]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ocfs2/aops.c
ocfs2: move nonsparse hole-filling into ocfs2_write_begin()
[linux-2.6-omap-h63xx.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
32
33 #include "ocfs2.h"
34
35 #include "alloc.h"
36 #include "aops.h"
37 #include "dlmglue.h"
38 #include "extent_map.h"
39 #include "file.h"
40 #include "inode.h"
41 #include "journal.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "symlink.h"
45
46 #include "buffer_head_io.h"
47
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49                                    struct buffer_head *bh_result, int create)
50 {
51         int err = -EIO;
52         int status;
53         struct ocfs2_dinode *fe = NULL;
54         struct buffer_head *bh = NULL;
55         struct buffer_head *buffer_cache_bh = NULL;
56         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57         void *kaddr;
58
59         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60                    (unsigned long long)iblock, bh_result, create);
61
62         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66                      (unsigned long long)iblock);
67                 goto bail;
68         }
69
70         status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71                                   OCFS2_I(inode)->ip_blkno,
72                                   &bh, OCFS2_BH_CACHED, inode);
73         if (status < 0) {
74                 mlog_errno(status);
75                 goto bail;
76         }
77         fe = (struct ocfs2_dinode *) bh->b_data;
78
79         if (!OCFS2_IS_VALID_DINODE(fe)) {
80                 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81                      (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82                      fe->i_signature);
83                 goto bail;
84         }
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 mlog(ML_ERROR, "block offset is outside the allocated size: "
89                      "%llu\n", (unsigned long long)iblock);
90                 goto bail;
91         }
92
93         /* We don't use the page cache to create symlink data, so if
94          * need be, copy it over from the buffer cache. */
95         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97                             iblock;
98                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99                 if (!buffer_cache_bh) {
100                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101                         goto bail;
102                 }
103
104                 /* we haven't locked out transactions, so a commit
105                  * could've happened. Since we've got a reference on
106                  * the bh, even if it commits while we're doing the
107                  * copy, the data is still good. */
108                 if (buffer_jbd(buffer_cache_bh)
109                     && ocfs2_inode_is_new(inode)) {
110                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111                         if (!kaddr) {
112                                 mlog(ML_ERROR, "couldn't kmap!\n");
113                                 goto bail;
114                         }
115                         memcpy(kaddr + (bh_result->b_size * iblock),
116                                buffer_cache_bh->b_data,
117                                bh_result->b_size);
118                         kunmap_atomic(kaddr, KM_USER0);
119                         set_buffer_uptodate(bh_result);
120                 }
121                 brelse(buffer_cache_bh);
122         }
123
124         map_bh(bh_result, inode->i_sb,
125                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126
127         err = 0;
128
129 bail:
130         if (bh)
131                 brelse(bh);
132
133         mlog_exit(err);
134         return err;
135 }
136
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                            struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 p_blkno, past_eof;
143         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146                    (unsigned long long)iblock, bh_result, create);
147
148         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150                      inode, inode->i_ino);
151
152         if (S_ISLNK(inode->i_mode)) {
153                 /* this always does I/O for some reason. */
154                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155                 goto bail;
156         }
157
158         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159                                           &ext_flags);
160         if (err) {
161                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163                      (unsigned long long)p_blkno);
164                 goto bail;
165         }
166
167         /*
168          * ocfs2 never allocates in this function - the only time we
169          * need to use BH_New is when we're extending i_size on a file
170          * system which doesn't support holes, in which case BH_New
171          * allows block_prepare_write() to zero.
172          */
173         mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174                         "ino %lu, iblock %llu\n", inode->i_ino,
175                         (unsigned long long)iblock);
176
177         /* Treat the unwritten extent as a hole for zeroing purposes. */
178         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179                 map_bh(bh_result, inode->i_sb, p_blkno);
180
181         if (!ocfs2_sparse_alloc(osb)) {
182                 if (p_blkno == 0) {
183                         err = -EIO;
184                         mlog(ML_ERROR,
185                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186                              (unsigned long long)iblock,
187                              (unsigned long long)p_blkno,
188                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
189                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190                         dump_stack();
191                 }
192
193                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195                      (unsigned long long)past_eof);
196
197                 if (create && (iblock >= past_eof))
198                         set_buffer_new(bh_result);
199         }
200
201 bail:
202         if (err < 0)
203                 err = -EIO;
204
205         mlog_exit(err);
206         return err;
207 }
208
209 static int ocfs2_readpage(struct file *file, struct page *page)
210 {
211         struct inode *inode = page->mapping->host;
212         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
213         int ret, unlock = 1;
214
215         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
216
217         ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
218         if (ret != 0) {
219                 if (ret == AOP_TRUNCATED_PAGE)
220                         unlock = 0;
221                 mlog_errno(ret);
222                 goto out;
223         }
224
225         if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226                 ret = AOP_TRUNCATED_PAGE;
227                 goto out_meta_unlock;
228         }
229
230         /*
231          * i_size might have just been updated as we grabed the meta lock.  We
232          * might now be discovering a truncate that hit on another node.
233          * block_read_full_page->get_block freaks out if it is asked to read
234          * beyond the end of a file, so we check here.  Callers
235          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
236          * and notice that the page they just read isn't needed.
237          *
238          * XXX sys_readahead() seems to get that wrong?
239          */
240         if (start >= i_size_read(inode)) {
241                 zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
242                 SetPageUptodate(page);
243                 ret = 0;
244                 goto out_alloc;
245         }
246
247         ret = ocfs2_data_lock_with_page(inode, 0, page);
248         if (ret != 0) {
249                 if (ret == AOP_TRUNCATED_PAGE)
250                         unlock = 0;
251                 mlog_errno(ret);
252                 goto out_alloc;
253         }
254
255         ret = block_read_full_page(page, ocfs2_get_block);
256         unlock = 0;
257
258         ocfs2_data_unlock(inode, 0);
259 out_alloc:
260         up_read(&OCFS2_I(inode)->ip_alloc_sem);
261 out_meta_unlock:
262         ocfs2_meta_unlock(inode, 0);
263 out:
264         if (unlock)
265                 unlock_page(page);
266         mlog_exit(ret);
267         return ret;
268 }
269
270 /* Note: Because we don't support holes, our allocation has
271  * already happened (allocation writes zeros to the file data)
272  * so we don't have to worry about ordered writes in
273  * ocfs2_writepage.
274  *
275  * ->writepage is called during the process of invalidating the page cache
276  * during blocked lock processing.  It can't block on any cluster locks
277  * to during block mapping.  It's relying on the fact that the block
278  * mapping can't have disappeared under the dirty pages that it is
279  * being asked to write back.
280  */
281 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
282 {
283         int ret;
284
285         mlog_entry("(0x%p)\n", page);
286
287         ret = block_write_full_page(page, ocfs2_get_block, wbc);
288
289         mlog_exit(ret);
290
291         return ret;
292 }
293
294 /*
295  * This is called from ocfs2_write_zero_page() which has handled it's
296  * own cluster locking and has ensured allocation exists for those
297  * blocks to be written.
298  */
299 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300                                unsigned from, unsigned to)
301 {
302         int ret;
303
304         ret = block_prepare_write(page, from, to, ocfs2_get_block);
305
306         return ret;
307 }
308
309 /* Taken from ext3. We don't necessarily need the full blown
310  * functionality yet, but IMHO it's better to cut and paste the whole
311  * thing so we can avoid introducing our own bugs (and easily pick up
312  * their fixes when they happen) --Mark */
313 int walk_page_buffers(  handle_t *handle,
314                         struct buffer_head *head,
315                         unsigned from,
316                         unsigned to,
317                         int *partial,
318                         int (*fn)(      handle_t *handle,
319                                         struct buffer_head *bh))
320 {
321         struct buffer_head *bh;
322         unsigned block_start, block_end;
323         unsigned blocksize = head->b_size;
324         int err, ret = 0;
325         struct buffer_head *next;
326
327         for (   bh = head, block_start = 0;
328                 ret == 0 && (bh != head || !block_start);
329                 block_start = block_end, bh = next)
330         {
331                 next = bh->b_this_page;
332                 block_end = block_start + blocksize;
333                 if (block_end <= from || block_start >= to) {
334                         if (partial && !buffer_uptodate(bh))
335                                 *partial = 1;
336                         continue;
337                 }
338                 err = (*fn)(handle, bh);
339                 if (!ret)
340                         ret = err;
341         }
342         return ret;
343 }
344
345 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
346                                                          struct page *page,
347                                                          unsigned from,
348                                                          unsigned to)
349 {
350         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
351         handle_t *handle = NULL;
352         int ret = 0;
353
354         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
355         if (!handle) {
356                 ret = -ENOMEM;
357                 mlog_errno(ret);
358                 goto out;
359         }
360
361         if (ocfs2_should_order_data(inode)) {
362                 ret = walk_page_buffers(handle,
363                                         page_buffers(page),
364                                         from, to, NULL,
365                                         ocfs2_journal_dirty_data);
366                 if (ret < 0) 
367                         mlog_errno(ret);
368         }
369 out:
370         if (ret) {
371                 if (handle)
372                         ocfs2_commit_trans(osb, handle);
373                 handle = ERR_PTR(ret);
374         }
375         return handle;
376 }
377
378 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
379 {
380         sector_t status;
381         u64 p_blkno = 0;
382         int err = 0;
383         struct inode *inode = mapping->host;
384
385         mlog_entry("(block = %llu)\n", (unsigned long long)block);
386
387         /* We don't need to lock journal system files, since they aren't
388          * accessed concurrently from multiple nodes.
389          */
390         if (!INODE_JOURNAL(inode)) {
391                 err = ocfs2_meta_lock(inode, NULL, 0);
392                 if (err) {
393                         if (err != -ENOENT)
394                                 mlog_errno(err);
395                         goto bail;
396                 }
397                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
398         }
399
400         err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
401
402         if (!INODE_JOURNAL(inode)) {
403                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
404                 ocfs2_meta_unlock(inode, 0);
405         }
406
407         if (err) {
408                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
409                      (unsigned long long)block);
410                 mlog_errno(err);
411                 goto bail;
412         }
413
414
415 bail:
416         status = err ? 0 : p_blkno;
417
418         mlog_exit((int)status);
419
420         return status;
421 }
422
423 /*
424  * TODO: Make this into a generic get_blocks function.
425  *
426  * From do_direct_io in direct-io.c:
427  *  "So what we do is to permit the ->get_blocks function to populate
428  *   bh.b_size with the size of IO which is permitted at this offset and
429  *   this i_blkbits."
430  *
431  * This function is called directly from get_more_blocks in direct-io.c.
432  *
433  * called like this: dio->get_blocks(dio->inode, fs_startblk,
434  *                                      fs_count, map_bh, dio->rw == WRITE);
435  */
436 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
437                                      struct buffer_head *bh_result, int create)
438 {
439         int ret;
440         u64 p_blkno, inode_blocks, contig_blocks;
441         unsigned int ext_flags;
442         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
443         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
444
445         /* This function won't even be called if the request isn't all
446          * nicely aligned and of the right size, so there's no need
447          * for us to check any of that. */
448
449         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
450
451         /*
452          * Any write past EOF is not allowed because we'd be extending.
453          */
454         if (create && (iblock + max_blocks) > inode_blocks) {
455                 ret = -EIO;
456                 goto bail;
457         }
458
459         /* This figures out the size of the next contiguous block, and
460          * our logical offset */
461         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
462                                           &contig_blocks, &ext_flags);
463         if (ret) {
464                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
465                      (unsigned long long)iblock);
466                 ret = -EIO;
467                 goto bail;
468         }
469
470         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
471                 ocfs2_error(inode->i_sb,
472                             "Inode %llu has a hole at block %llu\n",
473                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
474                             (unsigned long long)iblock);
475                 ret = -EROFS;
476                 goto bail;
477         }
478
479         /*
480          * get_more_blocks() expects us to describe a hole by clearing
481          * the mapped bit on bh_result().
482          *
483          * Consider an unwritten extent as a hole.
484          */
485         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
486                 map_bh(bh_result, inode->i_sb, p_blkno);
487         else {
488                 /*
489                  * ocfs2_prepare_inode_for_write() should have caught
490                  * the case where we'd be filling a hole and triggered
491                  * a buffered write instead.
492                  */
493                 if (create) {
494                         ret = -EIO;
495                         mlog_errno(ret);
496                         goto bail;
497                 }
498
499                 clear_buffer_mapped(bh_result);
500         }
501
502         /* make sure we don't map more than max_blocks blocks here as
503            that's all the kernel will handle at this point. */
504         if (max_blocks < contig_blocks)
505                 contig_blocks = max_blocks;
506         bh_result->b_size = contig_blocks << blocksize_bits;
507 bail:
508         return ret;
509 }
510
511 /* 
512  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
513  * particularly interested in the aio/dio case.  Like the core uses
514  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
515  * truncation on another.
516  */
517 static void ocfs2_dio_end_io(struct kiocb *iocb,
518                              loff_t offset,
519                              ssize_t bytes,
520                              void *private)
521 {
522         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
523         int level;
524
525         /* this io's submitter should not have unlocked this before we could */
526         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
527
528         ocfs2_iocb_clear_rw_locked(iocb);
529
530         level = ocfs2_iocb_rw_locked_level(iocb);
531         if (!level)
532                 up_read(&inode->i_alloc_sem);
533         ocfs2_rw_unlock(inode, level);
534 }
535
536 /*
537  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
538  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
539  * do journalled data.
540  */
541 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
542 {
543         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
544
545         journal_invalidatepage(journal, page, offset);
546 }
547
548 static int ocfs2_releasepage(struct page *page, gfp_t wait)
549 {
550         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
551
552         if (!page_has_buffers(page))
553                 return 0;
554         return journal_try_to_free_buffers(journal, page, wait);
555 }
556
557 static ssize_t ocfs2_direct_IO(int rw,
558                                struct kiocb *iocb,
559                                const struct iovec *iov,
560                                loff_t offset,
561                                unsigned long nr_segs)
562 {
563         struct file *file = iocb->ki_filp;
564         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
565         int ret;
566
567         mlog_entry_void();
568
569         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
570                 /*
571                  * We get PR data locks even for O_DIRECT.  This
572                  * allows concurrent O_DIRECT I/O but doesn't let
573                  * O_DIRECT with extending and buffered zeroing writes
574                  * race.  If they did race then the buffered zeroing
575                  * could be written back after the O_DIRECT I/O.  It's
576                  * one thing to tell people not to mix buffered and
577                  * O_DIRECT writes, but expecting them to understand
578                  * that file extension is also an implicit buffered
579                  * write is too much.  By getting the PR we force
580                  * writeback of the buffered zeroing before
581                  * proceeding.
582                  */
583                 ret = ocfs2_data_lock(inode, 0);
584                 if (ret < 0) {
585                         mlog_errno(ret);
586                         goto out;
587                 }
588                 ocfs2_data_unlock(inode, 0);
589         }
590
591         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
592                                             inode->i_sb->s_bdev, iov, offset,
593                                             nr_segs, 
594                                             ocfs2_direct_IO_get_blocks,
595                                             ocfs2_dio_end_io);
596 out:
597         mlog_exit(ret);
598         return ret;
599 }
600
601 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
602                                             u32 cpos,
603                                             unsigned int *start,
604                                             unsigned int *end)
605 {
606         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
607
608         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
609                 unsigned int cpp;
610
611                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
612
613                 cluster_start = cpos % cpp;
614                 cluster_start = cluster_start << osb->s_clustersize_bits;
615
616                 cluster_end = cluster_start + osb->s_clustersize;
617         }
618
619         BUG_ON(cluster_start > PAGE_SIZE);
620         BUG_ON(cluster_end > PAGE_SIZE);
621
622         if (start)
623                 *start = cluster_start;
624         if (end)
625                 *end = cluster_end;
626 }
627
628 /*
629  * 'from' and 'to' are the region in the page to avoid zeroing.
630  *
631  * If pagesize > clustersize, this function will avoid zeroing outside
632  * of the cluster boundary.
633  *
634  * from == to == 0 is code for "zero the entire cluster region"
635  */
636 static void ocfs2_clear_page_regions(struct page *page,
637                                      struct ocfs2_super *osb, u32 cpos,
638                                      unsigned from, unsigned to)
639 {
640         void *kaddr;
641         unsigned int cluster_start, cluster_end;
642
643         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
644
645         kaddr = kmap_atomic(page, KM_USER0);
646
647         if (from || to) {
648                 if (from > cluster_start)
649                         memset(kaddr + cluster_start, 0, from - cluster_start);
650                 if (to < cluster_end)
651                         memset(kaddr + to, 0, cluster_end - to);
652         } else {
653                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
654         }
655
656         kunmap_atomic(kaddr, KM_USER0);
657 }
658
659 /*
660  * Some of this taken from block_prepare_write(). We already have our
661  * mapping by now though, and the entire write will be allocating or
662  * it won't, so not much need to use BH_New.
663  *
664  * This will also skip zeroing, which is handled externally.
665  */
666 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
667                           struct inode *inode, unsigned int from,
668                           unsigned int to, int new)
669 {
670         int ret = 0;
671         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
672         unsigned int block_end, block_start;
673         unsigned int bsize = 1 << inode->i_blkbits;
674
675         if (!page_has_buffers(page))
676                 create_empty_buffers(page, bsize, 0);
677
678         head = page_buffers(page);
679         for (bh = head, block_start = 0; bh != head || !block_start;
680              bh = bh->b_this_page, block_start += bsize) {
681                 block_end = block_start + bsize;
682
683                 clear_buffer_new(bh);
684
685                 /*
686                  * Ignore blocks outside of our i/o range -
687                  * they may belong to unallocated clusters.
688                  */
689                 if (block_start >= to || block_end <= from) {
690                         if (PageUptodate(page))
691                                 set_buffer_uptodate(bh);
692                         continue;
693                 }
694
695                 /*
696                  * For an allocating write with cluster size >= page
697                  * size, we always write the entire page.
698                  */
699                 if (new)
700                         set_buffer_new(bh);
701
702                 if (!buffer_mapped(bh)) {
703                         map_bh(bh, inode->i_sb, *p_blkno);
704                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
705                 }
706
707                 if (PageUptodate(page)) {
708                         if (!buffer_uptodate(bh))
709                                 set_buffer_uptodate(bh);
710                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
711                            !buffer_new(bh) &&
712                            (block_start < from || block_end > to)) {
713                         ll_rw_block(READ, 1, &bh);
714                         *wait_bh++=bh;
715                 }
716
717                 *p_blkno = *p_blkno + 1;
718         }
719
720         /*
721          * If we issued read requests - let them complete.
722          */
723         while(wait_bh > wait) {
724                 wait_on_buffer(*--wait_bh);
725                 if (!buffer_uptodate(*wait_bh))
726                         ret = -EIO;
727         }
728
729         if (ret == 0 || !new)
730                 return ret;
731
732         /*
733          * If we get -EIO above, zero out any newly allocated blocks
734          * to avoid exposing stale data.
735          */
736         bh = head;
737         block_start = 0;
738         do {
739                 block_end = block_start + bsize;
740                 if (block_end <= from)
741                         goto next_bh;
742                 if (block_start >= to)
743                         break;
744
745                 zero_user_page(page, block_start, bh->b_size, KM_USER0);
746                 set_buffer_uptodate(bh);
747                 mark_buffer_dirty(bh);
748
749 next_bh:
750                 block_start = block_end;
751                 bh = bh->b_this_page;
752         } while (bh != head);
753
754         return ret;
755 }
756
757 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
758 #define OCFS2_MAX_CTXT_PAGES    1
759 #else
760 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
761 #endif
762
763 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
764
765 /*
766  * Describe the state of a single cluster to be written to.
767  */
768 struct ocfs2_write_cluster_desc {
769         u32             c_cpos;
770         u32             c_phys;
771         /*
772          * Give this a unique field because c_phys eventually gets
773          * filled.
774          */
775         unsigned        c_new;
776         unsigned        c_unwritten;
777 };
778
779 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
780 {
781         return d->c_new || d->c_unwritten;
782 }
783
784 struct ocfs2_write_ctxt {
785         /* Logical cluster position / len of write */
786         u32                             w_cpos;
787         u32                             w_clen;
788
789         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
790
791         /*
792          * This is true if page_size > cluster_size.
793          *
794          * It triggers a set of special cases during write which might
795          * have to deal with allocating writes to partial pages.
796          */
797         unsigned int                    w_large_pages;
798
799         /*
800          * Pages involved in this write.
801          *
802          * w_target_page is the page being written to by the user.
803          *
804          * w_pages is an array of pages which always contains
805          * w_target_page, and in the case of an allocating write with
806          * page_size < cluster size, it will contain zero'd and mapped
807          * pages adjacent to w_target_page which need to be written
808          * out in so that future reads from that region will get
809          * zero's.
810          */
811         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
812         unsigned int                    w_num_pages;
813         struct page                     *w_target_page;
814
815         /*
816          * ocfs2_write_end() uses this to know what the real range to
817          * write in the target should be.
818          */
819         unsigned int                    w_target_from;
820         unsigned int                    w_target_to;
821
822         /*
823          * We could use journal_current_handle() but this is cleaner,
824          * IMHO -Mark
825          */
826         handle_t                        *w_handle;
827
828         struct buffer_head              *w_di_bh;
829
830         struct ocfs2_cached_dealloc_ctxt w_dealloc;
831 };
832
833 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
834 {
835         int i;
836
837         for(i = 0; i < wc->w_num_pages; i++) {
838                 if (wc->w_pages[i] == NULL)
839                         continue;
840
841                 unlock_page(wc->w_pages[i]);
842                 mark_page_accessed(wc->w_pages[i]);
843                 page_cache_release(wc->w_pages[i]);
844         }
845
846         brelse(wc->w_di_bh);
847         kfree(wc);
848 }
849
850 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
851                                   struct ocfs2_super *osb, loff_t pos,
852                                   unsigned len, struct buffer_head *di_bh)
853 {
854         u32 cend;
855         struct ocfs2_write_ctxt *wc;
856
857         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
858         if (!wc)
859                 return -ENOMEM;
860
861         wc->w_cpos = pos >> osb->s_clustersize_bits;
862         cend = (pos + len - 1) >> osb->s_clustersize_bits;
863         wc->w_clen = cend - wc->w_cpos + 1;
864         get_bh(di_bh);
865         wc->w_di_bh = di_bh;
866
867         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
868                 wc->w_large_pages = 1;
869         else
870                 wc->w_large_pages = 0;
871
872         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
873
874         *wcp = wc;
875
876         return 0;
877 }
878
879 /*
880  * If a page has any new buffers, zero them out here, and mark them uptodate
881  * and dirty so they'll be written out (in order to prevent uninitialised
882  * block data from leaking). And clear the new bit.
883  */
884 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
885 {
886         unsigned int block_start, block_end;
887         struct buffer_head *head, *bh;
888
889         BUG_ON(!PageLocked(page));
890         if (!page_has_buffers(page))
891                 return;
892
893         bh = head = page_buffers(page);
894         block_start = 0;
895         do {
896                 block_end = block_start + bh->b_size;
897
898                 if (buffer_new(bh)) {
899                         if (block_end > from && block_start < to) {
900                                 if (!PageUptodate(page)) {
901                                         unsigned start, end;
902
903                                         start = max(from, block_start);
904                                         end = min(to, block_end);
905
906                                         zero_user_page(page, start, end - start, KM_USER0);
907                                         set_buffer_uptodate(bh);
908                                 }
909
910                                 clear_buffer_new(bh);
911                                 mark_buffer_dirty(bh);
912                         }
913                 }
914
915                 block_start = block_end;
916                 bh = bh->b_this_page;
917         } while (bh != head);
918 }
919
920 /*
921  * Only called when we have a failure during allocating write to write
922  * zero's to the newly allocated region.
923  */
924 static void ocfs2_write_failure(struct inode *inode,
925                                 struct ocfs2_write_ctxt *wc,
926                                 loff_t user_pos, unsigned user_len)
927 {
928         int i;
929         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
930                 to = user_pos + user_len;
931         struct page *tmppage;
932
933         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
934
935         for(i = 0; i < wc->w_num_pages; i++) {
936                 tmppage = wc->w_pages[i];
937
938                 if (ocfs2_should_order_data(inode))
939                         walk_page_buffers(wc->w_handle, page_buffers(tmppage),
940                                           from, to, NULL,
941                                           ocfs2_journal_dirty_data);
942
943                 block_commit_write(tmppage, from, to);
944         }
945 }
946
947 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
948                                         struct ocfs2_write_ctxt *wc,
949                                         struct page *page, u32 cpos,
950                                         loff_t user_pos, unsigned user_len,
951                                         int new)
952 {
953         int ret;
954         unsigned int map_from = 0, map_to = 0;
955         unsigned int cluster_start, cluster_end;
956         unsigned int user_data_from = 0, user_data_to = 0;
957
958         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
959                                         &cluster_start, &cluster_end);
960
961         if (page == wc->w_target_page) {
962                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
963                 map_to = map_from + user_len;
964
965                 if (new)
966                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
967                                                     cluster_start, cluster_end,
968                                                     new);
969                 else
970                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
971                                                     map_from, map_to, new);
972                 if (ret) {
973                         mlog_errno(ret);
974                         goto out;
975                 }
976
977                 user_data_from = map_from;
978                 user_data_to = map_to;
979                 if (new) {
980                         map_from = cluster_start;
981                         map_to = cluster_end;
982                 }
983         } else {
984                 /*
985                  * If we haven't allocated the new page yet, we
986                  * shouldn't be writing it out without copying user
987                  * data. This is likely a math error from the caller.
988                  */
989                 BUG_ON(!new);
990
991                 map_from = cluster_start;
992                 map_to = cluster_end;
993
994                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
995                                             cluster_start, cluster_end, new);
996                 if (ret) {
997                         mlog_errno(ret);
998                         goto out;
999                 }
1000         }
1001
1002         /*
1003          * Parts of newly allocated pages need to be zero'd.
1004          *
1005          * Above, we have also rewritten 'to' and 'from' - as far as
1006          * the rest of the function is concerned, the entire cluster
1007          * range inside of a page needs to be written.
1008          *
1009          * We can skip this if the page is up to date - it's already
1010          * been zero'd from being read in as a hole.
1011          */
1012         if (new && !PageUptodate(page))
1013                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1014                                          cpos, user_data_from, user_data_to);
1015
1016         flush_dcache_page(page);
1017
1018 out:
1019         return ret;
1020 }
1021
1022 /*
1023  * This function will only grab one clusters worth of pages.
1024  */
1025 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1026                                       struct ocfs2_write_ctxt *wc,
1027                                       u32 cpos, loff_t user_pos, int new,
1028                                       struct page *mmap_page)
1029 {
1030         int ret = 0, i;
1031         unsigned long start, target_index, index;
1032         struct inode *inode = mapping->host;
1033
1034         target_index = user_pos >> PAGE_CACHE_SHIFT;
1035
1036         /*
1037          * Figure out how many pages we'll be manipulating here. For
1038          * non allocating write, we just change the one
1039          * page. Otherwise, we'll need a whole clusters worth.
1040          */
1041         if (new) {
1042                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1043                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1044         } else {
1045                 wc->w_num_pages = 1;
1046                 start = target_index;
1047         }
1048
1049         for(i = 0; i < wc->w_num_pages; i++) {
1050                 index = start + i;
1051
1052                 if (index == target_index && mmap_page) {
1053                         /*
1054                          * ocfs2_pagemkwrite() is a little different
1055                          * and wants us to directly use the page
1056                          * passed in.
1057                          */
1058                         lock_page(mmap_page);
1059
1060                         if (mmap_page->mapping != mapping) {
1061                                 unlock_page(mmap_page);
1062                                 /*
1063                                  * Sanity check - the locking in
1064                                  * ocfs2_pagemkwrite() should ensure
1065                                  * that this code doesn't trigger.
1066                                  */
1067                                 ret = -EINVAL;
1068                                 mlog_errno(ret);
1069                                 goto out;
1070                         }
1071
1072                         page_cache_get(mmap_page);
1073                         wc->w_pages[i] = mmap_page;
1074                 } else {
1075                         wc->w_pages[i] = find_or_create_page(mapping, index,
1076                                                              GFP_NOFS);
1077                         if (!wc->w_pages[i]) {
1078                                 ret = -ENOMEM;
1079                                 mlog_errno(ret);
1080                                 goto out;
1081                         }
1082                 }
1083
1084                 if (index == target_index)
1085                         wc->w_target_page = wc->w_pages[i];
1086         }
1087 out:
1088         return ret;
1089 }
1090
1091 /*
1092  * Prepare a single cluster for write one cluster into the file.
1093  */
1094 static int ocfs2_write_cluster(struct address_space *mapping,
1095                                u32 phys, unsigned int unwritten,
1096                                struct ocfs2_alloc_context *data_ac,
1097                                struct ocfs2_alloc_context *meta_ac,
1098                                struct ocfs2_write_ctxt *wc, u32 cpos,
1099                                loff_t user_pos, unsigned user_len)
1100 {
1101         int ret, i, new, should_zero = 0;
1102         u64 v_blkno, p_blkno;
1103         struct inode *inode = mapping->host;
1104
1105         new = phys == 0 ? 1 : 0;
1106         if (new || unwritten)
1107                 should_zero = 1;
1108
1109         if (new) {
1110                 u32 tmp_pos;
1111
1112                 /*
1113                  * This is safe to call with the page locks - it won't take
1114                  * any additional semaphores or cluster locks.
1115                  */
1116                 tmp_pos = cpos;
1117                 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1118                                                  &tmp_pos, 1, 0, wc->w_di_bh,
1119                                                  wc->w_handle, data_ac,
1120                                                  meta_ac, NULL);
1121                 /*
1122                  * This shouldn't happen because we must have already
1123                  * calculated the correct meta data allocation required. The
1124                  * internal tree allocation code should know how to increase
1125                  * transaction credits itself.
1126                  *
1127                  * If need be, we could handle -EAGAIN for a
1128                  * RESTART_TRANS here.
1129                  */
1130                 mlog_bug_on_msg(ret == -EAGAIN,
1131                                 "Inode %llu: EAGAIN return during allocation.\n",
1132                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1133                 if (ret < 0) {
1134                         mlog_errno(ret);
1135                         goto out;
1136                 }
1137         } else if (unwritten) {
1138                 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1139                                                 wc->w_handle, cpos, 1, phys,
1140                                                 meta_ac, &wc->w_dealloc);
1141                 if (ret < 0) {
1142                         mlog_errno(ret);
1143                         goto out;
1144                 }
1145         }
1146
1147         if (should_zero)
1148                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1149         else
1150                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1151
1152         /*
1153          * The only reason this should fail is due to an inability to
1154          * find the extent added.
1155          */
1156         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1157                                           NULL);
1158         if (ret < 0) {
1159                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1160                             "at logical block %llu",
1161                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1162                             (unsigned long long)v_blkno);
1163                 goto out;
1164         }
1165
1166         BUG_ON(p_blkno == 0);
1167
1168         for(i = 0; i < wc->w_num_pages; i++) {
1169                 int tmpret;
1170
1171                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1172                                                       wc->w_pages[i], cpos,
1173                                                       user_pos, user_len,
1174                                                       should_zero);
1175                 if (tmpret) {
1176                         mlog_errno(tmpret);
1177                         if (ret == 0)
1178                                 tmpret = ret;
1179                 }
1180         }
1181
1182         /*
1183          * We only have cleanup to do in case of allocating write.
1184          */
1185         if (ret && new)
1186                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1187
1188 out:
1189
1190         return ret;
1191 }
1192
1193 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1194                                        struct ocfs2_alloc_context *data_ac,
1195                                        struct ocfs2_alloc_context *meta_ac,
1196                                        struct ocfs2_write_ctxt *wc,
1197                                        loff_t pos, unsigned len)
1198 {
1199         int ret, i;
1200         loff_t cluster_off;
1201         unsigned int local_len = len;
1202         struct ocfs2_write_cluster_desc *desc;
1203         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1204
1205         for (i = 0; i < wc->w_clen; i++) {
1206                 desc = &wc->w_desc[i];
1207
1208                 /*
1209                  * We have to make sure that the total write passed in
1210                  * doesn't extend past a single cluster.
1211                  */
1212                 local_len = len;
1213                 cluster_off = pos & (osb->s_clustersize - 1);
1214                 if ((cluster_off + local_len) > osb->s_clustersize)
1215                         local_len = osb->s_clustersize - cluster_off;
1216
1217                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1218                                           desc->c_unwritten, data_ac, meta_ac,
1219                                           wc, desc->c_cpos, pos, local_len);
1220                 if (ret) {
1221                         mlog_errno(ret);
1222                         goto out;
1223                 }
1224
1225                 len -= local_len;
1226                 pos += local_len;
1227         }
1228
1229         ret = 0;
1230 out:
1231         return ret;
1232 }
1233
1234 /*
1235  * ocfs2_write_end() wants to know which parts of the target page it
1236  * should complete the write on. It's easiest to compute them ahead of
1237  * time when a more complete view of the write is available.
1238  */
1239 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1240                                         struct ocfs2_write_ctxt *wc,
1241                                         loff_t pos, unsigned len, int alloc)
1242 {
1243         struct ocfs2_write_cluster_desc *desc;
1244
1245         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1246         wc->w_target_to = wc->w_target_from + len;
1247
1248         if (alloc == 0)
1249                 return;
1250
1251         /*
1252          * Allocating write - we may have different boundaries based
1253          * on page size and cluster size.
1254          *
1255          * NOTE: We can no longer compute one value from the other as
1256          * the actual write length and user provided length may be
1257          * different.
1258          */
1259
1260         if (wc->w_large_pages) {
1261                 /*
1262                  * We only care about the 1st and last cluster within
1263                  * our range and whether they should be zero'd or not. Either
1264                  * value may be extended out to the start/end of a
1265                  * newly allocated cluster.
1266                  */
1267                 desc = &wc->w_desc[0];
1268                 if (ocfs2_should_zero_cluster(desc))
1269                         ocfs2_figure_cluster_boundaries(osb,
1270                                                         desc->c_cpos,
1271                                                         &wc->w_target_from,
1272                                                         NULL);
1273
1274                 desc = &wc->w_desc[wc->w_clen - 1];
1275                 if (ocfs2_should_zero_cluster(desc))
1276                         ocfs2_figure_cluster_boundaries(osb,
1277                                                         desc->c_cpos,
1278                                                         NULL,
1279                                                         &wc->w_target_to);
1280         } else {
1281                 wc->w_target_from = 0;
1282                 wc->w_target_to = PAGE_CACHE_SIZE;
1283         }
1284 }
1285
1286 /*
1287  * Populate each single-cluster write descriptor in the write context
1288  * with information about the i/o to be done.
1289  *
1290  * Returns the number of clusters that will have to be allocated, as
1291  * well as a worst case estimate of the number of extent records that
1292  * would have to be created during a write to an unwritten region.
1293  */
1294 static int ocfs2_populate_write_desc(struct inode *inode,
1295                                      struct ocfs2_write_ctxt *wc,
1296                                      unsigned int *clusters_to_alloc,
1297                                      unsigned int *extents_to_split)
1298 {
1299         int ret;
1300         struct ocfs2_write_cluster_desc *desc;
1301         unsigned int num_clusters = 0;
1302         unsigned int ext_flags = 0;
1303         u32 phys = 0;
1304         int i;
1305
1306         *clusters_to_alloc = 0;
1307         *extents_to_split = 0;
1308
1309         for (i = 0; i < wc->w_clen; i++) {
1310                 desc = &wc->w_desc[i];
1311                 desc->c_cpos = wc->w_cpos + i;
1312
1313                 if (num_clusters == 0) {
1314                         /*
1315                          * Need to look up the next extent record.
1316                          */
1317                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1318                                                  &num_clusters, &ext_flags);
1319                         if (ret) {
1320                                 mlog_errno(ret);
1321                                 goto out;
1322                         }
1323
1324                         /*
1325                          * Assume worst case - that we're writing in
1326                          * the middle of the extent.
1327                          *
1328                          * We can assume that the write proceeds from
1329                          * left to right, in which case the extent
1330                          * insert code is smart enough to coalesce the
1331                          * next splits into the previous records created.
1332                          */
1333                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1334                                 *extents_to_split = *extents_to_split + 2;
1335                 } else if (phys) {
1336                         /*
1337                          * Only increment phys if it doesn't describe
1338                          * a hole.
1339                          */
1340                         phys++;
1341                 }
1342
1343                 desc->c_phys = phys;
1344                 if (phys == 0) {
1345                         desc->c_new = 1;
1346                         *clusters_to_alloc = *clusters_to_alloc + 1;
1347                 }
1348                 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1349                         desc->c_unwritten = 1;
1350
1351                 num_clusters--;
1352         }
1353
1354         ret = 0;
1355 out:
1356         return ret;
1357 }
1358
1359 /*
1360  * This function only does anything for file systems which can't
1361  * handle sparse files.
1362  *
1363  * What we want to do here is fill in any hole between the current end
1364  * of allocation and the end of our write. That way the rest of the
1365  * write path can treat it as an non-allocating write, which has no
1366  * special case code for sparse/nonsparse files.
1367  */
1368 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1369                                         unsigned len,
1370                                         struct ocfs2_write_ctxt *wc)
1371 {
1372         int ret;
1373         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1374         loff_t newsize = pos + len;
1375
1376         if (ocfs2_sparse_alloc(osb))
1377                 return 0;
1378
1379         if (newsize <= i_size_read(inode))
1380                 return 0;
1381
1382         ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1383         if (ret)
1384                 mlog_errno(ret);
1385
1386         return ret;
1387 }
1388
1389 int ocfs2_write_begin_nolock(struct address_space *mapping,
1390                              loff_t pos, unsigned len, unsigned flags,
1391                              struct page **pagep, void **fsdata,
1392                              struct buffer_head *di_bh, struct page *mmap_page)
1393 {
1394         int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1395         unsigned int clusters_to_alloc, extents_to_split;
1396         struct ocfs2_write_ctxt *wc;
1397         struct inode *inode = mapping->host;
1398         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1399         struct ocfs2_dinode *di;
1400         struct ocfs2_alloc_context *data_ac = NULL;
1401         struct ocfs2_alloc_context *meta_ac = NULL;
1402         handle_t *handle;
1403
1404         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1405         if (ret) {
1406                 mlog_errno(ret);
1407                 return ret;
1408         }
1409
1410         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1411         if (ret) {
1412                 mlog_errno(ret);
1413                 goto out;
1414         }
1415
1416         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1417                                         &extents_to_split);
1418         if (ret) {
1419                 mlog_errno(ret);
1420                 goto out;
1421         }
1422
1423         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1424
1425         /*
1426          * We set w_target_from, w_target_to here so that
1427          * ocfs2_write_end() knows which range in the target page to
1428          * write out. An allocation requires that we write the entire
1429          * cluster range.
1430          */
1431         if (clusters_to_alloc || extents_to_split) {
1432                 /*
1433                  * XXX: We are stretching the limits of
1434                  * ocfs2_lock_allocators(). It greatly over-estimates
1435                  * the work to be done.
1436                  */
1437                 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1438                                             extents_to_split, &data_ac, &meta_ac);
1439                 if (ret) {
1440                         mlog_errno(ret);
1441                         goto out;
1442                 }
1443
1444                 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1445                                                     clusters_to_alloc);
1446
1447         }
1448
1449         ocfs2_set_target_boundaries(osb, wc, pos, len,
1450                                     clusters_to_alloc + extents_to_split);
1451
1452         handle = ocfs2_start_trans(osb, credits);
1453         if (IS_ERR(handle)) {
1454                 ret = PTR_ERR(handle);
1455                 mlog_errno(ret);
1456                 goto out;
1457         }
1458
1459         wc->w_handle = handle;
1460
1461         /*
1462          * We don't want this to fail in ocfs2_write_end(), so do it
1463          * here.
1464          */
1465         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1466                                    OCFS2_JOURNAL_ACCESS_WRITE);
1467         if (ret) {
1468                 mlog_errno(ret);
1469                 goto out_commit;
1470         }
1471
1472         /*
1473          * Fill our page array first. That way we've grabbed enough so
1474          * that we can zero and flush if we error after adding the
1475          * extent.
1476          */
1477         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1478                                          clusters_to_alloc + extents_to_split,
1479                                          mmap_page);
1480         if (ret) {
1481                 mlog_errno(ret);
1482                 goto out_commit;
1483         }
1484
1485         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1486                                           len);
1487         if (ret) {
1488                 mlog_errno(ret);
1489                 goto out_commit;
1490         }
1491
1492         if (data_ac)
1493                 ocfs2_free_alloc_context(data_ac);
1494         if (meta_ac)
1495                 ocfs2_free_alloc_context(meta_ac);
1496
1497         *pagep = wc->w_target_page;
1498         *fsdata = wc;
1499         return 0;
1500 out_commit:
1501         ocfs2_commit_trans(osb, handle);
1502
1503 out:
1504         ocfs2_free_write_ctxt(wc);
1505
1506         if (data_ac)
1507                 ocfs2_free_alloc_context(data_ac);
1508         if (meta_ac)
1509                 ocfs2_free_alloc_context(meta_ac);
1510         return ret;
1511 }
1512
1513 int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1514                       loff_t pos, unsigned len, unsigned flags,
1515                       struct page **pagep, void **fsdata)
1516 {
1517         int ret;
1518         struct buffer_head *di_bh = NULL;
1519         struct inode *inode = mapping->host;
1520
1521         ret = ocfs2_meta_lock(inode, &di_bh, 1);
1522         if (ret) {
1523                 mlog_errno(ret);
1524                 return ret;
1525         }
1526
1527         /*
1528          * Take alloc sem here to prevent concurrent lookups. That way
1529          * the mapping, zeroing and tree manipulation within
1530          * ocfs2_write() will be safe against ->readpage(). This
1531          * should also serve to lock out allocation from a shared
1532          * writeable region.
1533          */
1534         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1535
1536         ret = ocfs2_data_lock(inode, 1);
1537         if (ret) {
1538                 mlog_errno(ret);
1539                 goto out_fail;
1540         }
1541
1542         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1543                                        fsdata, di_bh, NULL);
1544         if (ret) {
1545                 mlog_errno(ret);
1546                 goto out_fail_data;
1547         }
1548
1549         brelse(di_bh);
1550
1551         return 0;
1552
1553 out_fail_data:
1554         ocfs2_data_unlock(inode, 1);
1555 out_fail:
1556         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1557
1558         brelse(di_bh);
1559         ocfs2_meta_unlock(inode, 1);
1560
1561         return ret;
1562 }
1563
1564 int ocfs2_write_end_nolock(struct address_space *mapping,
1565                            loff_t pos, unsigned len, unsigned copied,
1566                            struct page *page, void *fsdata)
1567 {
1568         int i;
1569         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1570         struct inode *inode = mapping->host;
1571         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1572         struct ocfs2_write_ctxt *wc = fsdata;
1573         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1574         handle_t *handle = wc->w_handle;
1575         struct page *tmppage;
1576
1577         if (unlikely(copied < len)) {
1578                 if (!PageUptodate(wc->w_target_page))
1579                         copied = 0;
1580
1581                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1582                                        start+len);
1583         }
1584         flush_dcache_page(wc->w_target_page);
1585
1586         for(i = 0; i < wc->w_num_pages; i++) {
1587                 tmppage = wc->w_pages[i];
1588
1589                 if (tmppage == wc->w_target_page) {
1590                         from = wc->w_target_from;
1591                         to = wc->w_target_to;
1592
1593                         BUG_ON(from > PAGE_CACHE_SIZE ||
1594                                to > PAGE_CACHE_SIZE ||
1595                                to < from);
1596                 } else {
1597                         /*
1598                          * Pages adjacent to the target (if any) imply
1599                          * a hole-filling write in which case we want
1600                          * to flush their entire range.
1601                          */
1602                         from = 0;
1603                         to = PAGE_CACHE_SIZE;
1604                 }
1605
1606                 if (ocfs2_should_order_data(inode))
1607                         walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1608                                           from, to, NULL,
1609                                           ocfs2_journal_dirty_data);
1610
1611                 block_commit_write(tmppage, from, to);
1612         }
1613
1614         pos += copied;
1615         if (pos > inode->i_size) {
1616                 i_size_write(inode, pos);
1617                 mark_inode_dirty(inode);
1618         }
1619         inode->i_blocks = ocfs2_inode_sector_count(inode);
1620         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1621         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1622         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1623         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1624         ocfs2_journal_dirty(handle, wc->w_di_bh);
1625
1626         ocfs2_commit_trans(osb, handle);
1627
1628         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1629
1630         ocfs2_free_write_ctxt(wc);
1631
1632         return copied;
1633 }
1634
1635 int ocfs2_write_end(struct file *file, struct address_space *mapping,
1636                     loff_t pos, unsigned len, unsigned copied,
1637                     struct page *page, void *fsdata)
1638 {
1639         int ret;
1640         struct inode *inode = mapping->host;
1641
1642         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1643
1644         ocfs2_data_unlock(inode, 1);
1645         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1646         ocfs2_meta_unlock(inode, 1);
1647
1648         return ret;
1649 }
1650
1651 const struct address_space_operations ocfs2_aops = {
1652         .readpage       = ocfs2_readpage,
1653         .writepage      = ocfs2_writepage,
1654         .bmap           = ocfs2_bmap,
1655         .sync_page      = block_sync_page,
1656         .direct_IO      = ocfs2_direct_IO,
1657         .invalidatepage = ocfs2_invalidatepage,
1658         .releasepage    = ocfs2_releasepage,
1659         .migratepage    = buffer_migrate_page,
1660 };