]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ocfs2/aops.c
de179054a74b11f488d5fa8714457608ac0dc24a
[linux-2.6-omap-h63xx.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46
47 #include "buffer_head_io.h"
48
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50                                    struct buffer_head *bh_result, int create)
51 {
52         int err = -EIO;
53         int status;
54         struct ocfs2_dinode *fe = NULL;
55         struct buffer_head *bh = NULL;
56         struct buffer_head *buffer_cache_bh = NULL;
57         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58         void *kaddr;
59
60         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61                    (unsigned long long)iblock, bh_result, create);
62
63         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67                      (unsigned long long)iblock);
68                 goto bail;
69         }
70
71         status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72                                   OCFS2_I(inode)->ip_blkno,
73                                   &bh, OCFS2_BH_CACHED, inode);
74         if (status < 0) {
75                 mlog_errno(status);
76                 goto bail;
77         }
78         fe = (struct ocfs2_dinode *) bh->b_data;
79
80         if (!OCFS2_IS_VALID_DINODE(fe)) {
81                 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
82                      (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83                      fe->i_signature);
84                 goto bail;
85         }
86
87         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88                                                     le32_to_cpu(fe->i_clusters))) {
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102                         goto bail;
103                 }
104
105                 /* we haven't locked out transactions, so a commit
106                  * could've happened. Since we've got a reference on
107                  * the bh, even if it commits while we're doing the
108                  * copy, the data is still good. */
109                 if (buffer_jbd(buffer_cache_bh)
110                     && ocfs2_inode_is_new(inode)) {
111                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112                         if (!kaddr) {
113                                 mlog(ML_ERROR, "couldn't kmap!\n");
114                                 goto bail;
115                         }
116                         memcpy(kaddr + (bh_result->b_size * iblock),
117                                buffer_cache_bh->b_data,
118                                bh_result->b_size);
119                         kunmap_atomic(kaddr, KM_USER0);
120                         set_buffer_uptodate(bh_result);
121                 }
122                 brelse(buffer_cache_bh);
123         }
124
125         map_bh(bh_result, inode->i_sb,
126                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128         err = 0;
129
130 bail:
131         if (bh)
132                 brelse(bh);
133
134         mlog_exit(err);
135         return err;
136 }
137
138 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
139                            struct buffer_head *bh_result, int create)
140 {
141         int err = 0;
142         unsigned int ext_flags;
143         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
144         u64 p_blkno, count, past_eof;
145         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146
147         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
148                    (unsigned long long)iblock, bh_result, create);
149
150         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
151                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
152                      inode, inode->i_ino);
153
154         if (S_ISLNK(inode->i_mode)) {
155                 /* this always does I/O for some reason. */
156                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157                 goto bail;
158         }
159
160         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
161                                           &ext_flags);
162         if (err) {
163                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
164                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
165                      (unsigned long long)p_blkno);
166                 goto bail;
167         }
168
169         if (max_blocks < count)
170                 count = max_blocks;
171
172         /*
173          * ocfs2 never allocates in this function - the only time we
174          * need to use BH_New is when we're extending i_size on a file
175          * system which doesn't support holes, in which case BH_New
176          * allows block_prepare_write() to zero.
177          *
178          * If we see this on a sparse file system, then a truncate has
179          * raced us and removed the cluster. In this case, we clear
180          * the buffers dirty and uptodate bits and let the buffer code
181          * ignore it as a hole.
182          */
183         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
184                 clear_buffer_dirty(bh_result);
185                 clear_buffer_uptodate(bh_result);
186                 goto bail;
187         }
188
189         /* Treat the unwritten extent as a hole for zeroing purposes. */
190         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
191                 map_bh(bh_result, inode->i_sb, p_blkno);
192
193         bh_result->b_size = count << inode->i_blkbits;
194
195         if (!ocfs2_sparse_alloc(osb)) {
196                 if (p_blkno == 0) {
197                         err = -EIO;
198                         mlog(ML_ERROR,
199                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
200                              (unsigned long long)iblock,
201                              (unsigned long long)p_blkno,
202                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
203                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
204                         dump_stack();
205                 }
206
207                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
209                      (unsigned long long)past_eof);
210
211                 if (create && (iblock >= past_eof))
212                         set_buffer_new(bh_result);
213         }
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         mlog_exit(err);
220         return err;
221 }
222
223 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
224                            struct buffer_head *di_bh)
225 {
226         void *kaddr;
227         loff_t size;
228         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
229
230         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
231                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
232                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
233                 return -EROFS;
234         }
235
236         size = i_size_read(inode);
237
238         if (size > PAGE_CACHE_SIZE ||
239             size > ocfs2_max_inline_data(inode->i_sb)) {
240                 ocfs2_error(inode->i_sb,
241                             "Inode %llu has with inline data has bad size: %Lu",
242                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
243                             (unsigned long long)size);
244                 return -EROFS;
245         }
246
247         kaddr = kmap_atomic(page, KM_USER0);
248         if (size)
249                 memcpy(kaddr, di->id2.i_data.id_data, size);
250         /* Clear the remaining part of the page */
251         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
252         flush_dcache_page(page);
253         kunmap_atomic(kaddr, KM_USER0);
254
255         SetPageUptodate(page);
256
257         return 0;
258 }
259
260 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
261 {
262         int ret;
263         struct buffer_head *di_bh = NULL;
264         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
265
266         BUG_ON(!PageLocked(page));
267         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
268
269         ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
270                                OCFS2_BH_CACHED, inode);
271         if (ret) {
272                 mlog_errno(ret);
273                 goto out;
274         }
275
276         ret = ocfs2_read_inline_data(inode, page, di_bh);
277 out:
278         unlock_page(page);
279
280         brelse(di_bh);
281         return ret;
282 }
283
284 static int ocfs2_readpage(struct file *file, struct page *page)
285 {
286         struct inode *inode = page->mapping->host;
287         struct ocfs2_inode_info *oi = OCFS2_I(inode);
288         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
289         int ret, unlock = 1;
290
291         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
292
293         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
294         if (ret != 0) {
295                 if (ret == AOP_TRUNCATED_PAGE)
296                         unlock = 0;
297                 mlog_errno(ret);
298                 goto out;
299         }
300
301         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
302                 ret = AOP_TRUNCATED_PAGE;
303                 goto out_inode_unlock;
304         }
305
306         /*
307          * i_size might have just been updated as we grabed the meta lock.  We
308          * might now be discovering a truncate that hit on another node.
309          * block_read_full_page->get_block freaks out if it is asked to read
310          * beyond the end of a file, so we check here.  Callers
311          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
312          * and notice that the page they just read isn't needed.
313          *
314          * XXX sys_readahead() seems to get that wrong?
315          */
316         if (start >= i_size_read(inode)) {
317                 zero_user(page, 0, PAGE_SIZE);
318                 SetPageUptodate(page);
319                 ret = 0;
320                 goto out_alloc;
321         }
322
323         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
324                 ret = ocfs2_readpage_inline(inode, page);
325         else
326                 ret = block_read_full_page(page, ocfs2_get_block);
327         unlock = 0;
328
329 out_alloc:
330         up_read(&OCFS2_I(inode)->ip_alloc_sem);
331 out_inode_unlock:
332         ocfs2_inode_unlock(inode, 0);
333 out:
334         if (unlock)
335                 unlock_page(page);
336         mlog_exit(ret);
337         return ret;
338 }
339
340 /*
341  * This is used only for read-ahead. Failures or difficult to handle
342  * situations are safe to ignore.
343  *
344  * Right now, we don't bother with BH_Boundary - in-inode extent lists
345  * are quite large (243 extents on 4k blocks), so most inodes don't
346  * grow out to a tree. If need be, detecting boundary extents could
347  * trivially be added in a future version of ocfs2_get_block().
348  */
349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350                            struct list_head *pages, unsigned nr_pages)
351 {
352         int ret, err = -EIO;
353         struct inode *inode = mapping->host;
354         struct ocfs2_inode_info *oi = OCFS2_I(inode);
355         loff_t start;
356         struct page *last;
357
358         /*
359          * Use the nonblocking flag for the dlm code to avoid page
360          * lock inversion, but don't bother with retrying.
361          */
362         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363         if (ret)
364                 return err;
365
366         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367                 ocfs2_inode_unlock(inode, 0);
368                 return err;
369         }
370
371         /*
372          * Don't bother with inline-data. There isn't anything
373          * to read-ahead in that case anyway...
374          */
375         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376                 goto out_unlock;
377
378         /*
379          * Check whether a remote node truncated this file - we just
380          * drop out in that case as it's not worth handling here.
381          */
382         last = list_entry(pages->prev, struct page, lru);
383         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384         if (start >= i_size_read(inode))
385                 goto out_unlock;
386
387         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389 out_unlock:
390         up_read(&oi->ip_alloc_sem);
391         ocfs2_inode_unlock(inode, 0);
392
393         return err;
394 }
395
396 /* Note: Because we don't support holes, our allocation has
397  * already happened (allocation writes zeros to the file data)
398  * so we don't have to worry about ordered writes in
399  * ocfs2_writepage.
400  *
401  * ->writepage is called during the process of invalidating the page cache
402  * during blocked lock processing.  It can't block on any cluster locks
403  * to during block mapping.  It's relying on the fact that the block
404  * mapping can't have disappeared under the dirty pages that it is
405  * being asked to write back.
406  */
407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408 {
409         int ret;
410
411         mlog_entry("(0x%p)\n", page);
412
413         ret = block_write_full_page(page, ocfs2_get_block, wbc);
414
415         mlog_exit(ret);
416
417         return ret;
418 }
419
420 /*
421  * This is called from ocfs2_write_zero_page() which has handled it's
422  * own cluster locking and has ensured allocation exists for those
423  * blocks to be written.
424  */
425 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
426                                unsigned from, unsigned to)
427 {
428         int ret;
429
430         ret = block_prepare_write(page, from, to, ocfs2_get_block);
431
432         return ret;
433 }
434
435 /* Taken from ext3. We don't necessarily need the full blown
436  * functionality yet, but IMHO it's better to cut and paste the whole
437  * thing so we can avoid introducing our own bugs (and easily pick up
438  * their fixes when they happen) --Mark */
439 int walk_page_buffers(  handle_t *handle,
440                         struct buffer_head *head,
441                         unsigned from,
442                         unsigned to,
443                         int *partial,
444                         int (*fn)(      handle_t *handle,
445                                         struct buffer_head *bh))
446 {
447         struct buffer_head *bh;
448         unsigned block_start, block_end;
449         unsigned blocksize = head->b_size;
450         int err, ret = 0;
451         struct buffer_head *next;
452
453         for (   bh = head, block_start = 0;
454                 ret == 0 && (bh != head || !block_start);
455                 block_start = block_end, bh = next)
456         {
457                 next = bh->b_this_page;
458                 block_end = block_start + blocksize;
459                 if (block_end <= from || block_start >= to) {
460                         if (partial && !buffer_uptodate(bh))
461                                 *partial = 1;
462                         continue;
463                 }
464                 err = (*fn)(handle, bh);
465                 if (!ret)
466                         ret = err;
467         }
468         return ret;
469 }
470
471 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
472                                                          struct page *page,
473                                                          unsigned from,
474                                                          unsigned to)
475 {
476         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
477         handle_t *handle;
478         int ret = 0;
479
480         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
481         if (IS_ERR(handle)) {
482                 ret = -ENOMEM;
483                 mlog_errno(ret);
484                 goto out;
485         }
486
487         if (ocfs2_should_order_data(inode)) {
488                 ret = ocfs2_jbd2_file_inode(handle, inode);
489 #ifdef CONFIG_OCFS2_COMPAT_JBD
490                 ret = walk_page_buffers(handle,
491                                         page_buffers(page),
492                                         from, to, NULL,
493                                         ocfs2_journal_dirty_data);
494 #endif
495                 if (ret < 0)
496                         mlog_errno(ret);
497         }
498 out:
499         if (ret) {
500                 if (!IS_ERR(handle))
501                         ocfs2_commit_trans(osb, handle);
502                 handle = ERR_PTR(ret);
503         }
504         return handle;
505 }
506
507 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
508 {
509         sector_t status;
510         u64 p_blkno = 0;
511         int err = 0;
512         struct inode *inode = mapping->host;
513
514         mlog_entry("(block = %llu)\n", (unsigned long long)block);
515
516         /* We don't need to lock journal system files, since they aren't
517          * accessed concurrently from multiple nodes.
518          */
519         if (!INODE_JOURNAL(inode)) {
520                 err = ocfs2_inode_lock(inode, NULL, 0);
521                 if (err) {
522                         if (err != -ENOENT)
523                                 mlog_errno(err);
524                         goto bail;
525                 }
526                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
527         }
528
529         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
530                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
531                                                   NULL);
532
533         if (!INODE_JOURNAL(inode)) {
534                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
535                 ocfs2_inode_unlock(inode, 0);
536         }
537
538         if (err) {
539                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
540                      (unsigned long long)block);
541                 mlog_errno(err);
542                 goto bail;
543         }
544
545 bail:
546         status = err ? 0 : p_blkno;
547
548         mlog_exit((int)status);
549
550         return status;
551 }
552
553 /*
554  * TODO: Make this into a generic get_blocks function.
555  *
556  * From do_direct_io in direct-io.c:
557  *  "So what we do is to permit the ->get_blocks function to populate
558  *   bh.b_size with the size of IO which is permitted at this offset and
559  *   this i_blkbits."
560  *
561  * This function is called directly from get_more_blocks in direct-io.c.
562  *
563  * called like this: dio->get_blocks(dio->inode, fs_startblk,
564  *                                      fs_count, map_bh, dio->rw == WRITE);
565  */
566 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
567                                      struct buffer_head *bh_result, int create)
568 {
569         int ret;
570         u64 p_blkno, inode_blocks, contig_blocks;
571         unsigned int ext_flags;
572         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
573         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
574
575         /* This function won't even be called if the request isn't all
576          * nicely aligned and of the right size, so there's no need
577          * for us to check any of that. */
578
579         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
580
581         /*
582          * Any write past EOF is not allowed because we'd be extending.
583          */
584         if (create && (iblock + max_blocks) > inode_blocks) {
585                 ret = -EIO;
586                 goto bail;
587         }
588
589         /* This figures out the size of the next contiguous block, and
590          * our logical offset */
591         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
592                                           &contig_blocks, &ext_flags);
593         if (ret) {
594                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
595                      (unsigned long long)iblock);
596                 ret = -EIO;
597                 goto bail;
598         }
599
600         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
601                 ocfs2_error(inode->i_sb,
602                             "Inode %llu has a hole at block %llu\n",
603                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
604                             (unsigned long long)iblock);
605                 ret = -EROFS;
606                 goto bail;
607         }
608
609         /*
610          * get_more_blocks() expects us to describe a hole by clearing
611          * the mapped bit on bh_result().
612          *
613          * Consider an unwritten extent as a hole.
614          */
615         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
616                 map_bh(bh_result, inode->i_sb, p_blkno);
617         else {
618                 /*
619                  * ocfs2_prepare_inode_for_write() should have caught
620                  * the case where we'd be filling a hole and triggered
621                  * a buffered write instead.
622                  */
623                 if (create) {
624                         ret = -EIO;
625                         mlog_errno(ret);
626                         goto bail;
627                 }
628
629                 clear_buffer_mapped(bh_result);
630         }
631
632         /* make sure we don't map more than max_blocks blocks here as
633            that's all the kernel will handle at this point. */
634         if (max_blocks < contig_blocks)
635                 contig_blocks = max_blocks;
636         bh_result->b_size = contig_blocks << blocksize_bits;
637 bail:
638         return ret;
639 }
640
641 /* 
642  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
643  * particularly interested in the aio/dio case.  Like the core uses
644  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
645  * truncation on another.
646  */
647 static void ocfs2_dio_end_io(struct kiocb *iocb,
648                              loff_t offset,
649                              ssize_t bytes,
650                              void *private)
651 {
652         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
653         int level;
654
655         /* this io's submitter should not have unlocked this before we could */
656         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
657
658         ocfs2_iocb_clear_rw_locked(iocb);
659
660         level = ocfs2_iocb_rw_locked_level(iocb);
661         if (!level)
662                 up_read(&inode->i_alloc_sem);
663         ocfs2_rw_unlock(inode, level);
664 }
665
666 /*
667  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
668  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
669  * do journalled data.
670  */
671 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
672 {
673         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
674
675         jbd2_journal_invalidatepage(journal, page, offset);
676 }
677
678 static int ocfs2_releasepage(struct page *page, gfp_t wait)
679 {
680         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
681
682         if (!page_has_buffers(page))
683                 return 0;
684         return jbd2_journal_try_to_free_buffers(journal, page, wait);
685 }
686
687 static ssize_t ocfs2_direct_IO(int rw,
688                                struct kiocb *iocb,
689                                const struct iovec *iov,
690                                loff_t offset,
691                                unsigned long nr_segs)
692 {
693         struct file *file = iocb->ki_filp;
694         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
695         int ret;
696
697         mlog_entry_void();
698
699         /*
700          * Fallback to buffered I/O if we see an inode without
701          * extents.
702          */
703         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
704                 return 0;
705
706         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
707                                             inode->i_sb->s_bdev, iov, offset,
708                                             nr_segs, 
709                                             ocfs2_direct_IO_get_blocks,
710                                             ocfs2_dio_end_io);
711
712         mlog_exit(ret);
713         return ret;
714 }
715
716 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
717                                             u32 cpos,
718                                             unsigned int *start,
719                                             unsigned int *end)
720 {
721         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
722
723         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
724                 unsigned int cpp;
725
726                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
727
728                 cluster_start = cpos % cpp;
729                 cluster_start = cluster_start << osb->s_clustersize_bits;
730
731                 cluster_end = cluster_start + osb->s_clustersize;
732         }
733
734         BUG_ON(cluster_start > PAGE_SIZE);
735         BUG_ON(cluster_end > PAGE_SIZE);
736
737         if (start)
738                 *start = cluster_start;
739         if (end)
740                 *end = cluster_end;
741 }
742
743 /*
744  * 'from' and 'to' are the region in the page to avoid zeroing.
745  *
746  * If pagesize > clustersize, this function will avoid zeroing outside
747  * of the cluster boundary.
748  *
749  * from == to == 0 is code for "zero the entire cluster region"
750  */
751 static void ocfs2_clear_page_regions(struct page *page,
752                                      struct ocfs2_super *osb, u32 cpos,
753                                      unsigned from, unsigned to)
754 {
755         void *kaddr;
756         unsigned int cluster_start, cluster_end;
757
758         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
759
760         kaddr = kmap_atomic(page, KM_USER0);
761
762         if (from || to) {
763                 if (from > cluster_start)
764                         memset(kaddr + cluster_start, 0, from - cluster_start);
765                 if (to < cluster_end)
766                         memset(kaddr + to, 0, cluster_end - to);
767         } else {
768                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
769         }
770
771         kunmap_atomic(kaddr, KM_USER0);
772 }
773
774 /*
775  * Nonsparse file systems fully allocate before we get to the write
776  * code. This prevents ocfs2_write() from tagging the write as an
777  * allocating one, which means ocfs2_map_page_blocks() might try to
778  * read-in the blocks at the tail of our file. Avoid reading them by
779  * testing i_size against each block offset.
780  */
781 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
782                                  unsigned int block_start)
783 {
784         u64 offset = page_offset(page) + block_start;
785
786         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
787                 return 1;
788
789         if (i_size_read(inode) > offset)
790                 return 1;
791
792         return 0;
793 }
794
795 /*
796  * Some of this taken from block_prepare_write(). We already have our
797  * mapping by now though, and the entire write will be allocating or
798  * it won't, so not much need to use BH_New.
799  *
800  * This will also skip zeroing, which is handled externally.
801  */
802 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
803                           struct inode *inode, unsigned int from,
804                           unsigned int to, int new)
805 {
806         int ret = 0;
807         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
808         unsigned int block_end, block_start;
809         unsigned int bsize = 1 << inode->i_blkbits;
810
811         if (!page_has_buffers(page))
812                 create_empty_buffers(page, bsize, 0);
813
814         head = page_buffers(page);
815         for (bh = head, block_start = 0; bh != head || !block_start;
816              bh = bh->b_this_page, block_start += bsize) {
817                 block_end = block_start + bsize;
818
819                 clear_buffer_new(bh);
820
821                 /*
822                  * Ignore blocks outside of our i/o range -
823                  * they may belong to unallocated clusters.
824                  */
825                 if (block_start >= to || block_end <= from) {
826                         if (PageUptodate(page))
827                                 set_buffer_uptodate(bh);
828                         continue;
829                 }
830
831                 /*
832                  * For an allocating write with cluster size >= page
833                  * size, we always write the entire page.
834                  */
835                 if (new)
836                         set_buffer_new(bh);
837
838                 if (!buffer_mapped(bh)) {
839                         map_bh(bh, inode->i_sb, *p_blkno);
840                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
841                 }
842
843                 if (PageUptodate(page)) {
844                         if (!buffer_uptodate(bh))
845                                 set_buffer_uptodate(bh);
846                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
847                            !buffer_new(bh) &&
848                            ocfs2_should_read_blk(inode, page, block_start) &&
849                            (block_start < from || block_end > to)) {
850                         ll_rw_block(READ, 1, &bh);
851                         *wait_bh++=bh;
852                 }
853
854                 *p_blkno = *p_blkno + 1;
855         }
856
857         /*
858          * If we issued read requests - let them complete.
859          */
860         while(wait_bh > wait) {
861                 wait_on_buffer(*--wait_bh);
862                 if (!buffer_uptodate(*wait_bh))
863                         ret = -EIO;
864         }
865
866         if (ret == 0 || !new)
867                 return ret;
868
869         /*
870          * If we get -EIO above, zero out any newly allocated blocks
871          * to avoid exposing stale data.
872          */
873         bh = head;
874         block_start = 0;
875         do {
876                 block_end = block_start + bsize;
877                 if (block_end <= from)
878                         goto next_bh;
879                 if (block_start >= to)
880                         break;
881
882                 zero_user(page, block_start, bh->b_size);
883                 set_buffer_uptodate(bh);
884                 mark_buffer_dirty(bh);
885
886 next_bh:
887                 block_start = block_end;
888                 bh = bh->b_this_page;
889         } while (bh != head);
890
891         return ret;
892 }
893
894 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
895 #define OCFS2_MAX_CTXT_PAGES    1
896 #else
897 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
898 #endif
899
900 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
901
902 /*
903  * Describe the state of a single cluster to be written to.
904  */
905 struct ocfs2_write_cluster_desc {
906         u32             c_cpos;
907         u32             c_phys;
908         /*
909          * Give this a unique field because c_phys eventually gets
910          * filled.
911          */
912         unsigned        c_new;
913         unsigned        c_unwritten;
914 };
915
916 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
917 {
918         return d->c_new || d->c_unwritten;
919 }
920
921 struct ocfs2_write_ctxt {
922         /* Logical cluster position / len of write */
923         u32                             w_cpos;
924         u32                             w_clen;
925
926         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
927
928         /*
929          * This is true if page_size > cluster_size.
930          *
931          * It triggers a set of special cases during write which might
932          * have to deal with allocating writes to partial pages.
933          */
934         unsigned int                    w_large_pages;
935
936         /*
937          * Pages involved in this write.
938          *
939          * w_target_page is the page being written to by the user.
940          *
941          * w_pages is an array of pages which always contains
942          * w_target_page, and in the case of an allocating write with
943          * page_size < cluster size, it will contain zero'd and mapped
944          * pages adjacent to w_target_page which need to be written
945          * out in so that future reads from that region will get
946          * zero's.
947          */
948         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
949         unsigned int                    w_num_pages;
950         struct page                     *w_target_page;
951
952         /*
953          * ocfs2_write_end() uses this to know what the real range to
954          * write in the target should be.
955          */
956         unsigned int                    w_target_from;
957         unsigned int                    w_target_to;
958
959         /*
960          * We could use journal_current_handle() but this is cleaner,
961          * IMHO -Mark
962          */
963         handle_t                        *w_handle;
964
965         struct buffer_head              *w_di_bh;
966
967         struct ocfs2_cached_dealloc_ctxt w_dealloc;
968 };
969
970 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
971 {
972         int i;
973
974         for(i = 0; i < num_pages; i++) {
975                 if (pages[i]) {
976                         unlock_page(pages[i]);
977                         mark_page_accessed(pages[i]);
978                         page_cache_release(pages[i]);
979                 }
980         }
981 }
982
983 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
984 {
985         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
986
987         brelse(wc->w_di_bh);
988         kfree(wc);
989 }
990
991 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
992                                   struct ocfs2_super *osb, loff_t pos,
993                                   unsigned len, struct buffer_head *di_bh)
994 {
995         u32 cend;
996         struct ocfs2_write_ctxt *wc;
997
998         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
999         if (!wc)
1000                 return -ENOMEM;
1001
1002         wc->w_cpos = pos >> osb->s_clustersize_bits;
1003         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1004         wc->w_clen = cend - wc->w_cpos + 1;
1005         get_bh(di_bh);
1006         wc->w_di_bh = di_bh;
1007
1008         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1009                 wc->w_large_pages = 1;
1010         else
1011                 wc->w_large_pages = 0;
1012
1013         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1014
1015         *wcp = wc;
1016
1017         return 0;
1018 }
1019
1020 /*
1021  * If a page has any new buffers, zero them out here, and mark them uptodate
1022  * and dirty so they'll be written out (in order to prevent uninitialised
1023  * block data from leaking). And clear the new bit.
1024  */
1025 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1026 {
1027         unsigned int block_start, block_end;
1028         struct buffer_head *head, *bh;
1029
1030         BUG_ON(!PageLocked(page));
1031         if (!page_has_buffers(page))
1032                 return;
1033
1034         bh = head = page_buffers(page);
1035         block_start = 0;
1036         do {
1037                 block_end = block_start + bh->b_size;
1038
1039                 if (buffer_new(bh)) {
1040                         if (block_end > from && block_start < to) {
1041                                 if (!PageUptodate(page)) {
1042                                         unsigned start, end;
1043
1044                                         start = max(from, block_start);
1045                                         end = min(to, block_end);
1046
1047                                         zero_user_segment(page, start, end);
1048                                         set_buffer_uptodate(bh);
1049                                 }
1050
1051                                 clear_buffer_new(bh);
1052                                 mark_buffer_dirty(bh);
1053                         }
1054                 }
1055
1056                 block_start = block_end;
1057                 bh = bh->b_this_page;
1058         } while (bh != head);
1059 }
1060
1061 /*
1062  * Only called when we have a failure during allocating write to write
1063  * zero's to the newly allocated region.
1064  */
1065 static void ocfs2_write_failure(struct inode *inode,
1066                                 struct ocfs2_write_ctxt *wc,
1067                                 loff_t user_pos, unsigned user_len)
1068 {
1069         int i;
1070         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1071                 to = user_pos + user_len;
1072         struct page *tmppage;
1073
1074         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1075
1076         for(i = 0; i < wc->w_num_pages; i++) {
1077                 tmppage = wc->w_pages[i];
1078
1079                 if (page_has_buffers(tmppage)) {
1080                         if (ocfs2_should_order_data(inode)) {
1081                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1082 #ifdef CONFIG_OCFS2_COMPAT_JBD
1083                                 walk_page_buffers(wc->w_handle,
1084                                                   page_buffers(tmppage),
1085                                                   from, to, NULL,
1086                                                   ocfs2_journal_dirty_data);
1087 #endif
1088                         }
1089
1090                         block_commit_write(tmppage, from, to);
1091                 }
1092         }
1093 }
1094
1095 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1096                                         struct ocfs2_write_ctxt *wc,
1097                                         struct page *page, u32 cpos,
1098                                         loff_t user_pos, unsigned user_len,
1099                                         int new)
1100 {
1101         int ret;
1102         unsigned int map_from = 0, map_to = 0;
1103         unsigned int cluster_start, cluster_end;
1104         unsigned int user_data_from = 0, user_data_to = 0;
1105
1106         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1107                                         &cluster_start, &cluster_end);
1108
1109         if (page == wc->w_target_page) {
1110                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1111                 map_to = map_from + user_len;
1112
1113                 if (new)
1114                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1115                                                     cluster_start, cluster_end,
1116                                                     new);
1117                 else
1118                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1119                                                     map_from, map_to, new);
1120                 if (ret) {
1121                         mlog_errno(ret);
1122                         goto out;
1123                 }
1124
1125                 user_data_from = map_from;
1126                 user_data_to = map_to;
1127                 if (new) {
1128                         map_from = cluster_start;
1129                         map_to = cluster_end;
1130                 }
1131         } else {
1132                 /*
1133                  * If we haven't allocated the new page yet, we
1134                  * shouldn't be writing it out without copying user
1135                  * data. This is likely a math error from the caller.
1136                  */
1137                 BUG_ON(!new);
1138
1139                 map_from = cluster_start;
1140                 map_to = cluster_end;
1141
1142                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1143                                             cluster_start, cluster_end, new);
1144                 if (ret) {
1145                         mlog_errno(ret);
1146                         goto out;
1147                 }
1148         }
1149
1150         /*
1151          * Parts of newly allocated pages need to be zero'd.
1152          *
1153          * Above, we have also rewritten 'to' and 'from' - as far as
1154          * the rest of the function is concerned, the entire cluster
1155          * range inside of a page needs to be written.
1156          *
1157          * We can skip this if the page is up to date - it's already
1158          * been zero'd from being read in as a hole.
1159          */
1160         if (new && !PageUptodate(page))
1161                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1162                                          cpos, user_data_from, user_data_to);
1163
1164         flush_dcache_page(page);
1165
1166 out:
1167         return ret;
1168 }
1169
1170 /*
1171  * This function will only grab one clusters worth of pages.
1172  */
1173 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1174                                       struct ocfs2_write_ctxt *wc,
1175                                       u32 cpos, loff_t user_pos, int new,
1176                                       struct page *mmap_page)
1177 {
1178         int ret = 0, i;
1179         unsigned long start, target_index, index;
1180         struct inode *inode = mapping->host;
1181
1182         target_index = user_pos >> PAGE_CACHE_SHIFT;
1183
1184         /*
1185          * Figure out how many pages we'll be manipulating here. For
1186          * non allocating write, we just change the one
1187          * page. Otherwise, we'll need a whole clusters worth.
1188          */
1189         if (new) {
1190                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1191                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1192         } else {
1193                 wc->w_num_pages = 1;
1194                 start = target_index;
1195         }
1196
1197         for(i = 0; i < wc->w_num_pages; i++) {
1198                 index = start + i;
1199
1200                 if (index == target_index && mmap_page) {
1201                         /*
1202                          * ocfs2_pagemkwrite() is a little different
1203                          * and wants us to directly use the page
1204                          * passed in.
1205                          */
1206                         lock_page(mmap_page);
1207
1208                         if (mmap_page->mapping != mapping) {
1209                                 unlock_page(mmap_page);
1210                                 /*
1211                                  * Sanity check - the locking in
1212                                  * ocfs2_pagemkwrite() should ensure
1213                                  * that this code doesn't trigger.
1214                                  */
1215                                 ret = -EINVAL;
1216                                 mlog_errno(ret);
1217                                 goto out;
1218                         }
1219
1220                         page_cache_get(mmap_page);
1221                         wc->w_pages[i] = mmap_page;
1222                 } else {
1223                         wc->w_pages[i] = find_or_create_page(mapping, index,
1224                                                              GFP_NOFS);
1225                         if (!wc->w_pages[i]) {
1226                                 ret = -ENOMEM;
1227                                 mlog_errno(ret);
1228                                 goto out;
1229                         }
1230                 }
1231
1232                 if (index == target_index)
1233                         wc->w_target_page = wc->w_pages[i];
1234         }
1235 out:
1236         return ret;
1237 }
1238
1239 /*
1240  * Prepare a single cluster for write one cluster into the file.
1241  */
1242 static int ocfs2_write_cluster(struct address_space *mapping,
1243                                u32 phys, unsigned int unwritten,
1244                                struct ocfs2_alloc_context *data_ac,
1245                                struct ocfs2_alloc_context *meta_ac,
1246                                struct ocfs2_write_ctxt *wc, u32 cpos,
1247                                loff_t user_pos, unsigned user_len)
1248 {
1249         int ret, i, new, should_zero = 0;
1250         u64 v_blkno, p_blkno;
1251         struct inode *inode = mapping->host;
1252         struct ocfs2_extent_tree et;
1253
1254         new = phys == 0 ? 1 : 0;
1255         if (new || unwritten)
1256                 should_zero = 1;
1257
1258         if (new) {
1259                 u32 tmp_pos;
1260
1261                 /*
1262                  * This is safe to call with the page locks - it won't take
1263                  * any additional semaphores or cluster locks.
1264                  */
1265                 tmp_pos = cpos;
1266                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1267                                            &tmp_pos, 1, 0, wc->w_di_bh,
1268                                            wc->w_handle, data_ac,
1269                                            meta_ac, NULL);
1270                 /*
1271                  * This shouldn't happen because we must have already
1272                  * calculated the correct meta data allocation required. The
1273                  * internal tree allocation code should know how to increase
1274                  * transaction credits itself.
1275                  *
1276                  * If need be, we could handle -EAGAIN for a
1277                  * RESTART_TRANS here.
1278                  */
1279                 mlog_bug_on_msg(ret == -EAGAIN,
1280                                 "Inode %llu: EAGAIN return during allocation.\n",
1281                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1282                 if (ret < 0) {
1283                         mlog_errno(ret);
1284                         goto out;
1285                 }
1286         } else if (unwritten) {
1287                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1288                 ret = ocfs2_mark_extent_written(inode, &et,
1289                                                 wc->w_handle, cpos, 1, phys,
1290                                                 meta_ac, &wc->w_dealloc);
1291                 if (ret < 0) {
1292                         mlog_errno(ret);
1293                         goto out;
1294                 }
1295         }
1296
1297         if (should_zero)
1298                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1299         else
1300                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1301
1302         /*
1303          * The only reason this should fail is due to an inability to
1304          * find the extent added.
1305          */
1306         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1307                                           NULL);
1308         if (ret < 0) {
1309                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1310                             "at logical block %llu",
1311                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1312                             (unsigned long long)v_blkno);
1313                 goto out;
1314         }
1315
1316         BUG_ON(p_blkno == 0);
1317
1318         for(i = 0; i < wc->w_num_pages; i++) {
1319                 int tmpret;
1320
1321                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1322                                                       wc->w_pages[i], cpos,
1323                                                       user_pos, user_len,
1324                                                       should_zero);
1325                 if (tmpret) {
1326                         mlog_errno(tmpret);
1327                         if (ret == 0)
1328                                 tmpret = ret;
1329                 }
1330         }
1331
1332         /*
1333          * We only have cleanup to do in case of allocating write.
1334          */
1335         if (ret && new)
1336                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1337
1338 out:
1339
1340         return ret;
1341 }
1342
1343 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1344                                        struct ocfs2_alloc_context *data_ac,
1345                                        struct ocfs2_alloc_context *meta_ac,
1346                                        struct ocfs2_write_ctxt *wc,
1347                                        loff_t pos, unsigned len)
1348 {
1349         int ret, i;
1350         loff_t cluster_off;
1351         unsigned int local_len = len;
1352         struct ocfs2_write_cluster_desc *desc;
1353         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1354
1355         for (i = 0; i < wc->w_clen; i++) {
1356                 desc = &wc->w_desc[i];
1357
1358                 /*
1359                  * We have to make sure that the total write passed in
1360                  * doesn't extend past a single cluster.
1361                  */
1362                 local_len = len;
1363                 cluster_off = pos & (osb->s_clustersize - 1);
1364                 if ((cluster_off + local_len) > osb->s_clustersize)
1365                         local_len = osb->s_clustersize - cluster_off;
1366
1367                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1368                                           desc->c_unwritten, data_ac, meta_ac,
1369                                           wc, desc->c_cpos, pos, local_len);
1370                 if (ret) {
1371                         mlog_errno(ret);
1372                         goto out;
1373                 }
1374
1375                 len -= local_len;
1376                 pos += local_len;
1377         }
1378
1379         ret = 0;
1380 out:
1381         return ret;
1382 }
1383
1384 /*
1385  * ocfs2_write_end() wants to know which parts of the target page it
1386  * should complete the write on. It's easiest to compute them ahead of
1387  * time when a more complete view of the write is available.
1388  */
1389 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1390                                         struct ocfs2_write_ctxt *wc,
1391                                         loff_t pos, unsigned len, int alloc)
1392 {
1393         struct ocfs2_write_cluster_desc *desc;
1394
1395         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1396         wc->w_target_to = wc->w_target_from + len;
1397
1398         if (alloc == 0)
1399                 return;
1400
1401         /*
1402          * Allocating write - we may have different boundaries based
1403          * on page size and cluster size.
1404          *
1405          * NOTE: We can no longer compute one value from the other as
1406          * the actual write length and user provided length may be
1407          * different.
1408          */
1409
1410         if (wc->w_large_pages) {
1411                 /*
1412                  * We only care about the 1st and last cluster within
1413                  * our range and whether they should be zero'd or not. Either
1414                  * value may be extended out to the start/end of a
1415                  * newly allocated cluster.
1416                  */
1417                 desc = &wc->w_desc[0];
1418                 if (ocfs2_should_zero_cluster(desc))
1419                         ocfs2_figure_cluster_boundaries(osb,
1420                                                         desc->c_cpos,
1421                                                         &wc->w_target_from,
1422                                                         NULL);
1423
1424                 desc = &wc->w_desc[wc->w_clen - 1];
1425                 if (ocfs2_should_zero_cluster(desc))
1426                         ocfs2_figure_cluster_boundaries(osb,
1427                                                         desc->c_cpos,
1428                                                         NULL,
1429                                                         &wc->w_target_to);
1430         } else {
1431                 wc->w_target_from = 0;
1432                 wc->w_target_to = PAGE_CACHE_SIZE;
1433         }
1434 }
1435
1436 /*
1437  * Populate each single-cluster write descriptor in the write context
1438  * with information about the i/o to be done.
1439  *
1440  * Returns the number of clusters that will have to be allocated, as
1441  * well as a worst case estimate of the number of extent records that
1442  * would have to be created during a write to an unwritten region.
1443  */
1444 static int ocfs2_populate_write_desc(struct inode *inode,
1445                                      struct ocfs2_write_ctxt *wc,
1446                                      unsigned int *clusters_to_alloc,
1447                                      unsigned int *extents_to_split)
1448 {
1449         int ret;
1450         struct ocfs2_write_cluster_desc *desc;
1451         unsigned int num_clusters = 0;
1452         unsigned int ext_flags = 0;
1453         u32 phys = 0;
1454         int i;
1455
1456         *clusters_to_alloc = 0;
1457         *extents_to_split = 0;
1458
1459         for (i = 0; i < wc->w_clen; i++) {
1460                 desc = &wc->w_desc[i];
1461                 desc->c_cpos = wc->w_cpos + i;
1462
1463                 if (num_clusters == 0) {
1464                         /*
1465                          * Need to look up the next extent record.
1466                          */
1467                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1468                                                  &num_clusters, &ext_flags);
1469                         if (ret) {
1470                                 mlog_errno(ret);
1471                                 goto out;
1472                         }
1473
1474                         /*
1475                          * Assume worst case - that we're writing in
1476                          * the middle of the extent.
1477                          *
1478                          * We can assume that the write proceeds from
1479                          * left to right, in which case the extent
1480                          * insert code is smart enough to coalesce the
1481                          * next splits into the previous records created.
1482                          */
1483                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1484                                 *extents_to_split = *extents_to_split + 2;
1485                 } else if (phys) {
1486                         /*
1487                          * Only increment phys if it doesn't describe
1488                          * a hole.
1489                          */
1490                         phys++;
1491                 }
1492
1493                 desc->c_phys = phys;
1494                 if (phys == 0) {
1495                         desc->c_new = 1;
1496                         *clusters_to_alloc = *clusters_to_alloc + 1;
1497                 }
1498                 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1499                         desc->c_unwritten = 1;
1500
1501                 num_clusters--;
1502         }
1503
1504         ret = 0;
1505 out:
1506         return ret;
1507 }
1508
1509 static int ocfs2_write_begin_inline(struct address_space *mapping,
1510                                     struct inode *inode,
1511                                     struct ocfs2_write_ctxt *wc)
1512 {
1513         int ret;
1514         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1515         struct page *page;
1516         handle_t *handle;
1517         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1518
1519         page = find_or_create_page(mapping, 0, GFP_NOFS);
1520         if (!page) {
1521                 ret = -ENOMEM;
1522                 mlog_errno(ret);
1523                 goto out;
1524         }
1525         /*
1526          * If we don't set w_num_pages then this page won't get unlocked
1527          * and freed on cleanup of the write context.
1528          */
1529         wc->w_pages[0] = wc->w_target_page = page;
1530         wc->w_num_pages = 1;
1531
1532         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1533         if (IS_ERR(handle)) {
1534                 ret = PTR_ERR(handle);
1535                 mlog_errno(ret);
1536                 goto out;
1537         }
1538
1539         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1540                                    OCFS2_JOURNAL_ACCESS_WRITE);
1541         if (ret) {
1542                 ocfs2_commit_trans(osb, handle);
1543
1544                 mlog_errno(ret);
1545                 goto out;
1546         }
1547
1548         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1549                 ocfs2_set_inode_data_inline(inode, di);
1550
1551         if (!PageUptodate(page)) {
1552                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1553                 if (ret) {
1554                         ocfs2_commit_trans(osb, handle);
1555
1556                         goto out;
1557                 }
1558         }
1559
1560         wc->w_handle = handle;
1561 out:
1562         return ret;
1563 }
1564
1565 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1566 {
1567         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1568
1569         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1570                 return 1;
1571         return 0;
1572 }
1573
1574 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1575                                           struct inode *inode, loff_t pos,
1576                                           unsigned len, struct page *mmap_page,
1577                                           struct ocfs2_write_ctxt *wc)
1578 {
1579         int ret, written = 0;
1580         loff_t end = pos + len;
1581         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1582
1583         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1584              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1585              oi->ip_dyn_features);
1586
1587         /*
1588          * Handle inodes which already have inline data 1st.
1589          */
1590         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1591                 if (mmap_page == NULL &&
1592                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1593                         goto do_inline_write;
1594
1595                 /*
1596                  * The write won't fit - we have to give this inode an
1597                  * inline extent list now.
1598                  */
1599                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1600                 if (ret)
1601                         mlog_errno(ret);
1602                 goto out;
1603         }
1604
1605         /*
1606          * Check whether the inode can accept inline data.
1607          */
1608         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1609                 return 0;
1610
1611         /*
1612          * Check whether the write can fit.
1613          */
1614         if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1615                 return 0;
1616
1617 do_inline_write:
1618         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1619         if (ret) {
1620                 mlog_errno(ret);
1621                 goto out;
1622         }
1623
1624         /*
1625          * This signals to the caller that the data can be written
1626          * inline.
1627          */
1628         written = 1;
1629 out:
1630         return written ? written : ret;
1631 }
1632
1633 /*
1634  * This function only does anything for file systems which can't
1635  * handle sparse files.
1636  *
1637  * What we want to do here is fill in any hole between the current end
1638  * of allocation and the end of our write. That way the rest of the
1639  * write path can treat it as an non-allocating write, which has no
1640  * special case code for sparse/nonsparse files.
1641  */
1642 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1643                                         unsigned len,
1644                                         struct ocfs2_write_ctxt *wc)
1645 {
1646         int ret;
1647         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1648         loff_t newsize = pos + len;
1649
1650         if (ocfs2_sparse_alloc(osb))
1651                 return 0;
1652
1653         if (newsize <= i_size_read(inode))
1654                 return 0;
1655
1656         ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1657         if (ret)
1658                 mlog_errno(ret);
1659
1660         return ret;
1661 }
1662
1663 int ocfs2_write_begin_nolock(struct address_space *mapping,
1664                              loff_t pos, unsigned len, unsigned flags,
1665                              struct page **pagep, void **fsdata,
1666                              struct buffer_head *di_bh, struct page *mmap_page)
1667 {
1668         int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1669         unsigned int clusters_to_alloc, extents_to_split;
1670         struct ocfs2_write_ctxt *wc;
1671         struct inode *inode = mapping->host;
1672         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1673         struct ocfs2_dinode *di;
1674         struct ocfs2_alloc_context *data_ac = NULL;
1675         struct ocfs2_alloc_context *meta_ac = NULL;
1676         handle_t *handle;
1677         struct ocfs2_extent_tree et;
1678
1679         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1680         if (ret) {
1681                 mlog_errno(ret);
1682                 return ret;
1683         }
1684
1685         if (ocfs2_supports_inline_data(osb)) {
1686                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1687                                                      mmap_page, wc);
1688                 if (ret == 1) {
1689                         ret = 0;
1690                         goto success;
1691                 }
1692                 if (ret < 0) {
1693                         mlog_errno(ret);
1694                         goto out;
1695                 }
1696         }
1697
1698         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1699         if (ret) {
1700                 mlog_errno(ret);
1701                 goto out;
1702         }
1703
1704         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1705                                         &extents_to_split);
1706         if (ret) {
1707                 mlog_errno(ret);
1708                 goto out;
1709         }
1710
1711         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1712
1713         /*
1714          * We set w_target_from, w_target_to here so that
1715          * ocfs2_write_end() knows which range in the target page to
1716          * write out. An allocation requires that we write the entire
1717          * cluster range.
1718          */
1719         if (clusters_to_alloc || extents_to_split) {
1720                 /*
1721                  * XXX: We are stretching the limits of
1722                  * ocfs2_lock_allocators(). It greatly over-estimates
1723                  * the work to be done.
1724                  */
1725                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1726                      " clusters_to_add = %u, extents_to_split = %u\n",
1727                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1728                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1729                      clusters_to_alloc, extents_to_split);
1730
1731                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1732                 ret = ocfs2_lock_allocators(inode, &et,
1733                                             clusters_to_alloc, extents_to_split,
1734                                             &data_ac, &meta_ac);
1735                 if (ret) {
1736                         mlog_errno(ret);
1737                         goto out;
1738                 }
1739
1740                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1741                                                     &di->id2.i_list,
1742                                                     clusters_to_alloc);
1743
1744         }
1745
1746         ocfs2_set_target_boundaries(osb, wc, pos, len,
1747                                     clusters_to_alloc + extents_to_split);
1748
1749         handle = ocfs2_start_trans(osb, credits);
1750         if (IS_ERR(handle)) {
1751                 ret = PTR_ERR(handle);
1752                 mlog_errno(ret);
1753                 goto out;
1754         }
1755
1756         wc->w_handle = handle;
1757
1758         /*
1759          * We don't want this to fail in ocfs2_write_end(), so do it
1760          * here.
1761          */
1762         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1763                                    OCFS2_JOURNAL_ACCESS_WRITE);
1764         if (ret) {
1765                 mlog_errno(ret);
1766                 goto out_commit;
1767         }
1768
1769         /*
1770          * Fill our page array first. That way we've grabbed enough so
1771          * that we can zero and flush if we error after adding the
1772          * extent.
1773          */
1774         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1775                                          clusters_to_alloc + extents_to_split,
1776                                          mmap_page);
1777         if (ret) {
1778                 mlog_errno(ret);
1779                 goto out_commit;
1780         }
1781
1782         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1783                                           len);
1784         if (ret) {
1785                 mlog_errno(ret);
1786                 goto out_commit;
1787         }
1788
1789         if (data_ac)
1790                 ocfs2_free_alloc_context(data_ac);
1791         if (meta_ac)
1792                 ocfs2_free_alloc_context(meta_ac);
1793
1794 success:
1795         *pagep = wc->w_target_page;
1796         *fsdata = wc;
1797         return 0;
1798 out_commit:
1799         ocfs2_commit_trans(osb, handle);
1800
1801 out:
1802         ocfs2_free_write_ctxt(wc);
1803
1804         if (data_ac)
1805                 ocfs2_free_alloc_context(data_ac);
1806         if (meta_ac)
1807                 ocfs2_free_alloc_context(meta_ac);
1808         return ret;
1809 }
1810
1811 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1812                              loff_t pos, unsigned len, unsigned flags,
1813                              struct page **pagep, void **fsdata)
1814 {
1815         int ret;
1816         struct buffer_head *di_bh = NULL;
1817         struct inode *inode = mapping->host;
1818
1819         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1820         if (ret) {
1821                 mlog_errno(ret);
1822                 return ret;
1823         }
1824
1825         /*
1826          * Take alloc sem here to prevent concurrent lookups. That way
1827          * the mapping, zeroing and tree manipulation within
1828          * ocfs2_write() will be safe against ->readpage(). This
1829          * should also serve to lock out allocation from a shared
1830          * writeable region.
1831          */
1832         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1833
1834         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1835                                        fsdata, di_bh, NULL);
1836         if (ret) {
1837                 mlog_errno(ret);
1838                 goto out_fail;
1839         }
1840
1841         brelse(di_bh);
1842
1843         return 0;
1844
1845 out_fail:
1846         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1847
1848         brelse(di_bh);
1849         ocfs2_inode_unlock(inode, 1);
1850
1851         return ret;
1852 }
1853
1854 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1855                                    unsigned len, unsigned *copied,
1856                                    struct ocfs2_dinode *di,
1857                                    struct ocfs2_write_ctxt *wc)
1858 {
1859         void *kaddr;
1860
1861         if (unlikely(*copied < len)) {
1862                 if (!PageUptodate(wc->w_target_page)) {
1863                         *copied = 0;
1864                         return;
1865                 }
1866         }
1867
1868         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1869         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1870         kunmap_atomic(kaddr, KM_USER0);
1871
1872         mlog(0, "Data written to inode at offset %llu. "
1873              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1874              (unsigned long long)pos, *copied,
1875              le16_to_cpu(di->id2.i_data.id_count),
1876              le16_to_cpu(di->i_dyn_features));
1877 }
1878
1879 int ocfs2_write_end_nolock(struct address_space *mapping,
1880                            loff_t pos, unsigned len, unsigned copied,
1881                            struct page *page, void *fsdata)
1882 {
1883         int i;
1884         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1885         struct inode *inode = mapping->host;
1886         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1887         struct ocfs2_write_ctxt *wc = fsdata;
1888         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1889         handle_t *handle = wc->w_handle;
1890         struct page *tmppage;
1891
1892         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1893                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1894                 goto out_write_size;
1895         }
1896
1897         if (unlikely(copied < len)) {
1898                 if (!PageUptodate(wc->w_target_page))
1899                         copied = 0;
1900
1901                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1902                                        start+len);
1903         }
1904         flush_dcache_page(wc->w_target_page);
1905
1906         for(i = 0; i < wc->w_num_pages; i++) {
1907                 tmppage = wc->w_pages[i];
1908
1909                 if (tmppage == wc->w_target_page) {
1910                         from = wc->w_target_from;
1911                         to = wc->w_target_to;
1912
1913                         BUG_ON(from > PAGE_CACHE_SIZE ||
1914                                to > PAGE_CACHE_SIZE ||
1915                                to < from);
1916                 } else {
1917                         /*
1918                          * Pages adjacent to the target (if any) imply
1919                          * a hole-filling write in which case we want
1920                          * to flush their entire range.
1921                          */
1922                         from = 0;
1923                         to = PAGE_CACHE_SIZE;
1924                 }
1925
1926                 if (page_has_buffers(tmppage)) {
1927                         if (ocfs2_should_order_data(inode)) {
1928                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1929 #ifdef CONFIG_OCFS2_COMPAT_JBD
1930                                 walk_page_buffers(wc->w_handle,
1931                                                   page_buffers(tmppage),
1932                                                   from, to, NULL,
1933                                                   ocfs2_journal_dirty_data);
1934 #endif
1935                         }
1936                         block_commit_write(tmppage, from, to);
1937                 }
1938         }
1939
1940 out_write_size:
1941         pos += copied;
1942         if (pos > inode->i_size) {
1943                 i_size_write(inode, pos);
1944                 mark_inode_dirty(inode);
1945         }
1946         inode->i_blocks = ocfs2_inode_sector_count(inode);
1947         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1948         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1949         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1950         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1951         ocfs2_journal_dirty(handle, wc->w_di_bh);
1952
1953         ocfs2_commit_trans(osb, handle);
1954
1955         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1956
1957         ocfs2_free_write_ctxt(wc);
1958
1959         return copied;
1960 }
1961
1962 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1963                            loff_t pos, unsigned len, unsigned copied,
1964                            struct page *page, void *fsdata)
1965 {
1966         int ret;
1967         struct inode *inode = mapping->host;
1968
1969         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1970
1971         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1972         ocfs2_inode_unlock(inode, 1);
1973
1974         return ret;
1975 }
1976
1977 const struct address_space_operations ocfs2_aops = {
1978         .readpage       = ocfs2_readpage,
1979         .readpages      = ocfs2_readpages,
1980         .writepage      = ocfs2_writepage,
1981         .write_begin    = ocfs2_write_begin,
1982         .write_end      = ocfs2_write_end,
1983         .bmap           = ocfs2_bmap,
1984         .sync_page      = block_sync_page,
1985         .direct_IO      = ocfs2_direct_IO,
1986         .invalidatepage = ocfs2_invalidatepage,
1987         .releasepage    = ocfs2_releasepage,
1988         .migratepage    = buffer_migrate_page,
1989 };