]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/xfs/linux-2.6/xfs_buf.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild-fixes
[linux-2.6-omap-h63xx.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42         .shrink = xfsbufd_wakeup,
43         .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52         xfs_buf_t       *bp,
53         char            *id,
54         void            *data,
55         void            *ra)
56 {
57         ktrace_enter(xfs_buf_trace_buf,
58                 bp, id,
59                 (void *)(unsigned long)bp->b_flags,
60                 (void *)(unsigned long)bp->b_hold.counter,
61                 (void *)(unsigned long)bp->b_sema.count.counter,
62                 (void *)current,
63                 data, ra,
64                 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65                 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66                 (void *)(unsigned long)bp->b_buffer_length,
67                 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE      4096
71 #define XB_TRACE(bp, id, data)  \
72         xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data)  do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp)       do { } while (0)
83 # define XB_CLEAR_OWNER(bp)     do { } while (0)
84 # define XB_GET_OWNER(bp)       do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97         kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100  *      Page Region interfaces.
101  *
102  *      For pages in filesystems where the blocksize is smaller than the
103  *      pagesize, we use the page->private field (long) to hold a bitmap
104  *      of uptodate regions within the page.
105  *
106  *      Each such region is "bytes per page / bits per long" bytes long.
107  *
108  *      NBPPR == number-of-bytes-per-page-region
109  *      BTOPR == bytes-to-page-region (rounded up)
110  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
111  */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125         size_t          offset,
126         size_t          length)
127 {
128         unsigned long   mask;
129         int             first, final;
130
131         first = BTOPR(offset);
132         final = BTOPRT(offset + length - 1);
133         first = min(first, final);
134
135         mask = ~0UL;
136         mask <<= BITS_PER_LONG - (final - first);
137         mask >>= BITS_PER_LONG - (final);
138
139         ASSERT(offset + length <= PAGE_CACHE_SIZE);
140         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142         return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147         struct page     *page,
148         size_t          offset,
149         size_t          length)
150 {
151         set_page_private(page,
152                 page_private(page) | page_region_mask(offset, length));
153         if (page_private(page) == ~0UL)
154                 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159         struct page     *page,
160         size_t          offset,
161         size_t          length)
162 {
163         unsigned long   mask = page_region_mask(offset, length);
164
165         return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169  *      Mapping of multi-page buffers into contiguous virtual space
170  */
171
172 typedef struct a_list {
173         void            *vm_addr;
174         struct a_list   *next;
175 } a_list_t;
176
177 static a_list_t         *as_free_head;
178 static int              as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182  *      Try to batch vunmaps because they are costly.
183  */
184 STATIC void
185 free_address(
186         void            *addr)
187 {
188         a_list_t        *aentry;
189
190 #ifdef CONFIG_XEN
191         /*
192          * Xen needs to be able to make sure it can get an exclusive
193          * RO mapping of pages it wants to turn into a pagetable.  If
194          * a newly allocated page is also still being vmap()ed by xfs,
195          * it will cause pagetable construction to fail.  This is a
196          * quick workaround to always eagerly unmap pages so that Xen
197          * is happy.
198          */
199         vunmap(addr);
200         return;
201 #endif
202
203         aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204         if (likely(aentry)) {
205                 spin_lock(&as_lock);
206                 aentry->next = as_free_head;
207                 aentry->vm_addr = addr;
208                 as_free_head = aentry;
209                 as_list_len++;
210                 spin_unlock(&as_lock);
211         } else {
212                 vunmap(addr);
213         }
214 }
215
216 STATIC void
217 purge_addresses(void)
218 {
219         a_list_t        *aentry, *old;
220
221         if (as_free_head == NULL)
222                 return;
223
224         spin_lock(&as_lock);
225         aentry = as_free_head;
226         as_free_head = NULL;
227         as_list_len = 0;
228         spin_unlock(&as_lock);
229
230         while ((old = aentry) != NULL) {
231                 vunmap(aentry->vm_addr);
232                 aentry = aentry->next;
233                 kfree(old);
234         }
235 }
236
237 /*
238  *      Internal xfs_buf_t object manipulation
239  */
240
241 STATIC void
242 _xfs_buf_initialize(
243         xfs_buf_t               *bp,
244         xfs_buftarg_t           *target,
245         xfs_off_t               range_base,
246         size_t                  range_length,
247         xfs_buf_flags_t         flags)
248 {
249         /*
250          * We don't want certain flags to appear in b_flags.
251          */
252         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
253
254         memset(bp, 0, sizeof(xfs_buf_t));
255         atomic_set(&bp->b_hold, 1);
256         init_MUTEX_LOCKED(&bp->b_iodonesema);
257         INIT_LIST_HEAD(&bp->b_list);
258         INIT_LIST_HEAD(&bp->b_hash_list);
259         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260         XB_SET_OWNER(bp);
261         bp->b_target = target;
262         bp->b_file_offset = range_base;
263         /*
264          * Set buffer_length and count_desired to the same value initially.
265          * I/O routines should use count_desired, which will be the same in
266          * most cases but may be reset (e.g. XFS recovery).
267          */
268         bp->b_buffer_length = bp->b_count_desired = range_length;
269         bp->b_flags = flags;
270         bp->b_bn = XFS_BUF_DADDR_NULL;
271         atomic_set(&bp->b_pin_count, 0);
272         init_waitqueue_head(&bp->b_waiters);
273
274         XFS_STATS_INC(xb_create);
275         XB_TRACE(bp, "initialize", target);
276 }
277
278 /*
279  *      Allocate a page array capable of holding a specified number
280  *      of pages, and point the page buf at it.
281  */
282 STATIC int
283 _xfs_buf_get_pages(
284         xfs_buf_t               *bp,
285         int                     page_count,
286         xfs_buf_flags_t         flags)
287 {
288         /* Make sure that we have a page list */
289         if (bp->b_pages == NULL) {
290                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291                 bp->b_page_count = page_count;
292                 if (page_count <= XB_PAGES) {
293                         bp->b_pages = bp->b_page_array;
294                 } else {
295                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
296                                         page_count, xb_to_km(flags));
297                         if (bp->b_pages == NULL)
298                                 return -ENOMEM;
299                 }
300                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
301         }
302         return 0;
303 }
304
305 /*
306  *      Frees b_pages if it was allocated.
307  */
308 STATIC void
309 _xfs_buf_free_pages(
310         xfs_buf_t       *bp)
311 {
312         if (bp->b_pages != bp->b_page_array) {
313                 kmem_free(bp->b_pages);
314         }
315 }
316
317 /*
318  *      Releases the specified buffer.
319  *
320  *      The modification state of any associated pages is left unchanged.
321  *      The buffer most not be on any hash - use xfs_buf_rele instead for
322  *      hashed and refcounted buffers
323  */
324 void
325 xfs_buf_free(
326         xfs_buf_t               *bp)
327 {
328         XB_TRACE(bp, "free", 0);
329
330         ASSERT(list_empty(&bp->b_hash_list));
331
332         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
333                 uint            i;
334
335                 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
336                         free_address(bp->b_addr - bp->b_offset);
337
338                 for (i = 0; i < bp->b_page_count; i++) {
339                         struct page     *page = bp->b_pages[i];
340
341                         if (bp->b_flags & _XBF_PAGE_CACHE)
342                                 ASSERT(!PagePrivate(page));
343                         page_cache_release(page);
344                 }
345                 _xfs_buf_free_pages(bp);
346         }
347
348         xfs_buf_deallocate(bp);
349 }
350
351 /*
352  *      Finds all pages for buffer in question and builds it's page list.
353  */
354 STATIC int
355 _xfs_buf_lookup_pages(
356         xfs_buf_t               *bp,
357         uint                    flags)
358 {
359         struct address_space    *mapping = bp->b_target->bt_mapping;
360         size_t                  blocksize = bp->b_target->bt_bsize;
361         size_t                  size = bp->b_count_desired;
362         size_t                  nbytes, offset;
363         gfp_t                   gfp_mask = xb_to_gfp(flags);
364         unsigned short          page_count, i;
365         pgoff_t                 first;
366         xfs_off_t               end;
367         int                     error;
368
369         end = bp->b_file_offset + bp->b_buffer_length;
370         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
371
372         error = _xfs_buf_get_pages(bp, page_count, flags);
373         if (unlikely(error))
374                 return error;
375         bp->b_flags |= _XBF_PAGE_CACHE;
376
377         offset = bp->b_offset;
378         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
379
380         for (i = 0; i < bp->b_page_count; i++) {
381                 struct page     *page;
382                 uint            retries = 0;
383
384               retry:
385                 page = find_or_create_page(mapping, first + i, gfp_mask);
386                 if (unlikely(page == NULL)) {
387                         if (flags & XBF_READ_AHEAD) {
388                                 bp->b_page_count = i;
389                                 for (i = 0; i < bp->b_page_count; i++)
390                                         unlock_page(bp->b_pages[i]);
391                                 return -ENOMEM;
392                         }
393
394                         /*
395                          * This could deadlock.
396                          *
397                          * But until all the XFS lowlevel code is revamped to
398                          * handle buffer allocation failures we can't do much.
399                          */
400                         if (!(++retries % 100))
401                                 printk(KERN_ERR
402                                         "XFS: possible memory allocation "
403                                         "deadlock in %s (mode:0x%x)\n",
404                                         __func__, gfp_mask);
405
406                         XFS_STATS_INC(xb_page_retries);
407                         xfsbufd_wakeup(0, gfp_mask);
408                         congestion_wait(WRITE, HZ/50);
409                         goto retry;
410                 }
411
412                 XFS_STATS_INC(xb_page_found);
413
414                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
415                 size -= nbytes;
416
417                 ASSERT(!PagePrivate(page));
418                 if (!PageUptodate(page)) {
419                         page_count--;
420                         if (blocksize >= PAGE_CACHE_SIZE) {
421                                 if (flags & XBF_READ)
422                                         bp->b_flags |= _XBF_PAGE_LOCKED;
423                         } else if (!PagePrivate(page)) {
424                                 if (test_page_region(page, offset, nbytes))
425                                         page_count++;
426                         }
427                 }
428
429                 bp->b_pages[i] = page;
430                 offset = 0;
431         }
432
433         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
434                 for (i = 0; i < bp->b_page_count; i++)
435                         unlock_page(bp->b_pages[i]);
436         }
437
438         if (page_count == bp->b_page_count)
439                 bp->b_flags |= XBF_DONE;
440
441         XB_TRACE(bp, "lookup_pages", (long)page_count);
442         return error;
443 }
444
445 /*
446  *      Map buffer into kernel address-space if nessecary.
447  */
448 STATIC int
449 _xfs_buf_map_pages(
450         xfs_buf_t               *bp,
451         uint                    flags)
452 {
453         /* A single page buffer is always mappable */
454         if (bp->b_page_count == 1) {
455                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456                 bp->b_flags |= XBF_MAPPED;
457         } else if (flags & XBF_MAPPED) {
458                 if (as_list_len > 64)
459                         purge_addresses();
460                 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
461                                         VM_MAP, PAGE_KERNEL);
462                 if (unlikely(bp->b_addr == NULL))
463                         return -ENOMEM;
464                 bp->b_addr += bp->b_offset;
465                 bp->b_flags |= XBF_MAPPED;
466         }
467
468         return 0;
469 }
470
471 /*
472  *      Finding and Reading Buffers
473  */
474
475 /*
476  *      Look up, and creates if absent, a lockable buffer for
477  *      a given range of an inode.  The buffer is returned
478  *      locked.  If other overlapping buffers exist, they are
479  *      released before the new buffer is created and locked,
480  *      which may imply that this call will block until those buffers
481  *      are unlocked.  No I/O is implied by this call.
482  */
483 xfs_buf_t *
484 _xfs_buf_find(
485         xfs_buftarg_t           *btp,   /* block device target          */
486         xfs_off_t               ioff,   /* starting offset of range     */
487         size_t                  isize,  /* length of range              */
488         xfs_buf_flags_t         flags,
489         xfs_buf_t               *new_bp)
490 {
491         xfs_off_t               range_base;
492         size_t                  range_length;
493         xfs_bufhash_t           *hash;
494         xfs_buf_t               *bp, *n;
495
496         range_base = (ioff << BBSHIFT);
497         range_length = (isize << BBSHIFT);
498
499         /* Check for IOs smaller than the sector size / not sector aligned */
500         ASSERT(!(range_length < (1 << btp->bt_sshift)));
501         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
502
503         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
504
505         spin_lock(&hash->bh_lock);
506
507         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
508                 ASSERT(btp == bp->b_target);
509                 if (bp->b_file_offset == range_base &&
510                     bp->b_buffer_length == range_length) {
511                         /*
512                          * If we look at something, bring it to the
513                          * front of the list for next time.
514                          */
515                         atomic_inc(&bp->b_hold);
516                         list_move(&bp->b_hash_list, &hash->bh_list);
517                         goto found;
518                 }
519         }
520
521         /* No match found */
522         if (new_bp) {
523                 _xfs_buf_initialize(new_bp, btp, range_base,
524                                 range_length, flags);
525                 new_bp->b_hash = hash;
526                 list_add(&new_bp->b_hash_list, &hash->bh_list);
527         } else {
528                 XFS_STATS_INC(xb_miss_locked);
529         }
530
531         spin_unlock(&hash->bh_lock);
532         return new_bp;
533
534 found:
535         spin_unlock(&hash->bh_lock);
536
537         /* Attempt to get the semaphore without sleeping,
538          * if this does not work then we need to drop the
539          * spinlock and do a hard attempt on the semaphore.
540          */
541         if (down_trylock(&bp->b_sema)) {
542                 if (!(flags & XBF_TRYLOCK)) {
543                         /* wait for buffer ownership */
544                         XB_TRACE(bp, "get_lock", 0);
545                         xfs_buf_lock(bp);
546                         XFS_STATS_INC(xb_get_locked_waited);
547                 } else {
548                         /* We asked for a trylock and failed, no need
549                          * to look at file offset and length here, we
550                          * know that this buffer at least overlaps our
551                          * buffer and is locked, therefore our buffer
552                          * either does not exist, or is this buffer.
553                          */
554                         xfs_buf_rele(bp);
555                         XFS_STATS_INC(xb_busy_locked);
556                         return NULL;
557                 }
558         } else {
559                 /* trylock worked */
560                 XB_SET_OWNER(bp);
561         }
562
563         if (bp->b_flags & XBF_STALE) {
564                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
565                 bp->b_flags &= XBF_MAPPED;
566         }
567         XB_TRACE(bp, "got_lock", 0);
568         XFS_STATS_INC(xb_get_locked);
569         return bp;
570 }
571
572 /*
573  *      Assembles a buffer covering the specified range.
574  *      Storage in memory for all portions of the buffer will be allocated,
575  *      although backing storage may not be.
576  */
577 xfs_buf_t *
578 xfs_buf_get_flags(
579         xfs_buftarg_t           *target,/* target for buffer            */
580         xfs_off_t               ioff,   /* starting offset of range     */
581         size_t                  isize,  /* length of range              */
582         xfs_buf_flags_t         flags)
583 {
584         xfs_buf_t               *bp, *new_bp;
585         int                     error = 0, i;
586
587         new_bp = xfs_buf_allocate(flags);
588         if (unlikely(!new_bp))
589                 return NULL;
590
591         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
592         if (bp == new_bp) {
593                 error = _xfs_buf_lookup_pages(bp, flags);
594                 if (error)
595                         goto no_buffer;
596         } else {
597                 xfs_buf_deallocate(new_bp);
598                 if (unlikely(bp == NULL))
599                         return NULL;
600         }
601
602         for (i = 0; i < bp->b_page_count; i++)
603                 mark_page_accessed(bp->b_pages[i]);
604
605         if (!(bp->b_flags & XBF_MAPPED)) {
606                 error = _xfs_buf_map_pages(bp, flags);
607                 if (unlikely(error)) {
608                         printk(KERN_WARNING "%s: failed to map pages\n",
609                                         __func__);
610                         goto no_buffer;
611                 }
612         }
613
614         XFS_STATS_INC(xb_get);
615
616         /*
617          * Always fill in the block number now, the mapped cases can do
618          * their own overlay of this later.
619          */
620         bp->b_bn = ioff;
621         bp->b_count_desired = bp->b_buffer_length;
622
623         XB_TRACE(bp, "get", (unsigned long)flags);
624         return bp;
625
626  no_buffer:
627         if (flags & (XBF_LOCK | XBF_TRYLOCK))
628                 xfs_buf_unlock(bp);
629         xfs_buf_rele(bp);
630         return NULL;
631 }
632
633 xfs_buf_t *
634 xfs_buf_read_flags(
635         xfs_buftarg_t           *target,
636         xfs_off_t               ioff,
637         size_t                  isize,
638         xfs_buf_flags_t         flags)
639 {
640         xfs_buf_t               *bp;
641
642         flags |= XBF_READ;
643
644         bp = xfs_buf_get_flags(target, ioff, isize, flags);
645         if (bp) {
646                 if (!XFS_BUF_ISDONE(bp)) {
647                         XB_TRACE(bp, "read", (unsigned long)flags);
648                         XFS_STATS_INC(xb_get_read);
649                         xfs_buf_iostart(bp, flags);
650                 } else if (flags & XBF_ASYNC) {
651                         XB_TRACE(bp, "read_async", (unsigned long)flags);
652                         /*
653                          * Read ahead call which is already satisfied,
654                          * drop the buffer
655                          */
656                         goto no_buffer;
657                 } else {
658                         XB_TRACE(bp, "read_done", (unsigned long)flags);
659                         /* We do not want read in the flags */
660                         bp->b_flags &= ~XBF_READ;
661                 }
662         }
663
664         return bp;
665
666  no_buffer:
667         if (flags & (XBF_LOCK | XBF_TRYLOCK))
668                 xfs_buf_unlock(bp);
669         xfs_buf_rele(bp);
670         return NULL;
671 }
672
673 /*
674  *      If we are not low on memory then do the readahead in a deadlock
675  *      safe manner.
676  */
677 void
678 xfs_buf_readahead(
679         xfs_buftarg_t           *target,
680         xfs_off_t               ioff,
681         size_t                  isize,
682         xfs_buf_flags_t         flags)
683 {
684         struct backing_dev_info *bdi;
685
686         bdi = target->bt_mapping->backing_dev_info;
687         if (bdi_read_congested(bdi))
688                 return;
689
690         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
691         xfs_buf_read_flags(target, ioff, isize, flags);
692 }
693
694 xfs_buf_t *
695 xfs_buf_get_empty(
696         size_t                  len,
697         xfs_buftarg_t           *target)
698 {
699         xfs_buf_t               *bp;
700
701         bp = xfs_buf_allocate(0);
702         if (bp)
703                 _xfs_buf_initialize(bp, target, 0, len, 0);
704         return bp;
705 }
706
707 static inline struct page *
708 mem_to_page(
709         void                    *addr)
710 {
711         if ((!is_vmalloc_addr(addr))) {
712                 return virt_to_page(addr);
713         } else {
714                 return vmalloc_to_page(addr);
715         }
716 }
717
718 int
719 xfs_buf_associate_memory(
720         xfs_buf_t               *bp,
721         void                    *mem,
722         size_t                  len)
723 {
724         int                     rval;
725         int                     i = 0;
726         unsigned long           pageaddr;
727         unsigned long           offset;
728         size_t                  buflen;
729         int                     page_count;
730
731         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
732         offset = (unsigned long)mem - pageaddr;
733         buflen = PAGE_CACHE_ALIGN(len + offset);
734         page_count = buflen >> PAGE_CACHE_SHIFT;
735
736         /* Free any previous set of page pointers */
737         if (bp->b_pages)
738                 _xfs_buf_free_pages(bp);
739
740         bp->b_pages = NULL;
741         bp->b_addr = mem;
742
743         rval = _xfs_buf_get_pages(bp, page_count, 0);
744         if (rval)
745                 return rval;
746
747         bp->b_offset = offset;
748
749         for (i = 0; i < bp->b_page_count; i++) {
750                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
751                 pageaddr += PAGE_CACHE_SIZE;
752         }
753
754         bp->b_count_desired = len;
755         bp->b_buffer_length = buflen;
756         bp->b_flags |= XBF_MAPPED;
757         bp->b_flags &= ~_XBF_PAGE_LOCKED;
758
759         return 0;
760 }
761
762 xfs_buf_t *
763 xfs_buf_get_noaddr(
764         size_t                  len,
765         xfs_buftarg_t           *target)
766 {
767         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
768         int                     error, i;
769         xfs_buf_t               *bp;
770
771         bp = xfs_buf_allocate(0);
772         if (unlikely(bp == NULL))
773                 goto fail;
774         _xfs_buf_initialize(bp, target, 0, len, 0);
775
776         error = _xfs_buf_get_pages(bp, page_count, 0);
777         if (error)
778                 goto fail_free_buf;
779
780         for (i = 0; i < page_count; i++) {
781                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
782                 if (!bp->b_pages[i])
783                         goto fail_free_mem;
784         }
785         bp->b_flags |= _XBF_PAGES;
786
787         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
788         if (unlikely(error)) {
789                 printk(KERN_WARNING "%s: failed to map pages\n",
790                                 __func__);
791                 goto fail_free_mem;
792         }
793
794         xfs_buf_unlock(bp);
795
796         XB_TRACE(bp, "no_daddr", len);
797         return bp;
798
799  fail_free_mem:
800         while (--i >= 0)
801                 __free_page(bp->b_pages[i]);
802         _xfs_buf_free_pages(bp);
803  fail_free_buf:
804         xfs_buf_deallocate(bp);
805  fail:
806         return NULL;
807 }
808
809 /*
810  *      Increment reference count on buffer, to hold the buffer concurrently
811  *      with another thread which may release (free) the buffer asynchronously.
812  *      Must hold the buffer already to call this function.
813  */
814 void
815 xfs_buf_hold(
816         xfs_buf_t               *bp)
817 {
818         atomic_inc(&bp->b_hold);
819         XB_TRACE(bp, "hold", 0);
820 }
821
822 /*
823  *      Releases a hold on the specified buffer.  If the
824  *      the hold count is 1, calls xfs_buf_free.
825  */
826 void
827 xfs_buf_rele(
828         xfs_buf_t               *bp)
829 {
830         xfs_bufhash_t           *hash = bp->b_hash;
831
832         XB_TRACE(bp, "rele", bp->b_relse);
833
834         if (unlikely(!hash)) {
835                 ASSERT(!bp->b_relse);
836                 if (atomic_dec_and_test(&bp->b_hold))
837                         xfs_buf_free(bp);
838                 return;
839         }
840
841         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
842                 if (bp->b_relse) {
843                         atomic_inc(&bp->b_hold);
844                         spin_unlock(&hash->bh_lock);
845                         (*(bp->b_relse)) (bp);
846                 } else if (bp->b_flags & XBF_FS_MANAGED) {
847                         spin_unlock(&hash->bh_lock);
848                 } else {
849                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
850                         list_del_init(&bp->b_hash_list);
851                         spin_unlock(&hash->bh_lock);
852                         xfs_buf_free(bp);
853                 }
854         } else {
855                 /*
856                  * Catch reference count leaks
857                  */
858                 ASSERT(atomic_read(&bp->b_hold) >= 0);
859         }
860 }
861
862
863 /*
864  *      Mutual exclusion on buffers.  Locking model:
865  *
866  *      Buffers associated with inodes for which buffer locking
867  *      is not enabled are not protected by semaphores, and are
868  *      assumed to be exclusively owned by the caller.  There is a
869  *      spinlock in the buffer, used by the caller when concurrent
870  *      access is possible.
871  */
872
873 /*
874  *      Locks a buffer object, if it is not already locked.
875  *      Note that this in no way locks the underlying pages, so it is only
876  *      useful for synchronizing concurrent use of buffer objects, not for
877  *      synchronizing independent access to the underlying pages.
878  */
879 int
880 xfs_buf_cond_lock(
881         xfs_buf_t               *bp)
882 {
883         int                     locked;
884
885         locked = down_trylock(&bp->b_sema) == 0;
886         if (locked) {
887                 XB_SET_OWNER(bp);
888         }
889         XB_TRACE(bp, "cond_lock", (long)locked);
890         return locked ? 0 : -EBUSY;
891 }
892
893 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
894 int
895 xfs_buf_lock_value(
896         xfs_buf_t               *bp)
897 {
898         return bp->b_sema.count;
899 }
900 #endif
901
902 /*
903  *      Locks a buffer object.
904  *      Note that this in no way locks the underlying pages, so it is only
905  *      useful for synchronizing concurrent use of buffer objects, not for
906  *      synchronizing independent access to the underlying pages.
907  */
908 void
909 xfs_buf_lock(
910         xfs_buf_t               *bp)
911 {
912         XB_TRACE(bp, "lock", 0);
913         if (atomic_read(&bp->b_io_remaining))
914                 blk_run_address_space(bp->b_target->bt_mapping);
915         down(&bp->b_sema);
916         XB_SET_OWNER(bp);
917         XB_TRACE(bp, "locked", 0);
918 }
919
920 /*
921  *      Releases the lock on the buffer object.
922  *      If the buffer is marked delwri but is not queued, do so before we
923  *      unlock the buffer as we need to set flags correctly.  We also need to
924  *      take a reference for the delwri queue because the unlocker is going to
925  *      drop their's and they don't know we just queued it.
926  */
927 void
928 xfs_buf_unlock(
929         xfs_buf_t               *bp)
930 {
931         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
932                 atomic_inc(&bp->b_hold);
933                 bp->b_flags |= XBF_ASYNC;
934                 xfs_buf_delwri_queue(bp, 0);
935         }
936
937         XB_CLEAR_OWNER(bp);
938         up(&bp->b_sema);
939         XB_TRACE(bp, "unlock", 0);
940 }
941
942
943 /*
944  *      Pinning Buffer Storage in Memory
945  *      Ensure that no attempt to force a buffer to disk will succeed.
946  */
947 void
948 xfs_buf_pin(
949         xfs_buf_t               *bp)
950 {
951         atomic_inc(&bp->b_pin_count);
952         XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
953 }
954
955 void
956 xfs_buf_unpin(
957         xfs_buf_t               *bp)
958 {
959         if (atomic_dec_and_test(&bp->b_pin_count))
960                 wake_up_all(&bp->b_waiters);
961         XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
962 }
963
964 int
965 xfs_buf_ispin(
966         xfs_buf_t               *bp)
967 {
968         return atomic_read(&bp->b_pin_count);
969 }
970
971 STATIC void
972 xfs_buf_wait_unpin(
973         xfs_buf_t               *bp)
974 {
975         DECLARE_WAITQUEUE       (wait, current);
976
977         if (atomic_read(&bp->b_pin_count) == 0)
978                 return;
979
980         add_wait_queue(&bp->b_waiters, &wait);
981         for (;;) {
982                 set_current_state(TASK_UNINTERRUPTIBLE);
983                 if (atomic_read(&bp->b_pin_count) == 0)
984                         break;
985                 if (atomic_read(&bp->b_io_remaining))
986                         blk_run_address_space(bp->b_target->bt_mapping);
987                 schedule();
988         }
989         remove_wait_queue(&bp->b_waiters, &wait);
990         set_current_state(TASK_RUNNING);
991 }
992
993 /*
994  *      Buffer Utility Routines
995  */
996
997 STATIC void
998 xfs_buf_iodone_work(
999         struct work_struct      *work)
1000 {
1001         xfs_buf_t               *bp =
1002                 container_of(work, xfs_buf_t, b_iodone_work);
1003
1004         /*
1005          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
1006          * ordered flag and reissue them.  Because we can't tell the higher
1007          * layers directly that they should not issue ordered I/O anymore, they
1008          * need to check if the ordered flag was cleared during I/O completion.
1009          */
1010         if ((bp->b_error == EOPNOTSUPP) &&
1011             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1012                 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1013                 bp->b_flags &= ~XBF_ORDERED;
1014                 xfs_buf_iorequest(bp);
1015         } else if (bp->b_iodone)
1016                 (*(bp->b_iodone))(bp);
1017         else if (bp->b_flags & XBF_ASYNC)
1018                 xfs_buf_relse(bp);
1019 }
1020
1021 void
1022 xfs_buf_ioend(
1023         xfs_buf_t               *bp,
1024         int                     schedule)
1025 {
1026         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1027         if (bp->b_error == 0)
1028                 bp->b_flags |= XBF_DONE;
1029
1030         XB_TRACE(bp, "iodone", bp->b_iodone);
1031
1032         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1033                 if (schedule) {
1034                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1035                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1036                 } else {
1037                         xfs_buf_iodone_work(&bp->b_iodone_work);
1038                 }
1039         } else {
1040                 up(&bp->b_iodonesema);
1041         }
1042 }
1043
1044 void
1045 xfs_buf_ioerror(
1046         xfs_buf_t               *bp,
1047         int                     error)
1048 {
1049         ASSERT(error >= 0 && error <= 0xffff);
1050         bp->b_error = (unsigned short)error;
1051         XB_TRACE(bp, "ioerror", (unsigned long)error);
1052 }
1053
1054 /*
1055  *      Initiate I/O on a buffer, based on the flags supplied.
1056  *      The b_iodone routine in the buffer supplied will only be called
1057  *      when all of the subsidiary I/O requests, if any, have been completed.
1058  */
1059 int
1060 xfs_buf_iostart(
1061         xfs_buf_t               *bp,
1062         xfs_buf_flags_t         flags)
1063 {
1064         int                     status = 0;
1065
1066         XB_TRACE(bp, "iostart", (unsigned long)flags);
1067
1068         if (flags & XBF_DELWRI) {
1069                 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1070                 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1071                 xfs_buf_delwri_queue(bp, 1);
1072                 return 0;
1073         }
1074
1075         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1076                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1077         bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1078                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1079
1080         BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1081
1082         /* For writes allow an alternate strategy routine to precede
1083          * the actual I/O request (which may not be issued at all in
1084          * a shutdown situation, for example).
1085          */
1086         status = (flags & XBF_WRITE) ?
1087                 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1088
1089         /* Wait for I/O if we are not an async request.
1090          * Note: async I/O request completion will release the buffer,
1091          * and that can already be done by this point.  So using the
1092          * buffer pointer from here on, after async I/O, is invalid.
1093          */
1094         if (!status && !(flags & XBF_ASYNC))
1095                 status = xfs_buf_iowait(bp);
1096
1097         return status;
1098 }
1099
1100 STATIC_INLINE void
1101 _xfs_buf_ioend(
1102         xfs_buf_t               *bp,
1103         int                     schedule)
1104 {
1105         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1106                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1107                 xfs_buf_ioend(bp, schedule);
1108         }
1109 }
1110
1111 STATIC void
1112 xfs_buf_bio_end_io(
1113         struct bio              *bio,
1114         int                     error)
1115 {
1116         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1117         unsigned int            blocksize = bp->b_target->bt_bsize;
1118         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1119
1120         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1121                 bp->b_error = EIO;
1122
1123         do {
1124                 struct page     *page = bvec->bv_page;
1125
1126                 ASSERT(!PagePrivate(page));
1127                 if (unlikely(bp->b_error)) {
1128                         if (bp->b_flags & XBF_READ)
1129                                 ClearPageUptodate(page);
1130                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1131                         SetPageUptodate(page);
1132                 } else if (!PagePrivate(page) &&
1133                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1134                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1135                 }
1136
1137                 if (--bvec >= bio->bi_io_vec)
1138                         prefetchw(&bvec->bv_page->flags);
1139
1140                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1141                         unlock_page(page);
1142         } while (bvec >= bio->bi_io_vec);
1143
1144         _xfs_buf_ioend(bp, 1);
1145         bio_put(bio);
1146 }
1147
1148 STATIC void
1149 _xfs_buf_ioapply(
1150         xfs_buf_t               *bp)
1151 {
1152         int                     rw, map_i, total_nr_pages, nr_pages;
1153         struct bio              *bio;
1154         int                     offset = bp->b_offset;
1155         int                     size = bp->b_count_desired;
1156         sector_t                sector = bp->b_bn;
1157         unsigned int            blocksize = bp->b_target->bt_bsize;
1158
1159         total_nr_pages = bp->b_page_count;
1160         map_i = 0;
1161
1162         if (bp->b_flags & XBF_ORDERED) {
1163                 ASSERT(!(bp->b_flags & XBF_READ));
1164                 rw = WRITE_BARRIER;
1165         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1166                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1167                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1168                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1169         } else {
1170                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1171                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1172         }
1173
1174         /* Special code path for reading a sub page size buffer in --
1175          * we populate up the whole page, and hence the other metadata
1176          * in the same page.  This optimization is only valid when the
1177          * filesystem block size is not smaller than the page size.
1178          */
1179         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1180             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1181               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1182             (blocksize >= PAGE_CACHE_SIZE)) {
1183                 bio = bio_alloc(GFP_NOIO, 1);
1184
1185                 bio->bi_bdev = bp->b_target->bt_bdev;
1186                 bio->bi_sector = sector - (offset >> BBSHIFT);
1187                 bio->bi_end_io = xfs_buf_bio_end_io;
1188                 bio->bi_private = bp;
1189
1190                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1191                 size = 0;
1192
1193                 atomic_inc(&bp->b_io_remaining);
1194
1195                 goto submit_io;
1196         }
1197
1198 next_chunk:
1199         atomic_inc(&bp->b_io_remaining);
1200         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1201         if (nr_pages > total_nr_pages)
1202                 nr_pages = total_nr_pages;
1203
1204         bio = bio_alloc(GFP_NOIO, nr_pages);
1205         bio->bi_bdev = bp->b_target->bt_bdev;
1206         bio->bi_sector = sector;
1207         bio->bi_end_io = xfs_buf_bio_end_io;
1208         bio->bi_private = bp;
1209
1210         for (; size && nr_pages; nr_pages--, map_i++) {
1211                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1212
1213                 if (nbytes > size)
1214                         nbytes = size;
1215
1216                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1217                 if (rbytes < nbytes)
1218                         break;
1219
1220                 offset = 0;
1221                 sector += nbytes >> BBSHIFT;
1222                 size -= nbytes;
1223                 total_nr_pages--;
1224         }
1225
1226 submit_io:
1227         if (likely(bio->bi_size)) {
1228                 submit_bio(rw, bio);
1229                 if (size)
1230                         goto next_chunk;
1231         } else {
1232                 bio_put(bio);
1233                 xfs_buf_ioerror(bp, EIO);
1234         }
1235 }
1236
1237 int
1238 xfs_buf_iorequest(
1239         xfs_buf_t               *bp)
1240 {
1241         XB_TRACE(bp, "iorequest", 0);
1242
1243         if (bp->b_flags & XBF_DELWRI) {
1244                 xfs_buf_delwri_queue(bp, 1);
1245                 return 0;
1246         }
1247
1248         if (bp->b_flags & XBF_WRITE) {
1249                 xfs_buf_wait_unpin(bp);
1250         }
1251
1252         xfs_buf_hold(bp);
1253
1254         /* Set the count to 1 initially, this will stop an I/O
1255          * completion callout which happens before we have started
1256          * all the I/O from calling xfs_buf_ioend too early.
1257          */
1258         atomic_set(&bp->b_io_remaining, 1);
1259         _xfs_buf_ioapply(bp);
1260         _xfs_buf_ioend(bp, 0);
1261
1262         xfs_buf_rele(bp);
1263         return 0;
1264 }
1265
1266 /*
1267  *      Waits for I/O to complete on the buffer supplied.
1268  *      It returns immediately if no I/O is pending.
1269  *      It returns the I/O error code, if any, or 0 if there was no error.
1270  */
1271 int
1272 xfs_buf_iowait(
1273         xfs_buf_t               *bp)
1274 {
1275         XB_TRACE(bp, "iowait", 0);
1276         if (atomic_read(&bp->b_io_remaining))
1277                 blk_run_address_space(bp->b_target->bt_mapping);
1278         down(&bp->b_iodonesema);
1279         XB_TRACE(bp, "iowaited", (long)bp->b_error);
1280         return bp->b_error;
1281 }
1282
1283 xfs_caddr_t
1284 xfs_buf_offset(
1285         xfs_buf_t               *bp,
1286         size_t                  offset)
1287 {
1288         struct page             *page;
1289
1290         if (bp->b_flags & XBF_MAPPED)
1291                 return XFS_BUF_PTR(bp) + offset;
1292
1293         offset += bp->b_offset;
1294         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1295         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1296 }
1297
1298 /*
1299  *      Move data into or out of a buffer.
1300  */
1301 void
1302 xfs_buf_iomove(
1303         xfs_buf_t               *bp,    /* buffer to process            */
1304         size_t                  boff,   /* starting buffer offset       */
1305         size_t                  bsize,  /* length to copy               */
1306         caddr_t                 data,   /* data address                 */
1307         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1308 {
1309         size_t                  bend, cpoff, csize;
1310         struct page             *page;
1311
1312         bend = boff + bsize;
1313         while (boff < bend) {
1314                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1315                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1316                 csize = min_t(size_t,
1317                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1318
1319                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1320
1321                 switch (mode) {
1322                 case XBRW_ZERO:
1323                         memset(page_address(page) + cpoff, 0, csize);
1324                         break;
1325                 case XBRW_READ:
1326                         memcpy(data, page_address(page) + cpoff, csize);
1327                         break;
1328                 case XBRW_WRITE:
1329                         memcpy(page_address(page) + cpoff, data, csize);
1330                 }
1331
1332                 boff += csize;
1333                 data += csize;
1334         }
1335 }
1336
1337 /*
1338  *      Handling of buffer targets (buftargs).
1339  */
1340
1341 /*
1342  *      Wait for any bufs with callbacks that have been submitted but
1343  *      have not yet returned... walk the hash list for the target.
1344  */
1345 void
1346 xfs_wait_buftarg(
1347         xfs_buftarg_t   *btp)
1348 {
1349         xfs_buf_t       *bp, *n;
1350         xfs_bufhash_t   *hash;
1351         uint            i;
1352
1353         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1354                 hash = &btp->bt_hash[i];
1355 again:
1356                 spin_lock(&hash->bh_lock);
1357                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1358                         ASSERT(btp == bp->b_target);
1359                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1360                                 spin_unlock(&hash->bh_lock);
1361                                 /*
1362                                  * Catch superblock reference count leaks
1363                                  * immediately
1364                                  */
1365                                 BUG_ON(bp->b_bn == 0);
1366                                 delay(100);
1367                                 goto again;
1368                         }
1369                 }
1370                 spin_unlock(&hash->bh_lock);
1371         }
1372 }
1373
1374 /*
1375  *      Allocate buffer hash table for a given target.
1376  *      For devices containing metadata (i.e. not the log/realtime devices)
1377  *      we need to allocate a much larger hash table.
1378  */
1379 STATIC void
1380 xfs_alloc_bufhash(
1381         xfs_buftarg_t           *btp,
1382         int                     external)
1383 {
1384         unsigned int            i;
1385
1386         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1387         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1388         btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1389                                         sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1390         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1391                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1392                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1393         }
1394 }
1395
1396 STATIC void
1397 xfs_free_bufhash(
1398         xfs_buftarg_t           *btp)
1399 {
1400         kmem_free(btp->bt_hash);
1401         btp->bt_hash = NULL;
1402 }
1403
1404 /*
1405  *      buftarg list for delwrite queue processing
1406  */
1407 static LIST_HEAD(xfs_buftarg_list);
1408 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1409
1410 STATIC void
1411 xfs_register_buftarg(
1412         xfs_buftarg_t           *btp)
1413 {
1414         spin_lock(&xfs_buftarg_lock);
1415         list_add(&btp->bt_list, &xfs_buftarg_list);
1416         spin_unlock(&xfs_buftarg_lock);
1417 }
1418
1419 STATIC void
1420 xfs_unregister_buftarg(
1421         xfs_buftarg_t           *btp)
1422 {
1423         spin_lock(&xfs_buftarg_lock);
1424         list_del(&btp->bt_list);
1425         spin_unlock(&xfs_buftarg_lock);
1426 }
1427
1428 void
1429 xfs_free_buftarg(
1430         xfs_buftarg_t           *btp)
1431 {
1432         xfs_flush_buftarg(btp, 1);
1433         xfs_blkdev_issue_flush(btp);
1434         xfs_free_bufhash(btp);
1435         iput(btp->bt_mapping->host);
1436
1437         /* Unregister the buftarg first so that we don't get a
1438          * wakeup finding a non-existent task
1439          */
1440         xfs_unregister_buftarg(btp);
1441         kthread_stop(btp->bt_task);
1442
1443         kmem_free(btp);
1444 }
1445
1446 STATIC int
1447 xfs_setsize_buftarg_flags(
1448         xfs_buftarg_t           *btp,
1449         unsigned int            blocksize,
1450         unsigned int            sectorsize,
1451         int                     verbose)
1452 {
1453         btp->bt_bsize = blocksize;
1454         btp->bt_sshift = ffs(sectorsize) - 1;
1455         btp->bt_smask = sectorsize - 1;
1456
1457         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1458                 printk(KERN_WARNING
1459                         "XFS: Cannot set_blocksize to %u on device %s\n",
1460                         sectorsize, XFS_BUFTARG_NAME(btp));
1461                 return EINVAL;
1462         }
1463
1464         if (verbose &&
1465             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1466                 printk(KERN_WARNING
1467                         "XFS: %u byte sectors in use on device %s.  "
1468                         "This is suboptimal; %u or greater is ideal.\n",
1469                         sectorsize, XFS_BUFTARG_NAME(btp),
1470                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1471         }
1472
1473         return 0;
1474 }
1475
1476 /*
1477  *      When allocating the initial buffer target we have not yet
1478  *      read in the superblock, so don't know what sized sectors
1479  *      are being used is at this early stage.  Play safe.
1480  */
1481 STATIC int
1482 xfs_setsize_buftarg_early(
1483         xfs_buftarg_t           *btp,
1484         struct block_device     *bdev)
1485 {
1486         return xfs_setsize_buftarg_flags(btp,
1487                         PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1488 }
1489
1490 int
1491 xfs_setsize_buftarg(
1492         xfs_buftarg_t           *btp,
1493         unsigned int            blocksize,
1494         unsigned int            sectorsize)
1495 {
1496         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1497 }
1498
1499 STATIC int
1500 xfs_mapping_buftarg(
1501         xfs_buftarg_t           *btp,
1502         struct block_device     *bdev)
1503 {
1504         struct backing_dev_info *bdi;
1505         struct inode            *inode;
1506         struct address_space    *mapping;
1507         static const struct address_space_operations mapping_aops = {
1508                 .sync_page = block_sync_page,
1509                 .migratepage = fail_migrate_page,
1510         };
1511
1512         inode = new_inode(bdev->bd_inode->i_sb);
1513         if (!inode) {
1514                 printk(KERN_WARNING
1515                         "XFS: Cannot allocate mapping inode for device %s\n",
1516                         XFS_BUFTARG_NAME(btp));
1517                 return ENOMEM;
1518         }
1519         inode->i_mode = S_IFBLK;
1520         inode->i_bdev = bdev;
1521         inode->i_rdev = bdev->bd_dev;
1522         bdi = blk_get_backing_dev_info(bdev);
1523         if (!bdi)
1524                 bdi = &default_backing_dev_info;
1525         mapping = &inode->i_data;
1526         mapping->a_ops = &mapping_aops;
1527         mapping->backing_dev_info = bdi;
1528         mapping_set_gfp_mask(mapping, GFP_NOFS);
1529         btp->bt_mapping = mapping;
1530         return 0;
1531 }
1532
1533 STATIC int
1534 xfs_alloc_delwrite_queue(
1535         xfs_buftarg_t           *btp)
1536 {
1537         int     error = 0;
1538
1539         INIT_LIST_HEAD(&btp->bt_list);
1540         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1541         spin_lock_init(&btp->bt_delwrite_lock);
1542         btp->bt_flags = 0;
1543         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1544         if (IS_ERR(btp->bt_task)) {
1545                 error = PTR_ERR(btp->bt_task);
1546                 goto out_error;
1547         }
1548         xfs_register_buftarg(btp);
1549 out_error:
1550         return error;
1551 }
1552
1553 xfs_buftarg_t *
1554 xfs_alloc_buftarg(
1555         struct block_device     *bdev,
1556         int                     external)
1557 {
1558         xfs_buftarg_t           *btp;
1559
1560         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1561
1562         btp->bt_dev =  bdev->bd_dev;
1563         btp->bt_bdev = bdev;
1564         if (xfs_setsize_buftarg_early(btp, bdev))
1565                 goto error;
1566         if (xfs_mapping_buftarg(btp, bdev))
1567                 goto error;
1568         if (xfs_alloc_delwrite_queue(btp))
1569                 goto error;
1570         xfs_alloc_bufhash(btp, external);
1571         return btp;
1572
1573 error:
1574         kmem_free(btp);
1575         return NULL;
1576 }
1577
1578
1579 /*
1580  *      Delayed write buffer handling
1581  */
1582 STATIC void
1583 xfs_buf_delwri_queue(
1584         xfs_buf_t               *bp,
1585         int                     unlock)
1586 {
1587         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1588         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1589
1590         XB_TRACE(bp, "delwri_q", (long)unlock);
1591         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1592
1593         spin_lock(dwlk);
1594         /* If already in the queue, dequeue and place at tail */
1595         if (!list_empty(&bp->b_list)) {
1596                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1597                 if (unlock)
1598                         atomic_dec(&bp->b_hold);
1599                 list_del(&bp->b_list);
1600         }
1601
1602         bp->b_flags |= _XBF_DELWRI_Q;
1603         list_add_tail(&bp->b_list, dwq);
1604         bp->b_queuetime = jiffies;
1605         spin_unlock(dwlk);
1606
1607         if (unlock)
1608                 xfs_buf_unlock(bp);
1609 }
1610
1611 void
1612 xfs_buf_delwri_dequeue(
1613         xfs_buf_t               *bp)
1614 {
1615         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1616         int                     dequeued = 0;
1617
1618         spin_lock(dwlk);
1619         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1620                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1621                 list_del_init(&bp->b_list);
1622                 dequeued = 1;
1623         }
1624         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1625         spin_unlock(dwlk);
1626
1627         if (dequeued)
1628                 xfs_buf_rele(bp);
1629
1630         XB_TRACE(bp, "delwri_dq", (long)dequeued);
1631 }
1632
1633 STATIC void
1634 xfs_buf_runall_queues(
1635         struct workqueue_struct *queue)
1636 {
1637         flush_workqueue(queue);
1638 }
1639
1640 STATIC int
1641 xfsbufd_wakeup(
1642         int                     priority,
1643         gfp_t                   mask)
1644 {
1645         xfs_buftarg_t           *btp;
1646
1647         spin_lock(&xfs_buftarg_lock);
1648         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1649                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1650                         continue;
1651                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1652                 wake_up_process(btp->bt_task);
1653         }
1654         spin_unlock(&xfs_buftarg_lock);
1655         return 0;
1656 }
1657
1658 /*
1659  * Move as many buffers as specified to the supplied list
1660  * idicating if we skipped any buffers to prevent deadlocks.
1661  */
1662 STATIC int
1663 xfs_buf_delwri_split(
1664         xfs_buftarg_t   *target,
1665         struct list_head *list,
1666         unsigned long   age)
1667 {
1668         xfs_buf_t       *bp, *n;
1669         struct list_head *dwq = &target->bt_delwrite_queue;
1670         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1671         int             skipped = 0;
1672         int             force;
1673
1674         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1675         INIT_LIST_HEAD(list);
1676         spin_lock(dwlk);
1677         list_for_each_entry_safe(bp, n, dwq, b_list) {
1678                 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1679                 ASSERT(bp->b_flags & XBF_DELWRI);
1680
1681                 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1682                         if (!force &&
1683                             time_before(jiffies, bp->b_queuetime + age)) {
1684                                 xfs_buf_unlock(bp);
1685                                 break;
1686                         }
1687
1688                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1689                                          _XBF_RUN_QUEUES);
1690                         bp->b_flags |= XBF_WRITE;
1691                         list_move_tail(&bp->b_list, list);
1692                 } else
1693                         skipped++;
1694         }
1695         spin_unlock(dwlk);
1696
1697         return skipped;
1698
1699 }
1700
1701 STATIC int
1702 xfsbufd(
1703         void            *data)
1704 {
1705         struct list_head tmp;
1706         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1707         int             count;
1708         xfs_buf_t       *bp;
1709
1710         current->flags |= PF_MEMALLOC;
1711
1712         set_freezable();
1713
1714         do {
1715                 if (unlikely(freezing(current))) {
1716                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1717                         refrigerator();
1718                 } else {
1719                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1720                 }
1721
1722                 schedule_timeout_interruptible(
1723                         xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1724
1725                 xfs_buf_delwri_split(target, &tmp,
1726                                 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1727
1728                 count = 0;
1729                 while (!list_empty(&tmp)) {
1730                         bp = list_entry(tmp.next, xfs_buf_t, b_list);
1731                         ASSERT(target == bp->b_target);
1732
1733                         list_del_init(&bp->b_list);
1734                         xfs_buf_iostrategy(bp);
1735                         count++;
1736                 }
1737
1738                 if (as_list_len > 0)
1739                         purge_addresses();
1740                 if (count)
1741                         blk_run_address_space(target->bt_mapping);
1742
1743         } while (!kthread_should_stop());
1744
1745         return 0;
1746 }
1747
1748 /*
1749  *      Go through all incore buffers, and release buffers if they belong to
1750  *      the given device. This is used in filesystem error handling to
1751  *      preserve the consistency of its metadata.
1752  */
1753 int
1754 xfs_flush_buftarg(
1755         xfs_buftarg_t   *target,
1756         int             wait)
1757 {
1758         struct list_head tmp;
1759         xfs_buf_t       *bp, *n;
1760         int             pincount = 0;
1761
1762         xfs_buf_runall_queues(xfsdatad_workqueue);
1763         xfs_buf_runall_queues(xfslogd_workqueue);
1764
1765         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1766         pincount = xfs_buf_delwri_split(target, &tmp, 0);
1767
1768         /*
1769          * Dropped the delayed write list lock, now walk the temporary list
1770          */
1771         list_for_each_entry_safe(bp, n, &tmp, b_list) {
1772                 ASSERT(target == bp->b_target);
1773                 if (wait)
1774                         bp->b_flags &= ~XBF_ASYNC;
1775                 else
1776                         list_del_init(&bp->b_list);
1777
1778                 xfs_buf_iostrategy(bp);
1779         }
1780
1781         if (wait)
1782                 blk_run_address_space(target->bt_mapping);
1783
1784         /*
1785          * Remaining list items must be flushed before returning
1786          */
1787         while (!list_empty(&tmp)) {
1788                 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1789
1790                 list_del_init(&bp->b_list);
1791                 xfs_iowait(bp);
1792                 xfs_buf_relse(bp);
1793         }
1794
1795         return pincount;
1796 }
1797
1798 int __init
1799 xfs_buf_init(void)
1800 {
1801 #ifdef XFS_BUF_TRACE
1802         xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1803 #endif
1804
1805         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1806                                                 KM_ZONE_HWALIGN, NULL);
1807         if (!xfs_buf_zone)
1808                 goto out_free_trace_buf;
1809
1810         xfslogd_workqueue = create_workqueue("xfslogd");
1811         if (!xfslogd_workqueue)
1812                 goto out_free_buf_zone;
1813
1814         xfsdatad_workqueue = create_workqueue("xfsdatad");
1815         if (!xfsdatad_workqueue)
1816                 goto out_destroy_xfslogd_workqueue;
1817
1818         register_shrinker(&xfs_buf_shake);
1819         return 0;
1820
1821  out_destroy_xfslogd_workqueue:
1822         destroy_workqueue(xfslogd_workqueue);
1823  out_free_buf_zone:
1824         kmem_zone_destroy(xfs_buf_zone);
1825  out_free_trace_buf:
1826 #ifdef XFS_BUF_TRACE
1827         ktrace_free(xfs_buf_trace_buf);
1828 #endif
1829         return -ENOMEM;
1830 }
1831
1832 void
1833 xfs_buf_terminate(void)
1834 {
1835         unregister_shrinker(&xfs_buf_shake);
1836         destroy_workqueue(xfsdatad_workqueue);
1837         destroy_workqueue(xfslogd_workqueue);
1838         kmem_zone_destroy(xfs_buf_zone);
1839 #ifdef XFS_BUF_TRACE
1840         ktrace_free(xfs_buf_trace_buf);
1841 #endif
1842 }
1843
1844 #ifdef CONFIG_KDB_MODULES
1845 struct list_head *
1846 xfs_get_buftarg_list(void)
1847 {
1848         return &xfs_buftarg_list;
1849 }
1850 #endif