]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/mballoc.c
ext4: cleanup block allocator
[linux-2.6-omap-h63xx.git] / fs / ext4 / mballoc.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18
19
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23
24 #include "mballoc.h"
25 /*
26  * MUSTDO:
27  *   - test ext4_ext_search_left() and ext4_ext_search_right()
28  *   - search for metadata in few groups
29  *
30  * TODO v4:
31  *   - normalization should take into account whether file is still open
32  *   - discard preallocations if no free space left (policy?)
33  *   - don't normalize tails
34  *   - quota
35  *   - reservation for superuser
36  *
37  * TODO v3:
38  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
39  *   - track min/max extents in each group for better group selection
40  *   - mb_mark_used() may allocate chunk right after splitting buddy
41  *   - tree of groups sorted by number of free blocks
42  *   - error handling
43  */
44
45 /*
46  * The allocation request involve request for multiple number of blocks
47  * near to the goal(block) value specified.
48  *
49  * During initialization phase of the allocator we decide to use the group
50  * preallocation or inode preallocation depending on the size file. The
51  * size of the file could be the resulting file size we would have after
52  * allocation or the current file size which ever is larger. If the size is
53  * less that sbi->s_mb_stream_request we select the group
54  * preallocation. The default value of s_mb_stream_request is 16
55  * blocks. This can also be tuned via
56  * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57  * of number of blocks.
58  *
59  * The main motivation for having small file use group preallocation is to
60  * ensure that we have small file closer in the disk.
61  *
62  * First stage the allocator looks at the inode prealloc list
63  * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64  * this particular inode. The inode prealloc space is represented as:
65  *
66  * pa_lstart -> the logical start block for this prealloc space
67  * pa_pstart -> the physical start block for this prealloc space
68  * pa_len    -> lenght for this prealloc space
69  * pa_free   ->  free space available in this prealloc space
70  *
71  * The inode preallocation space is used looking at the _logical_ start
72  * block. If only the logical file block falls within the range of prealloc
73  * space we will consume the particular prealloc space. This make sure that
74  * that the we have contiguous physical blocks representing the file blocks
75  *
76  * The important thing to be noted in case of inode prealloc space is that
77  * we don't modify the values associated to inode prealloc space except
78  * pa_free.
79  *
80  * If we are not able to find blocks in the inode prealloc space and if we
81  * have the group allocation flag set then we look at the locality group
82  * prealloc space. These are per CPU prealloc list repreasented as
83  *
84  * ext4_sb_info.s_locality_groups[smp_processor_id()]
85  *
86  * The reason for having a per cpu locality group is to reduce the contention
87  * between CPUs. It is possible to get scheduled at this point.
88  *
89  * The locality group prealloc space is used looking at whether we have
90  * enough free space (pa_free) withing the prealloc space.
91  *
92  * If we can't allocate blocks via inode prealloc or/and locality group
93  * prealloc then we look at the buddy cache. The buddy cache is represented
94  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95  * mapped to the buddy and bitmap information regarding different
96  * groups. The buddy information is attached to buddy cache inode so that
97  * we can access them through the page cache. The information regarding
98  * each group is loaded via ext4_mb_load_buddy.  The information involve
99  * block bitmap and buddy information. The information are stored in the
100  * inode as:
101  *
102  *  {                        page                        }
103  *  [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
104  *
105  *
106  * one block each for bitmap and buddy information.  So for each group we
107  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108  * blocksize) blocks.  So it can have information regarding groups_per_page
109  * which is blocks_per_page/2
110  *
111  * The buddy cache inode is not stored on disk. The inode is thrown
112  * away when the filesystem is unmounted.
113  *
114  * We look for count number of blocks in the buddy cache. If we were able
115  * to locate that many free blocks we return with additional information
116  * regarding rest of the contiguous physical block available
117  *
118  * Before allocating blocks via buddy cache we normalize the request
119  * blocks. This ensure we ask for more blocks that we needed. The extra
120  * blocks that we get after allocation is added to the respective prealloc
121  * list. In case of inode preallocation we follow a list of heuristics
122  * based on file size. This can be found in ext4_mb_normalize_request. If
123  * we are doing a group prealloc we try to normalize the request to
124  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125  * 512 blocks. This can be tuned via
126  * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * stripe value (sbi->s_stripe)
130  *
131  * The regular allocator(using the buddy cache) support few tunables.
132  *
133  * /proc/fs/ext4/<partition>/min_to_scan
134  * /proc/fs/ext4/<partition>/max_to_scan
135  * /proc/fs/ext4/<partition>/order2_req
136  *
137  * The regular allocator use buddy scan only if the request len is power of
138  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139  * value of s_mb_order2_reqs can be tuned via
140  * /proc/fs/ext4/<partition>/order2_req.  If the request len is equal to
141  * stripe size (sbi->s_stripe), we try to search for contigous block in
142  * stripe size. This should result in better allocation on RAID setup. If
143  * not we search in the specific group using bitmap for best extents. The
144  * tunable min_to_scan and max_to_scan controll the behaviour here.
145  * min_to_scan indicate how long the mballoc __must__ look for a best
146  * extent and max_to_scanindicate how long the mballoc __can__ look for a
147  * best extent in the found extents. Searching for the blocks starts with
148  * the group specified as the goal value in allocation context via
149  * ac_g_ex. Each group is first checked based on the criteria whether it
150  * can used for allocation. ext4_mb_good_group explains how the groups are
151  * checked.
152  *
153  * Both the prealloc space are getting populated as above. So for the first
154  * request we will hit the buddy cache which will result in this prealloc
155  * space getting filled. The prealloc space is then later used for the
156  * subsequent request.
157  */
158
159 /*
160  * mballoc operates on the following data:
161  *  - on-disk bitmap
162  *  - in-core buddy (actually includes buddy and bitmap)
163  *  - preallocation descriptors (PAs)
164  *
165  * there are two types of preallocations:
166  *  - inode
167  *    assiged to specific inode and can be used for this inode only.
168  *    it describes part of inode's space preallocated to specific
169  *    physical blocks. any block from that preallocated can be used
170  *    independent. the descriptor just tracks number of blocks left
171  *    unused. so, before taking some block from descriptor, one must
172  *    make sure corresponded logical block isn't allocated yet. this
173  *    also means that freeing any block within descriptor's range
174  *    must discard all preallocated blocks.
175  *  - locality group
176  *    assigned to specific locality group which does not translate to
177  *    permanent set of inodes: inode can join and leave group. space
178  *    from this type of preallocation can be used for any inode. thus
179  *    it's consumed from the beginning to the end.
180  *
181  * relation between them can be expressed as:
182  *    in-core buddy = on-disk bitmap + preallocation descriptors
183  *
184  * this mean blocks mballoc considers used are:
185  *  - allocated blocks (persistent)
186  *  - preallocated blocks (non-persistent)
187  *
188  * consistency in mballoc world means that at any time a block is either
189  * free or used in ALL structures. notice: "any time" should not be read
190  * literally -- time is discrete and delimited by locks.
191  *
192  *  to keep it simple, we don't use block numbers, instead we count number of
193  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194  *
195  * all operations can be expressed as:
196  *  - init buddy:                       buddy = on-disk + PAs
197  *  - new PA:                           buddy += N; PA = N
198  *  - use inode PA:                     on-disk += N; PA -= N
199  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
200  *  - use locality group PA             on-disk += N; PA -= N
201  *  - discard locality group PA         buddy -= PA; PA = 0
202  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203  *        is used in real operation because we can't know actual used
204  *        bits from PA, only from on-disk bitmap
205  *
206  * if we follow this strict logic, then all operations above should be atomic.
207  * given some of them can block, we'd have to use something like semaphores
208  * killing performance on high-end SMP hardware. let's try to relax it using
209  * the following knowledge:
210  *  1) if buddy is referenced, it's already initialized
211  *  2) while block is used in buddy and the buddy is referenced,
212  *     nobody can re-allocate that block
213  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
215  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216  *     block
217  *
218  * so, now we're building a concurrency table:
219  *  - init buddy vs.
220  *    - new PA
221  *      blocks for PA are allocated in the buddy, buddy must be referenced
222  *      until PA is linked to allocation group to avoid concurrent buddy init
223  *    - use inode PA
224  *      we need to make sure that either on-disk bitmap or PA has uptodate data
225  *      given (3) we care that PA-=N operation doesn't interfere with init
226  *    - discard inode PA
227  *      the simplest way would be to have buddy initialized by the discard
228  *    - use locality group PA
229  *      again PA-=N must be serialized with init
230  *    - discard locality group PA
231  *      the simplest way would be to have buddy initialized by the discard
232  *  - new PA vs.
233  *    - use inode PA
234  *      i_data_sem serializes them
235  *    - discard inode PA
236  *      discard process must wait until PA isn't used by another process
237  *    - use locality group PA
238  *      some mutex should serialize them
239  *    - discard locality group PA
240  *      discard process must wait until PA isn't used by another process
241  *  - use inode PA
242  *    - use inode PA
243  *      i_data_sem or another mutex should serializes them
244  *    - discard inode PA
245  *      discard process must wait until PA isn't used by another process
246  *    - use locality group PA
247  *      nothing wrong here -- they're different PAs covering different blocks
248  *    - discard locality group PA
249  *      discard process must wait until PA isn't used by another process
250  *
251  * now we're ready to make few consequences:
252  *  - PA is referenced and while it is no discard is possible
253  *  - PA is referenced until block isn't marked in on-disk bitmap
254  *  - PA changes only after on-disk bitmap
255  *  - discard must not compete with init. either init is done before
256  *    any discard or they're serialized somehow
257  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
258  *
259  * a special case when we've used PA to emptiness. no need to modify buddy
260  * in this case, but we should care about concurrent init
261  *
262  */
263
264  /*
265  * Logic in few words:
266  *
267  *  - allocation:
268  *    load group
269  *    find blocks
270  *    mark bits in on-disk bitmap
271  *    release group
272  *
273  *  - use preallocation:
274  *    find proper PA (per-inode or group)
275  *    load group
276  *    mark bits in on-disk bitmap
277  *    release group
278  *    release PA
279  *
280  *  - free:
281  *    load group
282  *    mark bits in on-disk bitmap
283  *    release group
284  *
285  *  - discard preallocations in group:
286  *    mark PAs deleted
287  *    move them onto local list
288  *    load on-disk bitmap
289  *    load group
290  *    remove PA from object (inode or locality group)
291  *    mark free blocks in-core
292  *
293  *  - discard inode's preallocations:
294  */
295
296 /*
297  * Locking rules
298  *
299  * Locks:
300  *  - bitlock on a group        (group)
301  *  - object (inode/locality)   (object)
302  *  - per-pa lock               (pa)
303  *
304  * Paths:
305  *  - new pa
306  *    object
307  *    group
308  *
309  *  - find and use pa:
310  *    pa
311  *
312  *  - release consumed pa:
313  *    pa
314  *    group
315  *    object
316  *
317  *  - generate in-core bitmap:
318  *    group
319  *        pa
320  *
321  *  - discard all for given object (inode, locality group):
322  *    object
323  *        pa
324  *    group
325  *
326  *  - discard all for given group:
327  *    group
328  *        pa
329  *    group
330  *        object
331  *
332  */
333
334 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
335 {
336 #if BITS_PER_LONG == 64
337         *bit += ((unsigned long) addr & 7UL) << 3;
338         addr = (void *) ((unsigned long) addr & ~7UL);
339 #elif BITS_PER_LONG == 32
340         *bit += ((unsigned long) addr & 3UL) << 3;
341         addr = (void *) ((unsigned long) addr & ~3UL);
342 #else
343 #error "how many bits you are?!"
344 #endif
345         return addr;
346 }
347
348 static inline int mb_test_bit(int bit, void *addr)
349 {
350         /*
351          * ext4_test_bit on architecture like powerpc
352          * needs unsigned long aligned address
353          */
354         addr = mb_correct_addr_and_bit(&bit, addr);
355         return ext4_test_bit(bit, addr);
356 }
357
358 static inline void mb_set_bit(int bit, void *addr)
359 {
360         addr = mb_correct_addr_and_bit(&bit, addr);
361         ext4_set_bit(bit, addr);
362 }
363
364 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
365 {
366         addr = mb_correct_addr_and_bit(&bit, addr);
367         ext4_set_bit_atomic(lock, bit, addr);
368 }
369
370 static inline void mb_clear_bit(int bit, void *addr)
371 {
372         addr = mb_correct_addr_and_bit(&bit, addr);
373         ext4_clear_bit(bit, addr);
374 }
375
376 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 {
378         addr = mb_correct_addr_and_bit(&bit, addr);
379         ext4_clear_bit_atomic(lock, bit, addr);
380 }
381
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 {
384         int fix = 0, ret, tmpmax;
385         addr = mb_correct_addr_and_bit(&fix, addr);
386         tmpmax = max + fix;
387         start += fix;
388
389         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390         if (ret > max)
391                 return max;
392         return ret;
393 }
394
395 static inline int mb_find_next_bit(void *addr, int max, int start)
396 {
397         int fix = 0, ret, tmpmax;
398         addr = mb_correct_addr_and_bit(&fix, addr);
399         tmpmax = max + fix;
400         start += fix;
401
402         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403         if (ret > max)
404                 return max;
405         return ret;
406 }
407
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 {
410         char *bb;
411
412         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413         BUG_ON(max == NULL);
414
415         if (order > e4b->bd_blkbits + 1) {
416                 *max = 0;
417                 return NULL;
418         }
419
420         /* at order 0 we see each particular block */
421         *max = 1 << (e4b->bd_blkbits + 3);
422         if (order == 0)
423                 return EXT4_MB_BITMAP(e4b);
424
425         bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427
428         return bb;
429 }
430
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433                            int first, int count)
434 {
435         int i;
436         struct super_block *sb = e4b->bd_sb;
437
438         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439                 return;
440         BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
441         for (i = 0; i < count; i++) {
442                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443                         ext4_fsblk_t blocknr;
444                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445                         blocknr += first + i;
446                         blocknr +=
447                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448
449                         ext4_error(sb, __func__, "double-free of inode"
450                                    " %lu's block %llu(bit %u in group %lu)\n",
451                                    inode ? inode->i_ino : 0, blocknr,
452                                    first + i, e4b->bd_group);
453                 }
454                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455         }
456 }
457
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460         int i;
461
462         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463                 return;
464         BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
465         for (i = 0; i < count; i++) {
466                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468         }
469 }
470
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474                 unsigned char *b1, *b2;
475                 int i;
476                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477                 b2 = (unsigned char *) bitmap;
478                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479                         if (b1[i] != b2[i]) {
480                                 printk("corruption in group %lu at byte %u(%u):"
481                                        " %x in copy != %x on disk/prealloc\n",
482                                         e4b->bd_group, i, i * 8, b1[i], b2[i]);
483                                 BUG();
484                         }
485                 }
486         }
487 }
488
489 #else
490 static inline void mb_free_blocks_double(struct inode *inode,
491                                 struct ext4_buddy *e4b, int first, int count)
492 {
493         return;
494 }
495 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
496                                                 int first, int count)
497 {
498         return;
499 }
500 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
501 {
502         return;
503 }
504 #endif
505
506 #ifdef AGGRESSIVE_CHECK
507
508 #define MB_CHECK_ASSERT(assert)                                         \
509 do {                                                                    \
510         if (!(assert)) {                                                \
511                 printk(KERN_EMERG                                       \
512                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
513                         function, file, line, # assert);                \
514                 BUG();                                                  \
515         }                                                               \
516 } while (0)
517
518 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
519                                 const char *function, int line)
520 {
521         struct super_block *sb = e4b->bd_sb;
522         int order = e4b->bd_blkbits + 1;
523         int max;
524         int max2;
525         int i;
526         int j;
527         int k;
528         int count;
529         struct ext4_group_info *grp;
530         int fragments = 0;
531         int fstart;
532         struct list_head *cur;
533         void *buddy;
534         void *buddy2;
535
536         if (!test_opt(sb, MBALLOC))
537                 return 0;
538
539         {
540                 static int mb_check_counter;
541                 if (mb_check_counter++ % 100 != 0)
542                         return 0;
543         }
544
545         while (order > 1) {
546                 buddy = mb_find_buddy(e4b, order, &max);
547                 MB_CHECK_ASSERT(buddy);
548                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
549                 MB_CHECK_ASSERT(buddy2);
550                 MB_CHECK_ASSERT(buddy != buddy2);
551                 MB_CHECK_ASSERT(max * 2 == max2);
552
553                 count = 0;
554                 for (i = 0; i < max; i++) {
555
556                         if (mb_test_bit(i, buddy)) {
557                                 /* only single bit in buddy2 may be 1 */
558                                 if (!mb_test_bit(i << 1, buddy2)) {
559                                         MB_CHECK_ASSERT(
560                                                 mb_test_bit((i<<1)+1, buddy2));
561                                 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
562                                         MB_CHECK_ASSERT(
563                                                 mb_test_bit(i << 1, buddy2));
564                                 }
565                                 continue;
566                         }
567
568                         /* both bits in buddy2 must be 0 */
569                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
570                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
571
572                         for (j = 0; j < (1 << order); j++) {
573                                 k = (i * (1 << order)) + j;
574                                 MB_CHECK_ASSERT(
575                                         !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
576                         }
577                         count++;
578                 }
579                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
580                 order--;
581         }
582
583         fstart = -1;
584         buddy = mb_find_buddy(e4b, 0, &max);
585         for (i = 0; i < max; i++) {
586                 if (!mb_test_bit(i, buddy)) {
587                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
588                         if (fstart == -1) {
589                                 fragments++;
590                                 fstart = i;
591                         }
592                         continue;
593                 }
594                 fstart = -1;
595                 /* check used bits only */
596                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
597                         buddy2 = mb_find_buddy(e4b, j, &max2);
598                         k = i >> j;
599                         MB_CHECK_ASSERT(k < max2);
600                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
601                 }
602         }
603         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
604         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
605
606         grp = ext4_get_group_info(sb, e4b->bd_group);
607         buddy = mb_find_buddy(e4b, 0, &max);
608         list_for_each(cur, &grp->bb_prealloc_list) {
609                 ext4_group_t groupnr;
610                 struct ext4_prealloc_space *pa;
611                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
612                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
613                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
614                 for (i = 0; i < pa->pa_len; i++)
615                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
616         }
617         return 0;
618 }
619 #undef MB_CHECK_ASSERT
620 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
621                                         __FILE__, __func__, __LINE__)
622 #else
623 #define mb_check_buddy(e4b)
624 #endif
625
626 /* FIXME!! need more doc */
627 static void ext4_mb_mark_free_simple(struct super_block *sb,
628                                 void *buddy, unsigned first, int len,
629                                         struct ext4_group_info *grp)
630 {
631         struct ext4_sb_info *sbi = EXT4_SB(sb);
632         unsigned short min;
633         unsigned short max;
634         unsigned short chunk;
635         unsigned short border;
636
637         BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
638
639         border = 2 << sb->s_blocksize_bits;
640
641         while (len > 0) {
642                 /* find how many blocks can be covered since this position */
643                 max = ffs(first | border) - 1;
644
645                 /* find how many blocks of power 2 we need to mark */
646                 min = fls(len) - 1;
647
648                 if (max < min)
649                         min = max;
650                 chunk = 1 << min;
651
652                 /* mark multiblock chunks only */
653                 grp->bb_counters[min]++;
654                 if (min > 0)
655                         mb_clear_bit(first >> min,
656                                      buddy + sbi->s_mb_offsets[min]);
657
658                 len -= chunk;
659                 first += chunk;
660         }
661 }
662
663 static void ext4_mb_generate_buddy(struct super_block *sb,
664                                 void *buddy, void *bitmap, ext4_group_t group)
665 {
666         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
667         unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
668         unsigned short i = 0;
669         unsigned short first;
670         unsigned short len;
671         unsigned free = 0;
672         unsigned fragments = 0;
673         unsigned long long period = get_cycles();
674
675         /* initialize buddy from bitmap which is aggregation
676          * of on-disk bitmap and preallocations */
677         i = mb_find_next_zero_bit(bitmap, max, 0);
678         grp->bb_first_free = i;
679         while (i < max) {
680                 fragments++;
681                 first = i;
682                 i = mb_find_next_bit(bitmap, max, i);
683                 len = i - first;
684                 free += len;
685                 if (len > 1)
686                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
687                 else
688                         grp->bb_counters[0]++;
689                 if (i < max)
690                         i = mb_find_next_zero_bit(bitmap, max, i);
691         }
692         grp->bb_fragments = fragments;
693
694         if (free != grp->bb_free) {
695                 ext4_error(sb, __func__,
696                         "EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n",
697                         group, free, grp->bb_free);
698                 /*
699                  * If we intent to continue, we consider group descritor
700                  * corrupt and update bb_free using bitmap value
701                  */
702                 grp->bb_free = free;
703         }
704
705         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
706
707         period = get_cycles() - period;
708         spin_lock(&EXT4_SB(sb)->s_bal_lock);
709         EXT4_SB(sb)->s_mb_buddies_generated++;
710         EXT4_SB(sb)->s_mb_generation_time += period;
711         spin_unlock(&EXT4_SB(sb)->s_bal_lock);
712 }
713
714 /* The buddy information is attached the buddy cache inode
715  * for convenience. The information regarding each group
716  * is loaded via ext4_mb_load_buddy. The information involve
717  * block bitmap and buddy information. The information are
718  * stored in the inode as
719  *
720  * {                        page                        }
721  * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
722  *
723  *
724  * one block each for bitmap and buddy information.
725  * So for each group we take up 2 blocks. A page can
726  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
727  * So it can have information regarding groups_per_page which
728  * is blocks_per_page/2
729  */
730
731 static int ext4_mb_init_cache(struct page *page, char *incore)
732 {
733         int blocksize;
734         int blocks_per_page;
735         int groups_per_page;
736         int err = 0;
737         int i;
738         ext4_group_t first_group;
739         int first_block;
740         struct super_block *sb;
741         struct buffer_head *bhs;
742         struct buffer_head **bh;
743         struct inode *inode;
744         char *data;
745         char *bitmap;
746
747         mb_debug("init page %lu\n", page->index);
748
749         inode = page->mapping->host;
750         sb = inode->i_sb;
751         blocksize = 1 << inode->i_blkbits;
752         blocks_per_page = PAGE_CACHE_SIZE / blocksize;
753
754         groups_per_page = blocks_per_page >> 1;
755         if (groups_per_page == 0)
756                 groups_per_page = 1;
757
758         /* allocate buffer_heads to read bitmaps */
759         if (groups_per_page > 1) {
760                 err = -ENOMEM;
761                 i = sizeof(struct buffer_head *) * groups_per_page;
762                 bh = kzalloc(i, GFP_NOFS);
763                 if (bh == NULL)
764                         goto out;
765         } else
766                 bh = &bhs;
767
768         first_group = page->index * blocks_per_page / 2;
769
770         /* read all groups the page covers into the cache */
771         for (i = 0; i < groups_per_page; i++) {
772                 struct ext4_group_desc *desc;
773
774                 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
775                         break;
776
777                 err = -EIO;
778                 desc = ext4_get_group_desc(sb, first_group + i, NULL);
779                 if (desc == NULL)
780                         goto out;
781
782                 err = -ENOMEM;
783                 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
784                 if (bh[i] == NULL)
785                         goto out;
786
787                 if (bh_uptodate_or_lock(bh[i]))
788                         continue;
789
790                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
791                         ext4_init_block_bitmap(sb, bh[i],
792                                                 first_group + i, desc);
793                         set_buffer_uptodate(bh[i]);
794                         unlock_buffer(bh[i]);
795                         continue;
796                 }
797                 get_bh(bh[i]);
798                 bh[i]->b_end_io = end_buffer_read_sync;
799                 submit_bh(READ, bh[i]);
800                 mb_debug("read bitmap for group %lu\n", first_group + i);
801         }
802
803         /* wait for I/O completion */
804         for (i = 0; i < groups_per_page && bh[i]; i++)
805                 wait_on_buffer(bh[i]);
806
807         err = -EIO;
808         for (i = 0; i < groups_per_page && bh[i]; i++)
809                 if (!buffer_uptodate(bh[i]))
810                         goto out;
811
812         err = 0;
813         first_block = page->index * blocks_per_page;
814         for (i = 0; i < blocks_per_page; i++) {
815                 int group;
816                 struct ext4_group_info *grinfo;
817
818                 group = (first_block + i) >> 1;
819                 if (group >= EXT4_SB(sb)->s_groups_count)
820                         break;
821
822                 /*
823                  * data carry information regarding this
824                  * particular group in the format specified
825                  * above
826                  *
827                  */
828                 data = page_address(page) + (i * blocksize);
829                 bitmap = bh[group - first_group]->b_data;
830
831                 /*
832                  * We place the buddy block and bitmap block
833                  * close together
834                  */
835                 if ((first_block + i) & 1) {
836                         /* this is block of buddy */
837                         BUG_ON(incore == NULL);
838                         mb_debug("put buddy for group %u in page %lu/%x\n",
839                                 group, page->index, i * blocksize);
840                         memset(data, 0xff, blocksize);
841                         grinfo = ext4_get_group_info(sb, group);
842                         grinfo->bb_fragments = 0;
843                         memset(grinfo->bb_counters, 0,
844                                sizeof(unsigned short)*(sb->s_blocksize_bits+2));
845                         /*
846                          * incore got set to the group block bitmap below
847                          */
848                         ext4_mb_generate_buddy(sb, data, incore, group);
849                         incore = NULL;
850                 } else {
851                         /* this is block of bitmap */
852                         BUG_ON(incore != NULL);
853                         mb_debug("put bitmap for group %u in page %lu/%x\n",
854                                 group, page->index, i * blocksize);
855
856                         /* see comments in ext4_mb_put_pa() */
857                         ext4_lock_group(sb, group);
858                         memcpy(data, bitmap, blocksize);
859
860                         /* mark all preallocated blks used in in-core bitmap */
861                         ext4_mb_generate_from_pa(sb, data, group);
862                         ext4_unlock_group(sb, group);
863
864                         /* set incore so that the buddy information can be
865                          * generated using this
866                          */
867                         incore = data;
868                 }
869         }
870         SetPageUptodate(page);
871
872 out:
873         if (bh) {
874                 for (i = 0; i < groups_per_page && bh[i]; i++)
875                         brelse(bh[i]);
876                 if (bh != &bhs)
877                         kfree(bh);
878         }
879         return err;
880 }
881
882 static noinline_for_stack int
883 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
884                                         struct ext4_buddy *e4b)
885 {
886         struct ext4_sb_info *sbi = EXT4_SB(sb);
887         struct inode *inode = sbi->s_buddy_cache;
888         int blocks_per_page;
889         int block;
890         int pnum;
891         int poff;
892         struct page *page;
893         int ret;
894
895         mb_debug("load group %lu\n", group);
896
897         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
898
899         e4b->bd_blkbits = sb->s_blocksize_bits;
900         e4b->bd_info = ext4_get_group_info(sb, group);
901         e4b->bd_sb = sb;
902         e4b->bd_group = group;
903         e4b->bd_buddy_page = NULL;
904         e4b->bd_bitmap_page = NULL;
905
906         /*
907          * the buddy cache inode stores the block bitmap
908          * and buddy information in consecutive blocks.
909          * So for each group we need two blocks.
910          */
911         block = group * 2;
912         pnum = block / blocks_per_page;
913         poff = block % blocks_per_page;
914
915         /* we could use find_or_create_page(), but it locks page
916          * what we'd like to avoid in fast path ... */
917         page = find_get_page(inode->i_mapping, pnum);
918         if (page == NULL || !PageUptodate(page)) {
919                 if (page)
920                         page_cache_release(page);
921                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
922                 if (page) {
923                         BUG_ON(page->mapping != inode->i_mapping);
924                         if (!PageUptodate(page)) {
925                                 ret = ext4_mb_init_cache(page, NULL);
926                                 if (ret) {
927                                         unlock_page(page);
928                                         goto err;
929                                 }
930                                 mb_cmp_bitmaps(e4b, page_address(page) +
931                                                (poff * sb->s_blocksize));
932                         }
933                         unlock_page(page);
934                 }
935         }
936         if (page == NULL || !PageUptodate(page)) {
937                 ret = -EIO;
938                 goto err;
939         }
940         e4b->bd_bitmap_page = page;
941         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
942         mark_page_accessed(page);
943
944         block++;
945         pnum = block / blocks_per_page;
946         poff = block % blocks_per_page;
947
948         page = find_get_page(inode->i_mapping, pnum);
949         if (page == NULL || !PageUptodate(page)) {
950                 if (page)
951                         page_cache_release(page);
952                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
953                 if (page) {
954                         BUG_ON(page->mapping != inode->i_mapping);
955                         if (!PageUptodate(page)) {
956                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
957                                 if (ret) {
958                                         unlock_page(page);
959                                         goto err;
960                                 }
961                         }
962                         unlock_page(page);
963                 }
964         }
965         if (page == NULL || !PageUptodate(page)) {
966                 ret = -EIO;
967                 goto err;
968         }
969         e4b->bd_buddy_page = page;
970         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
971         mark_page_accessed(page);
972
973         BUG_ON(e4b->bd_bitmap_page == NULL);
974         BUG_ON(e4b->bd_buddy_page == NULL);
975
976         return 0;
977
978 err:
979         if (e4b->bd_bitmap_page)
980                 page_cache_release(e4b->bd_bitmap_page);
981         if (e4b->bd_buddy_page)
982                 page_cache_release(e4b->bd_buddy_page);
983         e4b->bd_buddy = NULL;
984         e4b->bd_bitmap = NULL;
985         return ret;
986 }
987
988 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
989 {
990         if (e4b->bd_bitmap_page)
991                 page_cache_release(e4b->bd_bitmap_page);
992         if (e4b->bd_buddy_page)
993                 page_cache_release(e4b->bd_buddy_page);
994 }
995
996
997 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
998 {
999         int order = 1;
1000         void *bb;
1001
1002         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1003         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1004
1005         bb = EXT4_MB_BUDDY(e4b);
1006         while (order <= e4b->bd_blkbits + 1) {
1007                 block = block >> 1;
1008                 if (!mb_test_bit(block, bb)) {
1009                         /* this block is part of buddy of order 'order' */
1010                         return order;
1011                 }
1012                 bb += 1 << (e4b->bd_blkbits - order);
1013                 order++;
1014         }
1015         return 0;
1016 }
1017
1018 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1019 {
1020         __u32 *addr;
1021
1022         len = cur + len;
1023         while (cur < len) {
1024                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1025                         /* fast path: clear whole word at once */
1026                         addr = bm + (cur >> 3);
1027                         *addr = 0;
1028                         cur += 32;
1029                         continue;
1030                 }
1031                 mb_clear_bit_atomic(lock, cur, bm);
1032                 cur++;
1033         }
1034 }
1035
1036 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1037 {
1038         __u32 *addr;
1039
1040         len = cur + len;
1041         while (cur < len) {
1042                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1043                         /* fast path: set whole word at once */
1044                         addr = bm + (cur >> 3);
1045                         *addr = 0xffffffff;
1046                         cur += 32;
1047                         continue;
1048                 }
1049                 mb_set_bit_atomic(lock, cur, bm);
1050                 cur++;
1051         }
1052 }
1053
1054 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1055                           int first, int count)
1056 {
1057         int block = 0;
1058         int max = 0;
1059         int order;
1060         void *buddy;
1061         void *buddy2;
1062         struct super_block *sb = e4b->bd_sb;
1063
1064         BUG_ON(first + count > (sb->s_blocksize << 3));
1065         BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1066         mb_check_buddy(e4b);
1067         mb_free_blocks_double(inode, e4b, first, count);
1068
1069         e4b->bd_info->bb_free += count;
1070         if (first < e4b->bd_info->bb_first_free)
1071                 e4b->bd_info->bb_first_free = first;
1072
1073         /* let's maintain fragments counter */
1074         if (first != 0)
1075                 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1076         if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1077                 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1078         if (block && max)
1079                 e4b->bd_info->bb_fragments--;
1080         else if (!block && !max)
1081                 e4b->bd_info->bb_fragments++;
1082
1083         /* let's maintain buddy itself */
1084         while (count-- > 0) {
1085                 block = first++;
1086                 order = 0;
1087
1088                 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1089                         ext4_fsblk_t blocknr;
1090                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1091                         blocknr += block;
1092                         blocknr +=
1093                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1094                         ext4_unlock_group(sb, e4b->bd_group);
1095                         ext4_error(sb, __func__, "double-free of inode"
1096                                    " %lu's block %llu(bit %u in group %lu)\n",
1097                                    inode ? inode->i_ino : 0, blocknr, block,
1098                                    e4b->bd_group);
1099                         ext4_lock_group(sb, e4b->bd_group);
1100                 }
1101                 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1102                 e4b->bd_info->bb_counters[order]++;
1103
1104                 /* start of the buddy */
1105                 buddy = mb_find_buddy(e4b, order, &max);
1106
1107                 do {
1108                         block &= ~1UL;
1109                         if (mb_test_bit(block, buddy) ||
1110                                         mb_test_bit(block + 1, buddy))
1111                                 break;
1112
1113                         /* both the buddies are free, try to coalesce them */
1114                         buddy2 = mb_find_buddy(e4b, order + 1, &max);
1115
1116                         if (!buddy2)
1117                                 break;
1118
1119                         if (order > 0) {
1120                                 /* for special purposes, we don't set
1121                                  * free bits in bitmap */
1122                                 mb_set_bit(block, buddy);
1123                                 mb_set_bit(block + 1, buddy);
1124                         }
1125                         e4b->bd_info->bb_counters[order]--;
1126                         e4b->bd_info->bb_counters[order]--;
1127
1128                         block = block >> 1;
1129                         order++;
1130                         e4b->bd_info->bb_counters[order]++;
1131
1132                         mb_clear_bit(block, buddy2);
1133                         buddy = buddy2;
1134                 } while (1);
1135         }
1136         mb_check_buddy(e4b);
1137 }
1138
1139 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1140                                 int needed, struct ext4_free_extent *ex)
1141 {
1142         int next = block;
1143         int max;
1144         int ord;
1145         void *buddy;
1146
1147         BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1148         BUG_ON(ex == NULL);
1149
1150         buddy = mb_find_buddy(e4b, order, &max);
1151         BUG_ON(buddy == NULL);
1152         BUG_ON(block >= max);
1153         if (mb_test_bit(block, buddy)) {
1154                 ex->fe_len = 0;
1155                 ex->fe_start = 0;
1156                 ex->fe_group = 0;
1157                 return 0;
1158         }
1159
1160         /* FIXME dorp order completely ? */
1161         if (likely(order == 0)) {
1162                 /* find actual order */
1163                 order = mb_find_order_for_block(e4b, block);
1164                 block = block >> order;
1165         }
1166
1167         ex->fe_len = 1 << order;
1168         ex->fe_start = block << order;
1169         ex->fe_group = e4b->bd_group;
1170
1171         /* calc difference from given start */
1172         next = next - ex->fe_start;
1173         ex->fe_len -= next;
1174         ex->fe_start += next;
1175
1176         while (needed > ex->fe_len &&
1177                (buddy = mb_find_buddy(e4b, order, &max))) {
1178
1179                 if (block + 1 >= max)
1180                         break;
1181
1182                 next = (block + 1) * (1 << order);
1183                 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1184                         break;
1185
1186                 ord = mb_find_order_for_block(e4b, next);
1187
1188                 order = ord;
1189                 block = next >> order;
1190                 ex->fe_len += 1 << order;
1191         }
1192
1193         BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1194         return ex->fe_len;
1195 }
1196
1197 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1198 {
1199         int ord;
1200         int mlen = 0;
1201         int max = 0;
1202         int cur;
1203         int start = ex->fe_start;
1204         int len = ex->fe_len;
1205         unsigned ret = 0;
1206         int len0 = len;
1207         void *buddy;
1208
1209         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1210         BUG_ON(e4b->bd_group != ex->fe_group);
1211         BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1212         mb_check_buddy(e4b);
1213         mb_mark_used_double(e4b, start, len);
1214
1215         e4b->bd_info->bb_free -= len;
1216         if (e4b->bd_info->bb_first_free == start)
1217                 e4b->bd_info->bb_first_free += len;
1218
1219         /* let's maintain fragments counter */
1220         if (start != 0)
1221                 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1222         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1223                 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1224         if (mlen && max)
1225                 e4b->bd_info->bb_fragments++;
1226         else if (!mlen && !max)
1227                 e4b->bd_info->bb_fragments--;
1228
1229         /* let's maintain buddy itself */
1230         while (len) {
1231                 ord = mb_find_order_for_block(e4b, start);
1232
1233                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1234                         /* the whole chunk may be allocated at once! */
1235                         mlen = 1 << ord;
1236                         buddy = mb_find_buddy(e4b, ord, &max);
1237                         BUG_ON((start >> ord) >= max);
1238                         mb_set_bit(start >> ord, buddy);
1239                         e4b->bd_info->bb_counters[ord]--;
1240                         start += mlen;
1241                         len -= mlen;
1242                         BUG_ON(len < 0);
1243                         continue;
1244                 }
1245
1246                 /* store for history */
1247                 if (ret == 0)
1248                         ret = len | (ord << 16);
1249
1250                 /* we have to split large buddy */
1251                 BUG_ON(ord <= 0);
1252                 buddy = mb_find_buddy(e4b, ord, &max);
1253                 mb_set_bit(start >> ord, buddy);
1254                 e4b->bd_info->bb_counters[ord]--;
1255
1256                 ord--;
1257                 cur = (start >> ord) & ~1U;
1258                 buddy = mb_find_buddy(e4b, ord, &max);
1259                 mb_clear_bit(cur, buddy);
1260                 mb_clear_bit(cur + 1, buddy);
1261                 e4b->bd_info->bb_counters[ord]++;
1262                 e4b->bd_info->bb_counters[ord]++;
1263         }
1264
1265         mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1266                         EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1267         mb_check_buddy(e4b);
1268
1269         return ret;
1270 }
1271
1272 /*
1273  * Must be called under group lock!
1274  */
1275 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1276                                         struct ext4_buddy *e4b)
1277 {
1278         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1279         int ret;
1280
1281         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1282         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1283
1284         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1285         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1286         ret = mb_mark_used(e4b, &ac->ac_b_ex);
1287
1288         /* preallocation can change ac_b_ex, thus we store actually
1289          * allocated blocks for history */
1290         ac->ac_f_ex = ac->ac_b_ex;
1291
1292         ac->ac_status = AC_STATUS_FOUND;
1293         ac->ac_tail = ret & 0xffff;
1294         ac->ac_buddy = ret >> 16;
1295
1296         /* XXXXXXX: SUCH A HORRIBLE **CK */
1297         /*FIXME!! Why ? */
1298         ac->ac_bitmap_page = e4b->bd_bitmap_page;
1299         get_page(ac->ac_bitmap_page);
1300         ac->ac_buddy_page = e4b->bd_buddy_page;
1301         get_page(ac->ac_buddy_page);
1302
1303         /* store last allocated for subsequent stream allocation */
1304         if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1305                 spin_lock(&sbi->s_md_lock);
1306                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1307                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1308                 spin_unlock(&sbi->s_md_lock);
1309         }
1310 }
1311
1312 /*
1313  * regular allocator, for general purposes allocation
1314  */
1315
1316 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1317                                         struct ext4_buddy *e4b,
1318                                         int finish_group)
1319 {
1320         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1321         struct ext4_free_extent *bex = &ac->ac_b_ex;
1322         struct ext4_free_extent *gex = &ac->ac_g_ex;
1323         struct ext4_free_extent ex;
1324         int max;
1325
1326         /*
1327          * We don't want to scan for a whole year
1328          */
1329         if (ac->ac_found > sbi->s_mb_max_to_scan &&
1330                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1331                 ac->ac_status = AC_STATUS_BREAK;
1332                 return;
1333         }
1334
1335         /*
1336          * Haven't found good chunk so far, let's continue
1337          */
1338         if (bex->fe_len < gex->fe_len)
1339                 return;
1340
1341         if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1342                         && bex->fe_group == e4b->bd_group) {
1343                 /* recheck chunk's availability - we don't know
1344                  * when it was found (within this lock-unlock
1345                  * period or not) */
1346                 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1347                 if (max >= gex->fe_len) {
1348                         ext4_mb_use_best_found(ac, e4b);
1349                         return;
1350                 }
1351         }
1352 }
1353
1354 /*
1355  * The routine checks whether found extent is good enough. If it is,
1356  * then the extent gets marked used and flag is set to the context
1357  * to stop scanning. Otherwise, the extent is compared with the
1358  * previous found extent and if new one is better, then it's stored
1359  * in the context. Later, the best found extent will be used, if
1360  * mballoc can't find good enough extent.
1361  *
1362  * FIXME: real allocation policy is to be designed yet!
1363  */
1364 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1365                                         struct ext4_free_extent *ex,
1366                                         struct ext4_buddy *e4b)
1367 {
1368         struct ext4_free_extent *bex = &ac->ac_b_ex;
1369         struct ext4_free_extent *gex = &ac->ac_g_ex;
1370
1371         BUG_ON(ex->fe_len <= 0);
1372         BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1373         BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1374         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1375
1376         ac->ac_found++;
1377
1378         /*
1379          * The special case - take what you catch first
1380          */
1381         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1382                 *bex = *ex;
1383                 ext4_mb_use_best_found(ac, e4b);
1384                 return;
1385         }
1386
1387         /*
1388          * Let's check whether the chuck is good enough
1389          */
1390         if (ex->fe_len == gex->fe_len) {
1391                 *bex = *ex;
1392                 ext4_mb_use_best_found(ac, e4b);
1393                 return;
1394         }
1395
1396         /*
1397          * If this is first found extent, just store it in the context
1398          */
1399         if (bex->fe_len == 0) {
1400                 *bex = *ex;
1401                 return;
1402         }
1403
1404         /*
1405          * If new found extent is better, store it in the context
1406          */
1407         if (bex->fe_len < gex->fe_len) {
1408                 /* if the request isn't satisfied, any found extent
1409                  * larger than previous best one is better */
1410                 if (ex->fe_len > bex->fe_len)
1411                         *bex = *ex;
1412         } else if (ex->fe_len > gex->fe_len) {
1413                 /* if the request is satisfied, then we try to find
1414                  * an extent that still satisfy the request, but is
1415                  * smaller than previous one */
1416                 if (ex->fe_len < bex->fe_len)
1417                         *bex = *ex;
1418         }
1419
1420         ext4_mb_check_limits(ac, e4b, 0);
1421 }
1422
1423 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1424                                         struct ext4_buddy *e4b)
1425 {
1426         struct ext4_free_extent ex = ac->ac_b_ex;
1427         ext4_group_t group = ex.fe_group;
1428         int max;
1429         int err;
1430
1431         BUG_ON(ex.fe_len <= 0);
1432         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1433         if (err)
1434                 return err;
1435
1436         ext4_lock_group(ac->ac_sb, group);
1437         max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1438
1439         if (max > 0) {
1440                 ac->ac_b_ex = ex;
1441                 ext4_mb_use_best_found(ac, e4b);
1442         }
1443
1444         ext4_unlock_group(ac->ac_sb, group);
1445         ext4_mb_release_desc(e4b);
1446
1447         return 0;
1448 }
1449
1450 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1451                                 struct ext4_buddy *e4b)
1452 {
1453         ext4_group_t group = ac->ac_g_ex.fe_group;
1454         int max;
1455         int err;
1456         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1457         struct ext4_super_block *es = sbi->s_es;
1458         struct ext4_free_extent ex;
1459
1460         if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1461                 return 0;
1462
1463         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1464         if (err)
1465                 return err;
1466
1467         ext4_lock_group(ac->ac_sb, group);
1468         max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1469                              ac->ac_g_ex.fe_len, &ex);
1470
1471         if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1472                 ext4_fsblk_t start;
1473
1474                 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1475                         ex.fe_start + le32_to_cpu(es->s_first_data_block);
1476                 /* use do_div to get remainder (would be 64-bit modulo) */
1477                 if (do_div(start, sbi->s_stripe) == 0) {
1478                         ac->ac_found++;
1479                         ac->ac_b_ex = ex;
1480                         ext4_mb_use_best_found(ac, e4b);
1481                 }
1482         } else if (max >= ac->ac_g_ex.fe_len) {
1483                 BUG_ON(ex.fe_len <= 0);
1484                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1485                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1486                 ac->ac_found++;
1487                 ac->ac_b_ex = ex;
1488                 ext4_mb_use_best_found(ac, e4b);
1489         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1490                 /* Sometimes, caller may want to merge even small
1491                  * number of blocks to an existing extent */
1492                 BUG_ON(ex.fe_len <= 0);
1493                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1494                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1495                 ac->ac_found++;
1496                 ac->ac_b_ex = ex;
1497                 ext4_mb_use_best_found(ac, e4b);
1498         }
1499         ext4_unlock_group(ac->ac_sb, group);
1500         ext4_mb_release_desc(e4b);
1501
1502         return 0;
1503 }
1504
1505 /*
1506  * The routine scans buddy structures (not bitmap!) from given order
1507  * to max order and tries to find big enough chunk to satisfy the req
1508  */
1509 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1510                                         struct ext4_buddy *e4b)
1511 {
1512         struct super_block *sb = ac->ac_sb;
1513         struct ext4_group_info *grp = e4b->bd_info;
1514         void *buddy;
1515         int i;
1516         int k;
1517         int max;
1518
1519         BUG_ON(ac->ac_2order <= 0);
1520         for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1521                 if (grp->bb_counters[i] == 0)
1522                         continue;
1523
1524                 buddy = mb_find_buddy(e4b, i, &max);
1525                 BUG_ON(buddy == NULL);
1526
1527                 k = mb_find_next_zero_bit(buddy, max, 0);
1528                 BUG_ON(k >= max);
1529
1530                 ac->ac_found++;
1531
1532                 ac->ac_b_ex.fe_len = 1 << i;
1533                 ac->ac_b_ex.fe_start = k << i;
1534                 ac->ac_b_ex.fe_group = e4b->bd_group;
1535
1536                 ext4_mb_use_best_found(ac, e4b);
1537
1538                 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1539
1540                 if (EXT4_SB(sb)->s_mb_stats)
1541                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1542
1543                 break;
1544         }
1545 }
1546
1547 /*
1548  * The routine scans the group and measures all found extents.
1549  * In order to optimize scanning, caller must pass number of
1550  * free blocks in the group, so the routine can know upper limit.
1551  */
1552 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1553                                         struct ext4_buddy *e4b)
1554 {
1555         struct super_block *sb = ac->ac_sb;
1556         void *bitmap = EXT4_MB_BITMAP(e4b);
1557         struct ext4_free_extent ex;
1558         int i;
1559         int free;
1560
1561         free = e4b->bd_info->bb_free;
1562         BUG_ON(free <= 0);
1563
1564         i = e4b->bd_info->bb_first_free;
1565
1566         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1567                 i = mb_find_next_zero_bit(bitmap,
1568                                                 EXT4_BLOCKS_PER_GROUP(sb), i);
1569                 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1570                         /*
1571                          * IF we have corrupt bitmap, we won't find any
1572                          * free blocks even though group info says we
1573                          * we have free blocks
1574                          */
1575                         ext4_error(sb, __func__, "%d free blocks as per "
1576                                         "group info. But bitmap says 0\n",
1577                                         free);
1578                         break;
1579                 }
1580
1581                 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1582                 BUG_ON(ex.fe_len <= 0);
1583                 if (free < ex.fe_len) {
1584                         ext4_error(sb, __func__, "%d free blocks as per "
1585                                         "group info. But got %d blocks\n",
1586                                         free, ex.fe_len);
1587                         /*
1588                          * The number of free blocks differs. This mostly
1589                          * indicate that the bitmap is corrupt. So exit
1590                          * without claiming the space.
1591                          */
1592                         break;
1593                 }
1594
1595                 ext4_mb_measure_extent(ac, &ex, e4b);
1596
1597                 i += ex.fe_len;
1598                 free -= ex.fe_len;
1599         }
1600
1601         ext4_mb_check_limits(ac, e4b, 1);
1602 }
1603
1604 /*
1605  * This is a special case for storages like raid5
1606  * we try to find stripe-aligned chunks for stripe-size requests
1607  * XXX should do so at least for multiples of stripe size as well
1608  */
1609 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1610                                  struct ext4_buddy *e4b)
1611 {
1612         struct super_block *sb = ac->ac_sb;
1613         struct ext4_sb_info *sbi = EXT4_SB(sb);
1614         void *bitmap = EXT4_MB_BITMAP(e4b);
1615         struct ext4_free_extent ex;
1616         ext4_fsblk_t first_group_block;
1617         ext4_fsblk_t a;
1618         ext4_grpblk_t i;
1619         int max;
1620
1621         BUG_ON(sbi->s_stripe == 0);
1622
1623         /* find first stripe-aligned block in group */
1624         first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1625                 + le32_to_cpu(sbi->s_es->s_first_data_block);
1626         a = first_group_block + sbi->s_stripe - 1;
1627         do_div(a, sbi->s_stripe);
1628         i = (a * sbi->s_stripe) - first_group_block;
1629
1630         while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1631                 if (!mb_test_bit(i, bitmap)) {
1632                         max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1633                         if (max >= sbi->s_stripe) {
1634                                 ac->ac_found++;
1635                                 ac->ac_b_ex = ex;
1636                                 ext4_mb_use_best_found(ac, e4b);
1637                                 break;
1638                         }
1639                 }
1640                 i += sbi->s_stripe;
1641         }
1642 }
1643
1644 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1645                                 ext4_group_t group, int cr)
1646 {
1647         unsigned free, fragments;
1648         unsigned i, bits;
1649         struct ext4_group_desc *desc;
1650         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1651
1652         BUG_ON(cr < 0 || cr >= 4);
1653         BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1654
1655         free = grp->bb_free;
1656         fragments = grp->bb_fragments;
1657         if (free == 0)
1658                 return 0;
1659         if (fragments == 0)
1660                 return 0;
1661
1662         switch (cr) {
1663         case 0:
1664                 BUG_ON(ac->ac_2order == 0);
1665                 /* If this group is uninitialized, skip it initially */
1666                 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1667                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1668                         return 0;
1669
1670                 bits = ac->ac_sb->s_blocksize_bits + 1;
1671                 for (i = ac->ac_2order; i <= bits; i++)
1672                         if (grp->bb_counters[i] > 0)
1673                                 return 1;
1674                 break;
1675         case 1:
1676                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1677                         return 1;
1678                 break;
1679         case 2:
1680                 if (free >= ac->ac_g_ex.fe_len)
1681                         return 1;
1682                 break;
1683         case 3:
1684                 return 1;
1685         default:
1686                 BUG();
1687         }
1688
1689         return 0;
1690 }
1691
1692 static noinline_for_stack int
1693 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1694 {
1695         ext4_group_t group;
1696         ext4_group_t i;
1697         int cr;
1698         int err = 0;
1699         int bsbits;
1700         struct ext4_sb_info *sbi;
1701         struct super_block *sb;
1702         struct ext4_buddy e4b;
1703         loff_t size, isize;
1704
1705         sb = ac->ac_sb;
1706         sbi = EXT4_SB(sb);
1707         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1708
1709         /* first, try the goal */
1710         err = ext4_mb_find_by_goal(ac, &e4b);
1711         if (err || ac->ac_status == AC_STATUS_FOUND)
1712                 goto out;
1713
1714         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1715                 goto out;
1716
1717         /*
1718          * ac->ac2_order is set only if the fe_len is a power of 2
1719          * if ac2_order is set we also set criteria to 0 so that we
1720          * try exact allocation using buddy.
1721          */
1722         i = fls(ac->ac_g_ex.fe_len);
1723         ac->ac_2order = 0;
1724         /*
1725          * We search using buddy data only if the order of the request
1726          * is greater than equal to the sbi_s_mb_order2_reqs
1727          * You can tune it via /proc/fs/ext4/<partition>/order2_req
1728          */
1729         if (i >= sbi->s_mb_order2_reqs) {
1730                 /*
1731                  * This should tell if fe_len is exactly power of 2
1732                  */
1733                 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1734                         ac->ac_2order = i - 1;
1735         }
1736
1737         bsbits = ac->ac_sb->s_blocksize_bits;
1738         /* if stream allocation is enabled, use global goal */
1739         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1740         isize = i_size_read(ac->ac_inode) >> bsbits;
1741         if (size < isize)
1742                 size = isize;
1743
1744         if (size < sbi->s_mb_stream_request &&
1745                         (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1746                 /* TBD: may be hot point */
1747                 spin_lock(&sbi->s_md_lock);
1748                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1749                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1750                 spin_unlock(&sbi->s_md_lock);
1751         }
1752         /* Let's just scan groups to find more-less suitable blocks */
1753         cr = ac->ac_2order ? 0 : 1;
1754         /*
1755          * cr == 0 try to get exact allocation,
1756          * cr == 3  try to get anything
1757          */
1758 repeat:
1759         for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1760                 ac->ac_criteria = cr;
1761                 /*
1762                  * searching for the right group start
1763                  * from the goal value specified
1764                  */
1765                 group = ac->ac_g_ex.fe_group;
1766
1767                 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
1768                         struct ext4_group_info *grp;
1769                         struct ext4_group_desc *desc;
1770
1771                         if (group == EXT4_SB(sb)->s_groups_count)
1772                                 group = 0;
1773
1774                         /* quick check to skip empty groups */
1775                         grp = ext4_get_group_info(ac->ac_sb, group);
1776                         if (grp->bb_free == 0)
1777                                 continue;
1778
1779                         /*
1780                          * if the group is already init we check whether it is
1781                          * a good group and if not we don't load the buddy
1782                          */
1783                         if (EXT4_MB_GRP_NEED_INIT(grp)) {
1784                                 /*
1785                                  * we need full data about the group
1786                                  * to make a good selection
1787                                  */
1788                                 err = ext4_mb_load_buddy(sb, group, &e4b);
1789                                 if (err)
1790                                         goto out;
1791                                 ext4_mb_release_desc(&e4b);
1792                         }
1793
1794                         /*
1795                          * If the particular group doesn't satisfy our
1796                          * criteria we continue with the next group
1797                          */
1798                         if (!ext4_mb_good_group(ac, group, cr))
1799                                 continue;
1800
1801                         err = ext4_mb_load_buddy(sb, group, &e4b);
1802                         if (err)
1803                                 goto out;
1804
1805                         ext4_lock_group(sb, group);
1806                         if (!ext4_mb_good_group(ac, group, cr)) {
1807                                 /* someone did allocation from this group */
1808                                 ext4_unlock_group(sb, group);
1809                                 ext4_mb_release_desc(&e4b);
1810                                 continue;
1811                         }
1812
1813                         ac->ac_groups_scanned++;
1814                         desc = ext4_get_group_desc(sb, group, NULL);
1815                         if (cr == 0 || (desc->bg_flags &
1816                                         cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
1817                                         ac->ac_2order != 0))
1818                                 ext4_mb_simple_scan_group(ac, &e4b);
1819                         else if (cr == 1 &&
1820                                         ac->ac_g_ex.fe_len == sbi->s_stripe)
1821                                 ext4_mb_scan_aligned(ac, &e4b);
1822                         else
1823                                 ext4_mb_complex_scan_group(ac, &e4b);
1824
1825                         ext4_unlock_group(sb, group);
1826                         ext4_mb_release_desc(&e4b);
1827
1828                         if (ac->ac_status != AC_STATUS_CONTINUE)
1829                                 break;
1830                 }
1831         }
1832
1833         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
1834             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1835                 /*
1836                  * We've been searching too long. Let's try to allocate
1837                  * the best chunk we've found so far
1838                  */
1839
1840                 ext4_mb_try_best_found(ac, &e4b);
1841                 if (ac->ac_status != AC_STATUS_FOUND) {
1842                         /*
1843                          * Someone more lucky has already allocated it.
1844                          * The only thing we can do is just take first
1845                          * found block(s)
1846                         printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
1847                          */
1848                         ac->ac_b_ex.fe_group = 0;
1849                         ac->ac_b_ex.fe_start = 0;
1850                         ac->ac_b_ex.fe_len = 0;
1851                         ac->ac_status = AC_STATUS_CONTINUE;
1852                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
1853                         cr = 3;
1854                         atomic_inc(&sbi->s_mb_lost_chunks);
1855                         goto repeat;
1856                 }
1857         }
1858 out:
1859         return err;
1860 }
1861
1862 #ifdef EXT4_MB_HISTORY
1863 struct ext4_mb_proc_session {
1864         struct ext4_mb_history *history;
1865         struct super_block *sb;
1866         int start;
1867         int max;
1868 };
1869
1870 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
1871                                         struct ext4_mb_history *hs,
1872                                         int first)
1873 {
1874         if (hs == s->history + s->max)
1875                 hs = s->history;
1876         if (!first && hs == s->history + s->start)
1877                 return NULL;
1878         while (hs->orig.fe_len == 0) {
1879                 hs++;
1880                 if (hs == s->history + s->max)
1881                         hs = s->history;
1882                 if (hs == s->history + s->start)
1883                         return NULL;
1884         }
1885         return hs;
1886 }
1887
1888 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
1889 {
1890         struct ext4_mb_proc_session *s = seq->private;
1891         struct ext4_mb_history *hs;
1892         int l = *pos;
1893
1894         if (l == 0)
1895                 return SEQ_START_TOKEN;
1896         hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1897         if (!hs)
1898                 return NULL;
1899         while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
1900         return hs;
1901 }
1902
1903 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
1904                                       loff_t *pos)
1905 {
1906         struct ext4_mb_proc_session *s = seq->private;
1907         struct ext4_mb_history *hs = v;
1908
1909         ++*pos;
1910         if (v == SEQ_START_TOKEN)
1911                 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1912         else
1913                 return ext4_mb_history_skip_empty(s, ++hs, 0);
1914 }
1915
1916 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
1917 {
1918         char buf[25], buf2[25], buf3[25], *fmt;
1919         struct ext4_mb_history *hs = v;
1920
1921         if (v == SEQ_START_TOKEN) {
1922                 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
1923                                 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
1924                           "pid", "inode", "original", "goal", "result", "found",
1925                            "grps", "cr", "flags", "merge", "tail", "broken");
1926                 return 0;
1927         }
1928
1929         if (hs->op == EXT4_MB_HISTORY_ALLOC) {
1930                 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
1931                         "%-5u %-5s %-5u %-6u\n";
1932                 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1933                         hs->result.fe_start, hs->result.fe_len,
1934                         hs->result.fe_logical);
1935                 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1936                         hs->orig.fe_start, hs->orig.fe_len,
1937                         hs->orig.fe_logical);
1938                 sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group,
1939                         hs->goal.fe_start, hs->goal.fe_len,
1940                         hs->goal.fe_logical);
1941                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
1942                                 hs->found, hs->groups, hs->cr, hs->flags,
1943                                 hs->merged ? "M" : "", hs->tail,
1944                                 hs->buddy ? 1 << hs->buddy : 0);
1945         } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
1946                 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
1947                 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1948                         hs->result.fe_start, hs->result.fe_len,
1949                         hs->result.fe_logical);
1950                 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1951                         hs->orig.fe_start, hs->orig.fe_len,
1952                         hs->orig.fe_logical);
1953                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
1954         } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
1955                 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1956                         hs->result.fe_start, hs->result.fe_len);
1957                 seq_printf(seq, "%-5u %-8u %-23s discard\n",
1958                                 hs->pid, hs->ino, buf2);
1959         } else if (hs->op == EXT4_MB_HISTORY_FREE) {
1960                 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1961                         hs->result.fe_start, hs->result.fe_len);
1962                 seq_printf(seq, "%-5u %-8u %-23s free\n",
1963                                 hs->pid, hs->ino, buf2);
1964         }
1965         return 0;
1966 }
1967
1968 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
1969 {
1970 }
1971
1972 static struct seq_operations ext4_mb_seq_history_ops = {
1973         .start  = ext4_mb_seq_history_start,
1974         .next   = ext4_mb_seq_history_next,
1975         .stop   = ext4_mb_seq_history_stop,
1976         .show   = ext4_mb_seq_history_show,
1977 };
1978
1979 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
1980 {
1981         struct super_block *sb = PDE(inode)->data;
1982         struct ext4_sb_info *sbi = EXT4_SB(sb);
1983         struct ext4_mb_proc_session *s;
1984         int rc;
1985         int size;
1986
1987         if (unlikely(sbi->s_mb_history == NULL))
1988                 return -ENOMEM;
1989         s = kmalloc(sizeof(*s), GFP_KERNEL);
1990         if (s == NULL)
1991                 return -ENOMEM;
1992         s->sb = sb;
1993         size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
1994         s->history = kmalloc(size, GFP_KERNEL);
1995         if (s->history == NULL) {
1996                 kfree(s);
1997                 return -ENOMEM;
1998         }
1999
2000         spin_lock(&sbi->s_mb_history_lock);
2001         memcpy(s->history, sbi->s_mb_history, size);
2002         s->max = sbi->s_mb_history_max;
2003         s->start = sbi->s_mb_history_cur % s->max;
2004         spin_unlock(&sbi->s_mb_history_lock);
2005
2006         rc = seq_open(file, &ext4_mb_seq_history_ops);
2007         if (rc == 0) {
2008                 struct seq_file *m = (struct seq_file *)file->private_data;
2009                 m->private = s;
2010         } else {
2011                 kfree(s->history);
2012                 kfree(s);
2013         }
2014         return rc;
2015
2016 }
2017
2018 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2019 {
2020         struct seq_file *seq = (struct seq_file *)file->private_data;
2021         struct ext4_mb_proc_session *s = seq->private;
2022         kfree(s->history);
2023         kfree(s);
2024         return seq_release(inode, file);
2025 }
2026
2027 static ssize_t ext4_mb_seq_history_write(struct file *file,
2028                                 const char __user *buffer,
2029                                 size_t count, loff_t *ppos)
2030 {
2031         struct seq_file *seq = (struct seq_file *)file->private_data;
2032         struct ext4_mb_proc_session *s = seq->private;
2033         struct super_block *sb = s->sb;
2034         char str[32];
2035         int value;
2036
2037         if (count >= sizeof(str)) {
2038                 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2039                                 "mb_history", (int)sizeof(str));
2040                 return -EOVERFLOW;
2041         }
2042
2043         if (copy_from_user(str, buffer, count))
2044                 return -EFAULT;
2045
2046         value = simple_strtol(str, NULL, 0);
2047         if (value < 0)
2048                 return -ERANGE;
2049         EXT4_SB(sb)->s_mb_history_filter = value;
2050
2051         return count;
2052 }
2053
2054 static struct file_operations ext4_mb_seq_history_fops = {
2055         .owner          = THIS_MODULE,
2056         .open           = ext4_mb_seq_history_open,
2057         .read           = seq_read,
2058         .write          = ext4_mb_seq_history_write,
2059         .llseek         = seq_lseek,
2060         .release        = ext4_mb_seq_history_release,
2061 };
2062
2063 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2064 {
2065         struct super_block *sb = seq->private;
2066         struct ext4_sb_info *sbi = EXT4_SB(sb);
2067         ext4_group_t group;
2068
2069         if (*pos < 0 || *pos >= sbi->s_groups_count)
2070                 return NULL;
2071
2072         group = *pos + 1;
2073         return (void *) group;
2074 }
2075
2076 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2077 {
2078         struct super_block *sb = seq->private;
2079         struct ext4_sb_info *sbi = EXT4_SB(sb);
2080         ext4_group_t group;
2081
2082         ++*pos;
2083         if (*pos < 0 || *pos >= sbi->s_groups_count)
2084                 return NULL;
2085         group = *pos + 1;
2086         return (void *) group;;
2087 }
2088
2089 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2090 {
2091         struct super_block *sb = seq->private;
2092         long group = (long) v;
2093         int i;
2094         int err;
2095         struct ext4_buddy e4b;
2096         struct sg {
2097                 struct ext4_group_info info;
2098                 unsigned short counters[16];
2099         } sg;
2100
2101         group--;
2102         if (group == 0)
2103                 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2104                                 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2105                                   "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2106                            "group", "free", "frags", "first",
2107                            "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2108                            "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2109
2110         i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2111                 sizeof(struct ext4_group_info);
2112         err = ext4_mb_load_buddy(sb, group, &e4b);
2113         if (err) {
2114                 seq_printf(seq, "#%-5lu: I/O error\n", group);
2115                 return 0;
2116         }
2117         ext4_lock_group(sb, group);
2118         memcpy(&sg, ext4_get_group_info(sb, group), i);
2119         ext4_unlock_group(sb, group);
2120         ext4_mb_release_desc(&e4b);
2121
2122         seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free,
2123                         sg.info.bb_fragments, sg.info.bb_first_free);
2124         for (i = 0; i <= 13; i++)
2125                 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2126                                 sg.info.bb_counters[i] : 0);
2127         seq_printf(seq, " ]\n");
2128
2129         return 0;
2130 }
2131
2132 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2133 {
2134 }
2135
2136 static struct seq_operations ext4_mb_seq_groups_ops = {
2137         .start  = ext4_mb_seq_groups_start,
2138         .next   = ext4_mb_seq_groups_next,
2139         .stop   = ext4_mb_seq_groups_stop,
2140         .show   = ext4_mb_seq_groups_show,
2141 };
2142
2143 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2144 {
2145         struct super_block *sb = PDE(inode)->data;
2146         int rc;
2147
2148         rc = seq_open(file, &ext4_mb_seq_groups_ops);
2149         if (rc == 0) {
2150                 struct seq_file *m = (struct seq_file *)file->private_data;
2151                 m->private = sb;
2152         }
2153         return rc;
2154
2155 }
2156
2157 static struct file_operations ext4_mb_seq_groups_fops = {
2158         .owner          = THIS_MODULE,
2159         .open           = ext4_mb_seq_groups_open,
2160         .read           = seq_read,
2161         .llseek         = seq_lseek,
2162         .release        = seq_release,
2163 };
2164
2165 static void ext4_mb_history_release(struct super_block *sb)
2166 {
2167         struct ext4_sb_info *sbi = EXT4_SB(sb);
2168
2169         remove_proc_entry("mb_groups", sbi->s_mb_proc);
2170         remove_proc_entry("mb_history", sbi->s_mb_proc);
2171
2172         kfree(sbi->s_mb_history);
2173 }
2174
2175 static void ext4_mb_history_init(struct super_block *sb)
2176 {
2177         struct ext4_sb_info *sbi = EXT4_SB(sb);
2178         int i;
2179
2180         if (sbi->s_mb_proc != NULL) {
2181                 proc_create_data("mb_history", S_IRUGO, sbi->s_mb_proc,
2182                                  &ext4_mb_seq_history_fops, sb);
2183                 proc_create_data("mb_groups", S_IRUGO, sbi->s_mb_proc,
2184                                  &ext4_mb_seq_groups_fops, sb);
2185         }
2186
2187         sbi->s_mb_history_max = 1000;
2188         sbi->s_mb_history_cur = 0;
2189         spin_lock_init(&sbi->s_mb_history_lock);
2190         i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2191         sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2192         /* if we can't allocate history, then we simple won't use it */
2193 }
2194
2195 static noinline_for_stack void
2196 ext4_mb_store_history(struct ext4_allocation_context *ac)
2197 {
2198         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2199         struct ext4_mb_history h;
2200
2201         if (unlikely(sbi->s_mb_history == NULL))
2202                 return;
2203
2204         if (!(ac->ac_op & sbi->s_mb_history_filter))
2205                 return;
2206
2207         h.op = ac->ac_op;
2208         h.pid = current->pid;
2209         h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2210         h.orig = ac->ac_o_ex;
2211         h.result = ac->ac_b_ex;
2212         h.flags = ac->ac_flags;
2213         h.found = ac->ac_found;
2214         h.groups = ac->ac_groups_scanned;
2215         h.cr = ac->ac_criteria;
2216         h.tail = ac->ac_tail;
2217         h.buddy = ac->ac_buddy;
2218         h.merged = 0;
2219         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2220                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2221                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2222                         h.merged = 1;
2223                 h.goal = ac->ac_g_ex;
2224                 h.result = ac->ac_f_ex;
2225         }
2226
2227         spin_lock(&sbi->s_mb_history_lock);
2228         memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2229         if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2230                 sbi->s_mb_history_cur = 0;
2231         spin_unlock(&sbi->s_mb_history_lock);
2232 }
2233
2234 #else
2235 #define ext4_mb_history_release(sb)
2236 #define ext4_mb_history_init(sb)
2237 #endif
2238
2239 static int ext4_mb_init_backend(struct super_block *sb)
2240 {
2241         ext4_group_t i;
2242         int j, len, metalen;
2243         struct ext4_sb_info *sbi = EXT4_SB(sb);
2244         int num_meta_group_infos =
2245                 (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2246                         EXT4_DESC_PER_BLOCK_BITS(sb);
2247         struct ext4_group_info **meta_group_info;
2248
2249         /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2250          * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2251          * So a two level scheme suffices for now. */
2252         sbi->s_group_info = kmalloc(sizeof(*sbi->s_group_info) *
2253                                     num_meta_group_infos, GFP_KERNEL);
2254         if (sbi->s_group_info == NULL) {
2255                 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2256                 return -ENOMEM;
2257         }
2258         sbi->s_buddy_cache = new_inode(sb);
2259         if (sbi->s_buddy_cache == NULL) {
2260                 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2261                 goto err_freesgi;
2262         }
2263         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2264
2265         metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2266         for (i = 0; i < num_meta_group_infos; i++) {
2267                 if ((i + 1) == num_meta_group_infos)
2268                         metalen = sizeof(*meta_group_info) *
2269                                 (sbi->s_groups_count -
2270                                         (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2271                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2272                 if (meta_group_info == NULL) {
2273                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2274                                "buddy group\n");
2275                         goto err_freemeta;
2276                 }
2277                 sbi->s_group_info[i] = meta_group_info;
2278         }
2279
2280         /*
2281          * calculate needed size. if change bb_counters size,
2282          * don't forget about ext4_mb_generate_buddy()
2283          */
2284         len = sizeof(struct ext4_group_info);
2285         len += sizeof(unsigned short) * (sb->s_blocksize_bits + 2);
2286         for (i = 0; i < sbi->s_groups_count; i++) {
2287                 struct ext4_group_desc *desc;
2288
2289                 meta_group_info =
2290                         sbi->s_group_info[i >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2291                 j = i & (EXT4_DESC_PER_BLOCK(sb) - 1);
2292
2293                 meta_group_info[j] = kzalloc(len, GFP_KERNEL);
2294                 if (meta_group_info[j] == NULL) {
2295                         printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2296                         goto err_freebuddy;
2297                 }
2298                 desc = ext4_get_group_desc(sb, i, NULL);
2299                 if (desc == NULL) {
2300                         printk(KERN_ERR
2301                                 "EXT4-fs: can't read descriptor %lu\n", i);
2302                         i++;
2303                         goto err_freebuddy;
2304                 }
2305                 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2306                         &(meta_group_info[j]->bb_state));
2307
2308                 /*
2309                  * initialize bb_free to be able to skip
2310                  * empty groups without initialization
2311                  */
2312                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2313                         meta_group_info[j]->bb_free =
2314                                 ext4_free_blocks_after_init(sb, i, desc);
2315                 } else {
2316                         meta_group_info[j]->bb_free =
2317                                 le16_to_cpu(desc->bg_free_blocks_count);
2318                 }
2319
2320                 INIT_LIST_HEAD(&meta_group_info[j]->bb_prealloc_list);
2321
2322 #ifdef DOUBLE_CHECK
2323                 {
2324                         struct buffer_head *bh;
2325                         meta_group_info[j]->bb_bitmap =
2326                                 kmalloc(sb->s_blocksize, GFP_KERNEL);
2327                         BUG_ON(meta_group_info[j]->bb_bitmap == NULL);
2328                         bh = ext4_read_block_bitmap(sb, i);
2329                         BUG_ON(bh == NULL);
2330                         memcpy(meta_group_info[j]->bb_bitmap, bh->b_data,
2331                                         sb->s_blocksize);
2332                         put_bh(bh);
2333                 }
2334 #endif
2335
2336         }
2337
2338         return 0;
2339
2340 err_freebuddy:
2341         while (i-- > 0)
2342                 kfree(ext4_get_group_info(sb, i));
2343         i = num_meta_group_infos;
2344 err_freemeta:
2345         while (i-- > 0)
2346                 kfree(sbi->s_group_info[i]);
2347         iput(sbi->s_buddy_cache);
2348 err_freesgi:
2349         kfree(sbi->s_group_info);
2350         return -ENOMEM;
2351 }
2352
2353 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2354 {
2355         struct ext4_sb_info *sbi = EXT4_SB(sb);
2356         unsigned i;
2357         unsigned offset;
2358         unsigned max;
2359         int ret;
2360
2361         if (!test_opt(sb, MBALLOC))
2362                 return 0;
2363
2364         i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2365
2366         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2367         if (sbi->s_mb_offsets == NULL) {
2368                 clear_opt(sbi->s_mount_opt, MBALLOC);
2369                 return -ENOMEM;
2370         }
2371         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2372         if (sbi->s_mb_maxs == NULL) {
2373                 clear_opt(sbi->s_mount_opt, MBALLOC);
2374                 kfree(sbi->s_mb_maxs);
2375                 return -ENOMEM;
2376         }
2377
2378         /* order 0 is regular bitmap */
2379         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2380         sbi->s_mb_offsets[0] = 0;
2381
2382         i = 1;
2383         offset = 0;
2384         max = sb->s_blocksize << 2;
2385         do {
2386                 sbi->s_mb_offsets[i] = offset;
2387                 sbi->s_mb_maxs[i] = max;
2388                 offset += 1 << (sb->s_blocksize_bits - i);
2389                 max = max >> 1;
2390                 i++;
2391         } while (i <= sb->s_blocksize_bits + 1);
2392
2393         /* init file for buddy data */
2394         ret = ext4_mb_init_backend(sb);
2395         if (ret != 0) {
2396                 clear_opt(sbi->s_mount_opt, MBALLOC);
2397                 kfree(sbi->s_mb_offsets);
2398                 kfree(sbi->s_mb_maxs);
2399                 return ret;
2400         }
2401
2402         spin_lock_init(&sbi->s_md_lock);
2403         INIT_LIST_HEAD(&sbi->s_active_transaction);
2404         INIT_LIST_HEAD(&sbi->s_closed_transaction);
2405         INIT_LIST_HEAD(&sbi->s_committed_transaction);
2406         spin_lock_init(&sbi->s_bal_lock);
2407
2408         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2409         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2410         sbi->s_mb_stats = MB_DEFAULT_STATS;
2411         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2412         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2413         sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2414         sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2415
2416         i = sizeof(struct ext4_locality_group) * NR_CPUS;
2417         sbi->s_locality_groups = kmalloc(i, GFP_KERNEL);
2418         if (sbi->s_locality_groups == NULL) {
2419                 clear_opt(sbi->s_mount_opt, MBALLOC);
2420                 kfree(sbi->s_mb_offsets);
2421                 kfree(sbi->s_mb_maxs);
2422                 return -ENOMEM;
2423         }
2424         for (i = 0; i < NR_CPUS; i++) {
2425                 struct ext4_locality_group *lg;
2426                 lg = &sbi->s_locality_groups[i];
2427                 mutex_init(&lg->lg_mutex);
2428                 INIT_LIST_HEAD(&lg->lg_prealloc_list);
2429                 spin_lock_init(&lg->lg_prealloc_lock);
2430         }
2431
2432         ext4_mb_init_per_dev_proc(sb);
2433         ext4_mb_history_init(sb);
2434
2435         printk("EXT4-fs: mballoc enabled\n");
2436         return 0;
2437 }
2438
2439 /* need to called with ext4 group lock (ext4_lock_group) */
2440 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2441 {
2442         struct ext4_prealloc_space *pa;
2443         struct list_head *cur, *tmp;
2444         int count = 0;
2445
2446         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2447                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2448                 list_del(&pa->pa_group_list);
2449                 count++;
2450                 kfree(pa);
2451         }
2452         if (count)
2453                 mb_debug("mballoc: %u PAs left\n", count);
2454
2455 }
2456
2457 int ext4_mb_release(struct super_block *sb)
2458 {
2459         ext4_group_t i;
2460         int num_meta_group_infos;
2461         struct ext4_group_info *grinfo;
2462         struct ext4_sb_info *sbi = EXT4_SB(sb);
2463
2464         if (!test_opt(sb, MBALLOC))
2465                 return 0;
2466
2467         /* release freed, non-committed blocks */
2468         spin_lock(&sbi->s_md_lock);
2469         list_splice_init(&sbi->s_closed_transaction,
2470                         &sbi->s_committed_transaction);
2471         list_splice_init(&sbi->s_active_transaction,
2472                         &sbi->s_committed_transaction);
2473         spin_unlock(&sbi->s_md_lock);
2474         ext4_mb_free_committed_blocks(sb);
2475
2476         if (sbi->s_group_info) {
2477                 for (i = 0; i < sbi->s_groups_count; i++) {
2478                         grinfo = ext4_get_group_info(sb, i);
2479 #ifdef DOUBLE_CHECK
2480                         kfree(grinfo->bb_bitmap);
2481 #endif
2482                         ext4_lock_group(sb, i);
2483                         ext4_mb_cleanup_pa(grinfo);
2484                         ext4_unlock_group(sb, i);
2485                         kfree(grinfo);
2486                 }
2487                 num_meta_group_infos = (sbi->s_groups_count +
2488                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2489                         EXT4_DESC_PER_BLOCK_BITS(sb);
2490                 for (i = 0; i < num_meta_group_infos; i++)
2491                         kfree(sbi->s_group_info[i]);
2492                 kfree(sbi->s_group_info);
2493         }
2494         kfree(sbi->s_mb_offsets);
2495         kfree(sbi->s_mb_maxs);
2496         if (sbi->s_buddy_cache)
2497                 iput(sbi->s_buddy_cache);
2498         if (sbi->s_mb_stats) {
2499                 printk(KERN_INFO
2500                        "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2501                                 atomic_read(&sbi->s_bal_allocated),
2502                                 atomic_read(&sbi->s_bal_reqs),
2503                                 atomic_read(&sbi->s_bal_success));
2504                 printk(KERN_INFO
2505                       "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2506                                 "%u 2^N hits, %u breaks, %u lost\n",
2507                                 atomic_read(&sbi->s_bal_ex_scanned),
2508                                 atomic_read(&sbi->s_bal_goals),
2509                                 atomic_read(&sbi->s_bal_2orders),
2510                                 atomic_read(&sbi->s_bal_breaks),
2511                                 atomic_read(&sbi->s_mb_lost_chunks));
2512                 printk(KERN_INFO
2513                        "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2514                                 sbi->s_mb_buddies_generated++,
2515                                 sbi->s_mb_generation_time);
2516                 printk(KERN_INFO
2517                        "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2518                                 atomic_read(&sbi->s_mb_preallocated),
2519                                 atomic_read(&sbi->s_mb_discarded));
2520         }
2521
2522         kfree(sbi->s_locality_groups);
2523
2524         ext4_mb_history_release(sb);
2525         ext4_mb_destroy_per_dev_proc(sb);
2526
2527         return 0;
2528 }
2529
2530 static noinline_for_stack void
2531 ext4_mb_free_committed_blocks(struct super_block *sb)
2532 {
2533         struct ext4_sb_info *sbi = EXT4_SB(sb);
2534         int err;
2535         int i;
2536         int count = 0;
2537         int count2 = 0;
2538         struct ext4_free_metadata *md;
2539         struct ext4_buddy e4b;
2540
2541         if (list_empty(&sbi->s_committed_transaction))
2542                 return;
2543
2544         /* there is committed blocks to be freed yet */
2545         do {
2546                 /* get next array of blocks */
2547                 md = NULL;
2548                 spin_lock(&sbi->s_md_lock);
2549                 if (!list_empty(&sbi->s_committed_transaction)) {
2550                         md = list_entry(sbi->s_committed_transaction.next,
2551                                         struct ext4_free_metadata, list);
2552                         list_del(&md->list);
2553                 }
2554                 spin_unlock(&sbi->s_md_lock);
2555
2556                 if (md == NULL)
2557                         break;
2558
2559                 mb_debug("gonna free %u blocks in group %lu (0x%p):",
2560                                 md->num, md->group, md);
2561
2562                 err = ext4_mb_load_buddy(sb, md->group, &e4b);
2563                 /* we expect to find existing buddy because it's pinned */
2564                 BUG_ON(err != 0);
2565
2566                 /* there are blocks to put in buddy to make them really free */
2567                 count += md->num;
2568                 count2++;
2569                 ext4_lock_group(sb, md->group);
2570                 for (i = 0; i < md->num; i++) {
2571                         mb_debug(" %u", md->blocks[i]);
2572                         mb_free_blocks(NULL, &e4b, md->blocks[i], 1);
2573                 }
2574                 mb_debug("\n");
2575                 ext4_unlock_group(sb, md->group);
2576
2577                 /* balance refcounts from ext4_mb_free_metadata() */
2578                 page_cache_release(e4b.bd_buddy_page);
2579                 page_cache_release(e4b.bd_bitmap_page);
2580
2581                 kfree(md);
2582                 ext4_mb_release_desc(&e4b);
2583
2584         } while (md);
2585
2586         mb_debug("freed %u blocks in %u structures\n", count, count2);
2587 }
2588
2589 #define EXT4_MB_STATS_NAME              "stats"
2590 #define EXT4_MB_MAX_TO_SCAN_NAME        "max_to_scan"
2591 #define EXT4_MB_MIN_TO_SCAN_NAME        "min_to_scan"
2592 #define EXT4_MB_ORDER2_REQ              "order2_req"
2593 #define EXT4_MB_STREAM_REQ              "stream_req"
2594 #define EXT4_MB_GROUP_PREALLOC          "group_prealloc"
2595
2596
2597
2598 #define MB_PROC_FOPS(name)                                      \
2599 static int ext4_mb_##name##_proc_show(struct seq_file *m, void *v)      \
2600 {                                                               \
2601         struct ext4_sb_info *sbi = m->private;                  \
2602                                                                 \
2603         seq_printf(m, "%ld\n", sbi->s_mb_##name);               \
2604         return 0;                                               \
2605 }                                                               \
2606                                                                 \
2607 static int ext4_mb_##name##_proc_open(struct inode *inode, struct file *file)\
2608 {                                                               \
2609         return single_open(file, ext4_mb_##name##_proc_show, PDE(inode)->data);\
2610 }                                                               \
2611                                                                 \
2612 static ssize_t ext4_mb_##name##_proc_write(struct file *file,   \
2613                 const char __user *buf, size_t cnt, loff_t *ppos)       \
2614 {                                                               \
2615         struct ext4_sb_info *sbi = PDE(file->f_path.dentry->d_inode)->data;\
2616         char str[32];                                           \
2617         long value;                                             \
2618         if (cnt >= sizeof(str))                                 \
2619                 return -EINVAL;                                 \
2620         if (copy_from_user(str, buf, cnt))                      \
2621                 return -EFAULT;                                 \
2622         value = simple_strtol(str, NULL, 0);                    \
2623         if (value <= 0)                                         \
2624                 return -ERANGE;                                 \
2625         sbi->s_mb_##name = value;                               \
2626         return cnt;                                             \
2627 }                                                               \
2628                                                                 \
2629 static const struct file_operations ext4_mb_##name##_proc_fops = {      \
2630         .owner          = THIS_MODULE,                          \
2631         .open           = ext4_mb_##name##_proc_open,           \
2632         .read           = seq_read,                             \
2633         .llseek         = seq_lseek,                            \
2634         .release        = single_release,                       \
2635         .write          = ext4_mb_##name##_proc_write,          \
2636 };
2637
2638 MB_PROC_FOPS(stats);
2639 MB_PROC_FOPS(max_to_scan);
2640 MB_PROC_FOPS(min_to_scan);
2641 MB_PROC_FOPS(order2_reqs);
2642 MB_PROC_FOPS(stream_request);
2643 MB_PROC_FOPS(group_prealloc);
2644
2645 #define MB_PROC_HANDLER(name, var)                                      \
2646 do {                                                                    \
2647         proc = proc_create_data(name, mode, sbi->s_mb_proc,             \
2648                                 &ext4_mb_##var##_proc_fops, sbi);       \
2649         if (proc == NULL) {                                             \
2650                 printk(KERN_ERR "EXT4-fs: can't to create %s\n", name); \
2651                 goto err_out;                                           \
2652         }                                                               \
2653 } while (0)
2654
2655 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2656 {
2657         mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2658         struct ext4_sb_info *sbi = EXT4_SB(sb);
2659         struct proc_dir_entry *proc;
2660         char devname[64];
2661
2662         if (proc_root_ext4 == NULL) {
2663                 sbi->s_mb_proc = NULL;
2664                 return -EINVAL;
2665         }
2666         bdevname(sb->s_bdev, devname);
2667         sbi->s_mb_proc = proc_mkdir(devname, proc_root_ext4);
2668
2669         MB_PROC_HANDLER(EXT4_MB_STATS_NAME, stats);
2670         MB_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, max_to_scan);
2671         MB_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, min_to_scan);
2672         MB_PROC_HANDLER(EXT4_MB_ORDER2_REQ, order2_reqs);
2673         MB_PROC_HANDLER(EXT4_MB_STREAM_REQ, stream_request);
2674         MB_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, group_prealloc);
2675
2676         return 0;
2677
2678 err_out:
2679         printk(KERN_ERR "EXT4-fs: Unable to create %s\n", devname);
2680         remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2681         remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2682         remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2683         remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2684         remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2685         remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2686         remove_proc_entry(devname, proc_root_ext4);
2687         sbi->s_mb_proc = NULL;
2688
2689         return -ENOMEM;
2690 }
2691
2692 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2693 {
2694         struct ext4_sb_info *sbi = EXT4_SB(sb);
2695         char devname[64];
2696
2697         if (sbi->s_mb_proc == NULL)
2698                 return -EINVAL;
2699
2700         bdevname(sb->s_bdev, devname);
2701         remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2702         remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2703         remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2704         remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2705         remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2706         remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2707         remove_proc_entry(devname, proc_root_ext4);
2708
2709         return 0;
2710 }
2711
2712 int __init init_ext4_mballoc(void)
2713 {
2714         ext4_pspace_cachep =
2715                 kmem_cache_create("ext4_prealloc_space",
2716                                      sizeof(struct ext4_prealloc_space),
2717                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2718         if (ext4_pspace_cachep == NULL)
2719                 return -ENOMEM;
2720
2721         ext4_ac_cachep =
2722                 kmem_cache_create("ext4_alloc_context",
2723                                      sizeof(struct ext4_allocation_context),
2724                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2725         if (ext4_ac_cachep == NULL) {
2726                 kmem_cache_destroy(ext4_pspace_cachep);
2727                 return -ENOMEM;
2728         }
2729 #ifdef CONFIG_PROC_FS
2730         proc_root_ext4 = proc_mkdir("fs/ext4", NULL);
2731         if (proc_root_ext4 == NULL)
2732                 printk(KERN_ERR "EXT4-fs: Unable to create fs/ext4\n");
2733 #endif
2734         return 0;
2735 }
2736
2737 void exit_ext4_mballoc(void)
2738 {
2739         /* XXX: synchronize_rcu(); */
2740         kmem_cache_destroy(ext4_pspace_cachep);
2741         kmem_cache_destroy(ext4_ac_cachep);
2742 #ifdef CONFIG_PROC_FS
2743         remove_proc_entry("fs/ext4", NULL);
2744 #endif
2745 }
2746
2747
2748 /*
2749  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2750  * Returns 0 if success or error code
2751  */
2752 static noinline_for_stack int
2753 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2754                                 handle_t *handle)
2755 {
2756         struct buffer_head *bitmap_bh = NULL;
2757         struct ext4_super_block *es;
2758         struct ext4_group_desc *gdp;
2759         struct buffer_head *gdp_bh;
2760         struct ext4_sb_info *sbi;
2761         struct super_block *sb;
2762         ext4_fsblk_t block;
2763         int err, len;
2764
2765         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2766         BUG_ON(ac->ac_b_ex.fe_len <= 0);
2767
2768         sb = ac->ac_sb;
2769         sbi = EXT4_SB(sb);
2770         es = sbi->s_es;
2771
2772
2773         err = -EIO;
2774         bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2775         if (!bitmap_bh)
2776                 goto out_err;
2777
2778         err = ext4_journal_get_write_access(handle, bitmap_bh);
2779         if (err)
2780                 goto out_err;
2781
2782         err = -EIO;
2783         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2784         if (!gdp)
2785                 goto out_err;
2786
2787         ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group,
2788                         gdp->bg_free_blocks_count);
2789
2790         err = ext4_journal_get_write_access(handle, gdp_bh);
2791         if (err)
2792                 goto out_err;
2793
2794         block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2795                 + ac->ac_b_ex.fe_start
2796                 + le32_to_cpu(es->s_first_data_block);
2797
2798         len = ac->ac_b_ex.fe_len;
2799         if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
2800             in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
2801             in_range(block, ext4_inode_table(sb, gdp),
2802                      EXT4_SB(sb)->s_itb_per_group) ||
2803             in_range(block + len - 1, ext4_inode_table(sb, gdp),
2804                      EXT4_SB(sb)->s_itb_per_group)) {
2805                 ext4_error(sb, __func__,
2806                            "Allocating block in system zone - block = %llu",
2807                            block);
2808                 /* File system mounted not to panic on error
2809                  * Fix the bitmap and repeat the block allocation
2810                  * We leak some of the blocks here.
2811                  */
2812                 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
2813                                 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2814                                 ac->ac_b_ex.fe_len);
2815                 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2816                 if (!err)
2817                         err = -EAGAIN;
2818                 goto out_err;
2819         }
2820 #ifdef AGGRESSIVE_CHECK
2821         {
2822                 int i;
2823                 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2824                         BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2825                                                 bitmap_bh->b_data));
2826                 }
2827         }
2828 #endif
2829         mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data,
2830                                 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
2831
2832         spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2833         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2834                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2835                 gdp->bg_free_blocks_count =
2836                         cpu_to_le16(ext4_free_blocks_after_init(sb,
2837                                                 ac->ac_b_ex.fe_group,
2838                                                 gdp));
2839         }
2840         le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
2841         gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2842         spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2843         percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2844
2845         if (sbi->s_log_groups_per_flex) {
2846                 ext4_group_t flex_group = ext4_flex_group(sbi,
2847                                                           ac->ac_b_ex.fe_group);
2848                 spin_lock(sb_bgl_lock(sbi, flex_group));
2849                 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
2850                 spin_unlock(sb_bgl_lock(sbi, flex_group));
2851         }
2852
2853         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2854         if (err)
2855                 goto out_err;
2856         err = ext4_journal_dirty_metadata(handle, gdp_bh);
2857
2858 out_err:
2859         sb->s_dirt = 1;
2860         brelse(bitmap_bh);
2861         return err;
2862 }
2863
2864 /*
2865  * here we normalize request for locality group
2866  * Group request are normalized to s_strip size if we set the same via mount
2867  * option. If not we set it to s_mb_group_prealloc which can be configured via
2868  * /proc/fs/ext4/<partition>/group_prealloc
2869  *
2870  * XXX: should we try to preallocate more than the group has now?
2871  */
2872 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2873 {
2874         struct super_block *sb = ac->ac_sb;
2875         struct ext4_locality_group *lg = ac->ac_lg;
2876
2877         BUG_ON(lg == NULL);
2878         if (EXT4_SB(sb)->s_stripe)
2879                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2880         else
2881                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2882         mb_debug("#%u: goal %u blocks for locality group\n",
2883                 current->pid, ac->ac_g_ex.fe_len);
2884 }
2885
2886 /*
2887  * Normalization means making request better in terms of
2888  * size and alignment
2889  */
2890 static noinline_for_stack void
2891 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2892                                 struct ext4_allocation_request *ar)
2893 {
2894         int bsbits, max;
2895         ext4_lblk_t end;
2896         loff_t size, orig_size, start_off;
2897         ext4_lblk_t start, orig_start;
2898         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2899         struct ext4_prealloc_space *pa;
2900
2901         /* do normalize only data requests, metadata requests
2902            do not need preallocation */
2903         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2904                 return;
2905
2906         /* sometime caller may want exact blocks */
2907         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2908                 return;
2909
2910         /* caller may indicate that preallocation isn't
2911          * required (it's a tail, for example) */
2912         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2913                 return;
2914
2915         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2916                 ext4_mb_normalize_group_request(ac);
2917                 return ;
2918         }
2919
2920         bsbits = ac->ac_sb->s_blocksize_bits;
2921
2922         /* first, let's learn actual file size
2923          * given current request is allocated */
2924         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2925         size = size << bsbits;
2926         if (size < i_size_read(ac->ac_inode))
2927                 size = i_size_read(ac->ac_inode);
2928
2929         /* max size of free chunks */
2930         max = 2 << bsbits;
2931
2932 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
2933                 (req <= (size) || max <= (chunk_size))
2934
2935         /* first, try to predict filesize */
2936         /* XXX: should this table be tunable? */
2937         start_off = 0;
2938         if (size <= 16 * 1024) {
2939                 size = 16 * 1024;
2940         } else if (size <= 32 * 1024) {
2941                 size = 32 * 1024;
2942         } else if (size <= 64 * 1024) {
2943                 size = 64 * 1024;
2944         } else if (size <= 128 * 1024) {
2945                 size = 128 * 1024;
2946         } else if (size <= 256 * 1024) {
2947                 size = 256 * 1024;
2948         } else if (size <= 512 * 1024) {
2949                 size = 512 * 1024;
2950         } else if (size <= 1024 * 1024) {
2951                 size = 1024 * 1024;
2952         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2953                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2954                                                 (21 - bsbits)) << 21;
2955                 size = 2 * 1024 * 1024;
2956         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2957                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2958                                                         (22 - bsbits)) << 22;
2959                 size = 4 * 1024 * 1024;
2960         } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2961                                         (8<<20)>>bsbits, max, 8 * 1024)) {
2962                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2963                                                         (23 - bsbits)) << 23;
2964                 size = 8 * 1024 * 1024;
2965         } else {
2966                 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2967                 size      = ac->ac_o_ex.fe_len << bsbits;
2968         }
2969         orig_size = size = size >> bsbits;
2970         orig_start = start = start_off >> bsbits;
2971
2972         /* don't cover already allocated blocks in selected range */
2973         if (ar->pleft && start <= ar->lleft) {
2974                 size -= ar->lleft + 1 - start;
2975                 start = ar->lleft + 1;
2976         }
2977         if (ar->pright && start + size - 1 >= ar->lright)
2978                 size -= start + size - ar->lright;
2979
2980         end = start + size;
2981
2982         /* check we don't cross already preallocated blocks */
2983         rcu_read_lock();
2984         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2985                 unsigned long pa_end;
2986
2987                 if (pa->pa_deleted)
2988                         continue;
2989                 spin_lock(&pa->pa_lock);
2990                 if (pa->pa_deleted) {
2991                         spin_unlock(&pa->pa_lock);
2992                         continue;
2993                 }
2994
2995                 pa_end = pa->pa_lstart + pa->pa_len;
2996
2997                 /* PA must not overlap original request */
2998                 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2999                         ac->ac_o_ex.fe_logical < pa->pa_lstart));
3000
3001                 /* skip PA normalized request doesn't overlap with */
3002                 if (pa->pa_lstart >= end) {
3003                         spin_unlock(&pa->pa_lock);
3004                         continue;
3005                 }
3006                 if (pa_end <= start) {
3007                         spin_unlock(&pa->pa_lock);
3008                         continue;
3009                 }
3010                 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3011
3012                 if (pa_end <= ac->ac_o_ex.fe_logical) {
3013                         BUG_ON(pa_end < start);
3014                         start = pa_end;
3015                 }
3016
3017                 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3018                         BUG_ON(pa->pa_lstart > end);
3019                         end = pa->pa_lstart;
3020                 }
3021                 spin_unlock(&pa->pa_lock);
3022         }
3023         rcu_read_unlock();
3024         size = end - start;
3025
3026         /* XXX: extra loop to check we really don't overlap preallocations */
3027         rcu_read_lock();
3028         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3029                 unsigned long pa_end;
3030                 spin_lock(&pa->pa_lock);
3031                 if (pa->pa_deleted == 0) {
3032                         pa_end = pa->pa_lstart + pa->pa_len;
3033                         BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3034                 }
3035                 spin_unlock(&pa->pa_lock);
3036         }
3037         rcu_read_unlock();
3038
3039         if (start + size <= ac->ac_o_ex.fe_logical &&
3040                         start > ac->ac_o_ex.fe_logical) {
3041                 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3042                         (unsigned long) start, (unsigned long) size,
3043                         (unsigned long) ac->ac_o_ex.fe_logical);
3044         }
3045         BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3046                         start > ac->ac_o_ex.fe_logical);
3047         BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3048
3049         /* now prepare goal request */
3050
3051         /* XXX: is it better to align blocks WRT to logical
3052          * placement or satisfy big request as is */
3053         ac->ac_g_ex.fe_logical = start;
3054         ac->ac_g_ex.fe_len = size;
3055
3056         /* define goal start in order to merge */
3057         if (ar->pright && (ar->lright == (start + size))) {
3058                 /* merge to the right */
3059                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3060                                                 &ac->ac_f_ex.fe_group,
3061                                                 &ac->ac_f_ex.fe_start);
3062                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3063         }
3064         if (ar->pleft && (ar->lleft + 1 == start)) {
3065                 /* merge to the left */
3066                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3067                                                 &ac->ac_f_ex.fe_group,
3068                                                 &ac->ac_f_ex.fe_start);
3069                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3070         }
3071
3072         mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3073                 (unsigned) orig_size, (unsigned) start);
3074 }
3075
3076 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3077 {
3078         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3079
3080         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3081                 atomic_inc(&sbi->s_bal_reqs);
3082                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3083                 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3084                         atomic_inc(&sbi->s_bal_success);
3085                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3086                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3087                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3088                         atomic_inc(&sbi->s_bal_goals);
3089                 if (ac->ac_found > sbi->s_mb_max_to_scan)
3090                         atomic_inc(&sbi->s_bal_breaks);
3091         }
3092
3093         ext4_mb_store_history(ac);
3094 }
3095
3096 /*
3097  * use blocks preallocated to inode
3098  */
3099 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3100                                 struct ext4_prealloc_space *pa)
3101 {
3102         ext4_fsblk_t start;
3103         ext4_fsblk_t end;
3104         int len;
3105
3106         /* found preallocated blocks, use them */
3107         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3108         end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3109         len = end - start;
3110         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3111                                         &ac->ac_b_ex.fe_start);
3112         ac->ac_b_ex.fe_len = len;
3113         ac->ac_status = AC_STATUS_FOUND;
3114         ac->ac_pa = pa;
3115
3116         BUG_ON(start < pa->pa_pstart);
3117         BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3118         BUG_ON(pa->pa_free < len);
3119         pa->pa_free -= len;
3120
3121         mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3122 }
3123
3124 /*
3125  * use blocks preallocated to locality group
3126  */
3127 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3128                                 struct ext4_prealloc_space *pa)
3129 {
3130         unsigned int len = ac->ac_o_ex.fe_len;
3131         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3132                                         &ac->ac_b_ex.fe_group,
3133                                         &ac->ac_b_ex.fe_start);
3134         ac->ac_b_ex.fe_len = len;
3135         ac->ac_status = AC_STATUS_FOUND;
3136         ac->ac_pa = pa;
3137
3138         /* we don't correct pa_pstart or pa_plen here to avoid
3139          * possible race when the group is being loaded concurrently
3140          * instead we correct pa later, after blocks are marked
3141          * in on-disk bitmap -- see ext4_mb_release_context()
3142          * Other CPUs are prevented from allocating from this pa by lg_mutex
3143          */
3144         mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3145 }
3146
3147 /*
3148  * search goal blocks in preallocated space
3149  */
3150 static noinline_for_stack int
3151 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3152 {
3153         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3154         struct ext4_locality_group *lg;
3155         struct ext4_prealloc_space *pa;
3156
3157         /* only data can be preallocated */
3158         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3159                 return 0;
3160
3161         /* first, try per-file preallocation */
3162         rcu_read_lock();
3163         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3164
3165                 /* all fields in this condition don't change,
3166                  * so we can skip locking for them */
3167                 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3168                         ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3169                         continue;
3170
3171                 /* found preallocated blocks, use them */
3172                 spin_lock(&pa->pa_lock);
3173                 if (pa->pa_deleted == 0 && pa->pa_free) {
3174                         atomic_inc(&pa->pa_count);
3175                         ext4_mb_use_inode_pa(ac, pa);
3176                         spin_unlock(&pa->pa_lock);
3177                         ac->ac_criteria = 10;
3178                         rcu_read_unlock();
3179                         return 1;
3180                 }
3181                 spin_unlock(&pa->pa_lock);
3182         }
3183         rcu_read_unlock();
3184
3185         /* can we use group allocation? */
3186         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3187                 return 0;
3188
3189         /* inode may have no locality group for some reason */
3190         lg = ac->ac_lg;
3191         if (lg == NULL)
3192                 return 0;
3193
3194         rcu_read_lock();
3195         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list, pa_inode_list) {
3196                 spin_lock(&pa->pa_lock);
3197                 if (pa->pa_deleted == 0 && pa->pa_free >= ac->ac_o_ex.fe_len) {
3198                         atomic_inc(&pa->pa_count);
3199                         ext4_mb_use_group_pa(ac, pa);
3200                         spin_unlock(&pa->pa_lock);
3201                         ac->ac_criteria = 20;
3202                         rcu_read_unlock();
3203                         return 1;
3204                 }
3205                 spin_unlock(&pa->pa_lock);
3206         }
3207         rcu_read_unlock();
3208
3209         return 0;
3210 }
3211
3212 /*
3213  * the function goes through all preallocation in this group and marks them
3214  * used in in-core bitmap. buddy must be generated from this bitmap
3215  * Need to be called with ext4 group lock (ext4_lock_group)
3216  */
3217 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3218                                         ext4_group_t group)
3219 {
3220         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3221         struct ext4_prealloc_space *pa;
3222         struct list_head *cur;
3223         ext4_group_t groupnr;
3224         ext4_grpblk_t start;
3225         int preallocated = 0;
3226         int count = 0;
3227         int len;
3228
3229         /* all form of preallocation discards first load group,
3230          * so the only competing code is preallocation use.
3231          * we don't need any locking here
3232          * notice we do NOT ignore preallocations with pa_deleted
3233          * otherwise we could leave used blocks available for
3234          * allocation in buddy when concurrent ext4_mb_put_pa()
3235          * is dropping preallocation
3236          */
3237         list_for_each(cur, &grp->bb_prealloc_list) {
3238                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3239                 spin_lock(&pa->pa_lock);
3240                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3241                                              &groupnr, &start);
3242                 len = pa->pa_len;
3243                 spin_unlock(&pa->pa_lock);
3244                 if (unlikely(len == 0))
3245                         continue;
3246                 BUG_ON(groupnr != group);
3247                 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3248                                                 bitmap, start, len);
3249                 preallocated += len;
3250                 count++;
3251         }
3252         mb_debug("prellocated %u for group %lu\n", preallocated, group);
3253 }
3254
3255 static void ext4_mb_pa_callback(struct rcu_head *head)
3256 {
3257         struct ext4_prealloc_space *pa;
3258         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3259         kmem_cache_free(ext4_pspace_cachep, pa);
3260 }
3261
3262 /*
3263  * drops a reference to preallocated space descriptor
3264  * if this was the last reference and the space is consumed
3265  */
3266 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3267                         struct super_block *sb, struct ext4_prealloc_space *pa)
3268 {
3269         unsigned long grp;
3270
3271         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3272                 return;
3273
3274         /* in this short window concurrent discard can set pa_deleted */
3275         spin_lock(&pa->pa_lock);
3276         if (pa->pa_deleted == 1) {
3277                 spin_unlock(&pa->pa_lock);
3278                 return;
3279         }
3280
3281         pa->pa_deleted = 1;
3282         spin_unlock(&pa->pa_lock);
3283
3284         /* -1 is to protect from crossing allocation group */
3285         ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3286
3287         /*
3288          * possible race:
3289          *
3290          *  P1 (buddy init)                     P2 (regular allocation)
3291          *                                      find block B in PA
3292          *  copy on-disk bitmap to buddy
3293          *                                      mark B in on-disk bitmap
3294          *                                      drop PA from group
3295          *  mark all PAs in buddy
3296          *
3297          * thus, P1 initializes buddy with B available. to prevent this
3298          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3299          * against that pair
3300          */
3301         ext4_lock_group(sb, grp);
3302         list_del(&pa->pa_group_list);
3303         ext4_unlock_group(sb, grp);
3304
3305         spin_lock(pa->pa_obj_lock);
3306         list_del_rcu(&pa->pa_inode_list);
3307         spin_unlock(pa->pa_obj_lock);
3308
3309         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3310 }
3311
3312 /*
3313  * creates new preallocated space for given inode
3314  */
3315 static noinline_for_stack int
3316 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3317 {
3318         struct super_block *sb = ac->ac_sb;
3319         struct ext4_prealloc_space *pa;
3320         struct ext4_group_info *grp;
3321         struct ext4_inode_info *ei;
3322
3323         /* preallocate only when found space is larger then requested */
3324         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3325         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3326         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3327
3328         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3329         if (pa == NULL)
3330                 return -ENOMEM;
3331
3332         if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3333                 int winl;
3334                 int wins;
3335                 int win;
3336                 int offs;
3337
3338                 /* we can't allocate as much as normalizer wants.
3339                  * so, found space must get proper lstart
3340                  * to cover original request */
3341                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3342                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3343
3344                 /* we're limited by original request in that
3345                  * logical block must be covered any way
3346                  * winl is window we can move our chunk within */
3347                 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3348
3349                 /* also, we should cover whole original request */
3350                 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3351
3352                 /* the smallest one defines real window */
3353                 win = min(winl, wins);
3354
3355                 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3356                 if (offs && offs < win)
3357                         win = offs;
3358
3359                 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3360                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3361                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3362         }
3363
3364         /* preallocation can change ac_b_ex, thus we store actually
3365          * allocated blocks for history */
3366         ac->ac_f_ex = ac->ac_b_ex;
3367
3368         pa->pa_lstart = ac->ac_b_ex.fe_logical;
3369         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3370         pa->pa_len = ac->ac_b_ex.fe_len;
3371         pa->pa_free = pa->pa_len;
3372         atomic_set(&pa->pa_count, 1);
3373         spin_lock_init(&pa->pa_lock);
3374         pa->pa_deleted = 0;
3375         pa->pa_linear = 0;
3376
3377         mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3378                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3379
3380         ext4_mb_use_inode_pa(ac, pa);
3381         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3382
3383         ei = EXT4_I(ac->ac_inode);
3384         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3385
3386         pa->pa_obj_lock = &ei->i_prealloc_lock;
3387         pa->pa_inode = ac->ac_inode;
3388
3389         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3390         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3391         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3392
3393         spin_lock(pa->pa_obj_lock);
3394         list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3395         spin_unlock(pa->pa_obj_lock);
3396
3397         return 0;
3398 }
3399
3400 /*
3401  * creates new preallocated space for locality group inodes belongs to
3402  */
3403 static noinline_for_stack int
3404 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3405 {
3406         struct super_block *sb = ac->ac_sb;
3407         struct ext4_locality_group *lg;
3408         struct ext4_prealloc_space *pa;
3409         struct ext4_group_info *grp;
3410
3411         /* preallocate only when found space is larger then requested */
3412         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3413         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3414         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3415
3416         BUG_ON(ext4_pspace_cachep == NULL);
3417         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3418         if (pa == NULL)
3419                 return -ENOMEM;
3420
3421         /* preallocation can change ac_b_ex, thus we store actually
3422          * allocated blocks for history */
3423         ac->ac_f_ex = ac->ac_b_ex;
3424
3425         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3426         pa->pa_lstart = pa->pa_pstart;
3427         pa->pa_len = ac->ac_b_ex.fe_len;
3428         pa->pa_free = pa->pa_len;
3429         atomic_set(&pa->pa_count, 1);
3430         spin_lock_init(&pa->pa_lock);
3431         pa->pa_deleted = 0;
3432         pa->pa_linear = 1;
3433
3434         mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3435                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3436
3437         ext4_mb_use_group_pa(ac, pa);
3438         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3439
3440         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3441         lg = ac->ac_lg;
3442         BUG_ON(lg == NULL);
3443
3444         pa->pa_obj_lock = &lg->lg_prealloc_lock;
3445         pa->pa_inode = NULL;
3446
3447         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3448         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3449         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3450
3451         spin_lock(pa->pa_obj_lock);
3452         list_add_tail_rcu(&pa->pa_inode_list, &lg->lg_prealloc_list);
3453         spin_unlock(pa->pa_obj_lock);
3454
3455         return 0;
3456 }
3457
3458 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3459 {
3460         int err;
3461
3462         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3463                 err = ext4_mb_new_group_pa(ac);
3464         else
3465                 err = ext4_mb_new_inode_pa(ac);
3466         return err;
3467 }
3468
3469 /*
3470  * finds all unused blocks in on-disk bitmap, frees them in
3471  * in-core bitmap and buddy.
3472  * @pa must be unlinked from inode and group lists, so that
3473  * nobody else can find/use it.
3474  * the caller MUST hold group/inode locks.
3475  * TODO: optimize the case when there are no in-core structures yet
3476  */
3477 static noinline_for_stack int
3478 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3479                         struct ext4_prealloc_space *pa,
3480                         struct ext4_allocation_context *ac)
3481 {
3482         struct super_block *sb = e4b->bd_sb;
3483         struct ext4_sb_info *sbi = EXT4_SB(sb);
3484         unsigned long end;
3485         unsigned long next;
3486         ext4_group_t group;
3487         ext4_grpblk_t bit;
3488         sector_t start;
3489         int err = 0;
3490         int free = 0;
3491
3492         BUG_ON(pa->pa_deleted == 0);
3493         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3494         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3495         end = bit + pa->pa_len;
3496
3497         if (ac) {
3498                 ac->ac_sb = sb;
3499                 ac->ac_inode = pa->pa_inode;
3500                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3501         }
3502
3503         while (bit < end) {
3504                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3505                 if (bit >= end)
3506                         break;
3507                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3508                 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3509                                 le32_to_cpu(sbi->s_es->s_first_data_block);
3510                 mb_debug("    free preallocated %u/%u in group %u\n",
3511                                 (unsigned) start, (unsigned) next - bit,
3512                                 (unsigned) group);
3513                 free += next - bit;
3514
3515                 if (ac) {
3516                         ac->ac_b_ex.fe_group = group;
3517                         ac->ac_b_ex.fe_start = bit;
3518                         ac->ac_b_ex.fe_len = next - bit;
3519                         ac->ac_b_ex.fe_logical = 0;
3520                         ext4_mb_store_history(ac);
3521                 }
3522
3523                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3524                 bit = next + 1;
3525         }
3526         if (free != pa->pa_free) {
3527                 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3528                         pa, (unsigned long) pa->pa_lstart,
3529                         (unsigned long) pa->pa_pstart,
3530                         (unsigned long) pa->pa_len);
3531                 ext4_error(sb, __func__, "free %u, pa_free %u\n",
3532                                                 free, pa->pa_free);
3533                 /*
3534                  * pa is already deleted so we use the value obtained
3535                  * from the bitmap and continue.
3536                  */
3537         }
3538         atomic_add(free, &sbi->s_mb_discarded);
3539
3540         return err;
3541 }
3542
3543 static noinline_for_stack int
3544 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3545                                 struct ext4_prealloc_space *pa,
3546                                 struct ext4_allocation_context *ac)
3547 {
3548         struct super_block *sb = e4b->bd_sb;
3549         ext4_group_t group;
3550         ext4_grpblk_t bit;
3551
3552         if (ac)
3553                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3554
3555         BUG_ON(pa->pa_deleted == 0);
3556         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3557         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3558         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3559         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3560
3561         if (ac) {
3562                 ac->ac_sb = sb;
3563                 ac->ac_inode = NULL;
3564                 ac->ac_b_ex.fe_group = group;
3565                 ac->ac_b_ex.fe_start = bit;
3566                 ac->ac_b_ex.fe_len = pa->pa_len;
3567                 ac->ac_b_ex.fe_logical = 0;
3568                 ext4_mb_store_history(ac);
3569         }
3570
3571         return 0;
3572 }
3573
3574 /*
3575  * releases all preallocations in given group
3576  *
3577  * first, we need to decide discard policy:
3578  * - when do we discard
3579  *   1) ENOSPC
3580  * - how many do we discard
3581  *   1) how many requested
3582  */
3583 static noinline_for_stack int
3584 ext4_mb_discard_group_preallocations(struct super_block *sb,
3585                                         ext4_group_t group, int needed)
3586 {
3587         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3588         struct buffer_head *bitmap_bh = NULL;
3589         struct ext4_prealloc_space *pa, *tmp;
3590         struct ext4_allocation_context *ac;
3591         struct list_head list;
3592         struct ext4_buddy e4b;
3593         int err;
3594         int busy = 0;
3595         int free = 0;
3596
3597         mb_debug("discard preallocation for group %lu\n", group);
3598
3599         if (list_empty(&grp->bb_prealloc_list))
3600                 return 0;
3601
3602         bitmap_bh = ext4_read_block_bitmap(sb, group);
3603         if (bitmap_bh == NULL) {
3604                 /* error handling here */
3605                 ext4_mb_release_desc(&e4b);
3606                 BUG_ON(bitmap_bh == NULL);
3607         }
3608
3609         err = ext4_mb_load_buddy(sb, group, &e4b);
3610         BUG_ON(err != 0); /* error handling here */
3611
3612         if (needed == 0)
3613                 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3614
3615         grp = ext4_get_group_info(sb, group);
3616         INIT_LIST_HEAD(&list);
3617
3618         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3619 repeat:
3620         ext4_lock_group(sb, group);
3621         list_for_each_entry_safe(pa, tmp,
3622                                 &grp->bb_prealloc_list, pa_group_list) {
3623                 spin_lock(&pa->pa_lock);
3624                 if (atomic_read(&pa->pa_count)) {
3625                         spin_unlock(&pa->pa_lock);
3626                         busy = 1;
3627                         continue;
3628                 }
3629                 if (pa->pa_deleted) {
3630                         spin_unlock(&pa->pa_lock);
3631                         continue;
3632                 }
3633
3634                 /* seems this one can be freed ... */
3635                 pa->pa_deleted = 1;
3636
3637                 /* we can trust pa_free ... */
3638                 free += pa->pa_free;
3639
3640                 spin_unlock(&pa->pa_lock);
3641
3642                 list_del(&pa->pa_group_list);
3643                 list_add(&pa->u.pa_tmp_list, &list);
3644         }
3645
3646         /* if we still need more blocks and some PAs were used, try again */
3647         if (free < needed && busy) {
3648                 busy = 0;
3649                 ext4_unlock_group(sb, group);
3650                 /*
3651                  * Yield the CPU here so that we don't get soft lockup
3652                  * in non preempt case.
3653                  */
3654                 yield();
3655                 goto repeat;
3656         }
3657
3658         /* found anything to free? */
3659         if (list_empty(&list)) {
3660                 BUG_ON(free != 0);
3661                 goto out;
3662         }
3663
3664         /* now free all selected PAs */
3665         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3666
3667                 /* remove from object (inode or locality group) */
3668                 spin_lock(pa->pa_obj_lock);
3669                 list_del_rcu(&pa->pa_inode_list);
3670                 spin_unlock(pa->pa_obj_lock);
3671
3672                 if (pa->pa_linear)
3673                         ext4_mb_release_group_pa(&e4b, pa, ac);
3674                 else
3675                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3676
3677                 list_del(&pa->u.pa_tmp_list);
3678                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3679         }
3680
3681 out:
3682         ext4_unlock_group(sb, group);
3683         if (ac)
3684                 kmem_cache_free(ext4_ac_cachep, ac);
3685         ext4_mb_release_desc(&e4b);
3686         put_bh(bitmap_bh);
3687         return free;
3688 }
3689
3690 /*
3691  * releases all non-used preallocated blocks for given inode
3692  *
3693  * It's important to discard preallocations under i_data_sem
3694  * We don't want another block to be served from the prealloc
3695  * space when we are discarding the inode prealloc space.
3696  *
3697  * FIXME!! Make sure it is valid at all the call sites
3698  */
3699 void ext4_mb_discard_inode_preallocations(struct inode *inode)
3700 {
3701         struct ext4_inode_info *ei = EXT4_I(inode);
3702         struct super_block *sb = inode->i_sb;
3703         struct buffer_head *bitmap_bh = NULL;
3704         struct ext4_prealloc_space *pa, *tmp;
3705         struct ext4_allocation_context *ac;
3706         ext4_group_t group = 0;
3707         struct list_head list;
3708         struct ext4_buddy e4b;
3709         int err;
3710
3711         if (!test_opt(sb, MBALLOC) || !S_ISREG(inode->i_mode)) {
3712                 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3713                 return;
3714         }
3715
3716         mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3717
3718         INIT_LIST_HEAD(&list);
3719
3720         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3721 repeat:
3722         /* first, collect all pa's in the inode */
3723         spin_lock(&ei->i_prealloc_lock);
3724         while (!list_empty(&ei->i_prealloc_list)) {
3725                 pa = list_entry(ei->i_prealloc_list.next,
3726                                 struct ext4_prealloc_space, pa_inode_list);
3727                 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3728                 spin_lock(&pa->pa_lock);
3729                 if (atomic_read(&pa->pa_count)) {
3730                         /* this shouldn't happen often - nobody should
3731                          * use preallocation while we're discarding it */
3732                         spin_unlock(&pa->pa_lock);
3733                         spin_unlock(&ei->i_prealloc_lock);
3734                         printk(KERN_ERR "uh-oh! used pa while discarding\n");
3735                         WARN_ON(1);
3736                         schedule_timeout_uninterruptible(HZ);
3737                         goto repeat;
3738
3739                 }
3740                 if (pa->pa_deleted == 0) {
3741                         pa->pa_deleted = 1;
3742                         spin_unlock(&pa->pa_lock);
3743                         list_del_rcu(&pa->pa_inode_list);
3744                         list_add(&pa->u.pa_tmp_list, &list);
3745                         continue;
3746                 }
3747
3748                 /* someone is deleting pa right now */
3749                 spin_unlock(&pa->pa_lock);
3750                 spin_unlock(&ei->i_prealloc_lock);
3751
3752                 /* we have to wait here because pa_deleted
3753                  * doesn't mean pa is already unlinked from
3754                  * the list. as we might be called from
3755                  * ->clear_inode() the inode will get freed
3756                  * and concurrent thread which is unlinking
3757                  * pa from inode's list may access already
3758                  * freed memory, bad-bad-bad */
3759
3760                 /* XXX: if this happens too often, we can
3761                  * add a flag to force wait only in case
3762                  * of ->clear_inode(), but not in case of
3763                  * regular truncate */
3764                 schedule_timeout_uninterruptible(HZ);
3765                 goto repeat;
3766         }
3767         spin_unlock(&ei->i_prealloc_lock);
3768
3769         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3770                 BUG_ON(pa->pa_linear != 0);
3771                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3772
3773                 err = ext4_mb_load_buddy(sb, group, &e4b);
3774                 BUG_ON(err != 0); /* error handling here */
3775
3776                 bitmap_bh = ext4_read_block_bitmap(sb, group);
3777                 if (bitmap_bh == NULL) {
3778                         /* error handling here */
3779                         ext4_mb_release_desc(&e4b);
3780                         BUG_ON(bitmap_bh == NULL);
3781                 }
3782
3783                 ext4_lock_group(sb, group);
3784                 list_del(&pa->pa_group_list);
3785                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3786                 ext4_unlock_group(sb, group);
3787
3788                 ext4_mb_release_desc(&e4b);
3789                 put_bh(bitmap_bh);
3790
3791                 list_del(&pa->u.pa_tmp_list);
3792                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3793         }
3794         if (ac)
3795                 kmem_cache_free(ext4_ac_cachep, ac);
3796 }
3797
3798 /*
3799  * finds all preallocated spaces and return blocks being freed to them
3800  * if preallocated space becomes full (no block is used from the space)
3801  * then the function frees space in buddy
3802  * XXX: at the moment, truncate (which is the only way to free blocks)
3803  * discards all preallocations
3804  */
3805 static void ext4_mb_return_to_preallocation(struct inode *inode,
3806                                         struct ext4_buddy *e4b,
3807                                         sector_t block, int count)
3808 {
3809         BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
3810 }
3811 #ifdef MB_DEBUG
3812 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3813 {
3814         struct super_block *sb = ac->ac_sb;
3815         ext4_group_t i;
3816
3817         printk(KERN_ERR "EXT4-fs: Can't allocate:"
3818                         " Allocation context details:\n");
3819         printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3820                         ac->ac_status, ac->ac_flags);
3821         printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3822                         "best %lu/%lu/%lu@%lu cr %d\n",
3823                         (unsigned long)ac->ac_o_ex.fe_group,
3824                         (unsigned long)ac->ac_o_ex.fe_start,
3825                         (unsigned long)ac->ac_o_ex.fe_len,
3826                         (unsigned long)ac->ac_o_ex.fe_logical,
3827                         (unsigned long)ac->ac_g_ex.fe_group,
3828                         (unsigned long)ac->ac_g_ex.fe_start,
3829                         (unsigned long)ac->ac_g_ex.fe_len,
3830                         (unsigned long)ac->ac_g_ex.fe_logical,
3831                         (unsigned long)ac->ac_b_ex.fe_group,
3832                         (unsigned long)ac->ac_b_ex.fe_start,
3833                         (unsigned long)ac->ac_b_ex.fe_len,
3834                         (unsigned long)ac->ac_b_ex.fe_logical,
3835                         (int)ac->ac_criteria);
3836         printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3837                 ac->ac_found);
3838         printk(KERN_ERR "EXT4-fs: groups: \n");
3839         for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
3840                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3841                 struct ext4_prealloc_space *pa;
3842                 ext4_grpblk_t start;
3843                 struct list_head *cur;
3844                 ext4_lock_group(sb, i);
3845                 list_for_each(cur, &grp->bb_prealloc_list) {
3846                         pa = list_entry(cur, struct ext4_prealloc_space,
3847                                         pa_group_list);
3848                         spin_lock(&pa->pa_lock);
3849                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3850                                                      NULL, &start);
3851                         spin_unlock(&pa->pa_lock);
3852                         printk(KERN_ERR "PA:%lu:%d:%u \n", i,
3853                                                         start, pa->pa_len);
3854                 }
3855                 ext4_unlock_group(sb, i);
3856
3857                 if (grp->bb_free == 0)
3858                         continue;
3859                 printk(KERN_ERR "%lu: %d/%d \n",
3860                        i, grp->bb_free, grp->bb_fragments);
3861         }
3862         printk(KERN_ERR "\n");
3863 }
3864 #else
3865 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3866 {
3867         return;
3868 }
3869 #endif
3870
3871 /*
3872  * We use locality group preallocation for small size file. The size of the
3873  * file is determined by the current size or the resulting size after
3874  * allocation which ever is larger
3875  *
3876  * One can tune this size via /proc/fs/ext4/<partition>/stream_req
3877  */
3878 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3879 {
3880         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3881         int bsbits = ac->ac_sb->s_blocksize_bits;
3882         loff_t size, isize;
3883
3884         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3885                 return;
3886
3887         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3888         isize = i_size_read(ac->ac_inode) >> bsbits;
3889         size = max(size, isize);
3890
3891         /* don't use group allocation for large files */
3892         if (size >= sbi->s_mb_stream_request)
3893                 return;
3894
3895         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3896                 return;
3897
3898         BUG_ON(ac->ac_lg != NULL);
3899         /*
3900          * locality group prealloc space are per cpu. The reason for having
3901          * per cpu locality group is to reduce the contention between block
3902          * request from multiple CPUs.
3903          */
3904         ac->ac_lg = &sbi->s_locality_groups[get_cpu()];
3905         put_cpu();
3906
3907         /* we're going to use group allocation */
3908         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3909
3910         /* serialize all allocations in the group */
3911         mutex_lock(&ac->ac_lg->lg_mutex);
3912 }
3913
3914 static noinline_for_stack int
3915 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3916                                 struct ext4_allocation_request *ar)
3917 {
3918         struct super_block *sb = ar->inode->i_sb;
3919         struct ext4_sb_info *sbi = EXT4_SB(sb);
3920         struct ext4_super_block *es = sbi->s_es;
3921         ext4_group_t group;
3922         unsigned long len;
3923         unsigned long goal;
3924         ext4_grpblk_t block;
3925
3926         /* we can't allocate > group size */
3927         len = ar->len;
3928
3929         /* just a dirty hack to filter too big requests  */
3930         if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
3931                 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
3932
3933         /* start searching from the goal */
3934         goal = ar->goal;
3935         if (goal < le32_to_cpu(es->s_first_data_block) ||
3936                         goal >= ext4_blocks_count(es))
3937                 goal = le32_to_cpu(es->s_first_data_block);
3938         ext4_get_group_no_and_offset(sb, goal, &group, &block);
3939
3940         /* set up allocation goals */
3941         ac->ac_b_ex.fe_logical = ar->logical;
3942         ac->ac_b_ex.fe_group = 0;
3943         ac->ac_b_ex.fe_start = 0;
3944         ac->ac_b_ex.fe_len = 0;
3945         ac->ac_status = AC_STATUS_CONTINUE;
3946         ac->ac_groups_scanned = 0;
3947         ac->ac_ex_scanned = 0;
3948         ac->ac_found = 0;
3949         ac->ac_sb = sb;
3950         ac->ac_inode = ar->inode;
3951         ac->ac_o_ex.fe_logical = ar->logical;
3952         ac->ac_o_ex.fe_group = group;
3953         ac->ac_o_ex.fe_start = block;
3954         ac->ac_o_ex.fe_len = len;
3955         ac->ac_g_ex.fe_logical = ar->logical;
3956         ac->ac_g_ex.fe_group = group;
3957         ac->ac_g_ex.fe_start = block;
3958         ac->ac_g_ex.fe_len = len;
3959         ac->ac_f_ex.fe_len = 0;
3960         ac->ac_flags = ar->flags;
3961         ac->ac_2order = 0;
3962         ac->ac_criteria = 0;
3963         ac->ac_pa = NULL;
3964         ac->ac_bitmap_page = NULL;
3965         ac->ac_buddy_page = NULL;
3966         ac->ac_lg = NULL;
3967
3968         /* we have to define context: we'll we work with a file or
3969          * locality group. this is a policy, actually */
3970         ext4_mb_group_or_file(ac);
3971
3972         mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
3973                         "left: %u/%u, right %u/%u to %swritable\n",
3974                         (unsigned) ar->len, (unsigned) ar->logical,
3975                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
3976                         (unsigned) ar->lleft, (unsigned) ar->pleft,
3977                         (unsigned) ar->lright, (unsigned) ar->pright,
3978                         atomic_read(&ar->inode->i_writecount) ? "" : "non-");
3979         return 0;
3980
3981 }
3982
3983 /*
3984  * release all resource we used in allocation
3985  */
3986 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
3987 {
3988         if (ac->ac_pa) {
3989                 if (ac->ac_pa->pa_linear) {
3990                         /* see comment in ext4_mb_use_group_pa() */
3991                         spin_lock(&ac->ac_pa->pa_lock);
3992                         ac->ac_pa->pa_pstart += ac->ac_b_ex.fe_len;
3993                         ac->ac_pa->pa_lstart += ac->ac_b_ex.fe_len;
3994                         ac->ac_pa->pa_free -= ac->ac_b_ex.fe_len;
3995                         ac->ac_pa->pa_len -= ac->ac_b_ex.fe_len;
3996                         spin_unlock(&ac->ac_pa->pa_lock);
3997                 }
3998                 ext4_mb_put_pa(ac, ac->ac_sb, ac->ac_pa);
3999         }
4000         if (ac->ac_bitmap_page)
4001                 page_cache_release(ac->ac_bitmap_page);
4002         if (ac->ac_buddy_page)
4003                 page_cache_release(ac->ac_buddy_page);
4004         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4005                 mutex_unlock(&ac->ac_lg->lg_mutex);
4006         ext4_mb_collect_stats(ac);
4007         return 0;
4008 }
4009
4010 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4011 {
4012         ext4_group_t i;
4013         int ret;
4014         int freed = 0;
4015
4016         for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4017                 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4018                 freed += ret;
4019                 needed -= ret;
4020         }
4021
4022         return freed;
4023 }
4024
4025 /*
4026  * Main entry point into mballoc to allocate blocks
4027  * it tries to use preallocation first, then falls back
4028  * to usual allocation
4029  */
4030 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4031                                  struct ext4_allocation_request *ar, int *errp)
4032 {
4033         struct ext4_allocation_context *ac = NULL;
4034         struct ext4_sb_info *sbi;
4035         struct super_block *sb;
4036         ext4_fsblk_t block = 0;
4037         int freed;
4038         int inquota;
4039
4040         sb = ar->inode->i_sb;
4041         sbi = EXT4_SB(sb);
4042
4043         if (!test_opt(sb, MBALLOC)) {
4044                 block = ext4_old_new_blocks(handle, ar->inode, ar->goal,
4045                                             &(ar->len), errp);
4046                 return block;
4047         }
4048
4049         while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4050                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4051                 ar->len--;
4052         }
4053         if (ar->len == 0) {
4054                 *errp = -EDQUOT;
4055                 return 0;
4056         }
4057         inquota = ar->len;
4058
4059         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4060         if (!ac) {
4061                 ar->len = 0;
4062                 *errp = -ENOMEM;
4063                 goto out1;
4064         }
4065
4066         ext4_mb_poll_new_transaction(sb, handle);
4067
4068         *errp = ext4_mb_initialize_context(ac, ar);
4069         if (*errp) {
4070                 ar->len = 0;
4071                 goto out2;
4072         }
4073
4074         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4075         if (!ext4_mb_use_preallocated(ac)) {
4076
4077                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4078                 ext4_mb_normalize_request(ac, ar);
4079 repeat:
4080                 /* allocate space in core */
4081                 ext4_mb_regular_allocator(ac);
4082
4083                 /* as we've just preallocated more space than
4084                  * user requested orinally, we store allocated
4085                  * space in a special descriptor */
4086                 if (ac->ac_status == AC_STATUS_FOUND &&
4087                                 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4088                         ext4_mb_new_preallocation(ac);
4089         }
4090
4091         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4092                 *errp = ext4_mb_mark_diskspace_used(ac, handle);
4093                 if (*errp ==  -EAGAIN) {
4094                         ac->ac_b_ex.fe_group = 0;
4095                         ac->ac_b_ex.fe_start = 0;
4096                         ac->ac_b_ex.fe_len = 0;
4097                         ac->ac_status = AC_STATUS_CONTINUE;
4098                         goto repeat;
4099                 } else if (*errp) {
4100                         ac->ac_b_ex.fe_len = 0;
4101                         ar->len = 0;
4102                         ext4_mb_show_ac(ac);
4103                 } else {
4104                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4105                         ar->len = ac->ac_b_ex.fe_len;
4106                 }
4107         } else {
4108                 freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4109                 if (freed)
4110                         goto repeat;
4111                 *errp = -ENOSPC;
4112                 ac->ac_b_ex.fe_len = 0;
4113                 ar->len = 0;
4114                 ext4_mb_show_ac(ac);
4115         }
4116
4117         ext4_mb_release_context(ac);
4118
4119 out2:
4120         kmem_cache_free(ext4_ac_cachep, ac);
4121 out1:
4122         if (ar->len < inquota)
4123                 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4124
4125         return block;
4126 }
4127 static void ext4_mb_poll_new_transaction(struct super_block *sb,
4128                                                 handle_t *handle)
4129 {
4130         struct ext4_sb_info *sbi = EXT4_SB(sb);
4131
4132         if (sbi->s_last_transaction == handle->h_transaction->t_tid)
4133                 return;
4134
4135         /* new transaction! time to close last one and free blocks for
4136          * committed transaction. we know that only transaction can be
4137          * active, so previos transaction can be being logged and we
4138          * know that transaction before previous is known to be already
4139          * logged. this means that now we may free blocks freed in all
4140          * transactions before previous one. hope I'm clear enough ... */
4141
4142         spin_lock(&sbi->s_md_lock);
4143         if (sbi->s_last_transaction != handle->h_transaction->t_tid) {
4144                 mb_debug("new transaction %lu, old %lu\n",
4145                                 (unsigned long) handle->h_transaction->t_tid,
4146                                 (unsigned long) sbi->s_last_transaction);
4147                 list_splice_init(&sbi->s_closed_transaction,
4148                                 &sbi->s_committed_transaction);
4149                 list_splice_init(&sbi->s_active_transaction,
4150                                 &sbi->s_closed_transaction);
4151                 sbi->s_last_transaction = handle->h_transaction->t_tid;
4152         }
4153         spin_unlock(&sbi->s_md_lock);
4154
4155         ext4_mb_free_committed_blocks(sb);
4156 }
4157
4158 static noinline_for_stack int
4159 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4160                           ext4_group_t group, ext4_grpblk_t block, int count)
4161 {
4162         struct ext4_group_info *db = e4b->bd_info;
4163         struct super_block *sb = e4b->bd_sb;
4164         struct ext4_sb_info *sbi = EXT4_SB(sb);
4165         struct ext4_free_metadata *md;
4166         int i;
4167
4168         BUG_ON(e4b->bd_bitmap_page == NULL);
4169         BUG_ON(e4b->bd_buddy_page == NULL);
4170
4171         ext4_lock_group(sb, group);
4172         for (i = 0; i < count; i++) {
4173                 md = db->bb_md_cur;
4174                 if (md && db->bb_tid != handle->h_transaction->t_tid) {
4175                         db->bb_md_cur = NULL;
4176                         md = NULL;
4177                 }
4178
4179                 if (md == NULL) {
4180                         ext4_unlock_group(sb, group);
4181                         md = kmalloc(sizeof(*md), GFP_NOFS);
4182                         if (md == NULL)
4183                                 return -ENOMEM;
4184                         md->num = 0;
4185                         md->group = group;
4186
4187                         ext4_lock_group(sb, group);
4188                         if (db->bb_md_cur == NULL) {
4189                                 spin_lock(&sbi->s_md_lock);
4190                                 list_add(&md->list, &sbi->s_active_transaction);
4191                                 spin_unlock(&sbi->s_md_lock);
4192                                 /* protect buddy cache from being freed,
4193                                  * otherwise we'll refresh it from
4194                                  * on-disk bitmap and lose not-yet-available
4195                                  * blocks */
4196                                 page_cache_get(e4b->bd_buddy_page);
4197                                 page_cache_get(e4b->bd_bitmap_page);
4198                                 db->bb_md_cur = md;
4199                                 db->bb_tid = handle->h_transaction->t_tid;
4200                                 mb_debug("new md 0x%p for group %lu\n",
4201                                                 md, md->group);
4202                         } else {
4203                                 kfree(md);
4204                                 md = db->bb_md_cur;
4205                         }
4206                 }
4207
4208                 BUG_ON(md->num >= EXT4_BB_MAX_BLOCKS);
4209                 md->blocks[md->num] = block + i;
4210                 md->num++;
4211                 if (md->num == EXT4_BB_MAX_BLOCKS) {
4212                         /* no more space, put full container on a sb's list */
4213                         db->bb_md_cur = NULL;
4214                 }
4215         }
4216         ext4_unlock_group(sb, group);
4217         return 0;
4218 }
4219
4220 /*
4221  * Main entry point into mballoc to free blocks
4222  */
4223 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4224                         unsigned long block, unsigned long count,
4225                         int metadata, unsigned long *freed)
4226 {
4227         struct buffer_head *bitmap_bh = NULL;
4228         struct super_block *sb = inode->i_sb;
4229         struct ext4_allocation_context *ac = NULL;
4230         struct ext4_group_desc *gdp;
4231         struct ext4_super_block *es;
4232         unsigned long overflow;
4233         ext4_grpblk_t bit;
4234         struct buffer_head *gd_bh;
4235         ext4_group_t block_group;
4236         struct ext4_sb_info *sbi;
4237         struct ext4_buddy e4b;
4238         int err = 0;
4239         int ret;
4240
4241         *freed = 0;
4242
4243         ext4_mb_poll_new_transaction(sb, handle);
4244
4245         sbi = EXT4_SB(sb);
4246         es = EXT4_SB(sb)->s_es;
4247         if (block < le32_to_cpu(es->s_first_data_block) ||
4248             block + count < block ||
4249             block + count > ext4_blocks_count(es)) {
4250                 ext4_error(sb, __func__,
4251                             "Freeing blocks not in datazone - "
4252                             "block = %lu, count = %lu", block, count);
4253                 goto error_return;
4254         }
4255
4256         ext4_debug("freeing block %lu\n", block);
4257
4258         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4259         if (ac) {
4260                 ac->ac_op = EXT4_MB_HISTORY_FREE;
4261                 ac->ac_inode = inode;
4262                 ac->ac_sb = sb;
4263         }
4264
4265 do_more:
4266         overflow = 0;
4267         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4268
4269         /*
4270          * Check to see if we are freeing blocks across a group
4271          * boundary.
4272          */
4273         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4274                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4275                 count -= overflow;
4276         }
4277         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4278         if (!bitmap_bh)
4279                 goto error_return;
4280         gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4281         if (!gdp)
4282                 goto error_return;
4283
4284         if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4285             in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4286             in_range(block, ext4_inode_table(sb, gdp),
4287                       EXT4_SB(sb)->s_itb_per_group) ||
4288             in_range(block + count - 1, ext4_inode_table(sb, gdp),
4289                       EXT4_SB(sb)->s_itb_per_group)) {
4290
4291                 ext4_error(sb, __func__,
4292                            "Freeing blocks in system zone - "
4293                            "Block = %lu, count = %lu", block, count);
4294                 /* err = 0. ext4_std_error should be a no op */
4295                 goto error_return;
4296         }
4297
4298         BUFFER_TRACE(bitmap_bh, "getting write access");
4299         err = ext4_journal_get_write_access(handle, bitmap_bh);
4300         if (err)
4301                 goto error_return;
4302
4303         /*
4304          * We are about to modify some metadata.  Call the journal APIs
4305          * to unshare ->b_data if a currently-committing transaction is
4306          * using it
4307          */
4308         BUFFER_TRACE(gd_bh, "get_write_access");
4309         err = ext4_journal_get_write_access(handle, gd_bh);
4310         if (err)
4311                 goto error_return;
4312
4313         err = ext4_mb_load_buddy(sb, block_group, &e4b);
4314         if (err)
4315                 goto error_return;
4316
4317 #ifdef AGGRESSIVE_CHECK
4318         {
4319                 int i;
4320                 for (i = 0; i < count; i++)
4321                         BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4322         }
4323 #endif
4324         mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4325                         bit, count);
4326
4327         /* We dirtied the bitmap block */
4328         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4329         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
4330
4331         if (ac) {
4332                 ac->ac_b_ex.fe_group = block_group;
4333                 ac->ac_b_ex.fe_start = bit;
4334                 ac->ac_b_ex.fe_len = count;
4335                 ext4_mb_store_history(ac);
4336         }
4337
4338         if (metadata) {
4339                 /* blocks being freed are metadata. these blocks shouldn't
4340                  * be used until this transaction is committed */
4341                 ext4_mb_free_metadata(handle, &e4b, block_group, bit, count);
4342         } else {
4343                 ext4_lock_group(sb, block_group);
4344                 mb_free_blocks(inode, &e4b, bit, count);
4345                 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4346                 ext4_unlock_group(sb, block_group);
4347         }
4348
4349         spin_lock(sb_bgl_lock(sbi, block_group));
4350         le16_add_cpu(&gdp->bg_free_blocks_count, count);
4351         gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4352         spin_unlock(sb_bgl_lock(sbi, block_group));
4353         percpu_counter_add(&sbi->s_freeblocks_counter, count);
4354
4355         if (sbi->s_log_groups_per_flex) {
4356                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4357                 spin_lock(sb_bgl_lock(sbi, flex_group));
4358                 sbi->s_flex_groups[flex_group].free_blocks += count;
4359                 spin_unlock(sb_bgl_lock(sbi, flex_group));
4360         }
4361
4362         ext4_mb_release_desc(&e4b);
4363
4364         *freed += count;
4365
4366         /* And the group descriptor block */
4367         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4368         ret = ext4_journal_dirty_metadata(handle, gd_bh);
4369         if (!err)
4370                 err = ret;
4371
4372         if (overflow && !err) {
4373                 block += count;
4374                 count = overflow;
4375                 put_bh(bitmap_bh);
4376                 goto do_more;
4377         }
4378         sb->s_dirt = 1;
4379 error_return:
4380         brelse(bitmap_bh);
4381         ext4_std_error(sb, err);
4382         if (ac)
4383                 kmem_cache_free(ext4_ac_cachep, ac);
4384         return;
4385 }