]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/fuse/dev.c
fuse: update backing_dev_info congestion state
[linux-2.6-omap-h63xx.git] / fs / fuse / dev.c
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2006  Miklos Szeredi <miklos@szeredi.hu>
4
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21
22 static struct kmem_cache *fuse_req_cachep;
23
24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26         /*
27          * Lockless access is OK, because file->private data is set
28          * once during mount and is valid until the file is released.
29          */
30         return file->private_data;
31 }
32
33 static void fuse_request_init(struct fuse_req *req)
34 {
35         memset(req, 0, sizeof(*req));
36         INIT_LIST_HEAD(&req->list);
37         INIT_LIST_HEAD(&req->intr_entry);
38         init_waitqueue_head(&req->waitq);
39         atomic_set(&req->count, 1);
40 }
41
42 struct fuse_req *fuse_request_alloc(void)
43 {
44         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45         if (req)
46                 fuse_request_init(req);
47         return req;
48 }
49
50 void fuse_request_free(struct fuse_req *req)
51 {
52         kmem_cache_free(fuse_req_cachep, req);
53 }
54
55 static void block_sigs(sigset_t *oldset)
56 {
57         sigset_t mask;
58
59         siginitsetinv(&mask, sigmask(SIGKILL));
60         sigprocmask(SIG_BLOCK, &mask, oldset);
61 }
62
63 static void restore_sigs(sigset_t *oldset)
64 {
65         sigprocmask(SIG_SETMASK, oldset, NULL);
66 }
67
68 static void __fuse_get_request(struct fuse_req *req)
69 {
70         atomic_inc(&req->count);
71 }
72
73 /* Must be called with > 1 refcount */
74 static void __fuse_put_request(struct fuse_req *req)
75 {
76         BUG_ON(atomic_read(&req->count) < 2);
77         atomic_dec(&req->count);
78 }
79
80 static void fuse_req_init_context(struct fuse_req *req)
81 {
82         req->in.h.uid = current->fsuid;
83         req->in.h.gid = current->fsgid;
84         req->in.h.pid = current->pid;
85 }
86
87 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
88 {
89         struct fuse_req *req;
90         sigset_t oldset;
91         int intr;
92         int err;
93
94         atomic_inc(&fc->num_waiting);
95         block_sigs(&oldset);
96         intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
97         restore_sigs(&oldset);
98         err = -EINTR;
99         if (intr)
100                 goto out;
101
102         err = -ENOTCONN;
103         if (!fc->connected)
104                 goto out;
105
106         req = fuse_request_alloc();
107         err = -ENOMEM;
108         if (!req)
109                 goto out;
110
111         fuse_req_init_context(req);
112         req->waiting = 1;
113         return req;
114
115  out:
116         atomic_dec(&fc->num_waiting);
117         return ERR_PTR(err);
118 }
119
120 /*
121  * Return request in fuse_file->reserved_req.  However that may
122  * currently be in use.  If that is the case, wait for it to become
123  * available.
124  */
125 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
126                                          struct file *file)
127 {
128         struct fuse_req *req = NULL;
129         struct fuse_file *ff = file->private_data;
130
131         do {
132                 wait_event(fc->blocked_waitq, ff->reserved_req);
133                 spin_lock(&fc->lock);
134                 if (ff->reserved_req) {
135                         req = ff->reserved_req;
136                         ff->reserved_req = NULL;
137                         get_file(file);
138                         req->stolen_file = file;
139                 }
140                 spin_unlock(&fc->lock);
141         } while (!req);
142
143         return req;
144 }
145
146 /*
147  * Put stolen request back into fuse_file->reserved_req
148  */
149 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
150 {
151         struct file *file = req->stolen_file;
152         struct fuse_file *ff = file->private_data;
153
154         spin_lock(&fc->lock);
155         fuse_request_init(req);
156         BUG_ON(ff->reserved_req);
157         ff->reserved_req = req;
158         wake_up(&fc->blocked_waitq);
159         spin_unlock(&fc->lock);
160         fput(file);
161 }
162
163 /*
164  * Gets a requests for a file operation, always succeeds
165  *
166  * This is used for sending the FLUSH request, which must get to
167  * userspace, due to POSIX locks which may need to be unlocked.
168  *
169  * If allocation fails due to OOM, use the reserved request in
170  * fuse_file.
171  *
172  * This is very unlikely to deadlock accidentally, since the
173  * filesystem should not have it's own file open.  If deadlock is
174  * intentional, it can still be broken by "aborting" the filesystem.
175  */
176 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
177 {
178         struct fuse_req *req;
179
180         atomic_inc(&fc->num_waiting);
181         wait_event(fc->blocked_waitq, !fc->blocked);
182         req = fuse_request_alloc();
183         if (!req)
184                 req = get_reserved_req(fc, file);
185
186         fuse_req_init_context(req);
187         req->waiting = 1;
188         return req;
189 }
190
191 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
192 {
193         if (atomic_dec_and_test(&req->count)) {
194                 if (req->waiting)
195                         atomic_dec(&fc->num_waiting);
196
197                 if (req->stolen_file)
198                         put_reserved_req(fc, req);
199                 else
200                         fuse_request_free(req);
201         }
202 }
203
204 /*
205  * This function is called when a request is finished.  Either a reply
206  * has arrived or it was aborted (and not yet sent) or some error
207  * occurred during communication with userspace, or the device file
208  * was closed.  The requester thread is woken up (if still waiting),
209  * the 'end' callback is called if given, else the reference to the
210  * request is released
211  *
212  * Called with fc->lock, unlocks it
213  */
214 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
215         __releases(fc->lock)
216 {
217         void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
218         req->end = NULL;
219         list_del(&req->list);
220         list_del(&req->intr_entry);
221         req->state = FUSE_REQ_FINISHED;
222         if (req->background) {
223                 if (fc->num_background == FUSE_MAX_BACKGROUND) {
224                         fc->blocked = 0;
225                         wake_up_all(&fc->blocked_waitq);
226                 }
227                 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
228                         clear_bdi_congested(&fc->bdi, READ);
229                         clear_bdi_congested(&fc->bdi, WRITE);
230                 }
231                 fc->num_background--;
232         }
233         spin_unlock(&fc->lock);
234         dput(req->dentry);
235         mntput(req->vfsmount);
236         if (req->file)
237                 fput(req->file);
238         wake_up(&req->waitq);
239         if (end)
240                 end(fc, req);
241         else
242                 fuse_put_request(fc, req);
243 }
244
245 static void wait_answer_interruptible(struct fuse_conn *fc,
246                                       struct fuse_req *req)
247 {
248         if (signal_pending(current))
249                 return;
250
251         spin_unlock(&fc->lock);
252         wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
253         spin_lock(&fc->lock);
254 }
255
256 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
257 {
258         list_add_tail(&req->intr_entry, &fc->interrupts);
259         wake_up(&fc->waitq);
260         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
261 }
262
263 /* Called with fc->lock held.  Releases, and then reacquires it. */
264 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
265 {
266         if (!fc->no_interrupt) {
267                 /* Any signal may interrupt this */
268                 wait_answer_interruptible(fc, req);
269
270                 if (req->aborted)
271                         goto aborted;
272                 if (req->state == FUSE_REQ_FINISHED)
273                         return;
274
275                 req->interrupted = 1;
276                 if (req->state == FUSE_REQ_SENT)
277                         queue_interrupt(fc, req);
278         }
279
280         if (req->force) {
281                 spin_unlock(&fc->lock);
282                 wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
283                 spin_lock(&fc->lock);
284         } else {
285                 sigset_t oldset;
286
287                 /* Only fatal signals may interrupt this */
288                 block_sigs(&oldset);
289                 wait_answer_interruptible(fc, req);
290                 restore_sigs(&oldset);
291         }
292
293         if (req->aborted)
294                 goto aborted;
295         if (req->state == FUSE_REQ_FINISHED)
296                 return;
297
298         req->out.h.error = -EINTR;
299         req->aborted = 1;
300
301  aborted:
302         if (req->locked) {
303                 /* This is uninterruptible sleep, because data is
304                    being copied to/from the buffers of req.  During
305                    locked state, there mustn't be any filesystem
306                    operation (e.g. page fault), since that could lead
307                    to deadlock */
308                 spin_unlock(&fc->lock);
309                 wait_event(req->waitq, !req->locked);
310                 spin_lock(&fc->lock);
311         }
312         if (req->state == FUSE_REQ_PENDING) {
313                 list_del(&req->list);
314                 __fuse_put_request(req);
315         } else if (req->state == FUSE_REQ_SENT) {
316                 spin_unlock(&fc->lock);
317                 wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
318                 spin_lock(&fc->lock);
319         }
320 }
321
322 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
323 {
324         unsigned nbytes = 0;
325         unsigned i;
326
327         for (i = 0; i < numargs; i++)
328                 nbytes += args[i].size;
329
330         return nbytes;
331 }
332
333 static u64 fuse_get_unique(struct fuse_conn *fc)
334  {
335         fc->reqctr++;
336         /* zero is special */
337         if (fc->reqctr == 0)
338                 fc->reqctr = 1;
339
340         return fc->reqctr;
341 }
342
343 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
344 {
345         req->in.h.unique = fuse_get_unique(fc);
346         req->in.h.len = sizeof(struct fuse_in_header) +
347                 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
348         list_add_tail(&req->list, &fc->pending);
349         req->state = FUSE_REQ_PENDING;
350         if (!req->waiting) {
351                 req->waiting = 1;
352                 atomic_inc(&fc->num_waiting);
353         }
354         wake_up(&fc->waitq);
355         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
356 }
357
358 void request_send(struct fuse_conn *fc, struct fuse_req *req)
359 {
360         req->isreply = 1;
361         spin_lock(&fc->lock);
362         if (!fc->connected)
363                 req->out.h.error = -ENOTCONN;
364         else if (fc->conn_error)
365                 req->out.h.error = -ECONNREFUSED;
366         else {
367                 queue_request(fc, req);
368                 /* acquire extra reference, since request is still needed
369                    after request_end() */
370                 __fuse_get_request(req);
371
372                 request_wait_answer(fc, req);
373         }
374         spin_unlock(&fc->lock);
375 }
376
377 static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
378 {
379         spin_lock(&fc->lock);
380         if (fc->connected) {
381                 req->background = 1;
382                 fc->num_background++;
383                 if (fc->num_background == FUSE_MAX_BACKGROUND)
384                         fc->blocked = 1;
385                 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
386                         set_bdi_congested(&fc->bdi, READ);
387                         set_bdi_congested(&fc->bdi, WRITE);
388                 }
389
390                 queue_request(fc, req);
391                 spin_unlock(&fc->lock);
392         } else {
393                 req->out.h.error = -ENOTCONN;
394                 request_end(fc, req);
395         }
396 }
397
398 void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
399 {
400         req->isreply = 0;
401         request_send_nowait(fc, req);
402 }
403
404 void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
405 {
406         req->isreply = 1;
407         request_send_nowait(fc, req);
408 }
409
410 /*
411  * Lock the request.  Up to the next unlock_request() there mustn't be
412  * anything that could cause a page-fault.  If the request was already
413  * aborted bail out.
414  */
415 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
416 {
417         int err = 0;
418         if (req) {
419                 spin_lock(&fc->lock);
420                 if (req->aborted)
421                         err = -ENOENT;
422                 else
423                         req->locked = 1;
424                 spin_unlock(&fc->lock);
425         }
426         return err;
427 }
428
429 /*
430  * Unlock request.  If it was aborted during being locked, the
431  * requester thread is currently waiting for it to be unlocked, so
432  * wake it up.
433  */
434 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
435 {
436         if (req) {
437                 spin_lock(&fc->lock);
438                 req->locked = 0;
439                 if (req->aborted)
440                         wake_up(&req->waitq);
441                 spin_unlock(&fc->lock);
442         }
443 }
444
445 struct fuse_copy_state {
446         struct fuse_conn *fc;
447         int write;
448         struct fuse_req *req;
449         const struct iovec *iov;
450         unsigned long nr_segs;
451         unsigned long seglen;
452         unsigned long addr;
453         struct page *pg;
454         void *mapaddr;
455         void *buf;
456         unsigned len;
457 };
458
459 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
460                            int write, struct fuse_req *req,
461                            const struct iovec *iov, unsigned long nr_segs)
462 {
463         memset(cs, 0, sizeof(*cs));
464         cs->fc = fc;
465         cs->write = write;
466         cs->req = req;
467         cs->iov = iov;
468         cs->nr_segs = nr_segs;
469 }
470
471 /* Unmap and put previous page of userspace buffer */
472 static void fuse_copy_finish(struct fuse_copy_state *cs)
473 {
474         if (cs->mapaddr) {
475                 kunmap_atomic(cs->mapaddr, KM_USER0);
476                 if (cs->write) {
477                         flush_dcache_page(cs->pg);
478                         set_page_dirty_lock(cs->pg);
479                 }
480                 put_page(cs->pg);
481                 cs->mapaddr = NULL;
482         }
483 }
484
485 /*
486  * Get another pagefull of userspace buffer, and map it to kernel
487  * address space, and lock request
488  */
489 static int fuse_copy_fill(struct fuse_copy_state *cs)
490 {
491         unsigned long offset;
492         int err;
493
494         unlock_request(cs->fc, cs->req);
495         fuse_copy_finish(cs);
496         if (!cs->seglen) {
497                 BUG_ON(!cs->nr_segs);
498                 cs->seglen = cs->iov[0].iov_len;
499                 cs->addr = (unsigned long) cs->iov[0].iov_base;
500                 cs->iov ++;
501                 cs->nr_segs --;
502         }
503         down_read(&current->mm->mmap_sem);
504         err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
505                              &cs->pg, NULL);
506         up_read(&current->mm->mmap_sem);
507         if (err < 0)
508                 return err;
509         BUG_ON(err != 1);
510         offset = cs->addr % PAGE_SIZE;
511         cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
512         cs->buf = cs->mapaddr + offset;
513         cs->len = min(PAGE_SIZE - offset, cs->seglen);
514         cs->seglen -= cs->len;
515         cs->addr += cs->len;
516
517         return lock_request(cs->fc, cs->req);
518 }
519
520 /* Do as much copy to/from userspace buffer as we can */
521 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
522 {
523         unsigned ncpy = min(*size, cs->len);
524         if (val) {
525                 if (cs->write)
526                         memcpy(cs->buf, *val, ncpy);
527                 else
528                         memcpy(*val, cs->buf, ncpy);
529                 *val += ncpy;
530         }
531         *size -= ncpy;
532         cs->len -= ncpy;
533         cs->buf += ncpy;
534         return ncpy;
535 }
536
537 /*
538  * Copy a page in the request to/from the userspace buffer.  Must be
539  * done atomically
540  */
541 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
542                           unsigned offset, unsigned count, int zeroing)
543 {
544         if (page && zeroing && count < PAGE_SIZE) {
545                 void *mapaddr = kmap_atomic(page, KM_USER1);
546                 memset(mapaddr, 0, PAGE_SIZE);
547                 kunmap_atomic(mapaddr, KM_USER1);
548         }
549         while (count) {
550                 int err;
551                 if (!cs->len && (err = fuse_copy_fill(cs)))
552                         return err;
553                 if (page) {
554                         void *mapaddr = kmap_atomic(page, KM_USER1);
555                         void *buf = mapaddr + offset;
556                         offset += fuse_copy_do(cs, &buf, &count);
557                         kunmap_atomic(mapaddr, KM_USER1);
558                 } else
559                         offset += fuse_copy_do(cs, NULL, &count);
560         }
561         if (page && !cs->write)
562                 flush_dcache_page(page);
563         return 0;
564 }
565
566 /* Copy pages in the request to/from userspace buffer */
567 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
568                            int zeroing)
569 {
570         unsigned i;
571         struct fuse_req *req = cs->req;
572         unsigned offset = req->page_offset;
573         unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
574
575         for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
576                 struct page *page = req->pages[i];
577                 int err = fuse_copy_page(cs, page, offset, count, zeroing);
578                 if (err)
579                         return err;
580
581                 nbytes -= count;
582                 count = min(nbytes, (unsigned) PAGE_SIZE);
583                 offset = 0;
584         }
585         return 0;
586 }
587
588 /* Copy a single argument in the request to/from userspace buffer */
589 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
590 {
591         while (size) {
592                 int err;
593                 if (!cs->len && (err = fuse_copy_fill(cs)))
594                         return err;
595                 fuse_copy_do(cs, &val, &size);
596         }
597         return 0;
598 }
599
600 /* Copy request arguments to/from userspace buffer */
601 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
602                           unsigned argpages, struct fuse_arg *args,
603                           int zeroing)
604 {
605         int err = 0;
606         unsigned i;
607
608         for (i = 0; !err && i < numargs; i++)  {
609                 struct fuse_arg *arg = &args[i];
610                 if (i == numargs - 1 && argpages)
611                         err = fuse_copy_pages(cs, arg->size, zeroing);
612                 else
613                         err = fuse_copy_one(cs, arg->value, arg->size);
614         }
615         return err;
616 }
617
618 static int request_pending(struct fuse_conn *fc)
619 {
620         return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
621 }
622
623 /* Wait until a request is available on the pending list */
624 static void request_wait(struct fuse_conn *fc)
625 {
626         DECLARE_WAITQUEUE(wait, current);
627
628         add_wait_queue_exclusive(&fc->waitq, &wait);
629         while (fc->connected && !request_pending(fc)) {
630                 set_current_state(TASK_INTERRUPTIBLE);
631                 if (signal_pending(current))
632                         break;
633
634                 spin_unlock(&fc->lock);
635                 schedule();
636                 spin_lock(&fc->lock);
637         }
638         set_current_state(TASK_RUNNING);
639         remove_wait_queue(&fc->waitq, &wait);
640 }
641
642 /*
643  * Transfer an interrupt request to userspace
644  *
645  * Unlike other requests this is assembled on demand, without a need
646  * to allocate a separate fuse_req structure.
647  *
648  * Called with fc->lock held, releases it
649  */
650 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
651                                const struct iovec *iov, unsigned long nr_segs)
652         __releases(fc->lock)
653 {
654         struct fuse_copy_state cs;
655         struct fuse_in_header ih;
656         struct fuse_interrupt_in arg;
657         unsigned reqsize = sizeof(ih) + sizeof(arg);
658         int err;
659
660         list_del_init(&req->intr_entry);
661         req->intr_unique = fuse_get_unique(fc);
662         memset(&ih, 0, sizeof(ih));
663         memset(&arg, 0, sizeof(arg));
664         ih.len = reqsize;
665         ih.opcode = FUSE_INTERRUPT;
666         ih.unique = req->intr_unique;
667         arg.unique = req->in.h.unique;
668
669         spin_unlock(&fc->lock);
670         if (iov_length(iov, nr_segs) < reqsize)
671                 return -EINVAL;
672
673         fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
674         err = fuse_copy_one(&cs, &ih, sizeof(ih));
675         if (!err)
676                 err = fuse_copy_one(&cs, &arg, sizeof(arg));
677         fuse_copy_finish(&cs);
678
679         return err ? err : reqsize;
680 }
681
682 /*
683  * Read a single request into the userspace filesystem's buffer.  This
684  * function waits until a request is available, then removes it from
685  * the pending list and copies request data to userspace buffer.  If
686  * no reply is needed (FORGET) or request has been aborted or there
687  * was an error during the copying then it's finished by calling
688  * request_end().  Otherwise add it to the processing list, and set
689  * the 'sent' flag.
690  */
691 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
692                               unsigned long nr_segs, loff_t pos)
693 {
694         int err;
695         struct fuse_req *req;
696         struct fuse_in *in;
697         struct fuse_copy_state cs;
698         unsigned reqsize;
699         struct file *file = iocb->ki_filp;
700         struct fuse_conn *fc = fuse_get_conn(file);
701         if (!fc)
702                 return -EPERM;
703
704  restart:
705         spin_lock(&fc->lock);
706         err = -EAGAIN;
707         if ((file->f_flags & O_NONBLOCK) && fc->connected &&
708             !request_pending(fc))
709                 goto err_unlock;
710
711         request_wait(fc);
712         err = -ENODEV;
713         if (!fc->connected)
714                 goto err_unlock;
715         err = -ERESTARTSYS;
716         if (!request_pending(fc))
717                 goto err_unlock;
718
719         if (!list_empty(&fc->interrupts)) {
720                 req = list_entry(fc->interrupts.next, struct fuse_req,
721                                  intr_entry);
722                 return fuse_read_interrupt(fc, req, iov, nr_segs);
723         }
724
725         req = list_entry(fc->pending.next, struct fuse_req, list);
726         req->state = FUSE_REQ_READING;
727         list_move(&req->list, &fc->io);
728
729         in = &req->in;
730         reqsize = in->h.len;
731         /* If request is too large, reply with an error and restart the read */
732         if (iov_length(iov, nr_segs) < reqsize) {
733                 req->out.h.error = -EIO;
734                 /* SETXATTR is special, since it may contain too large data */
735                 if (in->h.opcode == FUSE_SETXATTR)
736                         req->out.h.error = -E2BIG;
737                 request_end(fc, req);
738                 goto restart;
739         }
740         spin_unlock(&fc->lock);
741         fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
742         err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
743         if (!err)
744                 err = fuse_copy_args(&cs, in->numargs, in->argpages,
745                                      (struct fuse_arg *) in->args, 0);
746         fuse_copy_finish(&cs);
747         spin_lock(&fc->lock);
748         req->locked = 0;
749         if (!err && req->aborted)
750                 err = -ENOENT;
751         if (err) {
752                 if (!req->aborted)
753                         req->out.h.error = -EIO;
754                 request_end(fc, req);
755                 return err;
756         }
757         if (!req->isreply)
758                 request_end(fc, req);
759         else {
760                 req->state = FUSE_REQ_SENT;
761                 list_move_tail(&req->list, &fc->processing);
762                 if (req->interrupted)
763                         queue_interrupt(fc, req);
764                 spin_unlock(&fc->lock);
765         }
766         return reqsize;
767
768  err_unlock:
769         spin_unlock(&fc->lock);
770         return err;
771 }
772
773 /* Look up request on processing list by unique ID */
774 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
775 {
776         struct list_head *entry;
777
778         list_for_each(entry, &fc->processing) {
779                 struct fuse_req *req;
780                 req = list_entry(entry, struct fuse_req, list);
781                 if (req->in.h.unique == unique || req->intr_unique == unique)
782                         return req;
783         }
784         return NULL;
785 }
786
787 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
788                          unsigned nbytes)
789 {
790         unsigned reqsize = sizeof(struct fuse_out_header);
791
792         if (out->h.error)
793                 return nbytes != reqsize ? -EINVAL : 0;
794
795         reqsize += len_args(out->numargs, out->args);
796
797         if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
798                 return -EINVAL;
799         else if (reqsize > nbytes) {
800                 struct fuse_arg *lastarg = &out->args[out->numargs-1];
801                 unsigned diffsize = reqsize - nbytes;
802                 if (diffsize > lastarg->size)
803                         return -EINVAL;
804                 lastarg->size -= diffsize;
805         }
806         return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
807                               out->page_zeroing);
808 }
809
810 /*
811  * Write a single reply to a request.  First the header is copied from
812  * the write buffer.  The request is then searched on the processing
813  * list by the unique ID found in the header.  If found, then remove
814  * it from the list and copy the rest of the buffer to the request.
815  * The request is finished by calling request_end()
816  */
817 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
818                                unsigned long nr_segs, loff_t pos)
819 {
820         int err;
821         unsigned nbytes = iov_length(iov, nr_segs);
822         struct fuse_req *req;
823         struct fuse_out_header oh;
824         struct fuse_copy_state cs;
825         struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
826         if (!fc)
827                 return -EPERM;
828
829         fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
830         if (nbytes < sizeof(struct fuse_out_header))
831                 return -EINVAL;
832
833         err = fuse_copy_one(&cs, &oh, sizeof(oh));
834         if (err)
835                 goto err_finish;
836         err = -EINVAL;
837         if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
838             oh.len != nbytes)
839                 goto err_finish;
840
841         spin_lock(&fc->lock);
842         err = -ENOENT;
843         if (!fc->connected)
844                 goto err_unlock;
845
846         req = request_find(fc, oh.unique);
847         if (!req)
848                 goto err_unlock;
849
850         if (req->aborted) {
851                 spin_unlock(&fc->lock);
852                 fuse_copy_finish(&cs);
853                 spin_lock(&fc->lock);
854                 request_end(fc, req);
855                 return -ENOENT;
856         }
857         /* Is it an interrupt reply? */
858         if (req->intr_unique == oh.unique) {
859                 err = -EINVAL;
860                 if (nbytes != sizeof(struct fuse_out_header))
861                         goto err_unlock;
862
863                 if (oh.error == -ENOSYS)
864                         fc->no_interrupt = 1;
865                 else if (oh.error == -EAGAIN)
866                         queue_interrupt(fc, req);
867
868                 spin_unlock(&fc->lock);
869                 fuse_copy_finish(&cs);
870                 return nbytes;
871         }
872
873         req->state = FUSE_REQ_WRITING;
874         list_move(&req->list, &fc->io);
875         req->out.h = oh;
876         req->locked = 1;
877         cs.req = req;
878         spin_unlock(&fc->lock);
879
880         err = copy_out_args(&cs, &req->out, nbytes);
881         fuse_copy_finish(&cs);
882
883         spin_lock(&fc->lock);
884         req->locked = 0;
885         if (!err) {
886                 if (req->aborted)
887                         err = -ENOENT;
888         } else if (!req->aborted)
889                 req->out.h.error = -EIO;
890         request_end(fc, req);
891
892         return err ? err : nbytes;
893
894  err_unlock:
895         spin_unlock(&fc->lock);
896  err_finish:
897         fuse_copy_finish(&cs);
898         return err;
899 }
900
901 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
902 {
903         unsigned mask = POLLOUT | POLLWRNORM;
904         struct fuse_conn *fc = fuse_get_conn(file);
905         if (!fc)
906                 return POLLERR;
907
908         poll_wait(file, &fc->waitq, wait);
909
910         spin_lock(&fc->lock);
911         if (!fc->connected)
912                 mask = POLLERR;
913         else if (request_pending(fc))
914                 mask |= POLLIN | POLLRDNORM;
915         spin_unlock(&fc->lock);
916
917         return mask;
918 }
919
920 /*
921  * Abort all requests on the given list (pending or processing)
922  *
923  * This function releases and reacquires fc->lock
924  */
925 static void end_requests(struct fuse_conn *fc, struct list_head *head)
926 {
927         while (!list_empty(head)) {
928                 struct fuse_req *req;
929                 req = list_entry(head->next, struct fuse_req, list);
930                 req->out.h.error = -ECONNABORTED;
931                 request_end(fc, req);
932                 spin_lock(&fc->lock);
933         }
934 }
935
936 /*
937  * Abort requests under I/O
938  *
939  * The requests are set to aborted and finished, and the request
940  * waiter is woken up.  This will make request_wait_answer() wait
941  * until the request is unlocked and then return.
942  *
943  * If the request is asynchronous, then the end function needs to be
944  * called after waiting for the request to be unlocked (if it was
945  * locked).
946  */
947 static void end_io_requests(struct fuse_conn *fc)
948 {
949         while (!list_empty(&fc->io)) {
950                 struct fuse_req *req =
951                         list_entry(fc->io.next, struct fuse_req, list);
952                 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
953
954                 req->aborted = 1;
955                 req->out.h.error = -ECONNABORTED;
956                 req->state = FUSE_REQ_FINISHED;
957                 list_del_init(&req->list);
958                 wake_up(&req->waitq);
959                 if (end) {
960                         req->end = NULL;
961                         /* The end function will consume this reference */
962                         __fuse_get_request(req);
963                         spin_unlock(&fc->lock);
964                         wait_event(req->waitq, !req->locked);
965                         end(fc, req);
966                         spin_lock(&fc->lock);
967                 }
968         }
969 }
970
971 /*
972  * Abort all requests.
973  *
974  * Emergency exit in case of a malicious or accidental deadlock, or
975  * just a hung filesystem.
976  *
977  * The same effect is usually achievable through killing the
978  * filesystem daemon and all users of the filesystem.  The exception
979  * is the combination of an asynchronous request and the tricky
980  * deadlock (see Documentation/filesystems/fuse.txt).
981  *
982  * During the aborting, progression of requests from the pending and
983  * processing lists onto the io list, and progression of new requests
984  * onto the pending list is prevented by req->connected being false.
985  *
986  * Progression of requests under I/O to the processing list is
987  * prevented by the req->aborted flag being true for these requests.
988  * For this reason requests on the io list must be aborted first.
989  */
990 void fuse_abort_conn(struct fuse_conn *fc)
991 {
992         spin_lock(&fc->lock);
993         if (fc->connected) {
994                 fc->connected = 0;
995                 fc->blocked = 0;
996                 end_io_requests(fc);
997                 end_requests(fc, &fc->pending);
998                 end_requests(fc, &fc->processing);
999                 wake_up_all(&fc->waitq);
1000                 wake_up_all(&fc->blocked_waitq);
1001                 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1002         }
1003         spin_unlock(&fc->lock);
1004 }
1005
1006 static int fuse_dev_release(struct inode *inode, struct file *file)
1007 {
1008         struct fuse_conn *fc = fuse_get_conn(file);
1009         if (fc) {
1010                 spin_lock(&fc->lock);
1011                 fc->connected = 0;
1012                 end_requests(fc, &fc->pending);
1013                 end_requests(fc, &fc->processing);
1014                 spin_unlock(&fc->lock);
1015                 fasync_helper(-1, file, 0, &fc->fasync);
1016                 fuse_conn_put(fc);
1017         }
1018
1019         return 0;
1020 }
1021
1022 static int fuse_dev_fasync(int fd, struct file *file, int on)
1023 {
1024         struct fuse_conn *fc = fuse_get_conn(file);
1025         if (!fc)
1026                 return -EPERM;
1027
1028         /* No locking - fasync_helper does its own locking */
1029         return fasync_helper(fd, file, on, &fc->fasync);
1030 }
1031
1032 const struct file_operations fuse_dev_operations = {
1033         .owner          = THIS_MODULE,
1034         .llseek         = no_llseek,
1035         .read           = do_sync_read,
1036         .aio_read       = fuse_dev_read,
1037         .write          = do_sync_write,
1038         .aio_write      = fuse_dev_write,
1039         .poll           = fuse_dev_poll,
1040         .release        = fuse_dev_release,
1041         .fasync         = fuse_dev_fasync,
1042 };
1043
1044 static struct miscdevice fuse_miscdevice = {
1045         .minor = FUSE_MINOR,
1046         .name  = "fuse",
1047         .fops = &fuse_dev_operations,
1048 };
1049
1050 int __init fuse_dev_init(void)
1051 {
1052         int err = -ENOMEM;
1053         fuse_req_cachep = kmem_cache_create("fuse_request",
1054                                             sizeof(struct fuse_req),
1055                                             0, 0, NULL);
1056         if (!fuse_req_cachep)
1057                 goto out;
1058
1059         err = misc_register(&fuse_miscdevice);
1060         if (err)
1061                 goto out_cache_clean;
1062
1063         return 0;
1064
1065  out_cache_clean:
1066         kmem_cache_destroy(fuse_req_cachep);
1067  out:
1068         return err;
1069 }
1070
1071 void fuse_dev_cleanup(void)
1072 {
1073         misc_deregister(&fuse_miscdevice);
1074         kmem_cache_destroy(fuse_req_cachep);
1075 }