w_data);
594                         list_del(&work->w_list);
595                         if (work == &vfsp->vfs_sync_work)
596                                 continue;
597                         kmem_free(work, sizeof(struct bhv_vfs_sync_work));
598                 }
599         }
600
601         return 0;
602 }
603
604 STATIC int
605 xfs_fs_start_syncd(
606         bhv_vfs_t               *vfsp)
607 {
608         vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
609         vfsp->vfs_sync_work.w_vfs = vfsp;
610         vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
611         if (IS_ERR(vfsp->vfs_sync_task))
612                 return -PTR_ERR(vfsp->vfs_sync_task);
613         return 0;
614 }
615
616 STATIC void
617 xfs_fs_stop_syncd(
618         bhv_vfs_t               *vfsp)
619 {
620         kthread_stop(vfsp->vfs_sync_task);
621 }
622
623 STATIC void
624 xfs_fs_put_super(
625         struct super_block      *sb)
626 {
627         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
628         int                     error;
629
630         xfs_fs_stop_syncd(vfsp);
631         bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
632         error = bhv_vfs_unmount(vfsp, 0, NULL);
633         if (error) {
634                 printk("XFS: unmount got error=%d\n", error);
635                 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
636         } else {
637                 vfs_deallocate(vfsp);
638         }
639 }
640
641 STATIC void
642 xfs_fs_write_super(
643         struct super_block      *sb)
644 {
645         if (!(sb->s_flags & MS_RDONLY))
646                 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
647         sb->s_dirt = 0;
648 }
649
650 STATIC int
651 xfs_fs_sync_super(
652         struct super_block      *sb,
653         int                     wait)
654 {
655         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
656         int                     error;
657         int                     flags;
658
659         if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
660                 /*
661                  * First stage of freeze - no more writers will make progress
662                  * now we are here, so we flush delwri and delalloc buffers
663                  * here, then wait for all I/O to complete.  Data is frozen at
664                  * that point. Metadata is not frozen, transactions can still
665                  * occur here so don't bother flushing the buftarg (i.e
666                  * SYNC_QUIESCE) because it'll just get dirty again.
667                  */
668                 flags = SYNC_FSDATA | SYNC_DELWRI | SYNC_WAIT | SYNC_IOWAIT;
669         } else
670                 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
671
672         error = bhv_vfs_sync(vfsp, flags, NULL);
673         sb->s_dirt = 0;
674
675         if (unlikely(laptop_mode)) {
676                 int     prev_sync_seq = vfsp->vfs_sync_seq;
677
678                 /*
679                  * The disk must be active because we're syncing.
680                  * We schedule xfssyncd now (now that the disk is
681                  * active) instead of later (when it might not be).
682                  */
683                 wake_up_process(vfsp->vfs_sync_task);
684                 /*
685                  * We have to wait for the sync iteration to complete.
686                  * If we don't, the disk activity caused by the sync
687                  * will come after the sync is completed, and that
688                  * triggers another sync from laptop mode.
689                  */
690                 wait_event(vfsp->vfs_wait_single_sync_task,
691                                 vfsp->vfs_sync_seq != prev_sync_seq);
692         }
693
694         return -error;
695 }
696
697 STATIC int
698 xfs_fs_statfs(
699         struct dentry           *dentry,
700         struct kstatfs          *statp)
701 {
702         return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
703                                 vn_from_inode(dentry->d_inode));
704 }
705
706 STATIC int
707 xfs_fs_remount(
708         struct super_block      *sb,
709         int                     *flags,
710         char                    *options)
711 {
712         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
713         struct xfs_mount_args   *args = xfs_args_allocate(sb, 0);
714         int                     error;
715
716         error = bhv_vfs_parseargs(vfsp, options, args, 1);
717         if (!error)
718                 error = bhv_vfs_mntupdate(vfsp, flags, args);
719         kmem_free(args, sizeof(*args));
720         return -error;
721 }
722
723 STATIC void
724 xfs_fs_lockfs(
725         struct super_block      *sb)
726 {
727         bhv_vfs_freeze(vfs_from_sb(sb));
728 }
729
730 STATIC int
731 xfs_fs_show_options(
732         struct seq_file         *m,
733         struct vfsmount         *mnt)
734 {
735         return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
736 }
737
738 STATIC int
739 xfs_fs_quotasync(
740         struct super_block      *sb,
741         int                     type)
742 {
743         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
744 }
745
746 STATIC int
747 xfs_fs_getxstate(
748         struct super_block      *sb,
749         struct fs_quota_stat    *fqs)
750 {
751         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
752 }
753
754 STATIC int
755 xfs_fs_setxstate(
756         struct super_block      *sb,
757         unsigned int            flags,
758         int                     op)
759 {
760         return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
761 }
762
763 STATIC int
764 xfs_fs_getxquota(
765         struct super_block      *sb,
766         int                     type,
767         qid_t                   id,
768         struct fs_disk_quota    *fdq)
769 {
770         return -bhv_vfs_quotactl(vfs_from_sb(sb),
771                                  (type == USRQUOTA) ? Q_XGETQUOTA :
772                                   ((type == GRPQUOTA) ? Q_XGETGQUOTA :
773                                    Q_XGETPQUOTA), id, (caddr_t)fdq);
774 }
775
776 STATIC int
777 xfs_fs_setxquota(
778         struct super_block      *sb,
779         int                     type,
780         qid_t                   id,
781         struct fs_disk_quota    *fdq)
782 {
783         return -bhv_vfs_quotactl(vfs_from_sb(sb),
784                                  (type == USRQUOTA) ? Q_XSETQLIM :
785                                   ((type == GRPQUOTA) ? Q_XSETGQLIM :
786                                    Q_XSETPQLIM), id, (caddr_t)fdq);
787 }
788
789 STATIC int
790 xfs_fs_fill_super(
791         struct super_block      *sb,
792         void                    *data,
793         int                     silent)
794 {
795         struct bhv_vnode        *rootvp;
796         struct bhv_vfs          *vfsp = vfs_allocate(sb);
797         struct xfs_mount_args   *args = xfs_args_allocate(sb, silent);
798         struct kstatfs          statvfs;
799         int                     error;
800
801         bhv_insert_all_vfsops(vfsp);
802
803         error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
804         if (error) {
805                 bhv_remove_all_vfsops(vfsp, 1);
806                 goto fail_vfsop;
807         }
808
809         sb_min_blocksize(sb, BBSIZE);
810         sb->s_export_op = &xfs_export_operations;
811         sb->s_qcop = &xfs_quotactl_operations;
812         sb->s_op = &xfs_super_operations;
813
814         error = bhv_vfs_mount(vfsp, args, NULL);
815         if (error) {
816                 bhv_remove_all_vfsops(vfsp, 1);
817                 goto fail_vfsop;
818         }
819
820         error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
821         if (error)
822                 goto fail_unmount;
823
824         sb->s_dirt = 1;
825         sb->s_magic = statvfs.f_type;
826         sb->s_blocksize = statvfs.f_bsize;
827         sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
828         sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
829         sb->s_time_gran = 1;
830         set_posix_acl_flag(sb);
831
832         error = bhv_vfs_root(vfsp, &rootvp);
833         if (error)
834                 goto fail_unmount;
835
836         sb->s_root = d_alloc_root(vn_to_inode(rootvp));
837         if (!sb->s_root) {
838                 error = ENOMEM;
839                 goto fail_vnrele;
840         }
841         if (is_bad_inode(sb->s_root->d_inode)) {
842                 error = EINVAL;
843                 goto fail_vnrele;
844         }
845         if ((error = xfs_fs_start_syncd(vfsp)))
846                 goto fail_vnrele;
847         vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
848
849         kmem_free(args, sizeof(*args));
850         return 0;
851
852 fail_vnrele:
853         if (sb->s_root) {
854                 dput(sb->s_root);
855                 sb->s_root = NULL;
856         } else {
857                 VN_RELE(rootvp);
858         }
859
860 fail_unmount:
861         bhv_vfs_unmount(vfsp, 0, NULL);
862
863 fail_vfsop:
864         vfs_deallocate(vfsp);
865         kmem_free(args, sizeof(*args));
866         return -error;
867 }
868
869 STATIC int
870 xfs_fs_get_sb(
871         struct file_system_type *fs_type,
872         int                     flags,
873         const char              *dev_name,
874         void                    *data,
875         struct vfsmount         *mnt)
876 {
877         return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
878                            mnt);
879 }
880
881 static struct super_operations xfs_super_operations = {
882         .alloc_inode            = xfs_fs_alloc_inode,
883         .destroy_inode          = xfs_fs_destroy_inode,
884         .write_inode            = xfs_fs_write_inode,
885         .clear_inode            = xfs_fs_clear_inode,
886         .put_super              = xfs_fs_put_super,
887         .write_super            = xfs_fs_write_super,
888         .sync_fs                = xfs_fs_sync_super,
889         .write_super_lockfs     = xfs_fs_lockfs,
890         .statfs                 = xfs_fs_statfs,
891         .remount_fs             = xfs_fs_remount,
892         .show_options           = xfs_fs_show_options,
893 };
894
895 static struct quotactl_ops xfs_quotactl_operations = {
896         .quota_sync             = xfs_fs_quotasync,
897         .get_xstate             = xfs_fs_getxstate,
898         .set_xstate             = xfs_fs_setxstate,
899         .get_xquota             = xfs_fs_getxquota,
900         .set_xquota             = xfs_fs_setxquota,
901 };
902
903 static struct file_system_type xfs_fs_type = {
904         .owner                  = THIS_MODULE,
905         .name                   = "xfs",
906         .get_sb                 = xfs_fs_get_sb,
907         .kill_sb                = kill_block_super,
908         .fs_flags               = FS_REQUIRES_DEV,
909 };
910
911
912 STATIC int __init
913 init_xfs_fs( void )
914 {
915         int                     error;
916         struct sysinfo          si;
917         static char             message[] __initdata = KERN_INFO \
918                 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
919
920         printk(message);
921
922         si_meminfo(&si);
923         xfs_physmem = si.totalram;
924
925         ktrace_init(64);
926
927         error = xfs_init_zones();
928         if (error < 0)
929                 goto undo_zones;
930
931         error = xfs_buf_init();
932         if (error < 0)
933                 goto undo_buffers;
934
935         vn_init();
936         xfs_init();
937         uuid_init();
938         vfs_initquota();
939
940         error = register_filesystem(&xfs_fs_type);
941         if (error)
942                 goto undo_register;
943         return 0;
944
945 undo_register:
946         xfs_buf_terminate();
947
948 undo_buffers:
949         xfs_destroy_zones();
950
951 undo_zones:
952         return error;
953 }
954
955 STATIC void __exit
956 exit_xfs_fs( void )
957 {
958         vfs_exitquota();
959         unregister_filesystem(&xfs_fs_type);
960         xfs_cleanup();
961         xfs_buf_terminate();
962         xfs_destroy_zones();
963         ktrace_uninit();
964 }
965
966 module_init(init_xfs_fs);
967 module_exit(exit_xfs_fs);
968
969 MODULE_AUTHOR("Silicon Graphics, Inc.");
970 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
971 MODULE_LICENSE("GPL");