]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ocfs2/alloc.c
ocfs2: update truncate handling of partial clusters
[linux-2.6-omap-h63xx.git] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54                                          struct ocfs2_extent_block *eb);
55
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64         struct buffer_head              *bh;
65         struct ocfs2_extent_list        *el;
66 };
67
68 #define OCFS2_MAX_PATH_DEPTH    5
69
70 struct ocfs2_path {
71         int                     p_tree_depth;
72         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88         int i, start = 0, depth = 0;
89         struct ocfs2_path_item *node;
90
91         if (keep_root)
92                 start = 1;
93
94         for(i = start; i < path_num_items(path); i++) {
95                 node = &path->p_node[i];
96
97                 brelse(node->bh);
98                 node->bh = NULL;
99                 node->el = NULL;
100         }
101
102         /*
103          * Tree depth may change during truncate, or insert. If we're
104          * keeping the root extent list, then make sure that our path
105          * structure reflects the proper depth.
106          */
107         if (keep_root)
108                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109
110         path->p_tree_depth = depth;
111 }
112
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115         if (path) {
116                 ocfs2_reinit_path(path, 0);
117                 kfree(path);
118         }
119 }
120
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130         int i;
131
132         BUG_ON(path_root_bh(dest) != path_root_bh(src));
133         BUG_ON(path_root_el(dest) != path_root_el(src));
134
135         ocfs2_reinit_path(dest, 1);
136
137         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138                 dest->p_node[i].bh = src->p_node[i].bh;
139                 dest->p_node[i].el = src->p_node[i].el;
140
141                 if (dest->p_node[i].bh)
142                         get_bh(dest->p_node[i].bh);
143         }
144 }
145
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152         int i;
153
154         BUG_ON(path_root_bh(dest) != path_root_bh(src));
155
156         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157                 brelse(dest->p_node[i].bh);
158
159                 dest->p_node[i].bh = src->p_node[i].bh;
160                 dest->p_node[i].el = src->p_node[i].el;
161
162                 src->p_node[i].bh = NULL;
163                 src->p_node[i].el = NULL;
164         }
165 }
166
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173                                         struct buffer_head *eb_bh)
174 {
175         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176
177         /*
178          * Right now, no root bh is an extent block, so this helps
179          * catch code errors with dinode trees. The assertion can be
180          * safely removed if we ever need to insert extent block
181          * structures at the root.
182          */
183         BUG_ON(index == 0);
184
185         path->p_node[index].bh = eb_bh;
186         path->p_node[index].el = &eb->h_list;
187 }
188
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190                                          struct ocfs2_extent_list *root_el)
191 {
192         struct ocfs2_path *path;
193
194         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195
196         path = kzalloc(sizeof(*path), GFP_NOFS);
197         if (path) {
198                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199                 get_bh(root_bh);
200                 path_root_bh(path) = root_bh;
201                 path_root_el(path) = root_el;
202         }
203
204         return path;
205 }
206
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213         struct ocfs2_extent_list *el = &di->id2.i_list;
214
215         return ocfs2_new_path(di_bh, el);
216 }
217
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222                                      struct ocfs2_path *path)
223 {
224         int i, ret = 0;
225
226         if (!path)
227                 goto out;
228
229         for(i = 0; i < path_num_items(path); i++) {
230                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231                                            OCFS2_JOURNAL_ACCESS_WRITE);
232                 if (ret < 0) {
233                         mlog_errno(ret);
234                         goto out;
235                 }
236         }
237
238 out:
239         return ret;
240 }
241
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250         int ret = -1;
251         int i;
252         struct ocfs2_extent_rec *rec;
253         u32 rec_end, rec_start, clusters;
254
255         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256                 rec = &el->l_recs[i];
257
258                 rec_start = le32_to_cpu(rec->e_cpos);
259                 clusters = ocfs2_rec_clusters(el, rec);
260
261                 rec_end = rec_start + clusters;
262
263                 if (v_cluster >= rec_start && v_cluster < rec_end) {
264                         ret = i;
265                         break;
266                 }
267         }
268
269         return ret;
270 }
271
272 enum ocfs2_contig_type {
273         CONTIG_NONE = 0,
274         CONTIG_LEFT,
275         CONTIG_RIGHT,
276         CONTIG_LEFTRIGHT,
277 };
278
279
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285                                      struct ocfs2_extent_rec *ext,
286                                      u64 blkno)
287 {
288         u64 blk_end = le64_to_cpu(ext->e_blkno);
289
290         blk_end += ocfs2_clusters_to_blocks(sb,
291                                     le16_to_cpu(ext->e_leaf_clusters));
292
293         return blkno == blk_end;
294 }
295
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297                                   struct ocfs2_extent_rec *right)
298 {
299         u32 left_range;
300
301         left_range = le32_to_cpu(left->e_cpos) +
302                 le16_to_cpu(left->e_leaf_clusters);
303
304         return (left_range == le32_to_cpu(right->e_cpos));
305 }
306
307 static enum ocfs2_contig_type
308         ocfs2_extent_contig(struct inode *inode,
309                             struct ocfs2_extent_rec *ext,
310                             struct ocfs2_extent_rec *insert_rec)
311 {
312         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313
314         /*
315          * Refuse to coalesce extent records with different flag
316          * fields - we don't want to mix unwritten extents with user
317          * data.
318          */
319         if (ext->e_flags != insert_rec->e_flags)
320                 return CONTIG_NONE;
321
322         if (ocfs2_extents_adjacent(ext, insert_rec) &&
323             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324                         return CONTIG_RIGHT;
325
326         blkno = le64_to_cpu(ext->e_blkno);
327         if (ocfs2_extents_adjacent(insert_rec, ext) &&
328             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329                 return CONTIG_LEFT;
330
331         return CONTIG_NONE;
332 }
333
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342         APPEND_NONE = 0,
343         APPEND_TAIL,
344 };
345
346 enum ocfs2_split_type {
347         SPLIT_NONE = 0,
348         SPLIT_LEFT,
349         SPLIT_RIGHT,
350 };
351
352 struct ocfs2_insert_type {
353         enum ocfs2_split_type   ins_split;
354         enum ocfs2_append_type  ins_appending;
355         enum ocfs2_contig_type  ins_contig;
356         int                     ins_contig_index;
357         int                     ins_free_records;
358         int                     ins_tree_depth;
359 };
360
361 struct ocfs2_merge_ctxt {
362         enum ocfs2_contig_type  c_contig_type;
363         int                     c_has_empty_extent;
364         int                     c_split_covers_rec;
365         int                     c_used_tail_recs;
366 };
367
368 /*
369  * How many free extents have we got before we need more meta data?
370  */
371 int ocfs2_num_free_extents(struct ocfs2_super *osb,
372                            struct inode *inode,
373                            struct ocfs2_dinode *fe)
374 {
375         int retval;
376         struct ocfs2_extent_list *el;
377         struct ocfs2_extent_block *eb;
378         struct buffer_head *eb_bh = NULL;
379
380         mlog_entry_void();
381
382         if (!OCFS2_IS_VALID_DINODE(fe)) {
383                 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
384                 retval = -EIO;
385                 goto bail;
386         }
387
388         if (fe->i_last_eb_blk) {
389                 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
390                                           &eb_bh, OCFS2_BH_CACHED, inode);
391                 if (retval < 0) {
392                         mlog_errno(retval);
393                         goto bail;
394                 }
395                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
396                 el = &eb->h_list;
397         } else
398                 el = &fe->id2.i_list;
399
400         BUG_ON(el->l_tree_depth != 0);
401
402         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
403 bail:
404         if (eb_bh)
405                 brelse(eb_bh);
406
407         mlog_exit(retval);
408         return retval;
409 }
410
411 /* expects array to already be allocated
412  *
413  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
414  * l_count for you
415  */
416 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
417                                      handle_t *handle,
418                                      struct inode *inode,
419                                      int wanted,
420                                      struct ocfs2_alloc_context *meta_ac,
421                                      struct buffer_head *bhs[])
422 {
423         int count, status, i;
424         u16 suballoc_bit_start;
425         u32 num_got;
426         u64 first_blkno;
427         struct ocfs2_extent_block *eb;
428
429         mlog_entry_void();
430
431         count = 0;
432         while (count < wanted) {
433                 status = ocfs2_claim_metadata(osb,
434                                               handle,
435                                               meta_ac,
436                                               wanted - count,
437                                               &suballoc_bit_start,
438                                               &num_got,
439                                               &first_blkno);
440                 if (status < 0) {
441                         mlog_errno(status);
442                         goto bail;
443                 }
444
445                 for(i = count;  i < (num_got + count); i++) {
446                         bhs[i] = sb_getblk(osb->sb, first_blkno);
447                         if (bhs[i] == NULL) {
448                                 status = -EIO;
449                                 mlog_errno(status);
450                                 goto bail;
451                         }
452                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
453
454                         status = ocfs2_journal_access(handle, inode, bhs[i],
455                                                       OCFS2_JOURNAL_ACCESS_CREATE);
456                         if (status < 0) {
457                                 mlog_errno(status);
458                                 goto bail;
459                         }
460
461                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
462                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
463                         /* Ok, setup the minimal stuff here. */
464                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
465                         eb->h_blkno = cpu_to_le64(first_blkno);
466                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
467                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
468                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
469                         eb->h_list.l_count =
470                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
471
472                         suballoc_bit_start++;
473                         first_blkno++;
474
475                         /* We'll also be dirtied by the caller, so
476                          * this isn't absolutely necessary. */
477                         status = ocfs2_journal_dirty(handle, bhs[i]);
478                         if (status < 0) {
479                                 mlog_errno(status);
480                                 goto bail;
481                         }
482                 }
483
484                 count += num_got;
485         }
486
487         status = 0;
488 bail:
489         if (status < 0) {
490                 for(i = 0; i < wanted; i++) {
491                         if (bhs[i])
492                                 brelse(bhs[i]);
493                         bhs[i] = NULL;
494                 }
495         }
496         mlog_exit(status);
497         return status;
498 }
499
500 /*
501  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
502  *
503  * Returns the sum of the rightmost extent rec logical offset and
504  * cluster count.
505  *
506  * ocfs2_add_branch() uses this to determine what logical cluster
507  * value should be populated into the leftmost new branch records.
508  *
509  * ocfs2_shift_tree_depth() uses this to determine the # clusters
510  * value for the new topmost tree record.
511  */
512 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
513 {
514         int i;
515
516         i = le16_to_cpu(el->l_next_free_rec) - 1;
517
518         return le32_to_cpu(el->l_recs[i].e_cpos) +
519                 ocfs2_rec_clusters(el, &el->l_recs[i]);
520 }
521
522 /*
523  * Add an entire tree branch to our inode. eb_bh is the extent block
524  * to start at, if we don't want to start the branch at the dinode
525  * structure.
526  *
527  * last_eb_bh is required as we have to update it's next_leaf pointer
528  * for the new last extent block.
529  *
530  * the new branch will be 'empty' in the sense that every block will
531  * contain a single record with cluster count == 0.
532  */
533 static int ocfs2_add_branch(struct ocfs2_super *osb,
534                             handle_t *handle,
535                             struct inode *inode,
536                             struct buffer_head *fe_bh,
537                             struct buffer_head *eb_bh,
538                             struct buffer_head **last_eb_bh,
539                             struct ocfs2_alloc_context *meta_ac)
540 {
541         int status, new_blocks, i;
542         u64 next_blkno, new_last_eb_blk;
543         struct buffer_head *bh;
544         struct buffer_head **new_eb_bhs = NULL;
545         struct ocfs2_dinode *fe;
546         struct ocfs2_extent_block *eb;
547         struct ocfs2_extent_list  *eb_el;
548         struct ocfs2_extent_list  *el;
549         u32 new_cpos;
550
551         mlog_entry_void();
552
553         BUG_ON(!last_eb_bh || !*last_eb_bh);
554
555         fe = (struct ocfs2_dinode *) fe_bh->b_data;
556
557         if (eb_bh) {
558                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
559                 el = &eb->h_list;
560         } else
561                 el = &fe->id2.i_list;
562
563         /* we never add a branch to a leaf. */
564         BUG_ON(!el->l_tree_depth);
565
566         new_blocks = le16_to_cpu(el->l_tree_depth);
567
568         /* allocate the number of new eb blocks we need */
569         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
570                              GFP_KERNEL);
571         if (!new_eb_bhs) {
572                 status = -ENOMEM;
573                 mlog_errno(status);
574                 goto bail;
575         }
576
577         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
578                                            meta_ac, new_eb_bhs);
579         if (status < 0) {
580                 mlog_errno(status);
581                 goto bail;
582         }
583
584         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
585         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
586
587         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
588          * linked with the rest of the tree.
589          * conversly, new_eb_bhs[0] is the new bottommost leaf.
590          *
591          * when we leave the loop, new_last_eb_blk will point to the
592          * newest leaf, and next_blkno will point to the topmost extent
593          * block. */
594         next_blkno = new_last_eb_blk = 0;
595         for(i = 0; i < new_blocks; i++) {
596                 bh = new_eb_bhs[i];
597                 eb = (struct ocfs2_extent_block *) bh->b_data;
598                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
599                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
600                         status = -EIO;
601                         goto bail;
602                 }
603                 eb_el = &eb->h_list;
604
605                 status = ocfs2_journal_access(handle, inode, bh,
606                                               OCFS2_JOURNAL_ACCESS_CREATE);
607                 if (status < 0) {
608                         mlog_errno(status);
609                         goto bail;
610                 }
611
612                 eb->h_next_leaf_blk = 0;
613                 eb_el->l_tree_depth = cpu_to_le16(i);
614                 eb_el->l_next_free_rec = cpu_to_le16(1);
615                 /*
616                  * This actually counts as an empty extent as
617                  * c_clusters == 0
618                  */
619                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
620                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
621                 /*
622                  * eb_el isn't always an interior node, but even leaf
623                  * nodes want a zero'd flags and reserved field so
624                  * this gets the whole 32 bits regardless of use.
625                  */
626                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
627                 if (!eb_el->l_tree_depth)
628                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
629
630                 status = ocfs2_journal_dirty(handle, bh);
631                 if (status < 0) {
632                         mlog_errno(status);
633                         goto bail;
634                 }
635
636                 next_blkno = le64_to_cpu(eb->h_blkno);
637         }
638
639         /* This is a bit hairy. We want to update up to three blocks
640          * here without leaving any of them in an inconsistent state
641          * in case of error. We don't have to worry about
642          * journal_dirty erroring as it won't unless we've aborted the
643          * handle (in which case we would never be here) so reserving
644          * the write with journal_access is all we need to do. */
645         status = ocfs2_journal_access(handle, inode, *last_eb_bh,
646                                       OCFS2_JOURNAL_ACCESS_WRITE);
647         if (status < 0) {
648                 mlog_errno(status);
649                 goto bail;
650         }
651         status = ocfs2_journal_access(handle, inode, fe_bh,
652                                       OCFS2_JOURNAL_ACCESS_WRITE);
653         if (status < 0) {
654                 mlog_errno(status);
655                 goto bail;
656         }
657         if (eb_bh) {
658                 status = ocfs2_journal_access(handle, inode, eb_bh,
659                                               OCFS2_JOURNAL_ACCESS_WRITE);
660                 if (status < 0) {
661                         mlog_errno(status);
662                         goto bail;
663                 }
664         }
665
666         /* Link the new branch into the rest of the tree (el will
667          * either be on the fe, or the extent block passed in. */
668         i = le16_to_cpu(el->l_next_free_rec);
669         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
670         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
671         el->l_recs[i].e_int_clusters = 0;
672         le16_add_cpu(&el->l_next_free_rec, 1);
673
674         /* fe needs a new last extent block pointer, as does the
675          * next_leaf on the previously last-extent-block. */
676         fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
677
678         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
679         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
680
681         status = ocfs2_journal_dirty(handle, *last_eb_bh);
682         if (status < 0)
683                 mlog_errno(status);
684         status = ocfs2_journal_dirty(handle, fe_bh);
685         if (status < 0)
686                 mlog_errno(status);
687         if (eb_bh) {
688                 status = ocfs2_journal_dirty(handle, eb_bh);
689                 if (status < 0)
690                         mlog_errno(status);
691         }
692
693         /*
694          * Some callers want to track the rightmost leaf so pass it
695          * back here.
696          */
697         brelse(*last_eb_bh);
698         get_bh(new_eb_bhs[0]);
699         *last_eb_bh = new_eb_bhs[0];
700
701         status = 0;
702 bail:
703         if (new_eb_bhs) {
704                 for (i = 0; i < new_blocks; i++)
705                         if (new_eb_bhs[i])
706                                 brelse(new_eb_bhs[i]);
707                 kfree(new_eb_bhs);
708         }
709
710         mlog_exit(status);
711         return status;
712 }
713
714 /*
715  * adds another level to the allocation tree.
716  * returns back the new extent block so you can add a branch to it
717  * after this call.
718  */
719 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
720                                   handle_t *handle,
721                                   struct inode *inode,
722                                   struct buffer_head *fe_bh,
723                                   struct ocfs2_alloc_context *meta_ac,
724                                   struct buffer_head **ret_new_eb_bh)
725 {
726         int status, i;
727         u32 new_clusters;
728         struct buffer_head *new_eb_bh = NULL;
729         struct ocfs2_dinode *fe;
730         struct ocfs2_extent_block *eb;
731         struct ocfs2_extent_list  *fe_el;
732         struct ocfs2_extent_list  *eb_el;
733
734         mlog_entry_void();
735
736         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
737                                            &new_eb_bh);
738         if (status < 0) {
739                 mlog_errno(status);
740                 goto bail;
741         }
742
743         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
744         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
745                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
746                 status = -EIO;
747                 goto bail;
748         }
749
750         eb_el = &eb->h_list;
751         fe = (struct ocfs2_dinode *) fe_bh->b_data;
752         fe_el = &fe->id2.i_list;
753
754         status = ocfs2_journal_access(handle, inode, new_eb_bh,
755                                       OCFS2_JOURNAL_ACCESS_CREATE);
756         if (status < 0) {
757                 mlog_errno(status);
758                 goto bail;
759         }
760
761         /* copy the fe data into the new extent block */
762         eb_el->l_tree_depth = fe_el->l_tree_depth;
763         eb_el->l_next_free_rec = fe_el->l_next_free_rec;
764         for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
765                 eb_el->l_recs[i] = fe_el->l_recs[i];
766
767         status = ocfs2_journal_dirty(handle, new_eb_bh);
768         if (status < 0) {
769                 mlog_errno(status);
770                 goto bail;
771         }
772
773         status = ocfs2_journal_access(handle, inode, fe_bh,
774                                       OCFS2_JOURNAL_ACCESS_WRITE);
775         if (status < 0) {
776                 mlog_errno(status);
777                 goto bail;
778         }
779
780         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
781
782         /* update fe now */
783         le16_add_cpu(&fe_el->l_tree_depth, 1);
784         fe_el->l_recs[0].e_cpos = 0;
785         fe_el->l_recs[0].e_blkno = eb->h_blkno;
786         fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
787         for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
788                 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
789         fe_el->l_next_free_rec = cpu_to_le16(1);
790
791         /* If this is our 1st tree depth shift, then last_eb_blk
792          * becomes the allocated extent block */
793         if (fe_el->l_tree_depth == cpu_to_le16(1))
794                 fe->i_last_eb_blk = eb->h_blkno;
795
796         status = ocfs2_journal_dirty(handle, fe_bh);
797         if (status < 0) {
798                 mlog_errno(status);
799                 goto bail;
800         }
801
802         *ret_new_eb_bh = new_eb_bh;
803         new_eb_bh = NULL;
804         status = 0;
805 bail:
806         if (new_eb_bh)
807                 brelse(new_eb_bh);
808
809         mlog_exit(status);
810         return status;
811 }
812
813 /*
814  * Should only be called when there is no space left in any of the
815  * leaf nodes. What we want to do is find the lowest tree depth
816  * non-leaf extent block with room for new records. There are three
817  * valid results of this search:
818  *
819  * 1) a lowest extent block is found, then we pass it back in
820  *    *lowest_eb_bh and return '0'
821  *
822  * 2) the search fails to find anything, but the dinode has room. We
823  *    pass NULL back in *lowest_eb_bh, but still return '0'
824  *
825  * 3) the search fails to find anything AND the dinode is full, in
826  *    which case we return > 0
827  *
828  * return status < 0 indicates an error.
829  */
830 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
831                                     struct inode *inode,
832                                     struct buffer_head *fe_bh,
833                                     struct buffer_head **target_bh)
834 {
835         int status = 0, i;
836         u64 blkno;
837         struct ocfs2_dinode *fe;
838         struct ocfs2_extent_block *eb;
839         struct ocfs2_extent_list  *el;
840         struct buffer_head *bh = NULL;
841         struct buffer_head *lowest_bh = NULL;
842
843         mlog_entry_void();
844
845         *target_bh = NULL;
846
847         fe = (struct ocfs2_dinode *) fe_bh->b_data;
848         el = &fe->id2.i_list;
849
850         while(le16_to_cpu(el->l_tree_depth) > 1) {
851                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
852                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
853                                     "extent list (next_free_rec == 0)",
854                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
855                         status = -EIO;
856                         goto bail;
857                 }
858                 i = le16_to_cpu(el->l_next_free_rec) - 1;
859                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
860                 if (!blkno) {
861                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
862                                     "list where extent # %d has no physical "
863                                     "block start",
864                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
865                         status = -EIO;
866                         goto bail;
867                 }
868
869                 if (bh) {
870                         brelse(bh);
871                         bh = NULL;
872                 }
873
874                 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
875                                           inode);
876                 if (status < 0) {
877                         mlog_errno(status);
878                         goto bail;
879                 }
880
881                 eb = (struct ocfs2_extent_block *) bh->b_data;
882                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
883                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
884                         status = -EIO;
885                         goto bail;
886                 }
887                 el = &eb->h_list;
888
889                 if (le16_to_cpu(el->l_next_free_rec) <
890                     le16_to_cpu(el->l_count)) {
891                         if (lowest_bh)
892                                 brelse(lowest_bh);
893                         lowest_bh = bh;
894                         get_bh(lowest_bh);
895                 }
896         }
897
898         /* If we didn't find one and the fe doesn't have any room,
899          * then return '1' */
900         if (!lowest_bh
901             && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
902                 status = 1;
903
904         *target_bh = lowest_bh;
905 bail:
906         if (bh)
907                 brelse(bh);
908
909         mlog_exit(status);
910         return status;
911 }
912
913 /*
914  * Grow a b-tree so that it has more records.
915  *
916  * We might shift the tree depth in which case existing paths should
917  * be considered invalid.
918  *
919  * Tree depth after the grow is returned via *final_depth.
920  *
921  * *last_eb_bh will be updated by ocfs2_add_branch().
922  */
923 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
924                            struct buffer_head *di_bh, int *final_depth,
925                            struct buffer_head **last_eb_bh,
926                            struct ocfs2_alloc_context *meta_ac)
927 {
928         int ret, shift;
929         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
930         int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
931         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
932         struct buffer_head *bh = NULL;
933
934         BUG_ON(meta_ac == NULL);
935
936         shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
937         if (shift < 0) {
938                 ret = shift;
939                 mlog_errno(ret);
940                 goto out;
941         }
942
943         /* We traveled all the way to the bottom of the allocation tree
944          * and didn't find room for any more extents - we need to add
945          * another tree level */
946         if (shift) {
947                 BUG_ON(bh);
948                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
949
950                 /* ocfs2_shift_tree_depth will return us a buffer with
951                  * the new extent block (so we can pass that to
952                  * ocfs2_add_branch). */
953                 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
954                                              meta_ac, &bh);
955                 if (ret < 0) {
956                         mlog_errno(ret);
957                         goto out;
958                 }
959                 depth++;
960                 if (depth == 1) {
961                         /*
962                          * Special case: we have room now if we shifted from
963                          * tree_depth 0, so no more work needs to be done.
964                          *
965                          * We won't be calling add_branch, so pass
966                          * back *last_eb_bh as the new leaf. At depth
967                          * zero, it should always be null so there's
968                          * no reason to brelse.
969                          */
970                         BUG_ON(*last_eb_bh);
971                         get_bh(bh);
972                         *last_eb_bh = bh;
973                         goto out;
974                 }
975         }
976
977         /* call ocfs2_add_branch to add the final part of the tree with
978          * the new data. */
979         mlog(0, "add branch. bh = %p\n", bh);
980         ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
981                                meta_ac);
982         if (ret < 0) {
983                 mlog_errno(ret);
984                 goto out;
985         }
986
987 out:
988         if (final_depth)
989                 *final_depth = depth;
990         brelse(bh);
991         return ret;
992 }
993
994 /*
995  * This is only valid for leaf nodes, which are the only ones that can
996  * have empty extents anyway.
997  */
998 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
999 {
1000         return !rec->e_leaf_clusters;
1001 }
1002
1003 /*
1004  * This function will discard the rightmost extent record.
1005  */
1006 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1007 {
1008         int next_free = le16_to_cpu(el->l_next_free_rec);
1009         int count = le16_to_cpu(el->l_count);
1010         unsigned int num_bytes;
1011
1012         BUG_ON(!next_free);
1013         /* This will cause us to go off the end of our extent list. */
1014         BUG_ON(next_free >= count);
1015
1016         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1017
1018         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1019 }
1020
1021 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1022                               struct ocfs2_extent_rec *insert_rec)
1023 {
1024         int i, insert_index, next_free, has_empty, num_bytes;
1025         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1026         struct ocfs2_extent_rec *rec;
1027
1028         next_free = le16_to_cpu(el->l_next_free_rec);
1029         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1030
1031         BUG_ON(!next_free);
1032
1033         /* The tree code before us didn't allow enough room in the leaf. */
1034         if (el->l_next_free_rec == el->l_count && !has_empty)
1035                 BUG();
1036
1037         /*
1038          * The easiest way to approach this is to just remove the
1039          * empty extent and temporarily decrement next_free.
1040          */
1041         if (has_empty) {
1042                 /*
1043                  * If next_free was 1 (only an empty extent), this
1044                  * loop won't execute, which is fine. We still want
1045                  * the decrement above to happen.
1046                  */
1047                 for(i = 0; i < (next_free - 1); i++)
1048                         el->l_recs[i] = el->l_recs[i+1];
1049
1050                 next_free--;
1051         }
1052
1053         /*
1054          * Figure out what the new record index should be.
1055          */
1056         for(i = 0; i < next_free; i++) {
1057                 rec = &el->l_recs[i];
1058
1059                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1060                         break;
1061         }
1062         insert_index = i;
1063
1064         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1065              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1066
1067         BUG_ON(insert_index < 0);
1068         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1069         BUG_ON(insert_index > next_free);
1070
1071         /*
1072          * No need to memmove if we're just adding to the tail.
1073          */
1074         if (insert_index != next_free) {
1075                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1076
1077                 num_bytes = next_free - insert_index;
1078                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1079                 memmove(&el->l_recs[insert_index + 1],
1080                         &el->l_recs[insert_index],
1081                         num_bytes);
1082         }
1083
1084         /*
1085          * Either we had an empty extent, and need to re-increment or
1086          * there was no empty extent on a non full rightmost leaf node,
1087          * in which case we still need to increment.
1088          */
1089         next_free++;
1090         el->l_next_free_rec = cpu_to_le16(next_free);
1091         /*
1092          * Make sure none of the math above just messed up our tree.
1093          */
1094         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1095
1096         el->l_recs[insert_index] = *insert_rec;
1097
1098 }
1099
1100 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1101 {
1102         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1103
1104         BUG_ON(num_recs == 0);
1105
1106         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1107                 num_recs--;
1108                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1109                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1110                 memset(&el->l_recs[num_recs], 0,
1111                        sizeof(struct ocfs2_extent_rec));
1112                 el->l_next_free_rec = cpu_to_le16(num_recs);
1113         }
1114 }
1115
1116 /*
1117  * Create an empty extent record .
1118  *
1119  * l_next_free_rec may be updated.
1120  *
1121  * If an empty extent already exists do nothing.
1122  */
1123 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1124 {
1125         int next_free = le16_to_cpu(el->l_next_free_rec);
1126
1127         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1128
1129         if (next_free == 0)
1130                 goto set_and_inc;
1131
1132         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1133                 return;
1134
1135         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1136                         "Asked to create an empty extent in a full list:\n"
1137                         "count = %u, tree depth = %u",
1138                         le16_to_cpu(el->l_count),
1139                         le16_to_cpu(el->l_tree_depth));
1140
1141         ocfs2_shift_records_right(el);
1142
1143 set_and_inc:
1144         le16_add_cpu(&el->l_next_free_rec, 1);
1145         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1146 }
1147
1148 /*
1149  * For a rotation which involves two leaf nodes, the "root node" is
1150  * the lowest level tree node which contains a path to both leafs. This
1151  * resulting set of information can be used to form a complete "subtree"
1152  *
1153  * This function is passed two full paths from the dinode down to a
1154  * pair of adjacent leaves. It's task is to figure out which path
1155  * index contains the subtree root - this can be the root index itself
1156  * in a worst-case rotation.
1157  *
1158  * The array index of the subtree root is passed back.
1159  */
1160 static int ocfs2_find_subtree_root(struct inode *inode,
1161                                    struct ocfs2_path *left,
1162                                    struct ocfs2_path *right)
1163 {
1164         int i = 0;
1165
1166         /*
1167          * Check that the caller passed in two paths from the same tree.
1168          */
1169         BUG_ON(path_root_bh(left) != path_root_bh(right));
1170
1171         do {
1172                 i++;
1173
1174                 /*
1175                  * The caller didn't pass two adjacent paths.
1176                  */
1177                 mlog_bug_on_msg(i > left->p_tree_depth,
1178                                 "Inode %lu, left depth %u, right depth %u\n"
1179                                 "left leaf blk %llu, right leaf blk %llu\n",
1180                                 inode->i_ino, left->p_tree_depth,
1181                                 right->p_tree_depth,
1182                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1183                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1184         } while (left->p_node[i].bh->b_blocknr ==
1185                  right->p_node[i].bh->b_blocknr);
1186
1187         return i - 1;
1188 }
1189
1190 typedef void (path_insert_t)(void *, struct buffer_head *);
1191
1192 /*
1193  * Traverse a btree path in search of cpos, starting at root_el.
1194  *
1195  * This code can be called with a cpos larger than the tree, in which
1196  * case it will return the rightmost path.
1197  */
1198 static int __ocfs2_find_path(struct inode *inode,
1199                              struct ocfs2_extent_list *root_el, u32 cpos,
1200                              path_insert_t *func, void *data)
1201 {
1202         int i, ret = 0;
1203         u32 range;
1204         u64 blkno;
1205         struct buffer_head *bh = NULL;
1206         struct ocfs2_extent_block *eb;
1207         struct ocfs2_extent_list *el;
1208         struct ocfs2_extent_rec *rec;
1209         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1210
1211         el = root_el;
1212         while (el->l_tree_depth) {
1213                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1214                         ocfs2_error(inode->i_sb,
1215                                     "Inode %llu has empty extent list at "
1216                                     "depth %u\n",
1217                                     (unsigned long long)oi->ip_blkno,
1218                                     le16_to_cpu(el->l_tree_depth));
1219                         ret = -EROFS;
1220                         goto out;
1221
1222                 }
1223
1224                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1225                         rec = &el->l_recs[i];
1226
1227                         /*
1228                          * In the case that cpos is off the allocation
1229                          * tree, this should just wind up returning the
1230                          * rightmost record.
1231                          */
1232                         range = le32_to_cpu(rec->e_cpos) +
1233                                 ocfs2_rec_clusters(el, rec);
1234                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1235                             break;
1236                 }
1237
1238                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1239                 if (blkno == 0) {
1240                         ocfs2_error(inode->i_sb,
1241                                     "Inode %llu has bad blkno in extent list "
1242                                     "at depth %u (index %d)\n",
1243                                     (unsigned long long)oi->ip_blkno,
1244                                     le16_to_cpu(el->l_tree_depth), i);
1245                         ret = -EROFS;
1246                         goto out;
1247                 }
1248
1249                 brelse(bh);
1250                 bh = NULL;
1251                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1252                                        &bh, OCFS2_BH_CACHED, inode);
1253                 if (ret) {
1254                         mlog_errno(ret);
1255                         goto out;
1256                 }
1257
1258                 eb = (struct ocfs2_extent_block *) bh->b_data;
1259                 el = &eb->h_list;
1260                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1261                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1262                         ret = -EIO;
1263                         goto out;
1264                 }
1265
1266                 if (le16_to_cpu(el->l_next_free_rec) >
1267                     le16_to_cpu(el->l_count)) {
1268                         ocfs2_error(inode->i_sb,
1269                                     "Inode %llu has bad count in extent list "
1270                                     "at block %llu (next free=%u, count=%u)\n",
1271                                     (unsigned long long)oi->ip_blkno,
1272                                     (unsigned long long)bh->b_blocknr,
1273                                     le16_to_cpu(el->l_next_free_rec),
1274                                     le16_to_cpu(el->l_count));
1275                         ret = -EROFS;
1276                         goto out;
1277                 }
1278
1279                 if (func)
1280                         func(data, bh);
1281         }
1282
1283 out:
1284         /*
1285          * Catch any trailing bh that the loop didn't handle.
1286          */
1287         brelse(bh);
1288
1289         return ret;
1290 }
1291
1292 /*
1293  * Given an initialized path (that is, it has a valid root extent
1294  * list), this function will traverse the btree in search of the path
1295  * which would contain cpos.
1296  *
1297  * The path traveled is recorded in the path structure.
1298  *
1299  * Note that this will not do any comparisons on leaf node extent
1300  * records, so it will work fine in the case that we just added a tree
1301  * branch.
1302  */
1303 struct find_path_data {
1304         int index;
1305         struct ocfs2_path *path;
1306 };
1307 static void find_path_ins(void *data, struct buffer_head *bh)
1308 {
1309         struct find_path_data *fp = data;
1310
1311         get_bh(bh);
1312         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1313         fp->index++;
1314 }
1315 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1316                            u32 cpos)
1317 {
1318         struct find_path_data data;
1319
1320         data.index = 1;
1321         data.path = path;
1322         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1323                                  find_path_ins, &data);
1324 }
1325
1326 static void find_leaf_ins(void *data, struct buffer_head *bh)
1327 {
1328         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1329         struct ocfs2_extent_list *el = &eb->h_list;
1330         struct buffer_head **ret = data;
1331
1332         /* We want to retain only the leaf block. */
1333         if (le16_to_cpu(el->l_tree_depth) == 0) {
1334                 get_bh(bh);
1335                 *ret = bh;
1336         }
1337 }
1338 /*
1339  * Find the leaf block in the tree which would contain cpos. No
1340  * checking of the actual leaf is done.
1341  *
1342  * Some paths want to call this instead of allocating a path structure
1343  * and calling ocfs2_find_path().
1344  *
1345  * This function doesn't handle non btree extent lists.
1346  */
1347 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1348                     u32 cpos, struct buffer_head **leaf_bh)
1349 {
1350         int ret;
1351         struct buffer_head *bh = NULL;
1352
1353         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1354         if (ret) {
1355                 mlog_errno(ret);
1356                 goto out;
1357         }
1358
1359         *leaf_bh = bh;
1360 out:
1361         return ret;
1362 }
1363
1364 /*
1365  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1366  *
1367  * Basically, we've moved stuff around at the bottom of the tree and
1368  * we need to fix up the extent records above the changes to reflect
1369  * the new changes.
1370  *
1371  * left_rec: the record on the left.
1372  * left_child_el: is the child list pointed to by left_rec
1373  * right_rec: the record to the right of left_rec
1374  * right_child_el: is the child list pointed to by right_rec
1375  *
1376  * By definition, this only works on interior nodes.
1377  */
1378 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1379                                   struct ocfs2_extent_list *left_child_el,
1380                                   struct ocfs2_extent_rec *right_rec,
1381                                   struct ocfs2_extent_list *right_child_el)
1382 {
1383         u32 left_clusters, right_end;
1384
1385         /*
1386          * Interior nodes never have holes. Their cpos is the cpos of
1387          * the leftmost record in their child list. Their cluster
1388          * count covers the full theoretical range of their child list
1389          * - the range between their cpos and the cpos of the record
1390          * immediately to their right.
1391          */
1392         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1393         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1394                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1395                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1396         }
1397         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1398         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1399
1400         /*
1401          * Calculate the rightmost cluster count boundary before
1402          * moving cpos - we will need to adjust clusters after
1403          * updating e_cpos to keep the same highest cluster count.
1404          */
1405         right_end = le32_to_cpu(right_rec->e_cpos);
1406         right_end += le32_to_cpu(right_rec->e_int_clusters);
1407
1408         right_rec->e_cpos = left_rec->e_cpos;
1409         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1410
1411         right_end -= le32_to_cpu(right_rec->e_cpos);
1412         right_rec->e_int_clusters = cpu_to_le32(right_end);
1413 }
1414
1415 /*
1416  * Adjust the adjacent root node records involved in a
1417  * rotation. left_el_blkno is passed in as a key so that we can easily
1418  * find it's index in the root list.
1419  */
1420 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1421                                       struct ocfs2_extent_list *left_el,
1422                                       struct ocfs2_extent_list *right_el,
1423                                       u64 left_el_blkno)
1424 {
1425         int i;
1426
1427         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1428                le16_to_cpu(left_el->l_tree_depth));
1429
1430         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1431                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1432                         break;
1433         }
1434
1435         /*
1436          * The path walking code should have never returned a root and
1437          * two paths which are not adjacent.
1438          */
1439         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1440
1441         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1442                                       &root_el->l_recs[i + 1], right_el);
1443 }
1444
1445 /*
1446  * We've changed a leaf block (in right_path) and need to reflect that
1447  * change back up the subtree.
1448  *
1449  * This happens in multiple places:
1450  *   - When we've moved an extent record from the left path leaf to the right
1451  *     path leaf to make room for an empty extent in the left path leaf.
1452  *   - When our insert into the right path leaf is at the leftmost edge
1453  *     and requires an update of the path immediately to it's left. This
1454  *     can occur at the end of some types of rotation and appending inserts.
1455  */
1456 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1457                                        struct ocfs2_path *left_path,
1458                                        struct ocfs2_path *right_path,
1459                                        int subtree_index)
1460 {
1461         int ret, i, idx;
1462         struct ocfs2_extent_list *el, *left_el, *right_el;
1463         struct ocfs2_extent_rec *left_rec, *right_rec;
1464         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1465
1466         /*
1467          * Update the counts and position values within all the
1468          * interior nodes to reflect the leaf rotation we just did.
1469          *
1470          * The root node is handled below the loop.
1471          *
1472          * We begin the loop with right_el and left_el pointing to the
1473          * leaf lists and work our way up.
1474          *
1475          * NOTE: within this loop, left_el and right_el always refer
1476          * to the *child* lists.
1477          */
1478         left_el = path_leaf_el(left_path);
1479         right_el = path_leaf_el(right_path);
1480         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1481                 mlog(0, "Adjust records at index %u\n", i);
1482
1483                 /*
1484                  * One nice property of knowing that all of these
1485                  * nodes are below the root is that we only deal with
1486                  * the leftmost right node record and the rightmost
1487                  * left node record.
1488                  */
1489                 el = left_path->p_node[i].el;
1490                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1491                 left_rec = &el->l_recs[idx];
1492
1493                 el = right_path->p_node[i].el;
1494                 right_rec = &el->l_recs[0];
1495
1496                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1497                                               right_el);
1498
1499                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1500                 if (ret)
1501                         mlog_errno(ret);
1502
1503                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1504                 if (ret)
1505                         mlog_errno(ret);
1506
1507                 /*
1508                  * Setup our list pointers now so that the current
1509                  * parents become children in the next iteration.
1510                  */
1511                 left_el = left_path->p_node[i].el;
1512                 right_el = right_path->p_node[i].el;
1513         }
1514
1515         /*
1516          * At the root node, adjust the two adjacent records which
1517          * begin our path to the leaves.
1518          */
1519
1520         el = left_path->p_node[subtree_index].el;
1521         left_el = left_path->p_node[subtree_index + 1].el;
1522         right_el = right_path->p_node[subtree_index + 1].el;
1523
1524         ocfs2_adjust_root_records(el, left_el, right_el,
1525                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1526
1527         root_bh = left_path->p_node[subtree_index].bh;
1528
1529         ret = ocfs2_journal_dirty(handle, root_bh);
1530         if (ret)
1531                 mlog_errno(ret);
1532 }
1533
1534 static int ocfs2_rotate_subtree_right(struct inode *inode,
1535                                       handle_t *handle,
1536                                       struct ocfs2_path *left_path,
1537                                       struct ocfs2_path *right_path,
1538                                       int subtree_index)
1539 {
1540         int ret, i;
1541         struct buffer_head *right_leaf_bh;
1542         struct buffer_head *left_leaf_bh = NULL;
1543         struct buffer_head *root_bh;
1544         struct ocfs2_extent_list *right_el, *left_el;
1545         struct ocfs2_extent_rec move_rec;
1546
1547         left_leaf_bh = path_leaf_bh(left_path);
1548         left_el = path_leaf_el(left_path);
1549
1550         if (left_el->l_next_free_rec != left_el->l_count) {
1551                 ocfs2_error(inode->i_sb,
1552                             "Inode %llu has non-full interior leaf node %llu"
1553                             "(next free = %u)",
1554                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1555                             (unsigned long long)left_leaf_bh->b_blocknr,
1556                             le16_to_cpu(left_el->l_next_free_rec));
1557                 return -EROFS;
1558         }
1559
1560         /*
1561          * This extent block may already have an empty record, so we
1562          * return early if so.
1563          */
1564         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1565                 return 0;
1566
1567         root_bh = left_path->p_node[subtree_index].bh;
1568         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1569
1570         ret = ocfs2_journal_access(handle, inode, root_bh,
1571                                    OCFS2_JOURNAL_ACCESS_WRITE);
1572         if (ret) {
1573                 mlog_errno(ret);
1574                 goto out;
1575         }
1576
1577         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1578                 ret = ocfs2_journal_access(handle, inode,
1579                                            right_path->p_node[i].bh,
1580                                            OCFS2_JOURNAL_ACCESS_WRITE);
1581                 if (ret) {
1582                         mlog_errno(ret);
1583                         goto out;
1584                 }
1585
1586                 ret = ocfs2_journal_access(handle, inode,
1587                                            left_path->p_node[i].bh,
1588                                            OCFS2_JOURNAL_ACCESS_WRITE);
1589                 if (ret) {
1590                         mlog_errno(ret);
1591                         goto out;
1592                 }
1593         }
1594
1595         right_leaf_bh = path_leaf_bh(right_path);
1596         right_el = path_leaf_el(right_path);
1597
1598         /* This is a code error, not a disk corruption. */
1599         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1600                         "because rightmost leaf block %llu is empty\n",
1601                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1602                         (unsigned long long)right_leaf_bh->b_blocknr);
1603
1604         ocfs2_create_empty_extent(right_el);
1605
1606         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1607         if (ret) {
1608                 mlog_errno(ret);
1609                 goto out;
1610         }
1611
1612         /* Do the copy now. */
1613         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1614         move_rec = left_el->l_recs[i];
1615         right_el->l_recs[0] = move_rec;
1616
1617         /*
1618          * Clear out the record we just copied and shift everything
1619          * over, leaving an empty extent in the left leaf.
1620          *
1621          * We temporarily subtract from next_free_rec so that the
1622          * shift will lose the tail record (which is now defunct).
1623          */
1624         le16_add_cpu(&left_el->l_next_free_rec, -1);
1625         ocfs2_shift_records_right(left_el);
1626         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1627         le16_add_cpu(&left_el->l_next_free_rec, 1);
1628
1629         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1630         if (ret) {
1631                 mlog_errno(ret);
1632                 goto out;
1633         }
1634
1635         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1636                                 subtree_index);
1637
1638 out:
1639         return ret;
1640 }
1641
1642 /*
1643  * Given a full path, determine what cpos value would return us a path
1644  * containing the leaf immediately to the left of the current one.
1645  *
1646  * Will return zero if the path passed in is already the leftmost path.
1647  */
1648 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1649                                          struct ocfs2_path *path, u32 *cpos)
1650 {
1651         int i, j, ret = 0;
1652         u64 blkno;
1653         struct ocfs2_extent_list *el;
1654
1655         BUG_ON(path->p_tree_depth == 0);
1656
1657         *cpos = 0;
1658
1659         blkno = path_leaf_bh(path)->b_blocknr;
1660
1661         /* Start at the tree node just above the leaf and work our way up. */
1662         i = path->p_tree_depth - 1;
1663         while (i >= 0) {
1664                 el = path->p_node[i].el;
1665
1666                 /*
1667                  * Find the extent record just before the one in our
1668                  * path.
1669                  */
1670                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1671                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1672                                 if (j == 0) {
1673                                         if (i == 0) {
1674                                                 /*
1675                                                  * We've determined that the
1676                                                  * path specified is already
1677                                                  * the leftmost one - return a
1678                                                  * cpos of zero.
1679                                                  */
1680                                                 goto out;
1681                                         }
1682                                         /*
1683                                          * The leftmost record points to our
1684                                          * leaf - we need to travel up the
1685                                          * tree one level.
1686                                          */
1687                                         goto next_node;
1688                                 }
1689
1690                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1691                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1692                                                            &el->l_recs[j - 1]);
1693                                 *cpos = *cpos - 1;
1694                                 goto out;
1695                         }
1696                 }
1697
1698                 /*
1699                  * If we got here, we never found a valid node where
1700                  * the tree indicated one should be.
1701                  */
1702                 ocfs2_error(sb,
1703                             "Invalid extent tree at extent block %llu\n",
1704                             (unsigned long long)blkno);
1705                 ret = -EROFS;
1706                 goto out;
1707
1708 next_node:
1709                 blkno = path->p_node[i].bh->b_blocknr;
1710                 i--;
1711         }
1712
1713 out:
1714         return ret;
1715 }
1716
1717 /*
1718  * Extend the transaction by enough credits to complete the rotation,
1719  * and still leave at least the original number of credits allocated
1720  * to this transaction.
1721  */
1722 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1723                                            int op_credits,
1724                                            struct ocfs2_path *path)
1725 {
1726         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1727
1728         if (handle->h_buffer_credits < credits)
1729                 return ocfs2_extend_trans(handle, credits);
1730
1731         return 0;
1732 }
1733
1734 /*
1735  * Trap the case where we're inserting into the theoretical range past
1736  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1737  * whose cpos is less than ours into the right leaf.
1738  *
1739  * It's only necessary to look at the rightmost record of the left
1740  * leaf because the logic that calls us should ensure that the
1741  * theoretical ranges in the path components above the leaves are
1742  * correct.
1743  */
1744 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1745                                                  u32 insert_cpos)
1746 {
1747         struct ocfs2_extent_list *left_el;
1748         struct ocfs2_extent_rec *rec;
1749         int next_free;
1750
1751         left_el = path_leaf_el(left_path);
1752         next_free = le16_to_cpu(left_el->l_next_free_rec);
1753         rec = &left_el->l_recs[next_free - 1];
1754
1755         if (insert_cpos > le32_to_cpu(rec->e_cpos))
1756                 return 1;
1757         return 0;
1758 }
1759
1760 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1761 {
1762         int next_free = le16_to_cpu(el->l_next_free_rec);
1763         unsigned int range;
1764         struct ocfs2_extent_rec *rec;
1765
1766         if (next_free == 0)
1767                 return 0;
1768
1769         rec = &el->l_recs[0];
1770         if (ocfs2_is_empty_extent(rec)) {
1771                 /* Empty list. */
1772                 if (next_free == 1)
1773                         return 0;
1774                 rec = &el->l_recs[1];
1775         }
1776
1777         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1778         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1779                 return 1;
1780         return 0;
1781 }
1782
1783 /*
1784  * Rotate all the records in a btree right one record, starting at insert_cpos.
1785  *
1786  * The path to the rightmost leaf should be passed in.
1787  *
1788  * The array is assumed to be large enough to hold an entire path (tree depth).
1789  *
1790  * Upon succesful return from this function:
1791  *
1792  * - The 'right_path' array will contain a path to the leaf block
1793  *   whose range contains e_cpos.
1794  * - That leaf block will have a single empty extent in list index 0.
1795  * - In the case that the rotation requires a post-insert update,
1796  *   *ret_left_path will contain a valid path which can be passed to
1797  *   ocfs2_insert_path().
1798  */
1799 static int ocfs2_rotate_tree_right(struct inode *inode,
1800                                    handle_t *handle,
1801                                    enum ocfs2_split_type split,
1802                                    u32 insert_cpos,
1803                                    struct ocfs2_path *right_path,
1804                                    struct ocfs2_path **ret_left_path)
1805 {
1806         int ret, start, orig_credits = handle->h_buffer_credits;
1807         u32 cpos;
1808         struct ocfs2_path *left_path = NULL;
1809
1810         *ret_left_path = NULL;
1811
1812         left_path = ocfs2_new_path(path_root_bh(right_path),
1813                                    path_root_el(right_path));
1814         if (!left_path) {
1815                 ret = -ENOMEM;
1816                 mlog_errno(ret);
1817                 goto out;
1818         }
1819
1820         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1821         if (ret) {
1822                 mlog_errno(ret);
1823                 goto out;
1824         }
1825
1826         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1827
1828         /*
1829          * What we want to do here is:
1830          *
1831          * 1) Start with the rightmost path.
1832          *
1833          * 2) Determine a path to the leaf block directly to the left
1834          *    of that leaf.
1835          *
1836          * 3) Determine the 'subtree root' - the lowest level tree node
1837          *    which contains a path to both leaves.
1838          *
1839          * 4) Rotate the subtree.
1840          *
1841          * 5) Find the next subtree by considering the left path to be
1842          *    the new right path.
1843          *
1844          * The check at the top of this while loop also accepts
1845          * insert_cpos == cpos because cpos is only a _theoretical_
1846          * value to get us the left path - insert_cpos might very well
1847          * be filling that hole.
1848          *
1849          * Stop at a cpos of '0' because we either started at the
1850          * leftmost branch (i.e., a tree with one branch and a
1851          * rotation inside of it), or we've gone as far as we can in
1852          * rotating subtrees.
1853          */
1854         while (cpos && insert_cpos <= cpos) {
1855                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1856                      insert_cpos, cpos);
1857
1858                 ret = ocfs2_find_path(inode, left_path, cpos);
1859                 if (ret) {
1860                         mlog_errno(ret);
1861                         goto out;
1862                 }
1863
1864                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1865                                 path_leaf_bh(right_path),
1866                                 "Inode %lu: error during insert of %u "
1867                                 "(left path cpos %u) results in two identical "
1868                                 "paths ending at %llu\n",
1869                                 inode->i_ino, insert_cpos, cpos,
1870                                 (unsigned long long)
1871                                 path_leaf_bh(left_path)->b_blocknr);
1872
1873                 if (split == SPLIT_NONE &&
1874                     ocfs2_rotate_requires_path_adjustment(left_path,
1875                                                           insert_cpos)) {
1876
1877                         /*
1878                          * We've rotated the tree as much as we
1879                          * should. The rest is up to
1880                          * ocfs2_insert_path() to complete, after the
1881                          * record insertion. We indicate this
1882                          * situation by returning the left path.
1883                          *
1884                          * The reason we don't adjust the records here
1885                          * before the record insert is that an error
1886                          * later might break the rule where a parent
1887                          * record e_cpos will reflect the actual
1888                          * e_cpos of the 1st nonempty record of the
1889                          * child list.
1890                          */
1891                         *ret_left_path = left_path;
1892                         goto out_ret_path;
1893                 }
1894
1895                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1896
1897                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1898                      start,
1899                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1900                      right_path->p_tree_depth);
1901
1902                 ret = ocfs2_extend_rotate_transaction(handle, start,
1903                                                       orig_credits, right_path);
1904                 if (ret) {
1905                         mlog_errno(ret);
1906                         goto out;
1907                 }
1908
1909                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1910                                                  right_path, start);
1911                 if (ret) {
1912                         mlog_errno(ret);
1913                         goto out;
1914                 }
1915
1916                 if (split != SPLIT_NONE &&
1917                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1918                                                 insert_cpos)) {
1919                         /*
1920                          * A rotate moves the rightmost left leaf
1921                          * record over to the leftmost right leaf
1922                          * slot. If we're doing an extent split
1923                          * instead of a real insert, then we have to
1924                          * check that the extent to be split wasn't
1925                          * just moved over. If it was, then we can
1926                          * exit here, passing left_path back -
1927                          * ocfs2_split_extent() is smart enough to
1928                          * search both leaves.
1929                          */
1930                         *ret_left_path = left_path;
1931                         goto out_ret_path;
1932                 }
1933
1934                 /*
1935                  * There is no need to re-read the next right path
1936                  * as we know that it'll be our current left
1937                  * path. Optimize by copying values instead.
1938                  */
1939                 ocfs2_mv_path(right_path, left_path);
1940
1941                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1942                                                     &cpos);
1943                 if (ret) {
1944                         mlog_errno(ret);
1945                         goto out;
1946                 }
1947         }
1948
1949 out:
1950         ocfs2_free_path(left_path);
1951
1952 out_ret_path:
1953         return ret;
1954 }
1955
1956 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1957                                       struct ocfs2_path *path)
1958 {
1959         int i, idx;
1960         struct ocfs2_extent_rec *rec;
1961         struct ocfs2_extent_list *el;
1962         struct ocfs2_extent_block *eb;
1963         u32 range;
1964
1965         /* Path should always be rightmost. */
1966         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1967         BUG_ON(eb->h_next_leaf_blk != 0ULL);
1968
1969         el = &eb->h_list;
1970         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1971         idx = le16_to_cpu(el->l_next_free_rec) - 1;
1972         rec = &el->l_recs[idx];
1973         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1974
1975         for (i = 0; i < path->p_tree_depth; i++) {
1976                 el = path->p_node[i].el;
1977                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1978                 rec = &el->l_recs[idx];
1979
1980                 rec->e_int_clusters = cpu_to_le32(range);
1981                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1982
1983                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
1984         }
1985 }
1986
1987 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1988                               struct ocfs2_cached_dealloc_ctxt *dealloc,
1989                               struct ocfs2_path *path, int unlink_start)
1990 {
1991         int ret, i;
1992         struct ocfs2_extent_block *eb;
1993         struct ocfs2_extent_list *el;
1994         struct buffer_head *bh;
1995
1996         for(i = unlink_start; i < path_num_items(path); i++) {
1997                 bh = path->p_node[i].bh;
1998
1999                 eb = (struct ocfs2_extent_block *)bh->b_data;
2000                 /*
2001                  * Not all nodes might have had their final count
2002                  * decremented by the caller - handle this here.
2003                  */
2004                 el = &eb->h_list;
2005                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2006                         mlog(ML_ERROR,
2007                              "Inode %llu, attempted to remove extent block "
2008                              "%llu with %u records\n",
2009                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2010                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2011                              le16_to_cpu(el->l_next_free_rec));
2012
2013                         ocfs2_journal_dirty(handle, bh);
2014                         ocfs2_remove_from_cache(inode, bh);
2015                         continue;
2016                 }
2017
2018                 el->l_next_free_rec = 0;
2019                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2020
2021                 ocfs2_journal_dirty(handle, bh);
2022
2023                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2024                 if (ret)
2025                         mlog_errno(ret);
2026
2027                 ocfs2_remove_from_cache(inode, bh);
2028         }
2029 }
2030
2031 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2032                                  struct ocfs2_path *left_path,
2033                                  struct ocfs2_path *right_path,
2034                                  int subtree_index,
2035                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2036 {
2037         int i;
2038         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2039         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2040         struct ocfs2_extent_list *el;
2041         struct ocfs2_extent_block *eb;
2042
2043         el = path_leaf_el(left_path);
2044
2045         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2046
2047         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2048                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2049                         break;
2050
2051         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2052
2053         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2054         le16_add_cpu(&root_el->l_next_free_rec, -1);
2055
2056         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2057         eb->h_next_leaf_blk = 0;
2058
2059         ocfs2_journal_dirty(handle, root_bh);
2060         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2061
2062         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2063                           subtree_index + 1);
2064 }
2065
2066 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2067                                      struct ocfs2_path *left_path,
2068                                      struct ocfs2_path *right_path,
2069                                      int subtree_index,
2070                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2071                                      int *deleted)
2072 {
2073         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2074         struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2075         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2076         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2077         struct ocfs2_extent_block *eb;
2078
2079         *deleted = 0;
2080
2081         right_leaf_el = path_leaf_el(right_path);
2082         left_leaf_el = path_leaf_el(left_path);
2083         root_bh = left_path->p_node[subtree_index].bh;
2084         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2085
2086         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2087                 return 0;
2088
2089         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2090         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2091                 /*
2092                  * It's legal for us to proceed if the right leaf is
2093                  * the rightmost one and it has an empty extent. There
2094                  * are two cases to handle - whether the leaf will be
2095                  * empty after removal or not. If the leaf isn't empty
2096                  * then just remove the empty extent up front. The
2097                  * next block will handle empty leaves by flagging
2098                  * them for unlink.
2099                  *
2100                  * Non rightmost leaves will throw -EAGAIN and the
2101                  * caller can manually move the subtree and retry.
2102                  */
2103
2104                 if (eb->h_next_leaf_blk != 0ULL)
2105                         return -EAGAIN;
2106
2107                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2108                         ret = ocfs2_journal_access(handle, inode,
2109                                                    path_leaf_bh(right_path),
2110                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2111                         if (ret) {
2112                                 mlog_errno(ret);
2113                                 goto out;
2114                         }
2115
2116                         ocfs2_remove_empty_extent(right_leaf_el);
2117                 } else
2118                         right_has_empty = 1;
2119         }
2120
2121         if (eb->h_next_leaf_blk == 0ULL &&
2122             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2123                 /*
2124                  * We have to update i_last_eb_blk during the meta
2125                  * data delete.
2126                  */
2127                 ret = ocfs2_journal_access(handle, inode, di_bh,
2128                                            OCFS2_JOURNAL_ACCESS_WRITE);
2129                 if (ret) {
2130                         mlog_errno(ret);
2131                         goto out;
2132                 }
2133
2134                 del_right_subtree = 1;
2135         }
2136
2137         /*
2138          * Getting here with an empty extent in the right path implies
2139          * that it's the rightmost path and will be deleted.
2140          */
2141         BUG_ON(right_has_empty && !del_right_subtree);
2142
2143         ret = ocfs2_journal_access(handle, inode, root_bh,
2144                                    OCFS2_JOURNAL_ACCESS_WRITE);
2145         if (ret) {
2146                 mlog_errno(ret);
2147                 goto out;
2148         }
2149
2150         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2151                 ret = ocfs2_journal_access(handle, inode,
2152                                            right_path->p_node[i].bh,
2153                                            OCFS2_JOURNAL_ACCESS_WRITE);
2154                 if (ret) {
2155                         mlog_errno(ret);
2156                         goto out;
2157                 }
2158
2159                 ret = ocfs2_journal_access(handle, inode,
2160                                            left_path->p_node[i].bh,
2161                                            OCFS2_JOURNAL_ACCESS_WRITE);
2162                 if (ret) {
2163                         mlog_errno(ret);
2164                         goto out;
2165                 }
2166         }
2167
2168         if (!right_has_empty) {
2169                 /*
2170                  * Only do this if we're moving a real
2171                  * record. Otherwise, the action is delayed until
2172                  * after removal of the right path in which case we
2173                  * can do a simple shift to remove the empty extent.
2174                  */
2175                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2176                 memset(&right_leaf_el->l_recs[0], 0,
2177                        sizeof(struct ocfs2_extent_rec));
2178         }
2179         if (eb->h_next_leaf_blk == 0ULL) {
2180                 /*
2181                  * Move recs over to get rid of empty extent, decrease
2182                  * next_free. This is allowed to remove the last
2183                  * extent in our leaf (setting l_next_free_rec to
2184                  * zero) - the delete code below won't care.
2185                  */
2186                 ocfs2_remove_empty_extent(right_leaf_el);
2187         }
2188
2189         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2190         if (ret)
2191                 mlog_errno(ret);
2192         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2193         if (ret)
2194                 mlog_errno(ret);
2195
2196         if (del_right_subtree) {
2197                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2198                                      subtree_index, dealloc);
2199                 ocfs2_update_edge_lengths(inode, handle, left_path);
2200
2201                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2202                 di->i_last_eb_blk = eb->h_blkno;
2203
2204                 /*
2205                  * Removal of the extent in the left leaf was skipped
2206                  * above so we could delete the right path
2207                  * 1st.
2208                  */
2209                 if (right_has_empty)
2210                         ocfs2_remove_empty_extent(left_leaf_el);
2211
2212                 ret = ocfs2_journal_dirty(handle, di_bh);
2213                 if (ret)
2214                         mlog_errno(ret);
2215
2216                 *deleted = 1;
2217         } else
2218                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2219                                            subtree_index);
2220
2221 out:
2222         return ret;
2223 }
2224
2225 /*
2226  * Given a full path, determine what cpos value would return us a path
2227  * containing the leaf immediately to the right of the current one.
2228  *
2229  * Will return zero if the path passed in is already the rightmost path.
2230  *
2231  * This looks similar, but is subtly different to
2232  * ocfs2_find_cpos_for_left_leaf().
2233  */
2234 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2235                                           struct ocfs2_path *path, u32 *cpos)
2236 {
2237         int i, j, ret = 0;
2238         u64 blkno;
2239         struct ocfs2_extent_list *el;
2240
2241         *cpos = 0;
2242
2243         if (path->p_tree_depth == 0)
2244                 return 0;
2245
2246         blkno = path_leaf_bh(path)->b_blocknr;
2247
2248         /* Start at the tree node just above the leaf and work our way up. */
2249         i = path->p_tree_depth - 1;
2250         while (i >= 0) {
2251                 int next_free;
2252
2253                 el = path->p_node[i].el;
2254
2255                 /*
2256                  * Find the extent record just after the one in our
2257                  * path.
2258                  */
2259                 next_free = le16_to_cpu(el->l_next_free_rec);
2260                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2261                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2262                                 if (j == (next_free - 1)) {
2263                                         if (i == 0) {
2264                                                 /*
2265                                                  * We've determined that the
2266                                                  * path specified is already
2267                                                  * the rightmost one - return a
2268                                                  * cpos of zero.
2269                                                  */
2270                                                 goto out;
2271                                         }
2272                                         /*
2273                                          * The rightmost record points to our
2274                                          * leaf - we need to travel up the
2275                                          * tree one level.
2276                                          */
2277                                         goto next_node;
2278                                 }
2279
2280                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2281                                 goto out;
2282                         }
2283                 }
2284
2285                 /*
2286                  * If we got here, we never found a valid node where
2287                  * the tree indicated one should be.
2288                  */
2289                 ocfs2_error(sb,
2290                             "Invalid extent tree at extent block %llu\n",
2291                             (unsigned long long)blkno);
2292                 ret = -EROFS;
2293                 goto out;
2294
2295 next_node:
2296                 blkno = path->p_node[i].bh->b_blocknr;
2297                 i--;
2298         }
2299
2300 out:
2301         return ret;
2302 }
2303
2304 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2305                                             handle_t *handle,
2306                                             struct buffer_head *bh,
2307                                             struct ocfs2_extent_list *el)
2308 {
2309         int ret;
2310
2311         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2312                 return 0;
2313
2314         ret = ocfs2_journal_access(handle, inode, bh,
2315                                    OCFS2_JOURNAL_ACCESS_WRITE);
2316         if (ret) {
2317                 mlog_errno(ret);
2318                 goto out;
2319         }
2320
2321         ocfs2_remove_empty_extent(el);
2322
2323         ret = ocfs2_journal_dirty(handle, bh);
2324         if (ret)
2325                 mlog_errno(ret);
2326
2327 out:
2328         return ret;
2329 }
2330
2331 static int __ocfs2_rotate_tree_left(struct inode *inode,
2332                                     handle_t *handle, int orig_credits,
2333                                     struct ocfs2_path *path,
2334                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2335                                     struct ocfs2_path **empty_extent_path)
2336 {
2337         int ret, subtree_root, deleted;
2338         u32 right_cpos;
2339         struct ocfs2_path *left_path = NULL;
2340         struct ocfs2_path *right_path = NULL;
2341
2342         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2343
2344         *empty_extent_path = NULL;
2345
2346         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2347                                              &right_cpos);
2348         if (ret) {
2349                 mlog_errno(ret);
2350                 goto out;
2351         }
2352
2353         left_path = ocfs2_new_path(path_root_bh(path),
2354                                    path_root_el(path));
2355         if (!left_path) {
2356                 ret = -ENOMEM;
2357                 mlog_errno(ret);
2358                 goto out;
2359         }
2360
2361         ocfs2_cp_path(left_path, path);
2362
2363         right_path = ocfs2_new_path(path_root_bh(path),
2364                                     path_root_el(path));
2365         if (!right_path) {
2366                 ret = -ENOMEM;
2367                 mlog_errno(ret);
2368                 goto out;
2369         }
2370
2371         while (right_cpos) {
2372                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2373                 if (ret) {
2374                         mlog_errno(ret);
2375                         goto out;
2376                 }
2377
2378                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2379                                                        right_path);
2380
2381                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2382                      subtree_root,
2383                      (unsigned long long)
2384                      right_path->p_node[subtree_root].bh->b_blocknr,
2385                      right_path->p_tree_depth);
2386
2387                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2388                                                       orig_credits, left_path);
2389                 if (ret) {
2390                         mlog_errno(ret);
2391                         goto out;
2392                 }
2393
2394                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2395                                                 right_path, subtree_root,
2396                                                 dealloc, &deleted);
2397                 if (ret == -EAGAIN) {
2398                         /*
2399                          * The rotation has to temporarily stop due to
2400                          * the right subtree having an empty
2401                          * extent. Pass it back to the caller for a
2402                          * fixup.
2403                          */
2404                         *empty_extent_path = right_path;
2405                         right_path = NULL;
2406                         goto out;
2407                 }
2408                 if (ret) {
2409                         mlog_errno(ret);
2410                         goto out;
2411                 }
2412
2413                 /*
2414                  * The subtree rotate might have removed records on
2415                  * the rightmost edge. If so, then rotation is
2416                  * complete.
2417                  */
2418                 if (deleted)
2419                         break;
2420
2421                 ocfs2_mv_path(left_path, right_path);
2422
2423                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2424                                                      &right_cpos);
2425                 if (ret) {
2426                         mlog_errno(ret);
2427                         goto out;
2428                 }
2429         }
2430
2431 out:
2432         ocfs2_free_path(right_path);
2433         ocfs2_free_path(left_path);
2434
2435         return ret;
2436 }
2437
2438 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2439                                        struct ocfs2_path *path,
2440                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
2441 {
2442         int ret, subtree_index;
2443         u32 cpos;
2444         struct ocfs2_path *left_path = NULL;
2445         struct ocfs2_dinode *di;
2446         struct ocfs2_extent_block *eb;
2447         struct ocfs2_extent_list *el;
2448
2449         /*
2450          * XXX: This code assumes that the root is an inode, which is
2451          * true for now but may change as tree code gets generic.
2452          */
2453         di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2454         if (!OCFS2_IS_VALID_DINODE(di)) {
2455                 ret = -EIO;
2456                 ocfs2_error(inode->i_sb,
2457                             "Inode %llu has invalid path root",
2458                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
2459                 goto out;
2460         }
2461
2462         /*
2463          * There's two ways we handle this depending on
2464          * whether path is the only existing one.
2465          */
2466         ret = ocfs2_extend_rotate_transaction(handle, 0,
2467                                               handle->h_buffer_credits,
2468                                               path);
2469         if (ret) {
2470                 mlog_errno(ret);
2471                 goto out;
2472         }
2473
2474         ret = ocfs2_journal_access_path(inode, handle, path);
2475         if (ret) {
2476                 mlog_errno(ret);
2477                 goto out;
2478         }
2479
2480         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2481         if (ret) {
2482                 mlog_errno(ret);
2483                 goto out;
2484         }
2485
2486         if (cpos) {
2487                 /*
2488                  * We have a path to the left of this one - it needs
2489                  * an update too.
2490                  */
2491                 left_path = ocfs2_new_path(path_root_bh(path),
2492                                            path_root_el(path));
2493                 if (!left_path) {
2494                         ret = -ENOMEM;
2495                         mlog_errno(ret);
2496                         goto out;
2497                 }
2498
2499                 ret = ocfs2_find_path(inode, left_path, cpos);
2500                 if (ret) {
2501                         mlog_errno(ret);
2502                         goto out;
2503                 }
2504
2505                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2506                 if (ret) {
2507                         mlog_errno(ret);
2508                         goto out;
2509                 }
2510
2511                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2512
2513                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2514                                      subtree_index, dealloc);
2515                 ocfs2_update_edge_lengths(inode, handle, left_path);
2516
2517                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2518                 di->i_last_eb_blk = eb->h_blkno;
2519         } else {
2520                 /*
2521                  * 'path' is also the leftmost path which
2522                  * means it must be the only one. This gets
2523                  * handled differently because we want to
2524                  * revert the inode back to having extents
2525                  * in-line.
2526                  */
2527                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2528
2529                 el = &di->id2.i_list;
2530                 el->l_tree_depth = 0;
2531                 el->l_next_free_rec = 0;
2532                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2533
2534                 di->i_last_eb_blk = 0;
2535         }
2536
2537         ocfs2_journal_dirty(handle, path_root_bh(path));
2538
2539 out:
2540         ocfs2_free_path(left_path);
2541         return ret;
2542 }
2543
2544 /*
2545  * Left rotation of btree records.
2546  *
2547  * In many ways, this is (unsurprisingly) the opposite of right
2548  * rotation. We start at some non-rightmost path containing an empty
2549  * extent in the leaf block. The code works its way to the rightmost
2550  * path by rotating records to the left in every subtree.
2551  *
2552  * This is used by any code which reduces the number of extent records
2553  * in a leaf. After removal, an empty record should be placed in the
2554  * leftmost list position.
2555  *
2556  * This won't handle a length update of the rightmost path records if
2557  * the rightmost tree leaf record is removed so the caller is
2558  * responsible for detecting and correcting that.
2559  */
2560 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2561                                   struct ocfs2_path *path,
2562                                   struct ocfs2_cached_dealloc_ctxt *dealloc)
2563 {
2564         int ret, orig_credits = handle->h_buffer_credits;
2565         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2566         struct ocfs2_extent_block *eb;
2567         struct ocfs2_extent_list *el;
2568
2569         el = path_leaf_el(path);
2570         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2571                 return 0;
2572
2573         if (path->p_tree_depth == 0) {
2574 rightmost_no_delete:
2575                 /*
2576                  * In-inode extents. This is trivially handled, so do
2577                  * it up front.
2578                  */
2579                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2580                                                        path_leaf_bh(path),
2581                                                        path_leaf_el(path));
2582                 if (ret)
2583                         mlog_errno(ret);
2584                 goto out;
2585         }
2586
2587         /*
2588          * Handle rightmost branch now. There's several cases:
2589          *  1) simple rotation leaving records in there. That's trivial.
2590          *  2) rotation requiring a branch delete - there's no more
2591          *     records left. Two cases of this:
2592          *     a) There are branches to the left.
2593          *     b) This is also the leftmost (the only) branch.
2594          *
2595          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2596          *  2a) we need the left branch so that we can update it with the unlink
2597          *  2b) we need to bring the inode back to inline extents.
2598          */
2599
2600         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2601         el = &eb->h_list;
2602         if (eb->h_next_leaf_blk == 0) {
2603                 /*
2604                  * This gets a bit tricky if we're going to delete the
2605                  * rightmost path. Get the other cases out of the way
2606                  * 1st.
2607                  */
2608                 if (le16_to_cpu(el->l_next_free_rec) > 1)
2609                         goto rightmost_no_delete;
2610
2611                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2612                         ret = -EIO;
2613                         ocfs2_error(inode->i_sb,
2614                                     "Inode %llu has empty extent block at %llu",
2615                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2616                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
2617                         goto out;
2618                 }
2619
2620                 /*
2621                  * XXX: The caller can not trust "path" any more after
2622                  * this as it will have been deleted. What do we do?
2623                  *
2624                  * In theory the rotate-for-merge code will never get
2625                  * here because it'll always ask for a rotate in a
2626                  * nonempty list.
2627                  */
2628
2629                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2630                                                   dealloc);
2631                 if (ret)
2632                         mlog_errno(ret);
2633                 goto out;
2634         }
2635
2636         /*
2637          * Now we can loop, remembering the path we get from -EAGAIN
2638          * and restarting from there.
2639          */
2640 try_rotate:
2641         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2642                                        dealloc, &restart_path);
2643         if (ret && ret != -EAGAIN) {
2644                 mlog_errno(ret);
2645                 goto out;
2646         }
2647
2648         while (ret == -EAGAIN) {
2649                 tmp_path = restart_path;
2650                 restart_path = NULL;
2651
2652                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2653                                                tmp_path, dealloc,
2654                                                &restart_path);
2655                 if (ret && ret != -EAGAIN) {
2656                         mlog_errno(ret);
2657                         goto out;
2658                 }
2659
2660                 ocfs2_free_path(tmp_path);
2661                 tmp_path = NULL;
2662
2663                 if (ret == 0)
2664                         goto try_rotate;
2665         }
2666
2667 out:
2668         ocfs2_free_path(tmp_path);
2669         ocfs2_free_path(restart_path);
2670         return ret;
2671 }
2672
2673 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2674                                 int index)
2675 {
2676         struct ocfs2_extent_rec *rec = &el->l_recs[index];
2677         unsigned int size;
2678
2679         if (rec->e_leaf_clusters == 0) {
2680                 /*
2681                  * We consumed all of the merged-from record. An empty
2682                  * extent cannot exist anywhere but the 1st array
2683                  * position, so move things over if the merged-from
2684                  * record doesn't occupy that position.
2685                  *
2686                  * This creates a new empty extent so the caller
2687                  * should be smart enough to have removed any existing
2688                  * ones.
2689                  */
2690                 if (index > 0) {
2691                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2692                         size = index * sizeof(struct ocfs2_extent_rec);
2693                         memmove(&el->l_recs[1], &el->l_recs[0], size);
2694                 }
2695
2696                 /*
2697                  * Always memset - the caller doesn't check whether it
2698                  * created an empty extent, so there could be junk in
2699                  * the other fields.
2700                  */
2701                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2702         }
2703 }
2704
2705 /*
2706  * Remove split_rec clusters from the record at index and merge them
2707  * onto the beginning of the record at index + 1.
2708  */
2709 static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh,
2710                                 handle_t *handle,
2711                                 struct ocfs2_extent_rec *split_rec,
2712                                 struct ocfs2_extent_list *el, int index)
2713 {
2714         int ret;
2715         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2716         struct ocfs2_extent_rec *left_rec;
2717         struct ocfs2_extent_rec *right_rec;
2718
2719         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2720
2721         left_rec = &el->l_recs[index];
2722         right_rec = &el->l_recs[index + 1];
2723
2724         ret = ocfs2_journal_access(handle, inode, bh,
2725                                    OCFS2_JOURNAL_ACCESS_WRITE);
2726         if (ret) {
2727                 mlog_errno(ret);
2728                 goto out;
2729         }
2730
2731         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2732
2733         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2734         le64_add_cpu(&right_rec->e_blkno,
2735                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2736         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2737
2738         ocfs2_cleanup_merge(el, index);
2739
2740         ret = ocfs2_journal_dirty(handle, bh);
2741         if (ret)
2742                 mlog_errno(ret);
2743
2744 out:
2745         return ret;
2746 }
2747
2748 /*
2749  * Remove split_rec clusters from the record at index and merge them
2750  * onto the tail of the record at index - 1.
2751  */
2752 static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh,
2753                                 handle_t *handle,
2754                                 struct ocfs2_extent_rec *split_rec,
2755                                 struct ocfs2_extent_list *el, int index)
2756 {
2757         int ret, has_empty_extent = 0;
2758         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2759         struct ocfs2_extent_rec *left_rec;
2760         struct ocfs2_extent_rec *right_rec;
2761
2762         BUG_ON(index <= 0);
2763
2764         left_rec = &el->l_recs[index - 1];
2765         right_rec = &el->l_recs[index];
2766         if (ocfs2_is_empty_extent(&el->l_recs[0]))
2767                 has_empty_extent = 1;
2768
2769         ret = ocfs2_journal_access(handle, inode, bh,
2770                                    OCFS2_JOURNAL_ACCESS_WRITE);
2771         if (ret) {
2772                 mlog_errno(ret);
2773                 goto out;
2774         }
2775
2776         if (has_empty_extent && index == 1) {
2777                 /*
2778                  * The easy case - we can just plop the record right in.
2779                  */
2780                 *left_rec = *split_rec;
2781
2782                 has_empty_extent = 0;
2783         } else {
2784                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
2785         }
2786
2787         le32_add_cpu(&right_rec->e_cpos, split_clusters);
2788         le64_add_cpu(&right_rec->e_blkno,
2789                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2790         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
2791
2792         ocfs2_cleanup_merge(el, index);
2793
2794         ret = ocfs2_journal_dirty(handle, bh);
2795         if (ret)
2796                 mlog_errno(ret);
2797
2798 out:
2799         return ret;
2800 }
2801
2802 static int ocfs2_try_to_merge_extent(struct inode *inode,
2803                                      handle_t *handle,
2804                                      struct ocfs2_path *left_path,
2805                                      int split_index,
2806                                      struct ocfs2_extent_rec *split_rec,
2807                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2808                                      struct ocfs2_merge_ctxt *ctxt)
2809
2810 {
2811         int ret = 0, delete_tail_recs = 0;
2812         struct ocfs2_extent_list *el = path_leaf_el(left_path);
2813         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
2814
2815         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
2816
2817         if (ctxt->c_split_covers_rec) {
2818                 delete_tail_recs++;
2819
2820                 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT ||
2821                     ctxt->c_has_empty_extent)
2822                         delete_tail_recs++;
2823
2824                 if (ctxt->c_has_empty_extent) {
2825                         /*
2826                          * The merge code will need to create an empty
2827                          * extent to take the place of the newly
2828                          * emptied slot. Remove any pre-existing empty
2829                          * extents - having more than one in a leaf is
2830                          * illegal.
2831                          */
2832                         ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2833                                                      dealloc);
2834                         if (ret) {
2835                                 mlog_errno(ret);
2836                                 goto out;
2837                         }
2838                         split_index--;
2839                         rec = &el->l_recs[split_index];
2840                 }
2841         }
2842
2843         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
2844                 /*
2845                  * Left-right contig implies this.
2846                  */
2847                 BUG_ON(!ctxt->c_split_covers_rec);
2848                 BUG_ON(split_index == 0);
2849
2850                 /*
2851                  * Since the leftright insert always covers the entire
2852                  * extent, this call will delete the insert record
2853                  * entirely, resulting in an empty extent record added to
2854                  * the extent block.
2855                  *
2856                  * Since the adding of an empty extent shifts
2857                  * everything back to the right, there's no need to
2858                  * update split_index here.
2859                  */
2860                 ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path),
2861                                            handle, split_rec, el, split_index);
2862                 if (ret) {
2863                         mlog_errno(ret);
2864                         goto out;
2865                 }
2866
2867                 /*
2868                  * We can only get this from logic error above.
2869                  */
2870                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2871
2872                 /*
2873                  * The left merge left us with an empty extent, remove
2874                  * it.
2875                  */
2876                 ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc);
2877                 if (ret) {
2878                         mlog_errno(ret);
2879                         goto out;
2880                 }
2881                 split_index--;
2882                 rec = &el->l_recs[split_index];
2883
2884                 /*
2885                  * Note that we don't pass split_rec here on purpose -
2886                  * we've merged it into the left side.
2887                  */
2888                 ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path),
2889                                             handle, rec, el, split_index);
2890                 if (ret) {
2891                         mlog_errno(ret);
2892                         goto out;
2893                 }
2894
2895                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2896
2897                 ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2898                                              dealloc);
2899                 /*
2900                  * Error from this last rotate is not critical, so
2901                  * print but don't bubble it up.
2902                  */
2903                 if (ret)
2904                         mlog_errno(ret);
2905                 ret = 0;
2906         } else {
2907                 /*
2908                  * Merge a record to the left or right.
2909                  *
2910                  * 'contig_type' is relative to the existing record,
2911                  * so for example, if we're "right contig", it's to
2912                  * the record on the left (hence the left merge).
2913                  */
2914                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
2915                         ret = ocfs2_merge_rec_left(inode,
2916                                                    path_leaf_bh(left_path),
2917                                                    handle, split_rec, el,
2918                                                    split_index);
2919                         if (ret) {
2920                                 mlog_errno(ret);
2921                                 goto out;
2922                         }
2923                 } else {
2924                         ret = ocfs2_merge_rec_right(inode,
2925                                                     path_leaf_bh(left_path),
2926                                                     handle, split_rec, el,
2927                                                     split_index);
2928                         if (ret) {
2929                                 mlog_errno(ret);
2930                                 goto out;
2931                         }
2932                 }
2933
2934                 if (ctxt->c_split_covers_rec) {
2935                         /*
2936                          * The merge may have left an empty extent in
2937                          * our leaf. Try to rotate it away.
2938                          */
2939                         ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2940                                                      dealloc);
2941                         if (ret)
2942                                 mlog_errno(ret);
2943                         ret = 0;
2944                 }
2945         }
2946
2947 out:
2948         return ret;
2949 }
2950
2951 static void ocfs2_subtract_from_rec(struct super_block *sb,
2952                                     enum ocfs2_split_type split,
2953                                     struct ocfs2_extent_rec *rec,
2954                                     struct ocfs2_extent_rec *split_rec)
2955 {
2956         u64 len_blocks;
2957
2958         len_blocks = ocfs2_clusters_to_blocks(sb,
2959                                 le16_to_cpu(split_rec->e_leaf_clusters));
2960
2961         if (split == SPLIT_LEFT) {
2962                 /*
2963                  * Region is on the left edge of the existing
2964                  * record.
2965                  */
2966                 le32_add_cpu(&rec->e_cpos,
2967                              le16_to_cpu(split_rec->e_leaf_clusters));
2968                 le64_add_cpu(&rec->e_blkno, len_blocks);
2969                 le16_add_cpu(&rec->e_leaf_clusters,
2970                              -le16_to_cpu(split_rec->e_leaf_clusters));
2971         } else {
2972                 /*
2973                  * Region is on the right edge of the existing
2974                  * record.
2975                  */
2976                 le16_add_cpu(&rec->e_leaf_clusters,
2977                              -le16_to_cpu(split_rec->e_leaf_clusters));
2978         }
2979 }
2980
2981 /*
2982  * Do the final bits of extent record insertion at the target leaf
2983  * list. If this leaf is part of an allocation tree, it is assumed
2984  * that the tree above has been prepared.
2985  */
2986 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
2987                                  struct ocfs2_extent_list *el,
2988                                  struct ocfs2_insert_type *insert,
2989                                  struct inode *inode)
2990 {
2991         int i = insert->ins_contig_index;
2992         unsigned int range;
2993         struct ocfs2_extent_rec *rec;
2994
2995         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
2996
2997         if (insert->ins_split != SPLIT_NONE) {
2998                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
2999                 BUG_ON(i == -1);
3000                 rec = &el->l_recs[i];
3001                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3002                                         insert_rec);
3003                 goto rotate;
3004         }
3005
3006         /*
3007          * Contiguous insert - either left or right.
3008          */
3009         if (insert->ins_contig != CONTIG_NONE) {
3010                 rec = &el->l_recs[i];
3011                 if (insert->ins_contig == CONTIG_LEFT) {
3012                         rec->e_blkno = insert_rec->e_blkno;
3013                         rec->e_cpos = insert_rec->e_cpos;
3014                 }
3015                 le16_add_cpu(&rec->e_leaf_clusters,
3016                              le16_to_cpu(insert_rec->e_leaf_clusters));
3017                 return;
3018         }
3019
3020         /*
3021          * Handle insert into an empty leaf.
3022          */
3023         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3024             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3025              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3026                 el->l_recs[0] = *insert_rec;
3027                 el->l_next_free_rec = cpu_to_le16(1);
3028                 return;
3029         }
3030
3031         /*
3032          * Appending insert.
3033          */
3034         if (insert->ins_appending == APPEND_TAIL) {
3035                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3036                 rec = &el->l_recs[i];
3037                 range = le32_to_cpu(rec->e_cpos)
3038                         + le16_to_cpu(rec->e_leaf_clusters);
3039                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3040
3041                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3042                                 le16_to_cpu(el->l_count),
3043                                 "inode %lu, depth %u, count %u, next free %u, "
3044                                 "rec.cpos %u, rec.clusters %u, "
3045                                 "insert.cpos %u, insert.clusters %u\n",
3046                                 inode->i_ino,
3047                                 le16_to_cpu(el->l_tree_depth),
3048                                 le16_to_cpu(el->l_count),
3049                                 le16_to_cpu(el->l_next_free_rec),
3050                                 le32_to_cpu(el->l_recs[i].e_cpos),
3051                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3052                                 le32_to_cpu(insert_rec->e_cpos),
3053                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3054                 i++;
3055                 el->l_recs[i] = *insert_rec;
3056                 le16_add_cpu(&el->l_next_free_rec, 1);
3057                 return;
3058         }
3059
3060 rotate:
3061         /*
3062          * Ok, we have to rotate.
3063          *
3064          * At this point, it is safe to assume that inserting into an
3065          * empty leaf and appending to a leaf have both been handled
3066          * above.
3067          *
3068          * This leaf needs to have space, either by the empty 1st
3069          * extent record, or by virtue of an l_next_rec < l_count.
3070          */
3071         ocfs2_rotate_leaf(el, insert_rec);
3072 }
3073
3074 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3075                                                 struct ocfs2_dinode *di,
3076                                                 u32 clusters)
3077 {
3078         le32_add_cpu(&di->i_clusters, clusters);
3079         spin_lock(&OCFS2_I(inode)->ip_lock);
3080         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3081         spin_unlock(&OCFS2_I(inode)->ip_lock);
3082 }
3083
3084 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3085                                            handle_t *handle,
3086                                            struct ocfs2_path *path,
3087                                            struct ocfs2_extent_rec *insert_rec)
3088 {
3089         int ret, i, next_free;
3090         struct buffer_head *bh;
3091         struct ocfs2_extent_list *el;
3092         struct ocfs2_extent_rec *rec;
3093
3094         /*
3095          * Update everything except the leaf block.
3096          */
3097         for (i = 0; i < path->p_tree_depth; i++) {
3098                 bh = path->p_node[i].bh;
3099                 el = path->p_node[i].el;
3100
3101                 next_free = le16_to_cpu(el->l_next_free_rec);
3102                 if (next_free == 0) {
3103                         ocfs2_error(inode->i_sb,
3104                                     "Dinode %llu has a bad extent list",
3105                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3106                         ret = -EIO;
3107                         return;
3108                 }
3109
3110                 rec = &el->l_recs[next_free - 1];
3111
3112                 rec->e_int_clusters = insert_rec->e_cpos;
3113                 le32_add_cpu(&rec->e_int_clusters,
3114                              le16_to_cpu(insert_rec->e_leaf_clusters));
3115                 le32_add_cpu(&rec->e_int_clusters,
3116                              -le32_to_cpu(rec->e_cpos));
3117
3118                 ret = ocfs2_journal_dirty(handle, bh);
3119                 if (ret)
3120                         mlog_errno(ret);
3121
3122         }
3123 }
3124
3125 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3126                                     struct ocfs2_extent_rec *insert_rec,
3127                                     struct ocfs2_path *right_path,
3128                                     struct ocfs2_path **ret_left_path)
3129 {
3130         int ret, next_free;
3131         struct ocfs2_extent_list *el;
3132         struct ocfs2_path *left_path = NULL;
3133
3134         *ret_left_path = NULL;
3135
3136         /*
3137          * This shouldn't happen for non-trees. The extent rec cluster
3138          * count manipulation below only works for interior nodes.
3139          */
3140         BUG_ON(right_path->p_tree_depth == 0);
3141
3142         /*
3143          * If our appending insert is at the leftmost edge of a leaf,
3144          * then we might need to update the rightmost records of the
3145          * neighboring path.
3146          */
3147         el = path_leaf_el(right_path);
3148         next_free = le16_to_cpu(el->l_next_free_rec);
3149         if (next_free == 0 ||
3150             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3151                 u32 left_cpos;
3152
3153                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3154                                                     &left_cpos);
3155                 if (ret) {
3156                         mlog_errno(ret);
3157                         goto out;
3158                 }
3159
3160                 mlog(0, "Append may need a left path update. cpos: %u, "
3161                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3162                      left_cpos);
3163
3164                 /*
3165                  * No need to worry if the append is already in the
3166                  * leftmost leaf.
3167                  */
3168                 if (left_cpos) {
3169                         left_path = ocfs2_new_path(path_root_bh(right_path),
3170                                                    path_root_el(right_path));
3171                         if (!left_path) {
3172                                 ret = -ENOMEM;
3173                                 mlog_errno(ret);
3174                                 goto out;
3175                         }
3176
3177                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3178                         if (ret) {
3179                                 mlog_errno(ret);
3180                                 goto out;
3181                         }
3182
3183                         /*
3184                          * ocfs2_insert_path() will pass the left_path to the
3185                          * journal for us.
3186                          */
3187                 }
3188         }
3189
3190         ret = ocfs2_journal_access_path(inode, handle, right_path);
3191         if (ret) {
3192                 mlog_errno(ret);
3193                 goto out;
3194         }
3195
3196         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3197
3198         *ret_left_path = left_path;
3199         ret = 0;
3200 out:
3201         if (ret != 0)
3202                 ocfs2_free_path(left_path);
3203
3204         return ret;
3205 }
3206
3207 static void ocfs2_split_record(struct inode *inode,
3208                                struct ocfs2_path *left_path,
3209                                struct ocfs2_path *right_path,
3210                                struct ocfs2_extent_rec *split_rec,
3211                                enum ocfs2_split_type split)
3212 {
3213         int index;
3214         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3215         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3216         struct ocfs2_extent_rec *rec, *tmprec;
3217
3218         right_el = path_leaf_el(right_path);;
3219         if (left_path)
3220                 left_el = path_leaf_el(left_path);
3221
3222         el = right_el;
3223         insert_el = right_el;
3224         index = ocfs2_search_extent_list(el, cpos);
3225         if (index != -1) {
3226                 if (index == 0 && left_path) {
3227                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3228
3229                         /*
3230                          * This typically means that the record
3231                          * started in the left path but moved to the
3232                          * right as a result of rotation. We either
3233                          * move the existing record to the left, or we
3234                          * do the later insert there.
3235                          *
3236                          * In this case, the left path should always
3237                          * exist as the rotate code will have passed
3238                          * it back for a post-insert update.
3239                          */
3240
3241                         if (split == SPLIT_LEFT) {
3242                                 /*
3243                                  * It's a left split. Since we know
3244                                  * that the rotate code gave us an
3245                                  * empty extent in the left path, we
3246                                  * can just do the insert there.
3247                                  */
3248                                 insert_el = left_el;
3249                         } else {
3250                                 /*
3251                                  * Right split - we have to move the
3252                                  * existing record over to the left
3253                                  * leaf. The insert will be into the
3254                                  * newly created empty extent in the
3255                                  * right leaf.
3256                                  */
3257                                 tmprec = &right_el->l_recs[index];
3258                                 ocfs2_rotate_leaf(left_el, tmprec);
3259                                 el = left_el;
3260
3261                                 memset(tmprec, 0, sizeof(*tmprec));
3262                                 index = ocfs2_search_extent_list(left_el, cpos);
3263                                 BUG_ON(index == -1);
3264                         }
3265                 }
3266         } else {
3267                 BUG_ON(!left_path);
3268                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3269                 /*
3270                  * Left path is easy - we can just allow the insert to
3271                  * happen.
3272                  */
3273                 el = left_el;
3274                 insert_el = left_el;
3275                 index = ocfs2_search_extent_list(el, cpos);
3276                 BUG_ON(index == -1);
3277         }
3278
3279         rec = &el->l_recs[index];
3280         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3281         ocfs2_rotate_leaf(insert_el, split_rec);
3282 }
3283
3284 /*
3285  * This function only does inserts on an allocation b-tree. For dinode
3286  * lists, ocfs2_insert_at_leaf() is called directly.
3287  *
3288  * right_path is the path we want to do the actual insert
3289  * in. left_path should only be passed in if we need to update that
3290  * portion of the tree after an edge insert.
3291  */
3292 static int ocfs2_insert_path(struct inode *inode,
3293                              handle_t *handle,
3294                              struct ocfs2_path *left_path,
3295                              struct ocfs2_path *right_path,
3296                              struct ocfs2_extent_rec *insert_rec,
3297                              struct ocfs2_insert_type *insert)
3298 {
3299         int ret, subtree_index;
3300         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3301
3302         /*
3303          * Pass both paths to the journal. The majority of inserts
3304          * will be touching all components anyway.
3305          */
3306         ret = ocfs2_journal_access_path(inode, handle, right_path);
3307         if (ret < 0) {
3308                 mlog_errno(ret);
3309                 goto out;
3310         }
3311
3312         if (left_path) {
3313                 int credits = handle->h_buffer_credits;
3314
3315                 /*
3316                  * There's a chance that left_path got passed back to
3317                  * us without being accounted for in the
3318                  * journal. Extend our transaction here to be sure we
3319                  * can change those blocks.
3320                  */
3321                 credits += left_path->p_tree_depth;
3322
3323                 ret = ocfs2_extend_trans(handle, credits);
3324                 if (ret < 0) {
3325                         mlog_errno(ret);
3326                         goto out;
3327                 }
3328
3329                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3330                 if (ret < 0) {
3331                         mlog_errno(ret);
3332                         goto out;
3333                 }
3334         }
3335
3336         if (insert->ins_split != SPLIT_NONE) {
3337                 /*
3338                  * We could call ocfs2_insert_at_leaf() for some types
3339                  * of splits, but it's easier to just let one seperate
3340                  * function sort it all out.
3341                  */
3342                 ocfs2_split_record(inode, left_path, right_path,
3343                                    insert_rec, insert->ins_split);
3344         } else
3345                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3346                                      insert, inode);
3347
3348         ret = ocfs2_journal_dirty(handle, leaf_bh);
3349         if (ret)
3350                 mlog_errno(ret);
3351
3352         if (left_path) {
3353                 /*
3354                  * The rotate code has indicated that we need to fix
3355                  * up portions of the tree after the insert.
3356                  *
3357                  * XXX: Should we extend the transaction here?
3358                  */
3359                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3360                                                         right_path);
3361                 ocfs2_complete_edge_insert(inode, handle, left_path,
3362                                            right_path, subtree_index);
3363         }
3364
3365         ret = 0;
3366 out:
3367         return ret;
3368 }
3369
3370 static int ocfs2_do_insert_extent(struct inode *inode,
3371                                   handle_t *handle,
3372                                   struct buffer_head *di_bh,
3373                                   struct ocfs2_extent_rec *insert_rec,
3374                                   struct ocfs2_insert_type *type)
3375 {
3376         int ret, rotate = 0;
3377         u32 cpos;
3378         struct ocfs2_path *right_path = NULL;
3379         struct ocfs2_path *left_path = NULL;
3380         struct ocfs2_dinode *di;
3381         struct ocfs2_extent_list *el;
3382
3383         di = (struct ocfs2_dinode *) di_bh->b_data;
3384         el = &di->id2.i_list;
3385
3386         ret = ocfs2_journal_access(handle, inode, di_bh,
3387                                    OCFS2_JOURNAL_ACCESS_WRITE);
3388         if (ret) {
3389                 mlog_errno(ret);
3390                 goto out;
3391         }
3392
3393         if (le16_to_cpu(el->l_tree_depth) == 0) {
3394                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3395                 goto out_update_clusters;
3396         }
3397
3398         right_path = ocfs2_new_inode_path(di_bh);
3399         if (!right_path) {
3400                 ret = -ENOMEM;
3401                 mlog_errno(ret);
3402                 goto out;
3403         }
3404
3405         /*
3406          * Determine the path to start with. Rotations need the
3407          * rightmost path, everything else can go directly to the
3408          * target leaf.
3409          */
3410         cpos = le32_to_cpu(insert_rec->e_cpos);
3411         if (type->ins_appending == APPEND_NONE &&
3412             type->ins_contig == CONTIG_NONE) {
3413                 rotate = 1;
3414                 cpos = UINT_MAX;
3415         }
3416
3417         ret = ocfs2_find_path(inode, right_path, cpos);
3418         if (ret) {
3419                 mlog_errno(ret);
3420                 goto out;
3421         }
3422
3423         /*
3424          * Rotations and appends need special treatment - they modify
3425          * parts of the tree's above them.
3426          *
3427          * Both might pass back a path immediate to the left of the
3428          * one being inserted to. This will be cause
3429          * ocfs2_insert_path() to modify the rightmost records of
3430          * left_path to account for an edge insert.
3431          *
3432          * XXX: When modifying this code, keep in mind that an insert
3433          * can wind up skipping both of these two special cases...
3434          */
3435         if (rotate) {
3436                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3437                                               le32_to_cpu(insert_rec->e_cpos),
3438                                               right_path, &left_path);
3439                 if (ret) {
3440                         mlog_errno(ret);
3441                         goto out;
3442                 }
3443         } else if (type->ins_appending == APPEND_TAIL
3444                    && type->ins_contig != CONTIG_LEFT) {
3445                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3446                                                right_path, &left_path);
3447                 if (ret) {
3448                         mlog_errno(ret);
3449                         goto out;
3450                 }
3451         }
3452
3453         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3454                                 insert_rec, type);
3455         if (ret) {
3456                 mlog_errno(ret);
3457                 goto out;
3458         }
3459
3460 out_update_clusters:
3461         if (type->ins_split == SPLIT_NONE)
3462                 ocfs2_update_dinode_clusters(inode, di,
3463                                              le16_to_cpu(insert_rec->e_leaf_clusters));
3464
3465         ret = ocfs2_journal_dirty(handle, di_bh);
3466         if (ret)
3467                 mlog_errno(ret);
3468
3469 out:
3470         ocfs2_free_path(left_path);
3471         ocfs2_free_path(right_path);
3472
3473         return ret;
3474 }
3475
3476 static enum ocfs2_contig_type
3477 ocfs2_figure_merge_contig_type(struct inode *inode,
3478                                struct ocfs2_extent_list *el, int index,
3479                                struct ocfs2_extent_rec *split_rec)
3480 {
3481         struct ocfs2_extent_rec *rec;
3482         enum ocfs2_contig_type ret = CONTIG_NONE;
3483
3484         /*
3485          * We're careful to check for an empty extent record here -
3486          * the merge code will know what to do if it sees one.
3487          */
3488
3489         if (index > 0) {
3490                 rec = &el->l_recs[index - 1];
3491                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
3492                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3493                                 ret = CONTIG_RIGHT;
3494                 } else {
3495                         ret = ocfs2_extent_contig(inode, rec, split_rec);
3496                 }
3497         }
3498
3499         if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) {
3500                 enum ocfs2_contig_type contig_type;
3501
3502                 rec = &el->l_recs[index + 1];
3503                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3504
3505                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3506                         ret = CONTIG_LEFTRIGHT;
3507                 else if (ret == CONTIG_NONE)
3508                         ret = contig_type;
3509         }
3510
3511         return ret;
3512 }
3513
3514 static void ocfs2_figure_contig_type(struct inode *inode,
3515                                      struct ocfs2_insert_type *insert,
3516                                      struct ocfs2_extent_list *el,
3517                                      struct ocfs2_extent_rec *insert_rec)
3518 {
3519         int i;
3520         enum ocfs2_contig_type contig_type = CONTIG_NONE;
3521
3522         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3523
3524         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3525                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3526                                                   insert_rec);
3527                 if (contig_type != CONTIG_NONE) {
3528                         insert->ins_contig_index = i;
3529                         break;
3530                 }
3531         }
3532         insert->ins_contig = contig_type;
3533 }
3534
3535 /*
3536  * This should only be called against the righmost leaf extent list.
3537  *
3538  * ocfs2_figure_appending_type() will figure out whether we'll have to
3539  * insert at the tail of the rightmost leaf.
3540  *
3541  * This should also work against the dinode list for tree's with 0
3542  * depth. If we consider the dinode list to be the rightmost leaf node
3543  * then the logic here makes sense.
3544  */
3545 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3546                                         struct ocfs2_extent_list *el,
3547                                         struct ocfs2_extent_rec *insert_rec)
3548 {
3549         int i;
3550         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3551         struct ocfs2_extent_rec *rec;
3552
3553         insert->ins_appending = APPEND_NONE;
3554
3555         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3556
3557         if (!el->l_next_free_rec)
3558                 goto set_tail_append;
3559
3560         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3561                 /* Were all records empty? */
3562                 if (le16_to_cpu(el->l_next_free_rec) == 1)
3563                         goto set_tail_append;
3564         }
3565
3566         i = le16_to_cpu(el->l_next_free_rec) - 1;
3567         rec = &el->l_recs[i];
3568
3569         if (cpos >=
3570             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3571                 goto set_tail_append;
3572
3573         return;
3574
3575 set_tail_append:
3576         insert->ins_appending = APPEND_TAIL;
3577 }
3578
3579 /*
3580  * Helper function called at the begining of an insert.
3581  *
3582  * This computes a few things that are commonly used in the process of
3583  * inserting into the btree:
3584  *   - Whether the new extent is contiguous with an existing one.
3585  *   - The current tree depth.
3586  *   - Whether the insert is an appending one.
3587  *   - The total # of free records in the tree.
3588  *
3589  * All of the information is stored on the ocfs2_insert_type
3590  * structure.
3591  */
3592 static int ocfs2_figure_insert_type(struct inode *inode,
3593                                     struct buffer_head *di_bh,
3594                                     struct buffer_head **last_eb_bh,
3595                                     struct ocfs2_extent_rec *insert_rec,
3596                                     struct ocfs2_insert_type *insert)
3597 {
3598         int ret;
3599         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3600         struct ocfs2_extent_block *eb;
3601         struct ocfs2_extent_list *el;
3602         struct ocfs2_path *path = NULL;
3603         struct buffer_head *bh = NULL;
3604
3605         insert->ins_split = SPLIT_NONE;
3606
3607         el = &di->id2.i_list;
3608         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3609
3610         if (el->l_tree_depth) {
3611                 /*
3612                  * If we have tree depth, we read in the
3613                  * rightmost extent block ahead of time as
3614                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
3615                  * may want it later.
3616                  */
3617                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3618                                        le64_to_cpu(di->i_last_eb_blk), &bh,
3619                                        OCFS2_BH_CACHED, inode);
3620                 if (ret) {
3621                         mlog_exit(ret);
3622                         goto out;
3623                 }
3624                 eb = (struct ocfs2_extent_block *) bh->b_data;
3625                 el = &eb->h_list;
3626         }
3627
3628         /*
3629          * Unless we have a contiguous insert, we'll need to know if
3630          * there is room left in our allocation tree for another
3631          * extent record.
3632          *
3633          * XXX: This test is simplistic, we can search for empty
3634          * extent records too.
3635          */
3636         insert->ins_free_records = le16_to_cpu(el->l_count) -
3637                 le16_to_cpu(el->l_next_free_rec);
3638
3639         if (!insert->ins_tree_depth) {
3640                 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3641                 ocfs2_figure_appending_type(insert, el, insert_rec);
3642                 return 0;
3643         }
3644
3645         path = ocfs2_new_inode_path(di_bh);
3646         if (!path) {
3647                 ret = -ENOMEM;
3648                 mlog_errno(ret);
3649                 goto out;
3650         }
3651
3652         /*
3653          * In the case that we're inserting past what the tree
3654          * currently accounts for, ocfs2_find_path() will return for
3655          * us the rightmost tree path. This is accounted for below in
3656          * the appending code.
3657          */
3658         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
3659         if (ret) {
3660                 mlog_errno(ret);
3661                 goto out;
3662         }
3663
3664         el = path_leaf_el(path);
3665
3666         /*
3667          * Now that we have the path, there's two things we want to determine:
3668          * 1) Contiguousness (also set contig_index if this is so)
3669          *
3670          * 2) Are we doing an append? We can trivially break this up
3671          *     into two types of appends: simple record append, or a
3672          *     rotate inside the tail leaf.
3673          */
3674         ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3675
3676         /*
3677          * The insert code isn't quite ready to deal with all cases of
3678          * left contiguousness. Specifically, if it's an insert into
3679          * the 1st record in a leaf, it will require the adjustment of
3680          * cluster count on the last record of the path directly to it's
3681          * left. For now, just catch that case and fool the layers
3682          * above us. This works just fine for tree_depth == 0, which
3683          * is why we allow that above.
3684          */
3685         if (insert->ins_contig == CONTIG_LEFT &&
3686             insert->ins_contig_index == 0)
3687                 insert->ins_contig = CONTIG_NONE;
3688
3689         /*
3690          * Ok, so we can simply compare against last_eb to figure out
3691          * whether the path doesn't exist. This will only happen in
3692          * the case that we're doing a tail append, so maybe we can
3693          * take advantage of that information somehow.
3694          */
3695         if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
3696                 /*
3697                  * Ok, ocfs2_find_path() returned us the rightmost
3698                  * tree path. This might be an appending insert. There are
3699                  * two cases:
3700                  *    1) We're doing a true append at the tail:
3701                  *      -This might even be off the end of the leaf
3702                  *    2) We're "appending" by rotating in the tail
3703                  */
3704                 ocfs2_figure_appending_type(insert, el, insert_rec);
3705         }
3706
3707 out:
3708         ocfs2_free_path(path);
3709
3710         if (ret == 0)
3711                 *last_eb_bh = bh;
3712         else
3713                 brelse(bh);
3714         return ret;
3715 }
3716
3717 /*
3718  * Insert an extent into an inode btree.
3719  *
3720  * The caller needs to update fe->i_clusters
3721  */
3722 int ocfs2_insert_extent(struct ocfs2_super *osb,
3723                         handle_t *handle,
3724                         struct inode *inode,
3725                         struct buffer_head *fe_bh,
3726                         u32 cpos,
3727                         u64 start_blk,
3728                         u32 new_clusters,
3729                         u8 flags,
3730                         struct ocfs2_alloc_context *meta_ac)
3731 {
3732         int status;
3733         struct buffer_head *last_eb_bh = NULL;
3734         struct buffer_head *bh = NULL;
3735         struct ocfs2_insert_type insert = {0, };
3736         struct ocfs2_extent_rec rec;
3737
3738         mlog(0, "add %u clusters at position %u to inode %llu\n",
3739              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
3740
3741         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
3742                         (OCFS2_I(inode)->ip_clusters != cpos),
3743                         "Device %s, asking for sparse allocation: inode %llu, "
3744                         "cpos %u, clusters %u\n",
3745                         osb->dev_str,
3746                         (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
3747                         OCFS2_I(inode)->ip_clusters);
3748
3749         memset(&rec, 0, sizeof(rec));
3750         rec.e_cpos = cpu_to_le32(cpos);
3751         rec.e_blkno = cpu_to_le64(start_blk);
3752         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
3753         rec.e_flags = flags;
3754
3755         status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
3756                                           &insert);
3757         if (status < 0) {
3758                 mlog_errno(status);
3759                 goto bail;
3760         }
3761
3762         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
3763              "Insert.contig_index: %d, Insert.free_records: %d, "
3764              "Insert.tree_depth: %d\n",
3765              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
3766              insert.ins_free_records, insert.ins_tree_depth);
3767
3768         if (insert.ins_contig == CONTIG_NONE && insert.ins_free_records == 0) {
3769                 status = ocfs2_grow_tree(inode, handle, fe_bh,
3770                                          &insert.ins_tree_depth, &last_eb_bh,
3771                                          meta_ac);
3772                 if (status) {
3773                         mlog_errno(status);
3774                         goto bail;
3775                 }
3776         }
3777
3778         /* Finally, we can add clusters. This might rotate the tree for us. */
3779         status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
3780         if (status < 0)
3781                 mlog_errno(status);
3782         else
3783                 ocfs2_extent_map_insert_rec(inode, &rec);
3784
3785 bail:
3786         if (bh)
3787                 brelse(bh);
3788
3789         if (last_eb_bh)
3790                 brelse(last_eb_bh);
3791
3792         mlog_exit(status);
3793         return status;
3794 }
3795
3796 static void ocfs2_make_right_split_rec(struct super_block *sb,
3797                                        struct ocfs2_extent_rec *split_rec,
3798                                        u32 cpos,
3799                                        struct ocfs2_extent_rec *rec)
3800 {
3801         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
3802         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
3803
3804         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
3805
3806         split_rec->e_cpos = cpu_to_le32(cpos);
3807         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
3808
3809         split_rec->e_blkno = rec->e_blkno;
3810         le64_add_cpu(&split_rec->e_blkno,
3811                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
3812
3813         split_rec->e_flags = rec->e_flags;
3814 }
3815
3816 static int ocfs2_split_and_insert(struct inode *inode,
3817                                   handle_t *handle,
3818                                   struct ocfs2_path *path,
3819                                   struct buffer_head *di_bh,
3820                                   struct buffer_head **last_eb_bh,
3821                                   int split_index,
3822                                   struct ocfs2_extent_rec *orig_split_rec,
3823                                   struct ocfs2_alloc_context *meta_ac)
3824 {
3825         int ret = 0, depth;
3826         unsigned int insert_range, rec_range, do_leftright = 0;
3827         struct ocfs2_extent_rec tmprec;
3828         struct ocfs2_extent_list *rightmost_el;
3829         struct ocfs2_extent_rec rec;
3830         struct ocfs2_extent_rec split_rec = *orig_split_rec;
3831         struct ocfs2_insert_type insert;
3832         struct ocfs2_extent_block *eb;
3833         struct ocfs2_dinode *di;
3834
3835 leftright:
3836         /*
3837          * Store a copy of the record on the stack - it might move
3838          * around as the tree is manipulated below.
3839          */
3840         rec = path_leaf_el(path)->l_recs[split_index];
3841
3842         di = (struct ocfs2_dinode *)di_bh->b_data;
3843         rightmost_el = &di->id2.i_list;
3844
3845         depth = le16_to_cpu(rightmost_el->l_tree_depth);
3846         if (depth) {
3847                 BUG_ON(!(*last_eb_bh));
3848                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
3849                 rightmost_el = &eb->h_list;
3850         }
3851
3852         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
3853             le16_to_cpu(rightmost_el->l_count)) {
3854                 int old_depth = depth;
3855
3856                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
3857                                       meta_ac);
3858                 if (ret) {
3859                         mlog_errno(ret);
3860                         goto out;
3861                 }
3862
3863                 if (old_depth != depth) {
3864                         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
3865                         rightmost_el = &eb->h_list;
3866                 }
3867         }
3868
3869         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
3870         insert.ins_appending = APPEND_NONE;
3871         insert.ins_contig = CONTIG_NONE;
3872         insert.ins_free_records = le16_to_cpu(rightmost_el->l_count)
3873                 - le16_to_cpu(rightmost_el->l_next_free_rec);
3874         insert.ins_tree_depth = depth;
3875
3876         insert_range = le32_to_cpu(split_rec.e_cpos) +
3877                 le16_to_cpu(split_rec.e_leaf_clusters);
3878         rec_range = le32_to_cpu(rec.e_cpos) +
3879                 le16_to_cpu(rec.e_leaf_clusters);
3880
3881         if (split_rec.e_cpos == rec.e_cpos) {
3882                 insert.ins_split = SPLIT_LEFT;
3883         } else if (insert_range == rec_range) {
3884                 insert.ins_split = SPLIT_RIGHT;
3885         } else {
3886                 /*
3887                  * Left/right split. We fake this as a right split
3888                  * first and then make a second pass as a left split.
3889                  */
3890                 insert.ins_split = SPLIT_RIGHT;
3891
3892                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
3893                                            &rec);
3894
3895                 split_rec = tmprec;
3896
3897                 BUG_ON(do_leftright);
3898                 do_leftright = 1;
3899         }
3900
3901         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
3902                                      &insert);
3903         if (ret) {
3904                 mlog_errno(ret);
3905                 goto out;
3906         }
3907
3908         if (do_leftright == 1) {
3909                 u32 cpos;
3910                 struct ocfs2_extent_list *el;
3911
3912                 do_leftright++;
3913                 split_rec = *orig_split_rec;
3914
3915                 ocfs2_reinit_path(path, 1);
3916
3917                 cpos = le32_to_cpu(split_rec.e_cpos);
3918                 ret = ocfs2_find_path(inode, path, cpos);
3919                 if (ret) {
3920                         mlog_errno(ret);
3921                         goto out;
3922                 }
3923
3924                 el = path_leaf_el(path);
3925                 split_index = ocfs2_search_extent_list(el, cpos);
3926                 goto leftright;
3927         }
3928 out:
3929
3930         return ret;
3931 }
3932
3933 /*
3934  * Mark part or all of the extent record at split_index in the leaf
3935  * pointed to by path as written. This removes the unwritten
3936  * extent flag.
3937  *
3938  * Care is taken to handle contiguousness so as to not grow the tree.
3939  *
3940  * meta_ac is not strictly necessary - we only truly need it if growth
3941  * of the tree is required. All other cases will degrade into a less
3942  * optimal tree layout.
3943  *
3944  * last_eb_bh should be the rightmost leaf block for any inode with a
3945  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
3946  *
3947  * This code is optimized for readability - several passes might be
3948  * made over certain portions of the tree. All of those blocks will
3949  * have been brought into cache (and pinned via the journal), so the
3950  * extra overhead is not expressed in terms of disk reads.
3951  */
3952 static int __ocfs2_mark_extent_written(struct inode *inode,
3953                                        struct buffer_head *di_bh,
3954                                        handle_t *handle,
3955                                        struct ocfs2_path *path,
3956                                        int split_index,
3957                                        struct ocfs2_extent_rec *split_rec,
3958                                        struct ocfs2_alloc_context *meta_ac,
3959                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
3960 {
3961         int ret = 0;
3962         struct ocfs2_extent_list *el = path_leaf_el(path);
3963         struct buffer_head *eb_bh, *last_eb_bh = NULL;
3964         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3965         struct ocfs2_merge_ctxt ctxt;
3966         struct ocfs2_extent_list *rightmost_el;
3967
3968         if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) {
3969                 ret = -EIO;
3970                 mlog_errno(ret);
3971                 goto out;
3972         }
3973
3974         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
3975             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
3976              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
3977                 ret = -EIO;
3978                 mlog_errno(ret);
3979                 goto out;
3980         }
3981
3982         eb_bh = path_leaf_bh(path);
3983         ret = ocfs2_journal_access(handle, inode, eb_bh,
3984                                    OCFS2_JOURNAL_ACCESS_WRITE);
3985         if (ret) {
3986                 mlog_errno(ret);
3987                 goto out;
3988         }
3989
3990         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el,
3991                                                             split_index,
3992                                                             split_rec);
3993
3994         /*
3995          * The core merge / split code wants to know how much room is
3996          * left in this inodes allocation tree, so we pass the
3997          * rightmost extent list.
3998          */
3999         if (path->p_tree_depth) {
4000                 struct ocfs2_extent_block *eb;
4001                 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4002
4003                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4004                                        le64_to_cpu(di->i_last_eb_blk),
4005                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4006                 if (ret) {
4007                         mlog_exit(ret);
4008                         goto out;
4009                 }
4010
4011                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4012                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4013                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4014                         ret = -EROFS;
4015                         goto out;
4016                 }
4017
4018                 rightmost_el = &eb->h_list;
4019         } else
4020                 rightmost_el = path_root_el(path);
4021
4022         ctxt.c_used_tail_recs = le16_to_cpu(rightmost_el->l_next_free_rec);
4023         if (ctxt.c_used_tail_recs > 0 &&
4024             ocfs2_is_empty_extent(&rightmost_el->l_recs[0]))
4025                 ctxt.c_used_tail_recs--;
4026
4027         if (rec->e_cpos == split_rec->e_cpos &&
4028             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4029                 ctxt.c_split_covers_rec = 1;
4030         else
4031                 ctxt.c_split_covers_rec = 0;
4032
4033         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4034
4035         mlog(0, "index: %d, contig: %u, used_tail_recs: %u, "
4036              "has_empty: %u, split_covers: %u\n", split_index,
4037              ctxt.c_contig_type, ctxt.c_used_tail_recs,
4038              ctxt.c_has_empty_extent, ctxt.c_split_covers_rec);
4039
4040         if (ctxt.c_contig_type == CONTIG_NONE) {
4041                 if (ctxt.c_split_covers_rec)
4042                         el->l_recs[split_index] = *split_rec;
4043                 else
4044                         ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4045                                                      &last_eb_bh, split_index,
4046                                                      split_rec, meta_ac);
4047                 if (ret)
4048                         mlog_errno(ret);
4049         } else {
4050                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4051                                                 split_index, split_rec,
4052                                                 dealloc, &ctxt);
4053                 if (ret)
4054                         mlog_errno(ret);
4055         }
4056
4057         ocfs2_journal_dirty(handle, eb_bh);
4058
4059 out:
4060         brelse(last_eb_bh);
4061         return ret;
4062 }
4063
4064 /*
4065  * Mark the already-existing extent at cpos as written for len clusters.
4066  *
4067  * If the existing extent is larger than the request, initiate a
4068  * split. An attempt will be made at merging with adjacent extents.
4069  *
4070  * The caller is responsible for passing down meta_ac if we'll need it.
4071  */
4072 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4073                               handle_t *handle, u32 cpos, u32 len, u32 phys,
4074                               struct ocfs2_alloc_context *meta_ac,
4075                               struct ocfs2_cached_dealloc_ctxt *dealloc)
4076 {
4077         int ret, index;
4078         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4079         struct ocfs2_extent_rec split_rec;
4080         struct ocfs2_path *left_path = NULL;
4081         struct ocfs2_extent_list *el;
4082
4083         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4084              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4085
4086         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4087                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4088                             "that are being written to, but the feature bit "
4089                             "is not set in the super block.",
4090                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
4091                 ret = -EROFS;
4092                 goto out;
4093         }
4094
4095         /*
4096          * XXX: This should be fixed up so that we just re-insert the
4097          * next extent records.
4098          */
4099         ocfs2_extent_map_trunc(inode, 0);
4100
4101         left_path = ocfs2_new_inode_path(di_bh);
4102         if (!left_path) {
4103                 ret = -ENOMEM;
4104                 mlog_errno(ret);
4105                 goto out;
4106         }
4107
4108         ret = ocfs2_find_path(inode, left_path, cpos);
4109         if (ret) {
4110                 mlog_errno(ret);
4111                 goto out;
4112         }
4113         el = path_leaf_el(left_path);
4114
4115         index = ocfs2_search_extent_list(el, cpos);
4116         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4117                 ocfs2_error(inode->i_sb,
4118                             "Inode %llu has an extent at cpos %u which can no "
4119                             "longer be found.\n",
4120                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4121                 ret = -EROFS;
4122                 goto out;
4123         }
4124
4125         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4126         split_rec.e_cpos = cpu_to_le32(cpos);
4127         split_rec.e_leaf_clusters = cpu_to_le16(len);
4128         split_rec.e_blkno = cpu_to_le64(start_blkno);
4129         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4130         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4131
4132         ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4133                                           index, &split_rec, meta_ac, dealloc);
4134         if (ret)
4135                 mlog_errno(ret);
4136
4137 out:
4138         ocfs2_free_path(left_path);
4139         return ret;
4140 }
4141
4142 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4143                             handle_t *handle, struct ocfs2_path *path,
4144                             int index, u32 new_range,
4145                             struct ocfs2_alloc_context *meta_ac)
4146 {
4147         int ret, depth, credits = handle->h_buffer_credits;
4148         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4149         struct buffer_head *last_eb_bh = NULL;
4150         struct ocfs2_extent_block *eb;
4151         struct ocfs2_extent_list *rightmost_el, *el;
4152         struct ocfs2_extent_rec split_rec;
4153         struct ocfs2_extent_rec *rec;
4154         struct ocfs2_insert_type insert;
4155
4156         /*
4157          * Setup the record to split before we grow the tree.
4158          */
4159         el = path_leaf_el(path);
4160         rec = &el->l_recs[index];
4161         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4162
4163         depth = path->p_tree_depth;
4164         if (depth > 0) {
4165                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4166                                        le64_to_cpu(di->i_last_eb_blk),
4167                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4168                 if (ret < 0) {
4169                         mlog_errno(ret);
4170                         goto out;
4171                 }
4172
4173                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4174                 rightmost_el = &eb->h_list;
4175         } else
4176                 rightmost_el = path_leaf_el(path);
4177
4178         credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4179         ret = ocfs2_extend_trans(handle, credits);
4180         if (ret) {
4181                 mlog_errno(ret);
4182                 goto out;
4183         }
4184
4185         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4186             le16_to_cpu(rightmost_el->l_count)) {
4187                 int old_depth = depth;
4188
4189                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4190                                       meta_ac);
4191                 if (ret) {
4192                         mlog_errno(ret);
4193                         goto out;
4194                 }
4195
4196                 if (old_depth != depth) {
4197                         eb = (struct ocfs2_extent_block *)last_eb_bh->b_data;
4198                         rightmost_el = &eb->h_list;
4199                 }
4200         }
4201
4202         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4203         insert.ins_appending = APPEND_NONE;
4204         insert.ins_contig = CONTIG_NONE;
4205         insert.ins_split = SPLIT_RIGHT;
4206         insert.ins_free_records = le16_to_cpu(rightmost_el->l_count)
4207                 - le16_to_cpu(rightmost_el->l_next_free_rec);
4208         insert.ins_tree_depth = depth;
4209
4210         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4211         if (ret)
4212                 mlog_errno(ret);
4213
4214 out:
4215         brelse(last_eb_bh);
4216         return ret;
4217 }
4218
4219 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4220                               struct ocfs2_path *path, int index,
4221                               struct ocfs2_cached_dealloc_ctxt *dealloc,
4222                               u32 cpos, u32 len)
4223 {
4224         int ret;
4225         u32 left_cpos, rec_range, trunc_range;
4226         int wants_rotate = 0, is_rightmost_tree_rec = 0;
4227         struct super_block *sb = inode->i_sb;
4228         struct ocfs2_path *left_path = NULL;
4229         struct ocfs2_extent_list *el = path_leaf_el(path);
4230         struct ocfs2_extent_rec *rec;
4231         struct ocfs2_extent_block *eb;
4232
4233         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4234                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4235                 if (ret) {
4236                         mlog_errno(ret);
4237                         goto out;
4238                 }
4239
4240                 index--;
4241         }
4242
4243         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4244             path->p_tree_depth) {
4245                 /*
4246                  * Check whether this is the rightmost tree record. If
4247                  * we remove all of this record or part of its right
4248                  * edge then an update of the record lengths above it
4249                  * will be required.
4250                  */
4251                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4252                 if (eb->h_next_leaf_blk == 0)
4253                         is_rightmost_tree_rec = 1;
4254         }
4255
4256         rec = &el->l_recs[index];
4257         if (index == 0 && path->p_tree_depth &&
4258             le32_to_cpu(rec->e_cpos) == cpos) {
4259                 /*
4260                  * Changing the leftmost offset (via partial or whole
4261                  * record truncate) of an interior (or rightmost) path
4262                  * means we have to update the subtree that is formed
4263                  * by this leaf and the one to it's left.
4264                  *
4265                  * There are two cases we can skip:
4266                  *   1) Path is the leftmost one in our inode tree.
4267                  *   2) The leaf is rightmost and will be empty after
4268                  *      we remove the extent record - the rotate code
4269                  *      knows how to update the newly formed edge.
4270                  */
4271
4272                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4273                                                     &left_cpos);
4274                 if (ret) {
4275                         mlog_errno(ret);
4276                         goto out;
4277                 }
4278
4279                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4280                         left_path = ocfs2_new_path(path_root_bh(path),
4281                                                    path_root_el(path));
4282                         if (!left_path) {
4283                                 ret = -ENOMEM;
4284                                 mlog_errno(ret);
4285                                 goto out;
4286                         }
4287
4288                         ret = ocfs2_find_path(inode, left_path, left_cpos);
4289                         if (ret) {
4290                                 mlog_errno(ret);
4291                                 goto out;
4292                         }
4293                 }
4294         }
4295
4296         ret = ocfs2_extend_rotate_transaction(handle, 0,
4297                                               handle->h_buffer_credits,
4298                                               path);
4299         if (ret) {
4300                 mlog_errno(ret);
4301                 goto out;
4302         }
4303
4304         ret = ocfs2_journal_access_path(inode, handle, path);
4305         if (ret) {
4306                 mlog_errno(ret);
4307                 goto out;
4308         }
4309
4310         ret = ocfs2_journal_access_path(inode, handle, left_path);
4311         if (ret) {
4312                 mlog_errno(ret);
4313                 goto out;
4314         }
4315
4316         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4317         trunc_range = cpos + len;
4318
4319         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4320                 int next_free;
4321
4322                 memset(rec, 0, sizeof(*rec));
4323                 ocfs2_cleanup_merge(el, index);
4324                 wants_rotate = 1;
4325
4326                 next_free = le16_to_cpu(el->l_next_free_rec);
4327                 if (is_rightmost_tree_rec && next_free > 1) {
4328                         /*
4329                          * We skip the edge update if this path will
4330                          * be deleted by the rotate code.
4331                          */
4332                         rec = &el->l_recs[next_free - 1];
4333                         ocfs2_adjust_rightmost_records(inode, handle, path,
4334                                                        rec);
4335                 }
4336         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
4337                 /* Remove leftmost portion of the record. */
4338                 le32_add_cpu(&rec->e_cpos, len);
4339                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4340                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4341         } else if (rec_range == trunc_range) {
4342                 /* Remove rightmost portion of the record */
4343                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4344                 if (is_rightmost_tree_rec)
4345                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4346         } else {
4347                 /* Caller should have trapped this. */
4348                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4349                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4350                      le32_to_cpu(rec->e_cpos),
4351                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4352                 BUG();
4353         }
4354
4355         if (left_path) {
4356                 int subtree_index;
4357
4358                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4359                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
4360                                            subtree_index);
4361         }
4362
4363         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4364
4365         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4366         if (ret) {
4367                 mlog_errno(ret);
4368                 goto out;
4369         }
4370
4371 out:
4372         ocfs2_free_path(left_path);
4373         return ret;
4374 }
4375
4376 static int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4377                                u32 cpos, u32 len, handle_t *handle,
4378                                struct ocfs2_alloc_context *meta_ac,
4379                                struct ocfs2_cached_dealloc_ctxt *dealloc)
4380 {
4381         int ret, index;
4382         u32 rec_range, trunc_range;
4383         struct ocfs2_extent_rec *rec;
4384         struct ocfs2_extent_list *el;
4385         struct ocfs2_path *path;
4386
4387         ocfs2_extent_map_trunc(inode, 0);
4388
4389         path = ocfs2_new_inode_path(di_bh);
4390         if (!path) {
4391                 ret = -ENOMEM;
4392                 mlog_errno(ret);
4393                 goto out;
4394         }
4395
4396         ret = ocfs2_find_path(inode, path, cpos);
4397         if (ret) {
4398                 mlog_errno(ret);
4399                 goto out;
4400         }
4401
4402         el = path_leaf_el(path);
4403         index = ocfs2_search_extent_list(el, cpos);
4404         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4405                 ocfs2_error(inode->i_sb,
4406                             "Inode %llu has an extent at cpos %u which can no "
4407                             "longer be found.\n",
4408                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4409                 ret = -EROFS;
4410                 goto out;
4411         }
4412
4413         /*
4414          * We have 3 cases of extent removal:
4415          *   1) Range covers the entire extent rec
4416          *   2) Range begins or ends on one edge of the extent rec
4417          *   3) Range is in the middle of the extent rec (no shared edges)
4418          *
4419          * For case 1 we remove the extent rec and left rotate to
4420          * fill the hole.
4421          *
4422          * For case 2 we just shrink the existing extent rec, with a
4423          * tree update if the shrinking edge is also the edge of an
4424          * extent block.
4425          *
4426          * For case 3 we do a right split to turn the extent rec into
4427          * something case 2 can handle.
4428          */
4429         rec = &el->l_recs[index];
4430         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4431         trunc_range = cpos + len;
4432
4433         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4434
4435         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4436              "(cpos %u, len %u)\n",
4437              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4438              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4439
4440         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4441                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4442                                          cpos, len);
4443                 if (ret) {
4444                         mlog_errno(ret);
4445                         goto out;
4446                 }
4447         } else {
4448                 ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4449                                        trunc_range, meta_ac);
4450                 if (ret) {
4451                         mlog_errno(ret);
4452                         goto out;
4453                 }
4454
4455                 /*
4456                  * The split could have manipulated the tree enough to
4457                  * move the record location, so we have to look for it again.
4458                  */
4459                 ocfs2_reinit_path(path, 1);
4460
4461                 ret = ocfs2_find_path(inode, path, cpos);
4462                 if (ret) {
4463                         mlog_errno(ret);
4464                         goto out;
4465                 }
4466
4467                 el = path_leaf_el(path);
4468                 index = ocfs2_search_extent_list(el, cpos);
4469                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4470                         ocfs2_error(inode->i_sb,
4471                                     "Inode %llu: split at cpos %u lost record.",
4472                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4473                                     cpos);
4474                         ret = -EROFS;
4475                         goto out;
4476                 }
4477
4478                 /*
4479                  * Double check our values here. If anything is fishy,
4480                  * it's easier to catch it at the top level.
4481                  */
4482                 rec = &el->l_recs[index];
4483                 rec_range = le32_to_cpu(rec->e_cpos) +
4484                         ocfs2_rec_clusters(el, rec);
4485                 if (rec_range != trunc_range) {
4486                         ocfs2_error(inode->i_sb,
4487                                     "Inode %llu: error after split at cpos %u"
4488                                     "trunc len %u, existing record is (%u,%u)",
4489                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4490                                     cpos, len, le32_to_cpu(rec->e_cpos),
4491                                     ocfs2_rec_clusters(el, rec));
4492                         ret = -EROFS;
4493                         goto out;
4494                 }
4495
4496                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4497                                          cpos, len);
4498                 if (ret) {
4499                         mlog_errno(ret);
4500                         goto out;
4501                 }
4502         }
4503
4504 out:
4505         ocfs2_free_path(path);
4506         return ret;
4507 }
4508
4509 static inline int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4510 {
4511         struct buffer_head *tl_bh = osb->osb_tl_bh;
4512         struct ocfs2_dinode *di;
4513         struct ocfs2_truncate_log *tl;
4514
4515         di = (struct ocfs2_dinode *) tl_bh->b_data;
4516         tl = &di->id2.i_dealloc;
4517
4518         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4519                         "slot %d, invalid truncate log parameters: used = "
4520                         "%u, count = %u\n", osb->slot_num,
4521                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4522         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4523 }
4524
4525 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4526                                            unsigned int new_start)
4527 {
4528         unsigned int tail_index;
4529         unsigned int current_tail;
4530
4531         /* No records, nothing to coalesce */
4532         if (!le16_to_cpu(tl->tl_used))
4533                 return 0;
4534
4535         tail_index = le16_to_cpu(tl->tl_used) - 1;
4536         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4537         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4538
4539         return current_tail == new_start;
4540 }
4541
4542 static int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4543                                      handle_t *handle,
4544                                      u64 start_blk,
4545                                      unsigned int num_clusters)
4546 {
4547         int status, index;
4548         unsigned int start_cluster, tl_count;
4549         struct inode *tl_inode = osb->osb_tl_inode;
4550         struct buffer_head *tl_bh = osb->osb_tl_bh;
4551         struct ocfs2_dinode *di;
4552         struct ocfs2_truncate_log *tl;
4553
4554         mlog_entry("start_blk = %llu, num_clusters = %u\n",
4555                    (unsigned long long)start_blk, num_clusters);
4556
4557         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4558
4559         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4560
4561         di = (struct ocfs2_dinode *) tl_bh->b_data;
4562         tl = &di->id2.i_dealloc;
4563         if (!OCFS2_IS_VALID_DINODE(di)) {
4564                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4565                 status = -EIO;
4566                 goto bail;
4567         }
4568
4569         tl_count = le16_to_cpu(tl->tl_count);
4570         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4571                         tl_count == 0,
4572                         "Truncate record count on #%llu invalid "
4573                         "wanted %u, actual %u\n",
4574                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4575                         ocfs2_truncate_recs_per_inode(osb->sb),
4576                         le16_to_cpu(tl->tl_count));
4577
4578         /* Caller should have known to flush before calling us. */
4579         index = le16_to_cpu(tl->tl_used);
4580         if (index >= tl_count) {
4581                 status = -ENOSPC;
4582                 mlog_errno(status);
4583                 goto bail;
4584         }
4585
4586         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4587                                       OCFS2_JOURNAL_ACCESS_WRITE);
4588         if (status < 0) {
4589                 mlog_errno(status);
4590                 goto bail;
4591         }
4592
4593         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4594              "%llu (index = %d)\n", num_clusters, start_cluster,
4595              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4596
4597         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4598                 /*
4599                  * Move index back to the record we are coalescing with.
4600                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4601                  */
4602                 index--;
4603
4604                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4605                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4606                      index, le32_to_cpu(tl->tl_recs[index].t_start),
4607                      num_clusters);
4608         } else {
4609                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4610                 tl->tl_used = cpu_to_le16(index + 1);
4611         }
4612         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4613
4614         status = ocfs2_journal_dirty(handle, tl_bh);
4615         if (status < 0) {
4616                 mlog_errno(status);
4617                 goto bail;
4618         }
4619
4620 bail:
4621         mlog_exit(status);
4622         return status;
4623 }
4624
4625 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4626                                          handle_t *handle,
4627                                          struct inode *data_alloc_inode,
4628                                          struct buffer_head *data_alloc_bh)
4629 {
4630         int status = 0;
4631         int i;
4632         unsigned int num_clusters;
4633         u64 start_blk;
4634         struct ocfs2_truncate_rec rec;
4635         struct ocfs2_dinode *di;
4636         struct ocfs2_truncate_log *tl;
4637         struct inode *tl_inode = osb->osb_tl_inode;
4638         struct buffer_head *tl_bh = osb->osb_tl_bh;
4639
4640         mlog_entry_void();
4641
4642         di = (struct ocfs2_dinode *) tl_bh->b_data;
4643         tl = &di->id2.i_dealloc;
4644         i = le16_to_cpu(tl->tl_used) - 1;
4645         while (i >= 0) {
4646                 /* Caller has given us at least enough credits to
4647                  * update the truncate log dinode */
4648                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4649                                               OCFS2_JOURNAL_ACCESS_WRITE);
4650                 if (status < 0) {
4651                         mlog_errno(status);
4652                         goto bail;
4653                 }
4654
4655                 tl->tl_used = cpu_to_le16(i);
4656
4657                 status = ocfs2_journal_dirty(handle, tl_bh);
4658                 if (status < 0) {
4659                         mlog_errno(status);
4660                         goto bail;
4661                 }
4662
4663                 /* TODO: Perhaps we can calculate the bulk of the
4664                  * credits up front rather than extending like
4665                  * this. */
4666                 status = ocfs2_extend_trans(handle,
4667                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
4668                 if (status < 0) {
4669                         mlog_errno(status);
4670                         goto bail;
4671                 }
4672
4673                 rec = tl->tl_recs[i];
4674                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
4675                                                     le32_to_cpu(rec.t_start));
4676                 num_clusters = le32_to_cpu(rec.t_clusters);
4677
4678                 /* if start_blk is not set, we ignore the record as
4679                  * invalid. */
4680                 if (start_blk) {
4681                         mlog(0, "free record %d, start = %u, clusters = %u\n",
4682                              i, le32_to_cpu(rec.t_start), num_clusters);
4683
4684                         status = ocfs2_free_clusters(handle, data_alloc_inode,
4685                                                      data_alloc_bh, start_blk,
4686                                                      num_clusters);
4687                         if (status < 0) {
4688                                 mlog_errno(status);
4689                                 goto bail;
4690                         }
4691                 }
4692                 i--;
4693         }
4694
4695 bail:
4696         mlog_exit(status);
4697         return status;
4698 }
4699
4700 /* Expects you to already be holding tl_inode->i_mutex */
4701 static int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4702 {
4703         int status;
4704         unsigned int num_to_flush;
4705         handle_t *handle;
4706         struct inode *tl_inode = osb->osb_tl_inode;
4707         struct inode *data_alloc_inode = NULL;
4708         struct buffer_head *tl_bh = osb->osb_tl_bh;
4709         struct buffer_head *data_alloc_bh = NULL;
4710         struct ocfs2_dinode *di;
4711         struct ocfs2_truncate_log *tl;
4712
4713         mlog_entry_void();
4714
4715         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4716
4717         di = (struct ocfs2_dinode *) tl_bh->b_data;
4718         tl = &di->id2.i_dealloc;
4719         if (!OCFS2_IS_VALID_DINODE(di)) {
4720                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4721                 status = -EIO;
4722                 goto out;
4723         }
4724
4725         num_to_flush = le16_to_cpu(tl->tl_used);
4726         mlog(0, "Flush %u records from truncate log #%llu\n",
4727              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
4728         if (!num_to_flush) {
4729                 status = 0;
4730                 goto out;
4731         }
4732
4733         data_alloc_inode = ocfs2_get_system_file_inode(osb,
4734                                                        GLOBAL_BITMAP_SYSTEM_INODE,
4735                                                        OCFS2_INVALID_SLOT);
4736         if (!data_alloc_inode) {
4737                 status = -EINVAL;
4738                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
4739                 goto out;
4740         }
4741
4742         mutex_lock(&data_alloc_inode->i_mutex);
4743
4744         status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
4745         if (status < 0) {
4746                 mlog_errno(status);
4747                 goto out_mutex;
4748         }
4749
4750         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4751         if (IS_ERR(handle)) {
4752                 status = PTR_ERR(handle);
4753                 mlog_errno(status);
4754                 goto out_unlock;
4755         }
4756
4757         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
4758                                                data_alloc_bh);
4759         if (status < 0)
4760                 mlog_errno(status);
4761
4762         ocfs2_commit_trans(osb, handle);
4763
4764 out_unlock:
4765         brelse(data_alloc_bh);
4766         ocfs2_meta_unlock(data_alloc_inode, 1);
4767
4768 out_mutex:
4769         mutex_unlock(&data_alloc_inode->i_mutex);
4770         iput(data_alloc_inode);
4771
4772 out:
4773         mlog_exit(status);
4774         return status;
4775 }
4776
4777 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4778 {
4779         int status;
4780         struct inode *tl_inode = osb->osb_tl_inode;
4781
4782         mutex_lock(&tl_inode->i_mutex);
4783         status = __ocfs2_flush_truncate_log(osb);
4784         mutex_unlock(&tl_inode->i_mutex);
4785
4786         return status;
4787 }
4788
4789 static void ocfs2_truncate_log_worker(struct work_struct *work)
4790 {
4791         int status;
4792         struct ocfs2_super *osb =
4793                 container_of(work, struct ocfs2_super,
4794                              osb_truncate_log_wq.work);
4795
4796         mlog_entry_void();
4797
4798         status = ocfs2_flush_truncate_log(osb);
4799         if (status < 0)
4800                 mlog_errno(status);
4801
4802         mlog_exit(status);
4803 }
4804
4805 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
4806 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
4807                                        int cancel)
4808 {
4809         if (osb->osb_tl_inode) {
4810                 /* We want to push off log flushes while truncates are
4811                  * still running. */
4812                 if (cancel)
4813                         cancel_delayed_work(&osb->osb_truncate_log_wq);
4814
4815                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
4816                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
4817         }
4818 }
4819
4820 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
4821                                        int slot_num,
4822                                        struct inode **tl_inode,
4823                                        struct buffer_head **tl_bh)
4824 {
4825         int status;
4826         struct inode *inode = NULL;
4827         struct buffer_head *bh = NULL;
4828
4829         inode = ocfs2_get_system_file_inode(osb,
4830                                            TRUNCATE_LOG_SYSTEM_INODE,
4831                                            slot_num);
4832         if (!inode) {
4833                 status = -EINVAL;
4834                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
4835                 goto bail;
4836         }
4837
4838         status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
4839                                   OCFS2_BH_CACHED, inode);
4840         if (status < 0) {
4841                 iput(inode);
4842                 mlog_errno(status);
4843                 goto bail;
4844         }
4845
4846         *tl_inode = inode;
4847         *tl_bh    = bh;
4848 bail:
4849         mlog_exit(status);
4850         return status;
4851 }
4852
4853 /* called during the 1st stage of node recovery. we stamp a clean
4854  * truncate log and pass back a copy for processing later. if the
4855  * truncate log does not require processing, a *tl_copy is set to
4856  * NULL. */
4857 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
4858                                       int slot_num,
4859                                       struct ocfs2_dinode **tl_copy)
4860 {
4861         int status;
4862         struct inode *tl_inode = NULL;
4863         struct buffer_head *tl_bh = NULL;
4864         struct ocfs2_dinode *di;
4865         struct ocfs2_truncate_log *tl;
4866
4867         *tl_copy = NULL;
4868
4869         mlog(0, "recover truncate log from slot %d\n", slot_num);
4870
4871         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
4872         if (status < 0) {
4873                 mlog_errno(status);
4874                 goto bail;
4875         }
4876
4877         di = (struct ocfs2_dinode *) tl_bh->b_data;
4878         tl = &di->id2.i_dealloc;
4879         if (!OCFS2_IS_VALID_DINODE(di)) {
4880                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
4881                 status = -EIO;
4882                 goto bail;
4883         }
4884
4885         if (le16_to_cpu(tl->tl_used)) {
4886                 mlog(0, "We'll have %u logs to recover\n",
4887                      le16_to_cpu(tl->tl_used));
4888
4889                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
4890                 if (!(*tl_copy)) {
4891                         status = -ENOMEM;
4892                         mlog_errno(status);
4893                         goto bail;
4894                 }
4895
4896                 /* Assuming the write-out below goes well, this copy
4897                  * will be passed back to recovery for processing. */
4898                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
4899
4900                 /* All we need to do to clear the truncate log is set
4901                  * tl_used. */
4902                 tl->tl_used = 0;
4903
4904                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
4905                 if (status < 0) {
4906                         mlog_errno(status);
4907                         goto bail;
4908                 }
4909         }
4910
4911 bail:
4912         if (tl_inode)
4913                 iput(tl_inode);
4914         if (tl_bh)
4915                 brelse(tl_bh);
4916
4917         if (status < 0 && (*tl_copy)) {
4918                 kfree(*tl_copy);
4919                 *tl_copy = NULL;
4920         }
4921
4922         mlog_exit(status);
4923         return status;
4924 }
4925
4926 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
4927                                          struct ocfs2_dinode *tl_copy)
4928 {
4929         int status = 0;
4930         int i;
4931         unsigned int clusters, num_recs, start_cluster;
4932         u64 start_blk;
4933         handle_t *handle;
4934         struct inode *tl_inode = osb->osb_tl_inode;
4935         struct ocfs2_truncate_log *tl;
4936
4937         mlog_entry_void();
4938
4939         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
4940                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
4941                 return -EINVAL;
4942         }
4943
4944         tl = &tl_copy->id2.i_dealloc;
4945         num_recs = le16_to_cpu(tl->tl_used);
4946         mlog(0, "cleanup %u records from %llu\n", num_recs,
4947              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
4948
4949         mutex_lock(&tl_inode->i_mutex);
4950         for(i = 0; i < num_recs; i++) {
4951                 if (ocfs2_truncate_log_needs_flush(osb)) {
4952                         status = __ocfs2_flush_truncate_log(osb);
4953                         if (status < 0) {
4954                                 mlog_errno(status);
4955                                 goto bail_up;
4956                         }
4957                 }
4958
4959                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4960                 if (IS_ERR(handle)) {
4961                         status = PTR_ERR(handle);
4962                         mlog_errno(status);
4963                         goto bail_up;
4964                 }
4965
4966                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
4967                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
4968                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
4969
4970                 status = ocfs2_truncate_log_append(osb, handle,
4971                                                    start_blk, clusters);
4972                 ocfs2_commit_trans(osb, handle);
4973                 if (status < 0) {
4974                         mlog_errno(status);
4975                         goto bail_up;
4976                 }
4977         }
4978
4979 bail_up:
4980         mutex_unlock(&tl_inode->i_mutex);
4981
4982         mlog_exit(status);
4983         return status;
4984 }
4985
4986 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
4987 {
4988         int status;
4989         struct inode *tl_inode = osb->osb_tl_inode;
4990
4991         mlog_entry_void();
4992
4993         if (tl_inode) {
4994                 cancel_delayed_work(&osb->osb_truncate_log_wq);
4995                 flush_workqueue(ocfs2_wq);
4996
4997                 status = ocfs2_flush_truncate_log(osb);
4998                 if (status < 0)
4999                         mlog_errno(status);
5000
5001                 brelse(osb->osb_tl_bh);
5002                 iput(osb->osb_tl_inode);
5003         }
5004
5005         mlog_exit_void();
5006 }
5007
5008 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5009 {
5010         int status;
5011         struct inode *tl_inode = NULL;
5012         struct buffer_head *tl_bh = NULL;
5013
5014         mlog_entry_void();
5015
5016         status = ocfs2_get_truncate_log_info(osb,
5017                                              osb->slot_num,
5018                                              &tl_inode,
5019                                              &tl_bh);
5020         if (status < 0)
5021                 mlog_errno(status);
5022
5023         /* ocfs2_truncate_log_shutdown keys on the existence of
5024          * osb->osb_tl_inode so we don't set any of the osb variables
5025          * until we're sure all is well. */
5026         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5027                           ocfs2_truncate_log_worker);
5028         osb->osb_tl_bh    = tl_bh;
5029         osb->osb_tl_inode = tl_inode;
5030
5031         mlog_exit(status);
5032         return status;
5033 }
5034
5035 /*
5036  * Delayed de-allocation of suballocator blocks.
5037  *
5038  * Some sets of block de-allocations might involve multiple suballocator inodes.
5039  *
5040  * The locking for this can get extremely complicated, especially when
5041  * the suballocator inodes to delete from aren't known until deep
5042  * within an unrelated codepath.
5043  *
5044  * ocfs2_extent_block structures are a good example of this - an inode
5045  * btree could have been grown by any number of nodes each allocating
5046  * out of their own suballoc inode.
5047  *
5048  * These structures allow the delay of block de-allocation until a
5049  * later time, when locking of multiple cluster inodes won't cause
5050  * deadlock.
5051  */
5052
5053 /*
5054  * Describes a single block free from a suballocator
5055  */
5056 struct ocfs2_cached_block_free {
5057         struct ocfs2_cached_block_free          *free_next;
5058         u64                                     free_blk;
5059         unsigned int                            free_bit;
5060 };
5061
5062 struct ocfs2_per_slot_free_list {
5063         struct ocfs2_per_slot_free_list         *f_next_suballocator;
5064         int                                     f_inode_type;
5065         int                                     f_slot;
5066         struct ocfs2_cached_block_free          *f_first;
5067 };
5068
5069 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5070                                    int sysfile_type,
5071                                    int slot,
5072                                    struct ocfs2_cached_block_free *head)
5073 {
5074         int ret;
5075         u64 bg_blkno;
5076         handle_t *handle;
5077         struct inode *inode;
5078         struct buffer_head *di_bh = NULL;
5079         struct ocfs2_cached_block_free *tmp;
5080
5081         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5082         if (!inode) {
5083                 ret = -EINVAL;
5084                 mlog_errno(ret);
5085                 goto out;
5086         }
5087
5088         mutex_lock(&inode->i_mutex);
5089
5090         ret = ocfs2_meta_lock(inode, &di_bh, 1);
5091         if (ret) {
5092                 mlog_errno(ret);
5093                 goto out_mutex;
5094         }
5095
5096         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5097         if (IS_ERR(handle)) {
5098                 ret = PTR_ERR(handle);
5099                 mlog_errno(ret);
5100                 goto out_unlock;
5101         }
5102
5103         while (head) {
5104                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5105                                                       head->free_bit);
5106                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5107                      head->free_bit, (unsigned long long)head->free_blk);
5108
5109                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5110                                                head->free_bit, bg_blkno, 1);
5111                 if (ret) {
5112                         mlog_errno(ret);
5113                         goto out_journal;
5114                 }
5115
5116                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5117                 if (ret) {
5118                         mlog_errno(ret);
5119                         goto out_journal;
5120                 }
5121
5122                 tmp = head;
5123                 head = head->free_next;
5124                 kfree(tmp);
5125         }
5126
5127 out_journal:
5128         ocfs2_commit_trans(osb, handle);
5129
5130 out_unlock:
5131         ocfs2_meta_unlock(inode, 1);
5132         brelse(di_bh);
5133 out_mutex:
5134         mutex_unlock(&inode->i_mutex);
5135         iput(inode);
5136 out:
5137         while(head) {
5138                 /* Premature exit may have left some dangling items. */
5139                 tmp = head;
5140                 head = head->free_next;
5141                 kfree(tmp);
5142         }
5143
5144         return ret;
5145 }
5146
5147 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5148                        struct ocfs2_cached_dealloc_ctxt *ctxt)
5149 {
5150         int ret = 0, ret2;
5151         struct ocfs2_per_slot_free_list *fl;
5152
5153         if (!ctxt)
5154                 return 0;
5155
5156         while (ctxt->c_first_suballocator) {
5157                 fl = ctxt->c_first_suballocator;
5158
5159                 if (fl->f_first) {
5160                         mlog(0, "Free items: (type %u, slot %d)\n",
5161                              fl->f_inode_type, fl->f_slot);
5162                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5163                                                        fl->f_slot, fl->f_first);
5164                         if (ret2)
5165                                 mlog_errno(ret2);
5166                         if (!ret)
5167                                 ret = ret2;
5168                 }
5169
5170                 ctxt->c_first_suballocator = fl->f_next_suballocator;
5171                 kfree(fl);
5172         }
5173
5174         return ret;
5175 }
5176
5177 static struct ocfs2_per_slot_free_list *
5178 ocfs2_find_per_slot_free_list(int type,
5179                               int slot,
5180                               struct ocfs2_cached_dealloc_ctxt *ctxt)
5181 {
5182         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5183
5184         while (fl) {
5185                 if (fl->f_inode_type == type && fl->f_slot == slot)
5186                         return fl;
5187
5188                 fl = fl->f_next_suballocator;
5189         }
5190
5191         fl = kmalloc(sizeof(*fl), GFP_NOFS);
5192         if (fl) {
5193                 fl->f_inode_type = type;
5194                 fl->f_slot = slot;
5195                 fl->f_first = NULL;
5196                 fl->f_next_suballocator = ctxt->c_first_suballocator;
5197
5198                 ctxt->c_first_suballocator = fl;
5199         }
5200         return fl;
5201 }
5202
5203 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5204                                      int type, int slot, u64 blkno,
5205                                      unsigned int bit)
5206 {
5207         int ret;
5208         struct ocfs2_per_slot_free_list *fl;
5209         struct ocfs2_cached_block_free *item;
5210
5211         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5212         if (fl == NULL) {
5213                 ret = -ENOMEM;
5214                 mlog_errno(ret);
5215                 goto out;
5216         }
5217
5218         item = kmalloc(sizeof(*item), GFP_NOFS);
5219         if (item == NULL) {
5220                 ret = -ENOMEM;
5221                 mlog_errno(ret);
5222                 goto out;
5223         }
5224
5225         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5226              type, slot, bit, (unsigned long long)blkno);
5227
5228         item->free_blk = blkno;
5229         item->free_bit = bit;
5230         item->free_next = fl->f_first;
5231
5232         fl->f_first = item;
5233
5234         ret = 0;
5235 out:
5236         return ret;
5237 }
5238
5239 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5240                                          struct ocfs2_extent_block *eb)
5241 {
5242         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5243                                          le16_to_cpu(eb->h_suballoc_slot),
5244                                          le64_to_cpu(eb->h_blkno),
5245                                          le16_to_cpu(eb->h_suballoc_bit));
5246 }
5247
5248 /* This function will figure out whether the currently last extent
5249  * block will be deleted, and if it will, what the new last extent
5250  * block will be so we can update his h_next_leaf_blk field, as well
5251  * as the dinodes i_last_eb_blk */
5252 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5253                                        unsigned int clusters_to_del,
5254                                        struct ocfs2_path *path,
5255                                        struct buffer_head **new_last_eb)
5256 {
5257         int next_free, ret = 0;
5258         u32 cpos;
5259         struct ocfs2_extent_rec *rec;
5260         struct ocfs2_extent_block *eb;
5261         struct ocfs2_extent_list *el;
5262         struct buffer_head *bh = NULL;
5263
5264         *new_last_eb = NULL;
5265
5266         /* we have no tree, so of course, no last_eb. */
5267         if (!path->p_tree_depth)
5268                 goto out;
5269
5270         /* trunc to zero special case - this makes tree_depth = 0
5271          * regardless of what it is.  */
5272         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5273                 goto out;
5274
5275         el = path_leaf_el(path);
5276         BUG_ON(!el->l_next_free_rec);
5277
5278         /*
5279          * Make sure that this extent list will actually be empty
5280          * after we clear away the data. We can shortcut out if
5281          * there's more than one non-empty extent in the
5282          * list. Otherwise, a check of the remaining extent is
5283          * necessary.
5284          */
5285         next_free = le16_to_cpu(el->l_next_free_rec);
5286         rec = NULL;
5287         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5288                 if (next_free > 2)
5289                         goto out;
5290
5291                 /* We may have a valid extent in index 1, check it. */
5292                 if (next_free == 2)
5293                         rec = &el->l_recs[1];
5294
5295                 /*
5296                  * Fall through - no more nonempty extents, so we want
5297                  * to delete this leaf.
5298                  */
5299         } else {
5300                 if (next_free > 1)
5301                         goto out;
5302
5303                 rec = &el->l_recs[0];
5304         }
5305
5306         if (rec) {
5307                 /*
5308                  * Check it we'll only be trimming off the end of this
5309                  * cluster.
5310                  */
5311                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5312                         goto out;
5313         }
5314
5315         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5316         if (ret) {
5317                 mlog_errno(ret);
5318                 goto out;
5319         }
5320
5321         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5322         if (ret) {
5323                 mlog_errno(ret);
5324                 goto out;
5325         }
5326
5327         eb = (struct ocfs2_extent_block *) bh->b_data;
5328         el = &eb->h_list;
5329         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5330                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5331                 ret = -EROFS;
5332                 goto out;
5333         }
5334
5335         *new_last_eb = bh;
5336         get_bh(*new_last_eb);
5337         mlog(0, "returning block %llu, (cpos: %u)\n",
5338              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5339 out:
5340         brelse(bh);
5341
5342         return ret;
5343 }
5344
5345 /*
5346  * Trim some clusters off the rightmost edge of a tree. Only called
5347  * during truncate.
5348  *
5349  * The caller needs to:
5350  *   - start journaling of each path component.
5351  *   - compute and fully set up any new last ext block
5352  */
5353 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5354                            handle_t *handle, struct ocfs2_truncate_context *tc,
5355                            u32 clusters_to_del, u64 *delete_start)
5356 {
5357         int ret, i, index = path->p_tree_depth;
5358         u32 new_edge = 0;
5359         u64 deleted_eb = 0;
5360         struct buffer_head *bh;
5361         struct ocfs2_extent_list *el;
5362         struct ocfs2_extent_rec *rec;
5363
5364         *delete_start = 0;
5365
5366         while (index >= 0) {
5367                 bh = path->p_node[index].bh;
5368                 el = path->p_node[index].el;
5369
5370                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5371                      index,  (unsigned long long)bh->b_blocknr);
5372
5373                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5374
5375                 if (index !=
5376                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5377                         ocfs2_error(inode->i_sb,
5378                                     "Inode %lu has invalid ext. block %llu",
5379                                     inode->i_ino,
5380                                     (unsigned long long)bh->b_blocknr);
5381                         ret = -EROFS;
5382                         goto out;
5383                 }
5384
5385 find_tail_record:
5386                 i = le16_to_cpu(el->l_next_free_rec) - 1;
5387                 rec = &el->l_recs[i];
5388
5389                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5390                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5391                      ocfs2_rec_clusters(el, rec),
5392                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5393                      le16_to_cpu(el->l_next_free_rec));
5394
5395                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5396
5397                 if (le16_to_cpu(el->l_tree_depth) == 0) {
5398                         /*
5399                          * If the leaf block contains a single empty
5400                          * extent and no records, we can just remove
5401                          * the block.
5402                          */
5403                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
5404                                 memset(rec, 0,
5405                                        sizeof(struct ocfs2_extent_rec));
5406                                 el->l_next_free_rec = cpu_to_le16(0);
5407
5408                                 goto delete;
5409                         }
5410
5411                         /*
5412                          * Remove any empty extents by shifting things
5413                          * left. That should make life much easier on
5414                          * the code below. This condition is rare
5415                          * enough that we shouldn't see a performance
5416                          * hit.
5417                          */
5418                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5419                                 le16_add_cpu(&el->l_next_free_rec, -1);
5420
5421                                 for(i = 0;
5422                                     i < le16_to_cpu(el->l_next_free_rec); i++)
5423                                         el->l_recs[i] = el->l_recs[i + 1];
5424
5425                                 memset(&el->l_recs[i], 0,
5426                                        sizeof(struct ocfs2_extent_rec));
5427
5428                                 /*
5429                                  * We've modified our extent list. The
5430                                  * simplest way to handle this change
5431                                  * is to being the search from the
5432                                  * start again.
5433                                  */
5434                                 goto find_tail_record;
5435                         }
5436
5437                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5438
5439                         /*
5440                          * We'll use "new_edge" on our way back up the
5441                          * tree to know what our rightmost cpos is.
5442                          */
5443                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
5444                         new_edge += le32_to_cpu(rec->e_cpos);
5445
5446                         /*
5447                          * The caller will use this to delete data blocks.
5448                          */
5449                         *delete_start = le64_to_cpu(rec->e_blkno)
5450                                 + ocfs2_clusters_to_blocks(inode->i_sb,
5451                                         le16_to_cpu(rec->e_leaf_clusters));
5452
5453                         /*
5454                          * If it's now empty, remove this record.
5455                          */
5456                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5457                                 memset(rec, 0,
5458                                        sizeof(struct ocfs2_extent_rec));
5459                                 le16_add_cpu(&el->l_next_free_rec, -1);
5460                         }
5461                 } else {
5462                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5463                                 memset(rec, 0,
5464                                        sizeof(struct ocfs2_extent_rec));
5465                                 le16_add_cpu(&el->l_next_free_rec, -1);
5466
5467                                 goto delete;
5468                         }
5469
5470                         /* Can this actually happen? */
5471                         if (le16_to_cpu(el->l_next_free_rec) == 0)
5472                                 goto delete;
5473
5474                         /*
5475                          * We never actually deleted any clusters
5476                          * because our leaf was empty. There's no
5477                          * reason to adjust the rightmost edge then.
5478                          */
5479                         if (new_edge == 0)
5480                                 goto delete;
5481
5482                         rec->e_int_clusters = cpu_to_le32(new_edge);
5483                         le32_add_cpu(&rec->e_int_clusters,
5484                                      -le32_to_cpu(rec->e_cpos));
5485
5486                          /*
5487                           * A deleted child record should have been
5488                           * caught above.
5489                           */
5490                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5491                 }
5492
5493 delete:
5494                 ret = ocfs2_journal_dirty(handle, bh);
5495                 if (ret) {
5496                         mlog_errno(ret);
5497                         goto out;
5498                 }
5499
5500                 mlog(0, "extent list container %llu, after: record %d: "
5501                      "(%u, %u, %llu), next = %u.\n",
5502                      (unsigned long long)bh->b_blocknr, i,
5503                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5504                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5505                      le16_to_cpu(el->l_next_free_rec));
5506
5507                 /*
5508                  * We must be careful to only attempt delete of an
5509                  * extent block (and not the root inode block).
5510                  */
5511                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5512                         struct ocfs2_extent_block *eb =
5513                                 (struct ocfs2_extent_block *)bh->b_data;
5514
5515                         /*
5516                          * Save this for use when processing the
5517                          * parent block.
5518                          */
5519                         deleted_eb = le64_to_cpu(eb->h_blkno);
5520
5521                         mlog(0, "deleting this extent block.\n");
5522
5523                         ocfs2_remove_from_cache(inode, bh);
5524
5525                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5526                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5527                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5528
5529                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5530                         /* An error here is not fatal. */
5531                         if (ret < 0)
5532                                 mlog_errno(ret);
5533                 } else {
5534                         deleted_eb = 0;
5535                 }
5536
5537                 index--;
5538         }
5539
5540         ret = 0;
5541 out:
5542         return ret;
5543 }
5544
5545 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5546                              unsigned int clusters_to_del,
5547                              struct inode *inode,
5548                              struct buffer_head *fe_bh,
5549                              handle_t *handle,
5550                              struct ocfs2_truncate_context *tc,
5551                              struct ocfs2_path *path)
5552 {
5553         int status;
5554         struct ocfs2_dinode *fe;
5555         struct ocfs2_extent_block *last_eb = NULL;
5556         struct ocfs2_extent_list *el;
5557         struct buffer_head *last_eb_bh = NULL;
5558         u64 delete_blk = 0;
5559
5560         fe = (struct ocfs2_dinode *) fe_bh->b_data;
5561
5562         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5563                                              path, &last_eb_bh);
5564         if (status < 0) {
5565                 mlog_errno(status);
5566                 goto bail;
5567         }
5568
5569         /*
5570          * Each component will be touched, so we might as well journal
5571          * here to avoid having to handle errors later.
5572          */
5573         status = ocfs2_journal_access_path(inode, handle, path);
5574         if (status < 0) {
5575                 mlog_errno(status);
5576                 goto bail;
5577         }
5578
5579         if (last_eb_bh) {
5580                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
5581                                               OCFS2_JOURNAL_ACCESS_WRITE);
5582                 if (status < 0) {
5583                         mlog_errno(status);
5584                         goto bail;
5585                 }
5586
5587                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5588         }
5589
5590         el = &(fe->id2.i_list);
5591
5592         /*
5593          * Lower levels depend on this never happening, but it's best
5594          * to check it up here before changing the tree.
5595          */
5596         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5597                 ocfs2_error(inode->i_sb,
5598                             "Inode %lu has an empty extent record, depth %u\n",
5599                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
5600                 status = -EROFS;
5601                 goto bail;
5602         }
5603
5604         spin_lock(&OCFS2_I(inode)->ip_lock);
5605         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5606                                       clusters_to_del;
5607         spin_unlock(&OCFS2_I(inode)->ip_lock);
5608         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5609
5610         status = ocfs2_trim_tree(inode, path, handle, tc,
5611                                  clusters_to_del, &delete_blk);
5612         if (status) {
5613                 mlog_errno(status);
5614                 goto bail;
5615         }
5616
5617         if (le32_to_cpu(fe->i_clusters) == 0) {
5618                 /* trunc to zero is a special case. */
5619                 el->l_tree_depth = 0;
5620                 fe->i_last_eb_blk = 0;
5621         } else if (last_eb)
5622                 fe->i_last_eb_blk = last_eb->h_blkno;
5623
5624         status = ocfs2_journal_dirty(handle, fe_bh);
5625         if (status < 0) {
5626                 mlog_errno(status);
5627                 goto bail;
5628         }
5629
5630         if (last_eb) {
5631                 /* If there will be a new last extent block, then by
5632                  * definition, there cannot be any leaves to the right of
5633                  * him. */
5634                 last_eb->h_next_leaf_blk = 0;
5635                 status = ocfs2_journal_dirty(handle, last_eb_bh);
5636                 if (status < 0) {
5637                         mlog_errno(status);
5638                         goto bail;
5639                 }
5640         }
5641
5642         if (delete_blk) {
5643                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5644                                                    clusters_to_del);
5645                 if (status < 0) {
5646                         mlog_errno(status);
5647                         goto bail;
5648                 }
5649         }
5650         status = 0;
5651 bail:
5652
5653         mlog_exit(status);
5654         return status;
5655 }
5656
5657 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
5658 {
5659         set_buffer_uptodate(bh);
5660         mark_buffer_dirty(bh);
5661         return 0;
5662 }
5663
5664 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
5665 {
5666         set_buffer_uptodate(bh);
5667         mark_buffer_dirty(bh);
5668         return ocfs2_journal_dirty_data(handle, bh);
5669 }
5670
5671 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
5672                                      loff_t end, struct page **pages,
5673                                      int numpages, u64 phys, handle_t *handle)
5674 {
5675         int i, ret, partial = 0;
5676         void *kaddr;
5677         struct page *page;
5678         unsigned int from, to = PAGE_CACHE_SIZE;
5679         struct super_block *sb = inode->i_sb;
5680
5681         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5682
5683         if (numpages == 0)
5684                 goto out;
5685
5686         to = PAGE_CACHE_SIZE;
5687         for(i = 0; i < numpages; i++) {
5688                 page = pages[i];
5689
5690                 from = start & (PAGE_CACHE_SIZE - 1);
5691                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
5692                         to = end & (PAGE_CACHE_SIZE - 1);
5693
5694                 BUG_ON(from > PAGE_CACHE_SIZE);
5695                 BUG_ON(to > PAGE_CACHE_SIZE);
5696
5697                 ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0);
5698                 if (ret)
5699                         mlog_errno(ret);
5700
5701                 kaddr = kmap_atomic(page, KM_USER0);
5702                 memset(kaddr + from, 0, to - from);
5703                 kunmap_atomic(kaddr, KM_USER0);
5704
5705                 /*
5706                  * Need to set the buffers we zero'd into uptodate
5707                  * here if they aren't - ocfs2_map_page_blocks()
5708                  * might've skipped some
5709                  */
5710                 if (ocfs2_should_order_data(inode)) {
5711                         ret = walk_page_buffers(handle,
5712                                                 page_buffers(page),
5713                                                 from, to, &partial,
5714                                                 ocfs2_ordered_zero_func);
5715                         if (ret < 0)
5716                                 mlog_errno(ret);
5717                 } else {
5718                         ret = walk_page_buffers(handle, page_buffers(page),
5719                                                 from, to, &partial,
5720                                                 ocfs2_writeback_zero_func);
5721                         if (ret < 0)
5722                                 mlog_errno(ret);
5723                 }
5724
5725                 if (!partial)
5726                         SetPageUptodate(page);
5727
5728                 flush_dcache_page(page);
5729
5730                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
5731         }
5732 out:
5733         if (pages) {
5734                 for (i = 0; i < numpages; i++) {
5735                         page = pages[i];
5736                         unlock_page(page);
5737                         mark_page_accessed(page);
5738                         page_cache_release(page);
5739                 }
5740         }
5741 }
5742
5743 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
5744                                 struct page **pages, int *num, u64 *phys)
5745 {
5746         int i, numpages = 0, ret = 0;
5747         unsigned int ext_flags;
5748         struct super_block *sb = inode->i_sb;
5749         struct address_space *mapping = inode->i_mapping;
5750         unsigned long index;
5751         loff_t last_page_bytes;
5752
5753         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5754         BUG_ON(start > end);
5755
5756         if (start == end)
5757                 goto out;
5758
5759         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
5760                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
5761
5762         ret = ocfs2_extent_map_get_blocks(inode, start >> sb->s_blocksize_bits,
5763                                           phys, NULL, &ext_flags);
5764         if (ret) {
5765                 mlog_errno(ret);
5766                 goto out;
5767         }
5768
5769         /* Tail is a hole. */
5770         if (*phys == 0)
5771                 goto out;
5772
5773         /* Tail is marked as unwritten, we can count on write to zero
5774          * in that case. */
5775         if (ext_flags & OCFS2_EXT_UNWRITTEN)
5776                 goto out;
5777
5778         last_page_bytes = PAGE_ALIGN(end);
5779         index = start >> PAGE_CACHE_SHIFT;
5780         do {
5781                 pages[numpages] = grab_cache_page(mapping, index);
5782                 if (!pages[numpages]) {
5783                         ret = -ENOMEM;
5784                         mlog_errno(ret);
5785                         goto out;
5786                 }
5787
5788                 numpages++;
5789                 index++;
5790         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
5791
5792 out:
5793         if (ret != 0) {
5794                 if (pages) {
5795                         for (i = 0; i < numpages; i++) {
5796                                 if (pages[i]) {
5797                                         unlock_page(pages[i]);
5798                                         page_cache_release(pages[i]);
5799                                 }
5800                         }
5801                 }
5802                 numpages = 0;
5803         }
5804
5805         *num = numpages;
5806
5807         return ret;
5808 }
5809
5810 /*
5811  * Zero the area past i_size but still within an allocated
5812  * cluster. This avoids exposing nonzero data on subsequent file
5813  * extends.
5814  *
5815  * We need to call this before i_size is updated on the inode because
5816  * otherwise block_write_full_page() will skip writeout of pages past
5817  * i_size. The new_i_size parameter is passed for this reason.
5818  */
5819 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
5820                                   u64 range_start, u64 range_end)
5821 {
5822         int ret, numpages;
5823         struct page **pages = NULL;
5824         u64 phys;
5825
5826         /*
5827          * File systems which don't support sparse files zero on every
5828          * extend.
5829          */
5830         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
5831                 return 0;
5832
5833         pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb),
5834                         sizeof(struct page *), GFP_NOFS);
5835         if (pages == NULL) {
5836                 ret = -ENOMEM;
5837                 mlog_errno(ret);
5838                 goto out;
5839         }
5840
5841         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
5842                                    &numpages, &phys);
5843         if (ret) {
5844                 mlog_errno(ret);
5845                 goto out;
5846         }
5847
5848         if (numpages == 0)
5849                 goto out;
5850
5851         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
5852                                  numpages, phys, handle);
5853
5854         /*
5855          * Initiate writeout of the pages we zero'd here. We don't
5856          * wait on them - the truncate_inode_pages() call later will
5857          * do that for us.
5858          */
5859         ret = do_sync_mapping_range(inode->i_mapping, range_start,
5860                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
5861         if (ret)
5862                 mlog_errno(ret);
5863
5864 out:
5865         if (pages)
5866                 kfree(pages);
5867
5868         return ret;
5869 }
5870
5871 /*
5872  * It is expected, that by the time you call this function,
5873  * inode->i_size and fe->i_size have been adjusted.
5874  *
5875  * WARNING: This will kfree the truncate context
5876  */
5877 int ocfs2_commit_truncate(struct ocfs2_super *osb,
5878                           struct inode *inode,
5879                           struct buffer_head *fe_bh,
5880                           struct ocfs2_truncate_context *tc)
5881 {
5882         int status, i, credits, tl_sem = 0;
5883         u32 clusters_to_del, new_highest_cpos, range;
5884         struct ocfs2_extent_list *el;
5885         handle_t *handle = NULL;
5886         struct inode *tl_inode = osb->osb_tl_inode;
5887         struct ocfs2_path *path = NULL;
5888
5889         mlog_entry_void();
5890
5891         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
5892                                                      i_size_read(inode));
5893
5894         path = ocfs2_new_inode_path(fe_bh);
5895         if (!path) {
5896                 status = -ENOMEM;
5897                 mlog_errno(status);
5898                 goto bail;
5899         }
5900
5901         ocfs2_extent_map_trunc(inode, new_highest_cpos);
5902
5903 start:
5904         /*
5905          * Check that we still have allocation to delete.
5906          */
5907         if (OCFS2_I(inode)->ip_clusters == 0) {
5908                 status = 0;
5909                 goto bail;
5910         }
5911
5912         /*
5913          * Truncate always works against the rightmost tree branch.
5914          */
5915         status = ocfs2_find_path(inode, path, UINT_MAX);
5916         if (status) {
5917                 mlog_errno(status);
5918                 goto bail;
5919         }
5920
5921         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
5922              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
5923
5924         /*
5925          * By now, el will point to the extent list on the bottom most
5926          * portion of this tree. Only the tail record is considered in
5927          * each pass.
5928          *
5929          * We handle the following cases, in order:
5930          * - empty extent: delete the remaining branch
5931          * - remove the entire record
5932          * - remove a partial record
5933          * - no record needs to be removed (truncate has completed)
5934          */
5935         el = path_leaf_el(path);
5936         if (le16_to_cpu(el->l_next_free_rec) == 0) {
5937                 ocfs2_error(inode->i_sb,
5938                             "Inode %llu has empty extent block at %llu\n",
5939                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
5940                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
5941                 status = -EROFS;
5942                 goto bail;
5943         }
5944
5945         i = le16_to_cpu(el->l_next_free_rec) - 1;
5946         range = le32_to_cpu(el->l_recs[i].e_cpos) +
5947                 ocfs2_rec_clusters(el, &el->l_recs[i]);
5948         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
5949                 clusters_to_del = 0;
5950         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
5951                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
5952         } else if (range > new_highest_cpos) {
5953                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
5954                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
5955                                   new_highest_cpos;
5956         } else {
5957                 status = 0;
5958                 goto bail;
5959         }
5960
5961         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
5962              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
5963
5964         BUG_ON(clusters_to_del == 0);
5965
5966         mutex_lock(&tl_inode->i_mutex);
5967         tl_sem = 1;
5968         /* ocfs2_truncate_log_needs_flush guarantees us at least one
5969          * record is free for use. If there isn't any, we flush to get
5970          * an empty truncate log.  */
5971         if (ocfs2_truncate_log_needs_flush(osb)) {
5972                 status = __ocfs2_flush_truncate_log(osb);
5973                 if (status < 0) {
5974                         mlog_errno(status);
5975                         goto bail;
5976                 }
5977         }
5978
5979         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
5980                                                 (struct ocfs2_dinode *)fe_bh->b_data,
5981                                                 el);
5982         handle = ocfs2_start_trans(osb, credits);
5983         if (IS_ERR(handle)) {
5984                 status = PTR_ERR(handle);
5985                 handle = NULL;
5986                 mlog_errno(status);
5987                 goto bail;
5988         }
5989
5990         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
5991                                    tc, path);
5992         if (status < 0) {
5993                 mlog_errno(status);
5994                 goto bail;
5995         }
5996
5997         mutex_unlock(&tl_inode->i_mutex);
5998         tl_sem = 0;
5999
6000         ocfs2_commit_trans(osb, handle);
6001         handle = NULL;
6002
6003         ocfs2_reinit_path(path, 1);
6004
6005         /*
6006          * The check above will catch the case where we've truncated
6007          * away all allocation.
6008          */
6009         goto start;
6010
6011 bail:
6012
6013         ocfs2_schedule_truncate_log_flush(osb, 1);
6014
6015         if (tl_sem)
6016                 mutex_unlock(&tl_inode->i_mutex);
6017
6018         if (handle)
6019                 ocfs2_commit_trans(osb, handle);
6020
6021         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6022
6023         ocfs2_free_path(path);
6024
6025         /* This will drop the ext_alloc cluster lock for us */
6026         ocfs2_free_truncate_context(tc);
6027
6028         mlog_exit(status);
6029         return status;
6030 }
6031
6032 /*
6033  * Expects the inode to already be locked.
6034  */
6035 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6036                            struct inode *inode,
6037                            struct buffer_head *fe_bh,
6038                            struct ocfs2_truncate_context **tc)
6039 {
6040         int status;
6041         unsigned int new_i_clusters;
6042         struct ocfs2_dinode *fe;
6043         struct ocfs2_extent_block *eb;
6044         struct buffer_head *last_eb_bh = NULL;
6045
6046         mlog_entry_void();
6047
6048         *tc = NULL;
6049
6050         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6051                                                   i_size_read(inode));
6052         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6053
6054         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6055              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6056              (unsigned long long)le64_to_cpu(fe->i_size));
6057
6058         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6059         if (!(*tc)) {
6060                 status = -ENOMEM;
6061                 mlog_errno(status);
6062                 goto bail;
6063         }
6064         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6065
6066         if (fe->id2.i_list.l_tree_depth) {
6067                 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6068                                           &last_eb_bh, OCFS2_BH_CACHED, inode);
6069                 if (status < 0) {
6070                         mlog_errno(status);
6071                         goto bail;
6072                 }
6073                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6074                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6075                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6076
6077                         brelse(last_eb_bh);
6078                         status = -EIO;
6079                         goto bail;
6080                 }
6081         }
6082
6083         (*tc)->tc_last_eb_bh = last_eb_bh;
6084
6085         status = 0;
6086 bail:
6087         if (status < 0) {
6088                 if (*tc)
6089                         ocfs2_free_truncate_context(*tc);
6090                 *tc = NULL;
6091         }
6092         mlog_exit_void();
6093         return status;
6094 }
6095
6096 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6097 {
6098         /*
6099          * The caller is responsible for completing deallocation
6100          * before freeing the context.
6101          */
6102         if (tc->tc_dealloc.c_first_suballocator != NULL)
6103                 mlog(ML_NOTICE,
6104                      "Truncate completion has non-empty dealloc context\n");
6105
6106         if (tc->tc_last_eb_bh)
6107                 brelse(tc->tc_last_eb_bh);
6108
6109         kfree(tc);
6110 }