]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/inode.c
ext4: Retry block allocation if we have free blocks left
[linux-2.6-omap-h63xx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         struct ext4_block_alloc_info *block_i;
490
491         block_i =  EXT4_I(inode)->i_block_alloc_info;
492
493         /*
494          * try the heuristic for sequential allocation,
495          * failing that at least try to get decent locality.
496          */
497         if (block_i && (block == block_i->last_alloc_logical_block + 1)
498                 && (block_i->last_alloc_physical_block != 0)) {
499                 return block_i->last_alloc_physical_block + 1;
500         }
501
502         return ext4_find_near(inode, partial);
503 }
504
505 /**
506  *      ext4_blks_to_allocate: Look up the block map and count the number
507  *      of direct blocks need to be allocated for the given branch.
508  *
509  *      @branch: chain of indirect blocks
510  *      @k: number of blocks need for indirect blocks
511  *      @blks: number of data blocks to be mapped.
512  *      @blocks_to_boundary:  the offset in the indirect block
513  *
514  *      return the total number of blocks to be allocate, including the
515  *      direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518                 int blocks_to_boundary)
519 {
520         unsigned long count = 0;
521
522         /*
523          * Simple case, [t,d]Indirect block(s) has not allocated yet
524          * then it's clear blocks on that path have not allocated
525          */
526         if (k > 0) {
527                 /* right now we don't handle cross boundary allocation */
528                 if (blks < blocks_to_boundary + 1)
529                         count += blks;
530                 else
531                         count += blocks_to_boundary + 1;
532                 return count;
533         }
534
535         count++;
536         while (count < blks && count <= blocks_to_boundary &&
537                 le32_to_cpu(*(branch[0].p + count)) == 0) {
538                 count++;
539         }
540         return count;
541 }
542
543 /**
544  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *      @indirect_blks: the number of blocks need to allocate for indirect
546  *                      blocks
547  *
548  *      @new_blocks: on return it will store the new block numbers for
549  *      the indirect blocks(if needed) and the first direct block,
550  *      @blks:  on return it will store the total number of allocated
551  *              direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
555                                 int indirect_blks, int blks,
556                                 ext4_fsblk_t new_blocks[4], int *err)
557 {
558         int target, i;
559         unsigned long count = 0, blk_allocated = 0;
560         int index = 0;
561         ext4_fsblk_t current_block = 0;
562         int ret = 0;
563
564         /*
565          * Here we try to allocate the requested multiple blocks at once,
566          * on a best-effort basis.
567          * To build a branch, we should allocate blocks for
568          * the indirect blocks(if not allocated yet), and at least
569          * the first direct block of this branch.  That's the
570          * minimum number of blocks need to allocate(required)
571          */
572         /* first we try to allocate the indirect blocks */
573         target = indirect_blks;
574         while (target > 0) {
575                 count = target;
576                 /* allocating blocks for indirect blocks and direct blocks */
577                 current_block = ext4_new_meta_blocks(handle, inode,
578                                                         goal, &count, err);
579                 if (*err)
580                         goto failed_out;
581
582                 target -= count;
583                 /* allocate blocks for indirect blocks */
584                 while (index < indirect_blks && count) {
585                         new_blocks[index++] = current_block++;
586                         count--;
587                 }
588                 if (count > 0) {
589                         /*
590                          * save the new block number
591                          * for the first direct block
592                          */
593                         new_blocks[index] = current_block;
594                         printk(KERN_INFO "%s returned more blocks than "
595                                                 "requested\n", __func__);
596                         WARN_ON(1);
597                         break;
598                 }
599         }
600
601         target = blks - count ;
602         blk_allocated = count;
603         if (!target)
604                 goto allocated;
605         /* Now allocate data blocks */
606         count = target;
607         /* allocating blocks for data blocks */
608         current_block = ext4_new_blocks(handle, inode, iblock,
609                                                 goal, &count, err);
610         if (*err && (target == blks)) {
611                 /*
612                  * if the allocation failed and we didn't allocate
613                  * any blocks before
614                  */
615                 goto failed_out;
616         }
617         if (!*err) {
618                 if (target == blks) {
619                 /*
620                  * save the new block number
621                  * for the first direct block
622                  */
623                         new_blocks[index] = current_block;
624                 }
625                 blk_allocated += count;
626         }
627 allocated:
628         /* total number of blocks allocated for direct blocks */
629         ret = blk_allocated;
630         *err = 0;
631         return ret;
632 failed_out:
633         for (i = 0; i < index; i++)
634                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635         return ret;
636 }
637
638 /**
639  *      ext4_alloc_branch - allocate and set up a chain of blocks.
640  *      @inode: owner
641  *      @indirect_blks: number of allocated indirect blocks
642  *      @blks: number of allocated direct blocks
643  *      @offsets: offsets (in the blocks) to store the pointers to next.
644  *      @branch: place to store the chain in.
645  *
646  *      This function allocates blocks, zeroes out all but the last one,
647  *      links them into chain and (if we are synchronous) writes them to disk.
648  *      In other words, it prepares a branch that can be spliced onto the
649  *      inode. It stores the information about that chain in the branch[], in
650  *      the same format as ext4_get_branch() would do. We are calling it after
651  *      we had read the existing part of chain and partial points to the last
652  *      triple of that (one with zero ->key). Upon the exit we have the same
653  *      picture as after the successful ext4_get_block(), except that in one
654  *      place chain is disconnected - *branch->p is still zero (we did not
655  *      set the last link), but branch->key contains the number that should
656  *      be placed into *branch->p to fill that gap.
657  *
658  *      If allocation fails we free all blocks we've allocated (and forget
659  *      their buffer_heads) and return the error value the from failed
660  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *      as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664                                 ext4_lblk_t iblock, int indirect_blks,
665                                 int *blks, ext4_fsblk_t goal,
666                                 ext4_lblk_t *offsets, Indirect *branch)
667 {
668         int blocksize = inode->i_sb->s_blocksize;
669         int i, n = 0;
670         int err = 0;
671         struct buffer_head *bh;
672         int num;
673         ext4_fsblk_t new_blocks[4];
674         ext4_fsblk_t current_block;
675
676         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677                                 *blks, new_blocks, &err);
678         if (err)
679                 return err;
680
681         branch[0].key = cpu_to_le32(new_blocks[0]);
682         /*
683          * metadata blocks and data blocks are allocated.
684          */
685         for (n = 1; n <= indirect_blks;  n++) {
686                 /*
687                  * Get buffer_head for parent block, zero it out
688                  * and set the pointer to new one, then send
689                  * parent to disk.
690                  */
691                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692                 branch[n].bh = bh;
693                 lock_buffer(bh);
694                 BUFFER_TRACE(bh, "call get_create_access");
695                 err = ext4_journal_get_create_access(handle, bh);
696                 if (err) {
697                         unlock_buffer(bh);
698                         brelse(bh);
699                         goto failed;
700                 }
701
702                 memset(bh->b_data, 0, blocksize);
703                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704                 branch[n].key = cpu_to_le32(new_blocks[n]);
705                 *branch[n].p = branch[n].key;
706                 if (n == indirect_blks) {
707                         current_block = new_blocks[n];
708                         /*
709                          * End of chain, update the last new metablock of
710                          * the chain to point to the new allocated
711                          * data blocks numbers
712                          */
713                         for (i=1; i < num; i++)
714                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
715                 }
716                 BUFFER_TRACE(bh, "marking uptodate");
717                 set_buffer_uptodate(bh);
718                 unlock_buffer(bh);
719
720                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721                 err = ext4_journal_dirty_metadata(handle, bh);
722                 if (err)
723                         goto failed;
724         }
725         *blks = num;
726         return err;
727 failed:
728         /* Allocation failed, free what we already allocated */
729         for (i = 1; i <= n ; i++) {
730                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731                 ext4_journal_forget(handle, branch[i].bh);
732         }
733         for (i = 0; i < indirect_blks; i++)
734                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738         return err;
739 }
740
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *      ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756                         ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758         int i;
759         int err = 0;
760         struct ext4_block_alloc_info *block_i;
761         ext4_fsblk_t current_block;
762
763         block_i = EXT4_I(inode)->i_block_alloc_info;
764         /*
765          * If we're splicing into a [td]indirect block (as opposed to the
766          * inode) then we need to get write access to the [td]indirect block
767          * before the splice.
768          */
769         if (where->bh) {
770                 BUFFER_TRACE(where->bh, "get_write_access");
771                 err = ext4_journal_get_write_access(handle, where->bh);
772                 if (err)
773                         goto err_out;
774         }
775         /* That's it */
776
777         *where->p = where->key;
778
779         /*
780          * Update the host buffer_head or inode to point to more just allocated
781          * direct blocks blocks
782          */
783         if (num == 0 && blks > 1) {
784                 current_block = le32_to_cpu(where->key) + 1;
785                 for (i = 1; i < blks; i++)
786                         *(where->p + i) = cpu_to_le32(current_block++);
787         }
788
789         /*
790          * update the most recently allocated logical & physical block
791          * in i_block_alloc_info, to assist find the proper goal block for next
792          * allocation
793          */
794         if (block_i) {
795                 block_i->last_alloc_logical_block = block + blks - 1;
796                 block_i->last_alloc_physical_block =
797                                 le32_to_cpu(where[num].key) + blks - 1;
798         }
799
800         /* We are done with atomic stuff, now do the rest of housekeeping */
801
802         inode->i_ctime = ext4_current_time(inode);
803         ext4_mark_inode_dirty(handle, inode);
804
805         /* had we spliced it onto indirect block? */
806         if (where->bh) {
807                 /*
808                  * If we spliced it onto an indirect block, we haven't
809                  * altered the inode.  Note however that if it is being spliced
810                  * onto an indirect block at the very end of the file (the
811                  * file is growing) then we *will* alter the inode to reflect
812                  * the new i_size.  But that is not done here - it is done in
813                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814                  */
815                 jbd_debug(5, "splicing indirect only\n");
816                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817                 err = ext4_journal_dirty_metadata(handle, where->bh);
818                 if (err)
819                         goto err_out;
820         } else {
821                 /*
822                  * OK, we spliced it into the inode itself on a direct block.
823                  * Inode was dirtied above.
824                  */
825                 jbd_debug(5, "splicing direct\n");
826         }
827         return err;
828
829 err_out:
830         for (i = 1; i <= num; i++) {
831                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832                 ext4_journal_forget(handle, where[i].bh);
833                 ext4_free_blocks(handle, inode,
834                                         le32_to_cpu(where[i-1].key), 1, 0);
835         }
836         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837
838         return err;
839 }
840
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865                 ext4_lblk_t iblock, unsigned long maxblocks,
866                 struct buffer_head *bh_result,
867                 int create, int extend_disksize)
868 {
869         int err = -EIO;
870         ext4_lblk_t offsets[4];
871         Indirect chain[4];
872         Indirect *partial;
873         ext4_fsblk_t goal;
874         int indirect_blks;
875         int blocks_to_boundary = 0;
876         int depth;
877         struct ext4_inode_info *ei = EXT4_I(inode);
878         int count = 0;
879         ext4_fsblk_t first_block = 0;
880         loff_t disksize;
881
882
883         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884         J_ASSERT(handle != NULL || create == 0);
885         depth = ext4_block_to_path(inode, iblock, offsets,
886                                         &blocks_to_boundary);
887
888         if (depth == 0)
889                 goto out;
890
891         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892
893         /* Simplest case - block found, no allocation needed */
894         if (!partial) {
895                 first_block = le32_to_cpu(chain[depth - 1].key);
896                 clear_buffer_new(bh_result);
897                 count++;
898                 /*map more blocks*/
899                 while (count < maxblocks && count <= blocks_to_boundary) {
900                         ext4_fsblk_t blk;
901
902                         blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904                         if (blk == first_block + count)
905                                 count++;
906                         else
907                                 break;
908                 }
909                 goto got_it;
910         }
911
912         /* Next simple case - plain lookup or failed read of indirect block */
913         if (!create || err == -EIO)
914                 goto cleanup;
915
916         /*
917          * Okay, we need to do block allocation.  Lazily initialize the block
918          * allocation info here if necessary
919         */
920         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921                 ext4_init_block_alloc_info(inode);
922
923         goal = ext4_find_goal(inode, iblock, partial);
924
925         /* the number of blocks need to allocate for [d,t]indirect blocks */
926         indirect_blks = (chain + depth) - partial - 1;
927
928         /*
929          * Next look up the indirect map to count the totoal number of
930          * direct blocks to allocate for this branch.
931          */
932         count = ext4_blks_to_allocate(partial, indirect_blks,
933                                         maxblocks, blocks_to_boundary);
934         /*
935          * Block out ext4_truncate while we alter the tree
936          */
937         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938                                         &count, goal,
939                                         offsets + (partial - chain), partial);
940
941         /*
942          * The ext4_splice_branch call will free and forget any buffers
943          * on the new chain if there is a failure, but that risks using
944          * up transaction credits, especially for bitmaps where the
945          * credits cannot be returned.  Can we handle this somehow?  We
946          * may need to return -EAGAIN upwards in the worst case.  --sct
947          */
948         if (!err)
949                 err = ext4_splice_branch(handle, inode, iblock,
950                                         partial, indirect_blks, count);
951         /*
952          * i_disksize growing is protected by i_data_sem.  Don't forget to
953          * protect it if you're about to implement concurrent
954          * ext4_get_block() -bzzz
955         */
956         if (!err && extend_disksize) {
957                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958                 if (disksize > i_size_read(inode))
959                         disksize = i_size_read(inode);
960                 if (disksize > ei->i_disksize)
961                         ei->i_disksize = disksize;
962         }
963         if (err)
964                 goto cleanup;
965
966         set_buffer_new(bh_result);
967 got_it:
968         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969         if (count > blocks_to_boundary)
970                 set_buffer_boundary(bh_result);
971         err = count;
972         /* Clean up and exit */
973         partial = chain + depth - 1;    /* the whole chain */
974 cleanup:
975         while (partial > chain) {
976                 BUFFER_TRACE(partial->bh, "call brelse");
977                 brelse(partial->bh);
978                 partial--;
979         }
980         BUFFER_TRACE(bh_result, "returned");
981 out:
982         return err;
983 }
984
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992         int ind_blks, dind_blks, tind_blks;
993
994         /* number of new indirect blocks needed */
995         ind_blks = (blocks + icap - 1) / icap;
996
997         dind_blks = (ind_blks + icap - 1) / icap;
998
999         tind_blks = 1;
1000
1001         return ind_blks + dind_blks + tind_blks;
1002 }
1003
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010         if (!blocks)
1011                 return 0;
1012
1013         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014                 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016         return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022         int total, mdb, mdb_free;
1023
1024         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025         /* recalculate the number of metablocks still need to be reserved */
1026         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027         mdb = ext4_calc_metadata_amount(inode, total);
1028
1029         /* figure out how many metablocks to release */
1030         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033         if (mdb_free) {
1034                 /* Account for allocated meta_blocks */
1035                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036
1037                 /* update fs dirty blocks counter */
1038                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041         }
1042
1043         /* update per-inode reservations */
1044         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1045         EXT4_I(inode)->i_reserved_data_blocks -= used;
1046
1047         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048 }
1049
1050 /*
1051  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052  * and returns if the blocks are already mapped.
1053  *
1054  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055  * and store the allocated blocks in the result buffer head and mark it
1056  * mapped.
1057  *
1058  * If file type is extents based, it will call ext4_ext_get_blocks(),
1059  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060  * based files
1061  *
1062  * On success, it returns the number of blocks being mapped or allocate.
1063  * if create==0 and the blocks are pre-allocated and uninitialized block,
1064  * the result buffer head is unmapped. If the create ==1, it will make sure
1065  * the buffer head is mapped.
1066  *
1067  * It returns 0 if plain look up failed (blocks have not been allocated), in
1068  * that casem, buffer head is unmapped
1069  *
1070  * It returns the error in case of allocation failure.
1071  */
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073                         unsigned long max_blocks, struct buffer_head *bh,
1074                         int create, int extend_disksize, int flag)
1075 {
1076         int retval;
1077
1078         clear_buffer_mapped(bh);
1079
1080         /*
1081          * Try to see if we can get  the block without requesting
1082          * for new file system block.
1083          */
1084         down_read((&EXT4_I(inode)->i_data_sem));
1085         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087                                 bh, 0, 0);
1088         } else {
1089                 retval = ext4_get_blocks_handle(handle,
1090                                 inode, block, max_blocks, bh, 0, 0);
1091         }
1092         up_read((&EXT4_I(inode)->i_data_sem));
1093
1094         /* If it is only a block(s) look up */
1095         if (!create)
1096                 return retval;
1097
1098         /*
1099          * Returns if the blocks have already allocated
1100          *
1101          * Note that if blocks have been preallocated
1102          * ext4_ext_get_block() returns th create = 0
1103          * with buffer head unmapped.
1104          */
1105         if (retval > 0 && buffer_mapped(bh))
1106                 return retval;
1107
1108         /*
1109          * New blocks allocate and/or writing to uninitialized extent
1110          * will possibly result in updating i_data, so we take
1111          * the write lock of i_data_sem, and call get_blocks()
1112          * with create == 1 flag.
1113          */
1114         down_write((&EXT4_I(inode)->i_data_sem));
1115
1116         /*
1117          * if the caller is from delayed allocation writeout path
1118          * we have already reserved fs blocks for allocation
1119          * let the underlying get_block() function know to
1120          * avoid double accounting
1121          */
1122         if (flag)
1123                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1124         /*
1125          * We need to check for EXT4 here because migrate
1126          * could have changed the inode type in between
1127          */
1128         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130                                 bh, create, extend_disksize);
1131         } else {
1132                 retval = ext4_get_blocks_handle(handle, inode, block,
1133                                 max_blocks, bh, create, extend_disksize);
1134
1135                 if (retval > 0 && buffer_new(bh)) {
1136                         /*
1137                          * We allocated new blocks which will result in
1138                          * i_data's format changing.  Force the migrate
1139                          * to fail by clearing migrate flags
1140                          */
1141                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142                                                         ~EXT4_EXT_MIGRATE;
1143                 }
1144         }
1145
1146         if (flag) {
1147                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148                 /*
1149                  * Update reserved blocks/metadata blocks
1150                  * after successful block allocation
1151                  * which were deferred till now
1152                  */
1153                 if ((retval > 0) && buffer_delay(bh))
1154                         ext4_da_update_reserve_space(inode, retval);
1155         }
1156
1157         up_write((&EXT4_I(inode)->i_data_sem));
1158         return retval;
1159 }
1160
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1163
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165                         struct buffer_head *bh_result, int create)
1166 {
1167         handle_t *handle = ext4_journal_current_handle();
1168         int ret = 0, started = 0;
1169         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170         int dio_credits;
1171
1172         if (create && !handle) {
1173                 /* Direct IO write... */
1174                 if (max_blocks > DIO_MAX_BLOCKS)
1175                         max_blocks = DIO_MAX_BLOCKS;
1176                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177                 handle = ext4_journal_start(inode, dio_credits);
1178                 if (IS_ERR(handle)) {
1179                         ret = PTR_ERR(handle);
1180                         goto out;
1181                 }
1182                 started = 1;
1183         }
1184
1185         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186                                         max_blocks, bh_result, create, 0, 0);
1187         if (ret > 0) {
1188                 bh_result->b_size = (ret << inode->i_blkbits);
1189                 ret = 0;
1190         }
1191         if (started)
1192                 ext4_journal_stop(handle);
1193 out:
1194         return ret;
1195 }
1196
1197 /*
1198  * `handle' can be NULL if create is zero
1199  */
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201                                 ext4_lblk_t block, int create, int *errp)
1202 {
1203         struct buffer_head dummy;
1204         int fatal = 0, err;
1205
1206         J_ASSERT(handle != NULL || create == 0);
1207
1208         dummy.b_state = 0;
1209         dummy.b_blocknr = -1000;
1210         buffer_trace_init(&dummy.b_history);
1211         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212                                         &dummy, create, 1, 0);
1213         /*
1214          * ext4_get_blocks_handle() returns number of blocks
1215          * mapped. 0 in case of a HOLE.
1216          */
1217         if (err > 0) {
1218                 if (err > 1)
1219                         WARN_ON(1);
1220                 err = 0;
1221         }
1222         *errp = err;
1223         if (!err && buffer_mapped(&dummy)) {
1224                 struct buffer_head *bh;
1225                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226                 if (!bh) {
1227                         *errp = -EIO;
1228                         goto err;
1229                 }
1230                 if (buffer_new(&dummy)) {
1231                         J_ASSERT(create != 0);
1232                         J_ASSERT(handle != NULL);
1233
1234                         /*
1235                          * Now that we do not always journal data, we should
1236                          * keep in mind whether this should always journal the
1237                          * new buffer as metadata.  For now, regular file
1238                          * writes use ext4_get_block instead, so it's not a
1239                          * problem.
1240                          */
1241                         lock_buffer(bh);
1242                         BUFFER_TRACE(bh, "call get_create_access");
1243                         fatal = ext4_journal_get_create_access(handle, bh);
1244                         if (!fatal && !buffer_uptodate(bh)) {
1245                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246                                 set_buffer_uptodate(bh);
1247                         }
1248                         unlock_buffer(bh);
1249                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250                         err = ext4_journal_dirty_metadata(handle, bh);
1251                         if (!fatal)
1252                                 fatal = err;
1253                 } else {
1254                         BUFFER_TRACE(bh, "not a new buffer");
1255                 }
1256                 if (fatal) {
1257                         *errp = fatal;
1258                         brelse(bh);
1259                         bh = NULL;
1260                 }
1261                 return bh;
1262         }
1263 err:
1264         return NULL;
1265 }
1266
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268                                ext4_lblk_t block, int create, int *err)
1269 {
1270         struct buffer_head *bh;
1271
1272         bh = ext4_getblk(handle, inode, block, create, err);
1273         if (!bh)
1274                 return bh;
1275         if (buffer_uptodate(bh))
1276                 return bh;
1277         ll_rw_block(READ_META, 1, &bh);
1278         wait_on_buffer(bh);
1279         if (buffer_uptodate(bh))
1280                 return bh;
1281         put_bh(bh);
1282         *err = -EIO;
1283         return NULL;
1284 }
1285
1286 static int walk_page_buffers(handle_t *handle,
1287                              struct buffer_head *head,
1288                              unsigned from,
1289                              unsigned to,
1290                              int *partial,
1291                              int (*fn)(handle_t *handle,
1292                                        struct buffer_head *bh))
1293 {
1294         struct buffer_head *bh;
1295         unsigned block_start, block_end;
1296         unsigned blocksize = head->b_size;
1297         int err, ret = 0;
1298         struct buffer_head *next;
1299
1300         for (bh = head, block_start = 0;
1301              ret == 0 && (bh != head || !block_start);
1302              block_start = block_end, bh = next)
1303         {
1304                 next = bh->b_this_page;
1305                 block_end = block_start + blocksize;
1306                 if (block_end <= from || block_start >= to) {
1307                         if (partial && !buffer_uptodate(bh))
1308                                 *partial = 1;
1309                         continue;
1310                 }
1311                 err = (*fn)(handle, bh);
1312                 if (!ret)
1313                         ret = err;
1314         }
1315         return ret;
1316 }
1317
1318 /*
1319  * To preserve ordering, it is essential that the hole instantiation and
1320  * the data write be encapsulated in a single transaction.  We cannot
1321  * close off a transaction and start a new one between the ext4_get_block()
1322  * and the commit_write().  So doing the jbd2_journal_start at the start of
1323  * prepare_write() is the right place.
1324  *
1325  * Also, this function can nest inside ext4_writepage() ->
1326  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327  * has generated enough buffer credits to do the whole page.  So we won't
1328  * block on the journal in that case, which is good, because the caller may
1329  * be PF_MEMALLOC.
1330  *
1331  * By accident, ext4 can be reentered when a transaction is open via
1332  * quota file writes.  If we were to commit the transaction while thus
1333  * reentered, there can be a deadlock - we would be holding a quota
1334  * lock, and the commit would never complete if another thread had a
1335  * transaction open and was blocking on the quota lock - a ranking
1336  * violation.
1337  *
1338  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339  * will _not_ run commit under these circumstances because handle->h_ref
1340  * is elevated.  We'll still have enough credits for the tiny quotafile
1341  * write.
1342  */
1343 static int do_journal_get_write_access(handle_t *handle,
1344                                         struct buffer_head *bh)
1345 {
1346         if (!buffer_mapped(bh) || buffer_freed(bh))
1347                 return 0;
1348         return ext4_journal_get_write_access(handle, bh);
1349 }
1350
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352                                 loff_t pos, unsigned len, unsigned flags,
1353                                 struct page **pagep, void **fsdata)
1354 {
1355         struct inode *inode = mapping->host;
1356         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357         handle_t *handle;
1358         int retries = 0;
1359         struct page *page;
1360         pgoff_t index;
1361         unsigned from, to;
1362
1363         index = pos >> PAGE_CACHE_SHIFT;
1364         from = pos & (PAGE_CACHE_SIZE - 1);
1365         to = from + len;
1366
1367 retry:
1368         handle = ext4_journal_start(inode, needed_blocks);
1369         if (IS_ERR(handle)) {
1370                 ret = PTR_ERR(handle);
1371                 goto out;
1372         }
1373
1374         page = __grab_cache_page(mapping, index);
1375         if (!page) {
1376                 ext4_journal_stop(handle);
1377                 ret = -ENOMEM;
1378                 goto out;
1379         }
1380         *pagep = page;
1381
1382         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383                                                         ext4_get_block);
1384
1385         if (!ret && ext4_should_journal_data(inode)) {
1386                 ret = walk_page_buffers(handle, page_buffers(page),
1387                                 from, to, NULL, do_journal_get_write_access);
1388         }
1389
1390         if (ret) {
1391                 unlock_page(page);
1392                 ext4_journal_stop(handle);
1393                 page_cache_release(page);
1394         }
1395
1396         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1397                 goto retry;
1398 out:
1399         return ret;
1400 }
1401
1402 /* For write_end() in data=journal mode */
1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1404 {
1405         if (!buffer_mapped(bh) || buffer_freed(bh))
1406                 return 0;
1407         set_buffer_uptodate(bh);
1408         return ext4_journal_dirty_metadata(handle, bh);
1409 }
1410
1411 /*
1412  * We need to pick up the new inode size which generic_commit_write gave us
1413  * `file' can be NULL - eg, when called from page_symlink().
1414  *
1415  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1416  * buffers are managed internally.
1417  */
1418 static int ext4_ordered_write_end(struct file *file,
1419                                 struct address_space *mapping,
1420                                 loff_t pos, unsigned len, unsigned copied,
1421                                 struct page *page, void *fsdata)
1422 {
1423         handle_t *handle = ext4_journal_current_handle();
1424         struct inode *inode = mapping->host;
1425         int ret = 0, ret2;
1426
1427         ret = ext4_jbd2_file_inode(handle, inode);
1428
1429         if (ret == 0) {
1430                 /*
1431                  * generic_write_end() will run mark_inode_dirty() if i_size
1432                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1433                  * into that.
1434                  */
1435                 loff_t new_i_size;
1436
1437                 new_i_size = pos + copied;
1438                 if (new_i_size > EXT4_I(inode)->i_disksize)
1439                         EXT4_I(inode)->i_disksize = new_i_size;
1440                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1441                                                         page, fsdata);
1442                 copied = ret2;
1443                 if (ret2 < 0)
1444                         ret = ret2;
1445         }
1446         ret2 = ext4_journal_stop(handle);
1447         if (!ret)
1448                 ret = ret2;
1449
1450         return ret ? ret : copied;
1451 }
1452
1453 static int ext4_writeback_write_end(struct file *file,
1454                                 struct address_space *mapping,
1455                                 loff_t pos, unsigned len, unsigned copied,
1456                                 struct page *page, void *fsdata)
1457 {
1458         handle_t *handle = ext4_journal_current_handle();
1459         struct inode *inode = mapping->host;
1460         int ret = 0, ret2;
1461         loff_t new_i_size;
1462
1463         new_i_size = pos + copied;
1464         if (new_i_size > EXT4_I(inode)->i_disksize)
1465                 EXT4_I(inode)->i_disksize = new_i_size;
1466
1467         ret2 = generic_write_end(file, mapping, pos, len, copied,
1468                                                         page, fsdata);
1469         copied = ret2;
1470         if (ret2 < 0)
1471                 ret = ret2;
1472
1473         ret2 = ext4_journal_stop(handle);
1474         if (!ret)
1475                 ret = ret2;
1476
1477         return ret ? ret : copied;
1478 }
1479
1480 static int ext4_journalled_write_end(struct file *file,
1481                                 struct address_space *mapping,
1482                                 loff_t pos, unsigned len, unsigned copied,
1483                                 struct page *page, void *fsdata)
1484 {
1485         handle_t *handle = ext4_journal_current_handle();
1486         struct inode *inode = mapping->host;
1487         int ret = 0, ret2;
1488         int partial = 0;
1489         unsigned from, to;
1490
1491         from = pos & (PAGE_CACHE_SIZE - 1);
1492         to = from + len;
1493
1494         if (copied < len) {
1495                 if (!PageUptodate(page))
1496                         copied = 0;
1497                 page_zero_new_buffers(page, from+copied, to);
1498         }
1499
1500         ret = walk_page_buffers(handle, page_buffers(page), from,
1501                                 to, &partial, write_end_fn);
1502         if (!partial)
1503                 SetPageUptodate(page);
1504         if (pos+copied > inode->i_size)
1505                 i_size_write(inode, pos+copied);
1506         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1508                 EXT4_I(inode)->i_disksize = inode->i_size;
1509                 ret2 = ext4_mark_inode_dirty(handle, inode);
1510                 if (!ret)
1511                         ret = ret2;
1512         }
1513
1514         unlock_page(page);
1515         ret2 = ext4_journal_stop(handle);
1516         if (!ret)
1517                 ret = ret2;
1518         page_cache_release(page);
1519
1520         return ret ? ret : copied;
1521 }
1522
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524 {
1525         int retries = 0;
1526        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527        unsigned long md_needed, mdblocks, total = 0;
1528
1529         /*
1530          * recalculate the amount of metadata blocks to reserve
1531          * in order to allocate nrblocks
1532          * worse case is one extent per block
1533          */
1534 repeat:
1535         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537         mdblocks = ext4_calc_metadata_amount(inode, total);
1538         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539
1540         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541         total = md_needed + nrblocks;
1542
1543         if (ext4_claim_free_blocks(sbi, total)) {
1544                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546                         yield();
1547                         goto repeat;
1548                 }
1549                 return -ENOSPC;
1550         }
1551         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553
1554         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555         return 0;       /* success */
1556 }
1557
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1559 {
1560         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561         int total, mdb, mdb_free, release;
1562
1563         if (!to_free)
1564                 return;         /* Nothing to release, exit */
1565
1566         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567
1568         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569                 /*
1570                  * if there is no reserved blocks, but we try to free some
1571                  * then the counter is messed up somewhere.
1572                  * but since this function is called from invalidate
1573                  * page, it's harmless to return without any action
1574                  */
1575                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576                             "blocks for inode %lu, but there is no reserved "
1577                             "data blocks\n", to_free, inode->i_ino);
1578                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579                 return;
1580         }
1581
1582         /* recalculate the number of metablocks still need to be reserved */
1583         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584         mdb = ext4_calc_metadata_amount(inode, total);
1585
1586         /* figure out how many metablocks to release */
1587         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589
1590         release = to_free + mdb_free;
1591
1592         /* update fs dirty blocks counter for truncate case */
1593         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1594
1595         /* update per-inode reservations */
1596         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1598
1599         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602 }
1603
1604 static void ext4_da_page_release_reservation(struct page *page,
1605                                                 unsigned long offset)
1606 {
1607         int to_release = 0;
1608         struct buffer_head *head, *bh;
1609         unsigned int curr_off = 0;
1610
1611         head = page_buffers(page);
1612         bh = head;
1613         do {
1614                 unsigned int next_off = curr_off + bh->b_size;
1615
1616                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617                         to_release++;
1618                         clear_buffer_delay(bh);
1619                 }
1620                 curr_off = next_off;
1621         } while ((bh = bh->b_this_page) != head);
1622         ext4_da_release_space(page->mapping->host, to_release);
1623 }
1624
1625 /*
1626  * Delayed allocation stuff
1627  */
1628
1629 struct mpage_da_data {
1630         struct inode *inode;
1631         struct buffer_head lbh;                 /* extent of blocks */
1632         unsigned long first_page, next_page;    /* extent of pages */
1633         get_block_t *get_block;
1634         struct writeback_control *wbc;
1635         int io_done;
1636         long pages_written;
1637         int retval;
1638 };
1639
1640 /*
1641  * mpage_da_submit_io - walks through extent of pages and try to write
1642  * them with writepage() call back
1643  *
1644  * @mpd->inode: inode
1645  * @mpd->first_page: first page of the extent
1646  * @mpd->next_page: page after the last page of the extent
1647  * @mpd->get_block: the filesystem's block mapper function
1648  *
1649  * By the time mpage_da_submit_io() is called we expect all blocks
1650  * to be allocated. this may be wrong if allocation failed.
1651  *
1652  * As pages are already locked by write_cache_pages(), we can't use it
1653  */
1654 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1655 {
1656         struct address_space *mapping = mpd->inode->i_mapping;
1657         int ret = 0, err, nr_pages, i;
1658         unsigned long index, end;
1659         struct pagevec pvec;
1660
1661         BUG_ON(mpd->next_page <= mpd->first_page);
1662         pagevec_init(&pvec, 0);
1663         index = mpd->first_page;
1664         end = mpd->next_page - 1;
1665
1666         while (index <= end) {
1667                 /* XXX: optimize tail */
1668                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1669                 if (nr_pages == 0)
1670                         break;
1671                 for (i = 0; i < nr_pages; i++) {
1672                         struct page *page = pvec.pages[i];
1673
1674                         index = page->index;
1675                         if (index > end)
1676                                 break;
1677                         index++;
1678
1679                         err = mapping->a_ops->writepage(page, mpd->wbc);
1680                         if (!err)
1681                                 mpd->pages_written++;
1682                         /*
1683                          * In error case, we have to continue because
1684                          * remaining pages are still locked
1685                          * XXX: unlock and re-dirty them?
1686                          */
1687                         if (ret == 0)
1688                                 ret = err;
1689                 }
1690                 pagevec_release(&pvec);
1691         }
1692         return ret;
1693 }
1694
1695 /*
1696  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1697  *
1698  * @mpd->inode - inode to walk through
1699  * @exbh->b_blocknr - first block on a disk
1700  * @exbh->b_size - amount of space in bytes
1701  * @logical - first logical block to start assignment with
1702  *
1703  * the function goes through all passed space and put actual disk
1704  * block numbers into buffer heads, dropping BH_Delay
1705  */
1706 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1707                                  struct buffer_head *exbh)
1708 {
1709         struct inode *inode = mpd->inode;
1710         struct address_space *mapping = inode->i_mapping;
1711         int blocks = exbh->b_size >> inode->i_blkbits;
1712         sector_t pblock = exbh->b_blocknr, cur_logical;
1713         struct buffer_head *head, *bh;
1714         pgoff_t index, end;
1715         struct pagevec pvec;
1716         int nr_pages, i;
1717
1718         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1721
1722         pagevec_init(&pvec, 0);
1723
1724         while (index <= end) {
1725                 /* XXX: optimize tail */
1726                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1727                 if (nr_pages == 0)
1728                         break;
1729                 for (i = 0; i < nr_pages; i++) {
1730                         struct page *page = pvec.pages[i];
1731
1732                         index = page->index;
1733                         if (index > end)
1734                                 break;
1735                         index++;
1736
1737                         BUG_ON(!PageLocked(page));
1738                         BUG_ON(PageWriteback(page));
1739                         BUG_ON(!page_has_buffers(page));
1740
1741                         bh = page_buffers(page);
1742                         head = bh;
1743
1744                         /* skip blocks out of the range */
1745                         do {
1746                                 if (cur_logical >= logical)
1747                                         break;
1748                                 cur_logical++;
1749                         } while ((bh = bh->b_this_page) != head);
1750
1751                         do {
1752                                 if (cur_logical >= logical + blocks)
1753                                         break;
1754                                 if (buffer_delay(bh)) {
1755                                         bh->b_blocknr = pblock;
1756                                         clear_buffer_delay(bh);
1757                                         bh->b_bdev = inode->i_sb->s_bdev;
1758                                 } else if (buffer_unwritten(bh)) {
1759                                         bh->b_blocknr = pblock;
1760                                         clear_buffer_unwritten(bh);
1761                                         set_buffer_mapped(bh);
1762                                         set_buffer_new(bh);
1763                                         bh->b_bdev = inode->i_sb->s_bdev;
1764                                 } else if (buffer_mapped(bh))
1765                                         BUG_ON(bh->b_blocknr != pblock);
1766
1767                                 cur_logical++;
1768                                 pblock++;
1769                         } while ((bh = bh->b_this_page) != head);
1770                 }
1771                 pagevec_release(&pvec);
1772         }
1773 }
1774
1775
1776 /*
1777  * __unmap_underlying_blocks - just a helper function to unmap
1778  * set of blocks described by @bh
1779  */
1780 static inline void __unmap_underlying_blocks(struct inode *inode,
1781                                              struct buffer_head *bh)
1782 {
1783         struct block_device *bdev = inode->i_sb->s_bdev;
1784         int blocks, i;
1785
1786         blocks = bh->b_size >> inode->i_blkbits;
1787         for (i = 0; i < blocks; i++)
1788                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1789 }
1790
1791 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1792                                         sector_t logical, long blk_cnt)
1793 {
1794         int nr_pages, i;
1795         pgoff_t index, end;
1796         struct pagevec pvec;
1797         struct inode *inode = mpd->inode;
1798         struct address_space *mapping = inode->i_mapping;
1799
1800         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1801         end   = (logical + blk_cnt - 1) >>
1802                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1803         while (index <= end) {
1804                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1805                 if (nr_pages == 0)
1806                         break;
1807                 for (i = 0; i < nr_pages; i++) {
1808                         struct page *page = pvec.pages[i];
1809                         index = page->index;
1810                         if (index > end)
1811                                 break;
1812                         index++;
1813
1814                         BUG_ON(!PageLocked(page));
1815                         BUG_ON(PageWriteback(page));
1816                         block_invalidatepage(page, 0);
1817                         ClearPageUptodate(page);
1818                         unlock_page(page);
1819                 }
1820         }
1821         return;
1822 }
1823
1824 static void ext4_print_free_blocks(struct inode *inode)
1825 {
1826         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1827         printk(KERN_EMERG "Total free blocks count %lld\n",
1828                         ext4_count_free_blocks(inode->i_sb));
1829         printk(KERN_EMERG "Free/Dirty block details\n");
1830         printk(KERN_EMERG "free_blocks=%lld\n",
1831                         percpu_counter_sum(&sbi->s_freeblocks_counter));
1832         printk(KERN_EMERG "dirty_blocks=%lld\n",
1833                         percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1834         printk(KERN_EMERG "Block reservation details\n");
1835         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1836                         EXT4_I(inode)->i_reserved_data_blocks);
1837         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1838                         EXT4_I(inode)->i_reserved_meta_blocks);
1839         return;
1840 }
1841
1842 /*
1843  * mpage_da_map_blocks - go through given space
1844  *
1845  * @mpd->lbh - bh describing space
1846  * @mpd->get_block - the filesystem's block mapper function
1847  *
1848  * The function skips space we know is already mapped to disk blocks.
1849  *
1850  */
1851 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1852 {
1853         int err = 0;
1854         struct buffer_head new;
1855         struct buffer_head *lbh = &mpd->lbh;
1856         sector_t next;
1857
1858         /*
1859          * We consider only non-mapped and non-allocated blocks
1860          */
1861         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1862                 return 0;
1863         new.b_state = lbh->b_state;
1864         new.b_blocknr = 0;
1865         new.b_size = lbh->b_size;
1866         next = lbh->b_blocknr;
1867         /*
1868          * If we didn't accumulate anything
1869          * to write simply return
1870          */
1871         if (!new.b_size)
1872                 return 0;
1873         err = mpd->get_block(mpd->inode, next, &new, 1);
1874         if (err) {
1875
1876                 /* If get block returns with error
1877                  * we simply return. Later writepage
1878                  * will redirty the page and writepages
1879                  * will find the dirty page again
1880                  */
1881                 if (err == -EAGAIN)
1882                         return 0;
1883
1884                 if (err == -ENOSPC &&
1885                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1886                         mpd->retval = err;
1887                         return 0;
1888                 }
1889
1890                 /*
1891                  * get block failure will cause us
1892                  * to loop in writepages. Because
1893                  * a_ops->writepage won't be able to
1894                  * make progress. The page will be redirtied
1895                  * by writepage and writepages will again
1896                  * try to write the same.
1897                  */
1898                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1899                                   "at logical offset %llu with max blocks "
1900                                   "%zd with error %d\n",
1901                                   __func__, mpd->inode->i_ino,
1902                                   (unsigned long long)next,
1903                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1904                 printk(KERN_EMERG "This should not happen.!! "
1905                                         "Data will be lost\n");
1906                 if (err == -ENOSPC) {
1907                         ext4_print_free_blocks(mpd->inode);
1908                 }
1909                 /* invlaidate all the pages */
1910                 ext4_da_block_invalidatepages(mpd, next,
1911                                 lbh->b_size >> mpd->inode->i_blkbits);
1912                 return err;
1913         }
1914         BUG_ON(new.b_size == 0);
1915
1916         if (buffer_new(&new))
1917                 __unmap_underlying_blocks(mpd->inode, &new);
1918
1919         /*
1920          * If blocks are delayed marked, we need to
1921          * put actual blocknr and drop delayed bit
1922          */
1923         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1924                 mpage_put_bnr_to_bhs(mpd, next, &new);
1925
1926         return 0;
1927 }
1928
1929 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1930                 (1 << BH_Delay) | (1 << BH_Unwritten))
1931
1932 /*
1933  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1934  *
1935  * @mpd->lbh - extent of blocks
1936  * @logical - logical number of the block in the file
1937  * @bh - bh of the block (used to access block's state)
1938  *
1939  * the function is used to collect contig. blocks in same state
1940  */
1941 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1942                                    sector_t logical, struct buffer_head *bh)
1943 {
1944         sector_t next;
1945         size_t b_size = bh->b_size;
1946         struct buffer_head *lbh = &mpd->lbh;
1947         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1948
1949         /* check if thereserved journal credits might overflow */
1950         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1951                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1952                         /*
1953                          * With non-extent format we are limited by the journal
1954                          * credit available.  Total credit needed to insert
1955                          * nrblocks contiguous blocks is dependent on the
1956                          * nrblocks.  So limit nrblocks.
1957                          */
1958                         goto flush_it;
1959                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1960                                 EXT4_MAX_TRANS_DATA) {
1961                         /*
1962                          * Adding the new buffer_head would make it cross the
1963                          * allowed limit for which we have journal credit
1964                          * reserved. So limit the new bh->b_size
1965                          */
1966                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1967                                                 mpd->inode->i_blkbits;
1968                         /* we will do mpage_da_submit_io in the next loop */
1969                 }
1970         }
1971         /*
1972          * First block in the extent
1973          */
1974         if (lbh->b_size == 0) {
1975                 lbh->b_blocknr = logical;
1976                 lbh->b_size = b_size;
1977                 lbh->b_state = bh->b_state & BH_FLAGS;
1978                 return;
1979         }
1980
1981         next = lbh->b_blocknr + nrblocks;
1982         /*
1983          * Can we merge the block to our big extent?
1984          */
1985         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1986                 lbh->b_size += b_size;
1987                 return;
1988         }
1989
1990 flush_it:
1991         /*
1992          * We couldn't merge the block to our extent, so we
1993          * need to flush current  extent and start new one
1994          */
1995         if (mpage_da_map_blocks(mpd) == 0)
1996                 mpage_da_submit_io(mpd);
1997         mpd->io_done = 1;
1998         return;
1999 }
2000
2001 /*
2002  * __mpage_da_writepage - finds extent of pages and blocks
2003  *
2004  * @page: page to consider
2005  * @wbc: not used, we just follow rules
2006  * @data: context
2007  *
2008  * The function finds extents of pages and scan them for all blocks.
2009  */
2010 static int __mpage_da_writepage(struct page *page,
2011                                 struct writeback_control *wbc, void *data)
2012 {
2013         struct mpage_da_data *mpd = data;
2014         struct inode *inode = mpd->inode;
2015         struct buffer_head *bh, *head, fake;
2016         sector_t logical;
2017
2018         if (mpd->io_done) {
2019                 /*
2020                  * Rest of the page in the page_vec
2021                  * redirty then and skip then. We will
2022                  * try to to write them again after
2023                  * starting a new transaction
2024                  */
2025                 redirty_page_for_writepage(wbc, page);
2026                 unlock_page(page);
2027                 return MPAGE_DA_EXTENT_TAIL;
2028         }
2029         /*
2030          * Can we merge this page to current extent?
2031          */
2032         if (mpd->next_page != page->index) {
2033                 /*
2034                  * Nope, we can't. So, we map non-allocated blocks
2035                  * and start IO on them using writepage()
2036                  */
2037                 if (mpd->next_page != mpd->first_page) {
2038                         if (mpage_da_map_blocks(mpd) == 0)
2039                                 mpage_da_submit_io(mpd);
2040                         /*
2041                          * skip rest of the page in the page_vec
2042                          */
2043                         mpd->io_done = 1;
2044                         redirty_page_for_writepage(wbc, page);
2045                         unlock_page(page);
2046                         return MPAGE_DA_EXTENT_TAIL;
2047                 }
2048
2049                 /*
2050                  * Start next extent of pages ...
2051                  */
2052                 mpd->first_page = page->index;
2053
2054                 /*
2055                  * ... and blocks
2056                  */
2057                 mpd->lbh.b_size = 0;
2058                 mpd->lbh.b_state = 0;
2059                 mpd->lbh.b_blocknr = 0;
2060         }
2061
2062         mpd->next_page = page->index + 1;
2063         logical = (sector_t) page->index <<
2064                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2065
2066         if (!page_has_buffers(page)) {
2067                 /*
2068                  * There is no attached buffer heads yet (mmap?)
2069                  * we treat the page asfull of dirty blocks
2070                  */
2071                 bh = &fake;
2072                 bh->b_size = PAGE_CACHE_SIZE;
2073                 bh->b_state = 0;
2074                 set_buffer_dirty(bh);
2075                 set_buffer_uptodate(bh);
2076                 mpage_add_bh_to_extent(mpd, logical, bh);
2077                 if (mpd->io_done)
2078                         return MPAGE_DA_EXTENT_TAIL;
2079         } else {
2080                 /*
2081                  * Page with regular buffer heads, just add all dirty ones
2082                  */
2083                 head = page_buffers(page);
2084                 bh = head;
2085                 do {
2086                         BUG_ON(buffer_locked(bh));
2087                         if (buffer_dirty(bh) &&
2088                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2089                                 mpage_add_bh_to_extent(mpd, logical, bh);
2090                                 if (mpd->io_done)
2091                                         return MPAGE_DA_EXTENT_TAIL;
2092                         }
2093                         logical++;
2094                 } while ((bh = bh->b_this_page) != head);
2095         }
2096
2097         return 0;
2098 }
2099
2100 /*
2101  * mpage_da_writepages - walk the list of dirty pages of the given
2102  * address space, allocates non-allocated blocks, maps newly-allocated
2103  * blocks to existing bhs and issue IO them
2104  *
2105  * @mapping: address space structure to write
2106  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2107  * @get_block: the filesystem's block mapper function.
2108  *
2109  * This is a library function, which implements the writepages()
2110  * address_space_operation.
2111  */
2112 static int mpage_da_writepages(struct address_space *mapping,
2113                                struct writeback_control *wbc,
2114                                struct mpage_da_data *mpd)
2115 {
2116         long to_write;
2117         int ret;
2118
2119         if (!mpd->get_block)
2120                 return generic_writepages(mapping, wbc);
2121
2122         mpd->lbh.b_size = 0;
2123         mpd->lbh.b_state = 0;
2124         mpd->lbh.b_blocknr = 0;
2125         mpd->first_page = 0;
2126         mpd->next_page = 0;
2127         mpd->io_done = 0;
2128         mpd->pages_written = 0;
2129         mpd->retval = 0;
2130
2131         to_write = wbc->nr_to_write;
2132
2133         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2134
2135         /*
2136          * Handle last extent of pages
2137          */
2138         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2139                 if (mpage_da_map_blocks(mpd) == 0)
2140                         mpage_da_submit_io(mpd);
2141         }
2142
2143         wbc->nr_to_write = to_write - mpd->pages_written;
2144         return ret;
2145 }
2146
2147 /*
2148  * this is a special callback for ->write_begin() only
2149  * it's intention is to return mapped block or reserve space
2150  */
2151 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2152                                   struct buffer_head *bh_result, int create)
2153 {
2154         int ret = 0;
2155
2156         BUG_ON(create == 0);
2157         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2158
2159         /*
2160          * first, we need to know whether the block is allocated already
2161          * preallocated blocks are unmapped but should treated
2162          * the same as allocated blocks.
2163          */
2164         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2165         if ((ret == 0) && !buffer_delay(bh_result)) {
2166                 /* the block isn't (pre)allocated yet, let's reserve space */
2167                 /*
2168                  * XXX: __block_prepare_write() unmaps passed block,
2169                  * is it OK?
2170                  */
2171                 ret = ext4_da_reserve_space(inode, 1);
2172                 if (ret)
2173                         /* not enough space to reserve */
2174                         return ret;
2175
2176                 map_bh(bh_result, inode->i_sb, 0);
2177                 set_buffer_new(bh_result);
2178                 set_buffer_delay(bh_result);
2179         } else if (ret > 0) {
2180                 bh_result->b_size = (ret << inode->i_blkbits);
2181                 ret = 0;
2182         }
2183
2184         return ret;
2185 }
2186 #define         EXT4_DELALLOC_RSVED     1
2187 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2188                                    struct buffer_head *bh_result, int create)
2189 {
2190         int ret;
2191         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2192         loff_t disksize = EXT4_I(inode)->i_disksize;
2193         handle_t *handle = NULL;
2194
2195         handle = ext4_journal_current_handle();
2196         BUG_ON(!handle);
2197         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2198                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2199         if (ret > 0) {
2200
2201                 bh_result->b_size = (ret << inode->i_blkbits);
2202
2203                 if (ext4_should_order_data(inode)) {
2204                         int retval;
2205                         retval = ext4_jbd2_file_inode(handle, inode);
2206                         if (retval)
2207                                 /*
2208                                  * Failed to add inode for ordered
2209                                  * mode. Don't update file size
2210                                  */
2211                                 return retval;
2212                 }
2213
2214                 /*
2215                  * Update on-disk size along with block allocation
2216                  * we don't use 'extend_disksize' as size may change
2217                  * within already allocated block -bzzz
2218                  */
2219                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2220                 if (disksize > i_size_read(inode))
2221                         disksize = i_size_read(inode);
2222                 if (disksize > EXT4_I(inode)->i_disksize) {
2223                         /*
2224                          * XXX: replace with spinlock if seen contended -bzzz
2225                          */
2226                         down_write(&EXT4_I(inode)->i_data_sem);
2227                         if (disksize > EXT4_I(inode)->i_disksize)
2228                                 EXT4_I(inode)->i_disksize = disksize;
2229                         up_write(&EXT4_I(inode)->i_data_sem);
2230
2231                         if (EXT4_I(inode)->i_disksize == disksize) {
2232                                 ret = ext4_mark_inode_dirty(handle, inode);
2233                                 return ret;
2234                         }
2235                 }
2236                 ret = 0;
2237         }
2238         return ret;
2239 }
2240
2241 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2242 {
2243         /*
2244          * unmapped buffer is possible for holes.
2245          * delay buffer is possible with delayed allocation
2246          */
2247         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2248 }
2249
2250 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2251                                    struct buffer_head *bh_result, int create)
2252 {
2253         int ret = 0;
2254         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2255
2256         /*
2257          * we don't want to do block allocation in writepage
2258          * so call get_block_wrap with create = 0
2259          */
2260         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2261                                    bh_result, 0, 0, 0);
2262         if (ret > 0) {
2263                 bh_result->b_size = (ret << inode->i_blkbits);
2264                 ret = 0;
2265         }
2266         return ret;
2267 }
2268
2269 /*
2270  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2271  * get called via journal_submit_inode_data_buffers (no journal handle)
2272  * get called via shrink_page_list via pdflush (no journal handle)
2273  * or grab_page_cache when doing write_begin (have journal handle)
2274  */
2275 static int ext4_da_writepage(struct page *page,
2276                                 struct writeback_control *wbc)
2277 {
2278         int ret = 0;
2279         loff_t size;
2280         unsigned long len;
2281         struct buffer_head *page_bufs;
2282         struct inode *inode = page->mapping->host;
2283
2284         size = i_size_read(inode);
2285         if (page->index == size >> PAGE_CACHE_SHIFT)
2286                 len = size & ~PAGE_CACHE_MASK;
2287         else
2288                 len = PAGE_CACHE_SIZE;
2289
2290         if (page_has_buffers(page)) {
2291                 page_bufs = page_buffers(page);
2292                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2293                                         ext4_bh_unmapped_or_delay)) {
2294                         /*
2295                          * We don't want to do  block allocation
2296                          * So redirty the page and return
2297                          * We may reach here when we do a journal commit
2298                          * via journal_submit_inode_data_buffers.
2299                          * If we don't have mapping block we just ignore
2300                          * them. We can also reach here via shrink_page_list
2301                          */
2302                         redirty_page_for_writepage(wbc, page);
2303                         unlock_page(page);
2304                         return 0;
2305                 }
2306         } else {
2307                 /*
2308                  * The test for page_has_buffers() is subtle:
2309                  * We know the page is dirty but it lost buffers. That means
2310                  * that at some moment in time after write_begin()/write_end()
2311                  * has been called all buffers have been clean and thus they
2312                  * must have been written at least once. So they are all
2313                  * mapped and we can happily proceed with mapping them
2314                  * and writing the page.
2315                  *
2316                  * Try to initialize the buffer_heads and check whether
2317                  * all are mapped and non delay. We don't want to
2318                  * do block allocation here.
2319                  */
2320                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2321                                                 ext4_normal_get_block_write);
2322                 if (!ret) {
2323                         page_bufs = page_buffers(page);
2324                         /* check whether all are mapped and non delay */
2325                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2326                                                 ext4_bh_unmapped_or_delay)) {
2327                                 redirty_page_for_writepage(wbc, page);
2328                                 unlock_page(page);
2329                                 return 0;
2330                         }
2331                 } else {
2332                         /*
2333                          * We can't do block allocation here
2334                          * so just redity the page and unlock
2335                          * and return
2336                          */
2337                         redirty_page_for_writepage(wbc, page);
2338                         unlock_page(page);
2339                         return 0;
2340                 }
2341         }
2342
2343         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2344                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2345         else
2346                 ret = block_write_full_page(page,
2347                                                 ext4_normal_get_block_write,
2348                                                 wbc);
2349
2350         return ret;
2351 }
2352
2353 /*
2354  * This is called via ext4_da_writepages() to
2355  * calulate the total number of credits to reserve to fit
2356  * a single extent allocation into a single transaction,
2357  * ext4_da_writpeages() will loop calling this before
2358  * the block allocation.
2359  */
2360
2361 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2362 {
2363         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2364
2365         /*
2366          * With non-extent format the journal credit needed to
2367          * insert nrblocks contiguous block is dependent on
2368          * number of contiguous block. So we will limit
2369          * number of contiguous block to a sane value
2370          */
2371         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2372             (max_blocks > EXT4_MAX_TRANS_DATA))
2373                 max_blocks = EXT4_MAX_TRANS_DATA;
2374
2375         return ext4_chunk_trans_blocks(inode, max_blocks);
2376 }
2377
2378 static int ext4_da_writepages(struct address_space *mapping,
2379                               struct writeback_control *wbc)
2380 {
2381         handle_t *handle = NULL;
2382         loff_t range_start = 0;
2383         struct mpage_da_data mpd;
2384         struct inode *inode = mapping->host;
2385         int needed_blocks, ret = 0, nr_to_writebump = 0;
2386         long to_write, pages_skipped = 0;
2387         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2388
2389         /*
2390          * No pages to write? This is mainly a kludge to avoid starting
2391          * a transaction for special inodes like journal inode on last iput()
2392          * because that could violate lock ordering on umount
2393          */
2394         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2395                 return 0;
2396         /*
2397          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2398          * This make sure small files blocks are allocated in
2399          * single attempt. This ensure that small files
2400          * get less fragmented.
2401          */
2402         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2403                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2404                 wbc->nr_to_write = sbi->s_mb_stream_request;
2405         }
2406
2407         if (!wbc->range_cyclic)
2408                 /*
2409                  * If range_cyclic is not set force range_cont
2410                  * and save the old writeback_index
2411                  */
2412                 wbc->range_cont = 1;
2413
2414         range_start =  wbc->range_start;
2415         pages_skipped = wbc->pages_skipped;
2416
2417         mpd.wbc = wbc;
2418         mpd.inode = mapping->host;
2419
2420 restart_loop:
2421         to_write = wbc->nr_to_write;
2422         while (!ret && to_write > 0) {
2423
2424                 /*
2425                  * we  insert one extent at a time. So we need
2426                  * credit needed for single extent allocation.
2427                  * journalled mode is currently not supported
2428                  * by delalloc
2429                  */
2430                 BUG_ON(ext4_should_journal_data(inode));
2431                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2432
2433                 /* start a new transaction*/
2434                 handle = ext4_journal_start(inode, needed_blocks);
2435                 if (IS_ERR(handle)) {
2436                         ret = PTR_ERR(handle);
2437                         printk(KERN_EMERG "%s: jbd2_start: "
2438                                "%ld pages, ino %lu; err %d\n", __func__,
2439                                 wbc->nr_to_write, inode->i_ino, ret);
2440                         dump_stack();
2441                         goto out_writepages;
2442                 }
2443                 to_write -= wbc->nr_to_write;
2444
2445                 mpd.get_block = ext4_da_get_block_write;
2446                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2447
2448                 ext4_journal_stop(handle);
2449
2450                 if (mpd.retval == -ENOSPC)
2451                         jbd2_journal_force_commit_nested(sbi->s_journal);
2452
2453                 /* reset the retry count */
2454                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2455                         /*
2456                          * got one extent now try with
2457                          * rest of the pages
2458                          */
2459                         to_write += wbc->nr_to_write;
2460                         ret = 0;
2461                 } else if (wbc->nr_to_write) {
2462                         /*
2463                          * There is no more writeout needed
2464                          * or we requested for a noblocking writeout
2465                          * and we found the device congested
2466                          */
2467                         to_write += wbc->nr_to_write;
2468                         break;
2469                 }
2470                 wbc->nr_to_write = to_write;
2471         }
2472
2473         if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2474                 /* We skipped pages in this loop */
2475                 wbc->range_start = range_start;
2476                 wbc->nr_to_write = to_write +
2477                                 wbc->pages_skipped - pages_skipped;
2478                 wbc->pages_skipped = pages_skipped;
2479                 goto restart_loop;
2480         }
2481
2482 out_writepages:
2483         wbc->nr_to_write = to_write - nr_to_writebump;
2484         wbc->range_start = range_start;
2485         return ret;
2486 }
2487
2488 #define FALL_BACK_TO_NONDELALLOC 1
2489 static int ext4_nonda_switch(struct super_block *sb)
2490 {
2491         s64 free_blocks, dirty_blocks;
2492         struct ext4_sb_info *sbi = EXT4_SB(sb);
2493
2494         /*
2495          * switch to non delalloc mode if we are running low
2496          * on free block. The free block accounting via percpu
2497          * counters can get slightly wrong with FBC_BATCH getting
2498          * accumulated on each CPU without updating global counters
2499          * Delalloc need an accurate free block accounting. So switch
2500          * to non delalloc when we are near to error range.
2501          */
2502         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2503         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2504         if (2 * free_blocks < 3 * dirty_blocks ||
2505                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2506                 /*
2507                  * free block count is less that 150% of dirty blocks
2508                  * or free blocks is less that watermark
2509                  */
2510                 return 1;
2511         }
2512         return 0;
2513 }
2514
2515 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2516                                 loff_t pos, unsigned len, unsigned flags,
2517                                 struct page **pagep, void **fsdata)
2518 {
2519         int ret, retries = 0;
2520         struct page *page;
2521         pgoff_t index;
2522         unsigned from, to;
2523         struct inode *inode = mapping->host;
2524         handle_t *handle;
2525
2526         index = pos >> PAGE_CACHE_SHIFT;
2527         from = pos & (PAGE_CACHE_SIZE - 1);
2528         to = from + len;
2529
2530         if (ext4_nonda_switch(inode->i_sb)) {
2531                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2532                 return ext4_write_begin(file, mapping, pos,
2533                                         len, flags, pagep, fsdata);
2534         }
2535         *fsdata = (void *)0;
2536 retry:
2537         /*
2538          * With delayed allocation, we don't log the i_disksize update
2539          * if there is delayed block allocation. But we still need
2540          * to journalling the i_disksize update if writes to the end
2541          * of file which has an already mapped buffer.
2542          */
2543         handle = ext4_journal_start(inode, 1);
2544         if (IS_ERR(handle)) {
2545                 ret = PTR_ERR(handle);
2546                 goto out;
2547         }
2548
2549         page = __grab_cache_page(mapping, index);
2550         if (!page) {
2551                 ext4_journal_stop(handle);
2552                 ret = -ENOMEM;
2553                 goto out;
2554         }
2555         *pagep = page;
2556
2557         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2558                                                         ext4_da_get_block_prep);
2559         if (ret < 0) {
2560                 unlock_page(page);
2561                 ext4_journal_stop(handle);
2562                 page_cache_release(page);
2563         }
2564
2565         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2566                 goto retry;
2567 out:
2568         return ret;
2569 }
2570
2571 /*
2572  * Check if we should update i_disksize
2573  * when write to the end of file but not require block allocation
2574  */
2575 static int ext4_da_should_update_i_disksize(struct page *page,
2576                                          unsigned long offset)
2577 {
2578         struct buffer_head *bh;
2579         struct inode *inode = page->mapping->host;
2580         unsigned int idx;
2581         int i;
2582
2583         bh = page_buffers(page);
2584         idx = offset >> inode->i_blkbits;
2585
2586         for (i = 0; i < idx; i++)
2587                 bh = bh->b_this_page;
2588
2589         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2590                 return 0;
2591         return 1;
2592 }
2593
2594 static int ext4_da_write_end(struct file *file,
2595                                 struct address_space *mapping,
2596                                 loff_t pos, unsigned len, unsigned copied,
2597                                 struct page *page, void *fsdata)
2598 {
2599         struct inode *inode = mapping->host;
2600         int ret = 0, ret2;
2601         handle_t *handle = ext4_journal_current_handle();
2602         loff_t new_i_size;
2603         unsigned long start, end;
2604         int write_mode = (int)(unsigned long)fsdata;
2605
2606         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2607                 if (ext4_should_order_data(inode)) {
2608                         return ext4_ordered_write_end(file, mapping, pos,
2609                                         len, copied, page, fsdata);
2610                 } else if (ext4_should_writeback_data(inode)) {
2611                         return ext4_writeback_write_end(file, mapping, pos,
2612                                         len, copied, page, fsdata);
2613                 } else {
2614                         BUG();
2615                 }
2616         }
2617
2618         start = pos & (PAGE_CACHE_SIZE - 1);
2619         end = start + copied - 1;
2620
2621         /*
2622          * generic_write_end() will run mark_inode_dirty() if i_size
2623          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2624          * into that.
2625          */
2626
2627         new_i_size = pos + copied;
2628         if (new_i_size > EXT4_I(inode)->i_disksize) {
2629                 if (ext4_da_should_update_i_disksize(page, end)) {
2630                         down_write(&EXT4_I(inode)->i_data_sem);
2631                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2632                                 /*
2633                                  * Updating i_disksize when extending file
2634                                  * without needing block allocation
2635                                  */
2636                                 if (ext4_should_order_data(inode))
2637                                         ret = ext4_jbd2_file_inode(handle,
2638                                                                    inode);
2639
2640                                 EXT4_I(inode)->i_disksize = new_i_size;
2641                         }
2642                         up_write(&EXT4_I(inode)->i_data_sem);
2643                 }
2644         }
2645         ret2 = generic_write_end(file, mapping, pos, len, copied,
2646                                                         page, fsdata);
2647         copied = ret2;
2648         if (ret2 < 0)
2649                 ret = ret2;
2650         ret2 = ext4_journal_stop(handle);
2651         if (!ret)
2652                 ret = ret2;
2653
2654         return ret ? ret : copied;
2655 }
2656
2657 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2658 {
2659         /*
2660          * Drop reserved blocks
2661          */
2662         BUG_ON(!PageLocked(page));
2663         if (!page_has_buffers(page))
2664                 goto out;
2665
2666         ext4_da_page_release_reservation(page, offset);
2667
2668 out:
2669         ext4_invalidatepage(page, offset);
2670
2671         return;
2672 }
2673
2674
2675 /*
2676  * bmap() is special.  It gets used by applications such as lilo and by
2677  * the swapper to find the on-disk block of a specific piece of data.
2678  *
2679  * Naturally, this is dangerous if the block concerned is still in the
2680  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2681  * filesystem and enables swap, then they may get a nasty shock when the
2682  * data getting swapped to that swapfile suddenly gets overwritten by
2683  * the original zero's written out previously to the journal and
2684  * awaiting writeback in the kernel's buffer cache.
2685  *
2686  * So, if we see any bmap calls here on a modified, data-journaled file,
2687  * take extra steps to flush any blocks which might be in the cache.
2688  */
2689 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2690 {
2691         struct inode *inode = mapping->host;
2692         journal_t *journal;
2693         int err;
2694
2695         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2696                         test_opt(inode->i_sb, DELALLOC)) {
2697                 /*
2698                  * With delalloc we want to sync the file
2699                  * so that we can make sure we allocate
2700                  * blocks for file
2701                  */
2702                 filemap_write_and_wait(mapping);
2703         }
2704
2705         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2706                 /*
2707                  * This is a REALLY heavyweight approach, but the use of
2708                  * bmap on dirty files is expected to be extremely rare:
2709                  * only if we run lilo or swapon on a freshly made file
2710                  * do we expect this to happen.
2711                  *
2712                  * (bmap requires CAP_SYS_RAWIO so this does not
2713                  * represent an unprivileged user DOS attack --- we'd be
2714                  * in trouble if mortal users could trigger this path at
2715                  * will.)
2716                  *
2717                  * NB. EXT4_STATE_JDATA is not set on files other than
2718                  * regular files.  If somebody wants to bmap a directory
2719                  * or symlink and gets confused because the buffer
2720                  * hasn't yet been flushed to disk, they deserve
2721                  * everything they get.
2722                  */
2723
2724                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2725                 journal = EXT4_JOURNAL(inode);
2726                 jbd2_journal_lock_updates(journal);
2727                 err = jbd2_journal_flush(journal);
2728                 jbd2_journal_unlock_updates(journal);
2729
2730                 if (err)
2731                         return 0;
2732         }
2733
2734         return generic_block_bmap(mapping, block, ext4_get_block);
2735 }
2736
2737 static int bget_one(handle_t *handle, struct buffer_head *bh)
2738 {
2739         get_bh(bh);
2740         return 0;
2741 }
2742
2743 static int bput_one(handle_t *handle, struct buffer_head *bh)
2744 {
2745         put_bh(bh);
2746         return 0;
2747 }
2748
2749 /*
2750  * Note that we don't need to start a transaction unless we're journaling data
2751  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2752  * need to file the inode to the transaction's list in ordered mode because if
2753  * we are writing back data added by write(), the inode is already there and if
2754  * we are writing back data modified via mmap(), noone guarantees in which
2755  * transaction the data will hit the disk. In case we are journaling data, we
2756  * cannot start transaction directly because transaction start ranks above page
2757  * lock so we have to do some magic.
2758  *
2759  * In all journaling modes block_write_full_page() will start the I/O.
2760  *
2761  * Problem:
2762  *
2763  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2764  *              ext4_writepage()
2765  *
2766  * Similar for:
2767  *
2768  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2769  *
2770  * Same applies to ext4_get_block().  We will deadlock on various things like
2771  * lock_journal and i_data_sem
2772  *
2773  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2774  * allocations fail.
2775  *
2776  * 16May01: If we're reentered then journal_current_handle() will be
2777  *          non-zero. We simply *return*.
2778  *
2779  * 1 July 2001: @@@ FIXME:
2780  *   In journalled data mode, a data buffer may be metadata against the
2781  *   current transaction.  But the same file is part of a shared mapping
2782  *   and someone does a writepage() on it.
2783  *
2784  *   We will move the buffer onto the async_data list, but *after* it has
2785  *   been dirtied. So there's a small window where we have dirty data on
2786  *   BJ_Metadata.
2787  *
2788  *   Note that this only applies to the last partial page in the file.  The
2789  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2790  *   broken code anyway: it's wrong for msync()).
2791  *
2792  *   It's a rare case: affects the final partial page, for journalled data
2793  *   where the file is subject to bith write() and writepage() in the same
2794  *   transction.  To fix it we'll need a custom block_write_full_page().
2795  *   We'll probably need that anyway for journalling writepage() output.
2796  *
2797  * We don't honour synchronous mounts for writepage().  That would be
2798  * disastrous.  Any write() or metadata operation will sync the fs for
2799  * us.
2800  *
2801  */
2802 static int __ext4_normal_writepage(struct page *page,
2803                                 struct writeback_control *wbc)
2804 {
2805         struct inode *inode = page->mapping->host;
2806
2807         if (test_opt(inode->i_sb, NOBH))
2808                 return nobh_writepage(page,
2809                                         ext4_normal_get_block_write, wbc);
2810         else
2811                 return block_write_full_page(page,
2812                                                 ext4_normal_get_block_write,
2813                                                 wbc);
2814 }
2815
2816 static int ext4_normal_writepage(struct page *page,
2817                                 struct writeback_control *wbc)
2818 {
2819         struct inode *inode = page->mapping->host;
2820         loff_t size = i_size_read(inode);
2821         loff_t len;
2822
2823         J_ASSERT(PageLocked(page));
2824         if (page->index == size >> PAGE_CACHE_SHIFT)
2825                 len = size & ~PAGE_CACHE_MASK;
2826         else
2827                 len = PAGE_CACHE_SIZE;
2828
2829         if (page_has_buffers(page)) {
2830                 /* if page has buffers it should all be mapped
2831                  * and allocated. If there are not buffers attached
2832                  * to the page we know the page is dirty but it lost
2833                  * buffers. That means that at some moment in time
2834                  * after write_begin() / write_end() has been called
2835                  * all buffers have been clean and thus they must have been
2836                  * written at least once. So they are all mapped and we can
2837                  * happily proceed with mapping them and writing the page.
2838                  */
2839                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2840                                         ext4_bh_unmapped_or_delay));
2841         }
2842
2843         if (!ext4_journal_current_handle())
2844                 return __ext4_normal_writepage(page, wbc);
2845
2846         redirty_page_for_writepage(wbc, page);
2847         unlock_page(page);
2848         return 0;
2849 }
2850
2851 static int __ext4_journalled_writepage(struct page *page,
2852                                 struct writeback_control *wbc)
2853 {
2854         struct address_space *mapping = page->mapping;
2855         struct inode *inode = mapping->host;
2856         struct buffer_head *page_bufs;
2857         handle_t *handle = NULL;
2858         int ret = 0;
2859         int err;
2860
2861         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2862                                         ext4_normal_get_block_write);
2863         if (ret != 0)
2864                 goto out_unlock;
2865
2866         page_bufs = page_buffers(page);
2867         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2868                                                                 bget_one);
2869         /* As soon as we unlock the page, it can go away, but we have
2870          * references to buffers so we are safe */
2871         unlock_page(page);
2872
2873         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2874         if (IS_ERR(handle)) {
2875                 ret = PTR_ERR(handle);
2876                 goto out;
2877         }
2878
2879         ret = walk_page_buffers(handle, page_bufs, 0,
2880                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2881
2882         err = walk_page_buffers(handle, page_bufs, 0,
2883                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2884         if (ret == 0)
2885                 ret = err;
2886         err = ext4_journal_stop(handle);
2887         if (!ret)
2888                 ret = err;
2889
2890         walk_page_buffers(handle, page_bufs, 0,
2891                                 PAGE_CACHE_SIZE, NULL, bput_one);
2892         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2893         goto out;
2894
2895 out_unlock:
2896         unlock_page(page);
2897 out:
2898         return ret;
2899 }
2900
2901 static int ext4_journalled_writepage(struct page *page,
2902                                 struct writeback_control *wbc)
2903 {
2904         struct inode *inode = page->mapping->host;
2905         loff_t size = i_size_read(inode);
2906         loff_t len;
2907
2908         J_ASSERT(PageLocked(page));
2909         if (page->index == size >> PAGE_CACHE_SHIFT)
2910                 len = size & ~PAGE_CACHE_MASK;
2911         else
2912                 len = PAGE_CACHE_SIZE;
2913
2914         if (page_has_buffers(page)) {
2915                 /* if page has buffers it should all be mapped
2916                  * and allocated. If there are not buffers attached
2917                  * to the page we know the page is dirty but it lost
2918                  * buffers. That means that at some moment in time
2919                  * after write_begin() / write_end() has been called
2920                  * all buffers have been clean and thus they must have been
2921                  * written at least once. So they are all mapped and we can
2922                  * happily proceed with mapping them and writing the page.
2923                  */
2924                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2925                                         ext4_bh_unmapped_or_delay));
2926         }
2927
2928         if (ext4_journal_current_handle())
2929                 goto no_write;
2930
2931         if (PageChecked(page)) {
2932                 /*
2933                  * It's mmapped pagecache.  Add buffers and journal it.  There
2934                  * doesn't seem much point in redirtying the page here.
2935                  */
2936                 ClearPageChecked(page);
2937                 return __ext4_journalled_writepage(page, wbc);
2938         } else {
2939                 /*
2940                  * It may be a page full of checkpoint-mode buffers.  We don't
2941                  * really know unless we go poke around in the buffer_heads.
2942                  * But block_write_full_page will do the right thing.
2943                  */
2944                 return block_write_full_page(page,
2945                                                 ext4_normal_get_block_write,
2946                                                 wbc);
2947         }
2948 no_write:
2949         redirty_page_for_writepage(wbc, page);
2950         unlock_page(page);
2951         return 0;
2952 }
2953
2954 static int ext4_readpage(struct file *file, struct page *page)
2955 {
2956         return mpage_readpage(page, ext4_get_block);
2957 }
2958
2959 static int
2960 ext4_readpages(struct file *file, struct address_space *mapping,
2961                 struct list_head *pages, unsigned nr_pages)
2962 {
2963         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2964 }
2965
2966 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2967 {
2968         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2969
2970         /*
2971          * If it's a full truncate we just forget about the pending dirtying
2972          */
2973         if (offset == 0)
2974                 ClearPageChecked(page);
2975
2976         jbd2_journal_invalidatepage(journal, page, offset);
2977 }
2978
2979 static int ext4_releasepage(struct page *page, gfp_t wait)
2980 {
2981         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2982
2983         WARN_ON(PageChecked(page));
2984         if (!page_has_buffers(page))
2985                 return 0;
2986         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2987 }
2988
2989 /*
2990  * If the O_DIRECT write will extend the file then add this inode to the
2991  * orphan list.  So recovery will truncate it back to the original size
2992  * if the machine crashes during the write.
2993  *
2994  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2995  * crashes then stale disk data _may_ be exposed inside the file. But current
2996  * VFS code falls back into buffered path in that case so we are safe.
2997  */
2998 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2999                         const struct iovec *iov, loff_t offset,
3000                         unsigned long nr_segs)
3001 {
3002         struct file *file = iocb->ki_filp;
3003         struct inode *inode = file->f_mapping->host;
3004         struct ext4_inode_info *ei = EXT4_I(inode);
3005         handle_t *handle;
3006         ssize_t ret;
3007         int orphan = 0;
3008         size_t count = iov_length(iov, nr_segs);
3009
3010         if (rw == WRITE) {
3011                 loff_t final_size = offset + count;
3012
3013                 if (final_size > inode->i_size) {
3014                         /* Credits for sb + inode write */
3015                         handle = ext4_journal_start(inode, 2);
3016                         if (IS_ERR(handle)) {
3017                                 ret = PTR_ERR(handle);
3018                                 goto out;
3019                         }
3020                         ret = ext4_orphan_add(handle, inode);
3021                         if (ret) {
3022                                 ext4_journal_stop(handle);
3023                                 goto out;
3024                         }
3025                         orphan = 1;
3026                         ei->i_disksize = inode->i_size;
3027                         ext4_journal_stop(handle);
3028                 }
3029         }
3030
3031         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3032                                  offset, nr_segs,
3033                                  ext4_get_block, NULL);
3034
3035         if (orphan) {
3036                 int err;
3037
3038                 /* Credits for sb + inode write */
3039                 handle = ext4_journal_start(inode, 2);
3040                 if (IS_ERR(handle)) {
3041                         /* This is really bad luck. We've written the data
3042                          * but cannot extend i_size. Bail out and pretend
3043                          * the write failed... */
3044                         ret = PTR_ERR(handle);
3045                         goto out;
3046                 }
3047                 if (inode->i_nlink)
3048                         ext4_orphan_del(handle, inode);
3049                 if (ret > 0) {
3050                         loff_t end = offset + ret;
3051                         if (end > inode->i_size) {
3052                                 ei->i_disksize = end;
3053                                 i_size_write(inode, end);
3054                                 /*
3055                                  * We're going to return a positive `ret'
3056                                  * here due to non-zero-length I/O, so there's
3057                                  * no way of reporting error returns from
3058                                  * ext4_mark_inode_dirty() to userspace.  So
3059                                  * ignore it.
3060                                  */
3061                                 ext4_mark_inode_dirty(handle, inode);
3062                         }
3063                 }
3064                 err = ext4_journal_stop(handle);
3065                 if (ret == 0)
3066                         ret = err;
3067         }
3068 out:
3069         return ret;
3070 }
3071
3072 /*
3073  * Pages can be marked dirty completely asynchronously from ext4's journalling
3074  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3075  * much here because ->set_page_dirty is called under VFS locks.  The page is
3076  * not necessarily locked.
3077  *
3078  * We cannot just dirty the page and leave attached buffers clean, because the
3079  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3080  * or jbddirty because all the journalling code will explode.
3081  *
3082  * So what we do is to mark the page "pending dirty" and next time writepage
3083  * is called, propagate that into the buffers appropriately.
3084  */
3085 static int ext4_journalled_set_page_dirty(struct page *page)
3086 {
3087         SetPageChecked(page);
3088         return __set_page_dirty_nobuffers(page);
3089 }
3090
3091 static const struct address_space_operations ext4_ordered_aops = {
3092         .readpage               = ext4_readpage,
3093         .readpages              = ext4_readpages,
3094         .writepage              = ext4_normal_writepage,
3095         .sync_page              = block_sync_page,
3096         .write_begin            = ext4_write_begin,
3097         .write_end              = ext4_ordered_write_end,
3098         .bmap                   = ext4_bmap,
3099         .invalidatepage         = ext4_invalidatepage,
3100         .releasepage            = ext4_releasepage,
3101         .direct_IO              = ext4_direct_IO,
3102         .migratepage            = buffer_migrate_page,
3103         .is_partially_uptodate  = block_is_partially_uptodate,
3104 };
3105
3106 static const struct address_space_operations ext4_writeback_aops = {
3107         .readpage               = ext4_readpage,
3108         .readpages              = ext4_readpages,
3109         .writepage              = ext4_normal_writepage,
3110         .sync_page              = block_sync_page,
3111         .write_begin            = ext4_write_begin,
3112         .write_end              = ext4_writeback_write_end,
3113         .bmap                   = ext4_bmap,
3114         .invalidatepage         = ext4_invalidatepage,
3115         .releasepage            = ext4_releasepage,
3116         .direct_IO              = ext4_direct_IO,
3117         .migratepage            = buffer_migrate_page,
3118         .is_partially_uptodate  = block_is_partially_uptodate,
3119 };
3120
3121 static const struct address_space_operations ext4_journalled_aops = {
3122         .readpage               = ext4_readpage,
3123         .readpages              = ext4_readpages,
3124         .writepage              = ext4_journalled_writepage,
3125         .sync_page              = block_sync_page,
3126         .write_begin            = ext4_write_begin,
3127         .write_end              = ext4_journalled_write_end,
3128         .set_page_dirty         = ext4_journalled_set_page_dirty,
3129         .bmap                   = ext4_bmap,
3130         .invalidatepage         = ext4_invalidatepage,
3131         .releasepage            = ext4_releasepage,
3132         .is_partially_uptodate  = block_is_partially_uptodate,
3133 };
3134
3135 static const struct address_space_operations ext4_da_aops = {
3136         .readpage               = ext4_readpage,
3137         .readpages              = ext4_readpages,
3138         .writepage              = ext4_da_writepage,
3139         .writepages             = ext4_da_writepages,
3140         .sync_page              = block_sync_page,
3141         .write_begin            = ext4_da_write_begin,
3142         .write_end              = ext4_da_write_end,
3143         .bmap                   = ext4_bmap,
3144         .invalidatepage         = ext4_da_invalidatepage,
3145         .releasepage            = ext4_releasepage,
3146         .direct_IO              = ext4_direct_IO,
3147         .migratepage            = buffer_migrate_page,
3148         .is_partially_uptodate  = block_is_partially_uptodate,
3149 };
3150
3151 void ext4_set_aops(struct inode *inode)
3152 {
3153         if (ext4_should_order_data(inode) &&
3154                 test_opt(inode->i_sb, DELALLOC))
3155                 inode->i_mapping->a_ops = &ext4_da_aops;
3156         else if (ext4_should_order_data(inode))
3157                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3158         else if (ext4_should_writeback_data(inode) &&
3159                  test_opt(inode->i_sb, DELALLOC))
3160                 inode->i_mapping->a_ops = &ext4_da_aops;
3161         else if (ext4_should_writeback_data(inode))
3162                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3163         else
3164                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3165 }
3166
3167 /*
3168  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3169  * up to the end of the block which corresponds to `from'.
3170  * This required during truncate. We need to physically zero the tail end
3171  * of that block so it doesn't yield old data if the file is later grown.
3172  */
3173 int ext4_block_truncate_page(handle_t *handle,
3174                 struct address_space *mapping, loff_t from)
3175 {
3176         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3177         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3178         unsigned blocksize, length, pos;
3179         ext4_lblk_t iblock;
3180         struct inode *inode = mapping->host;
3181         struct buffer_head *bh;
3182         struct page *page;
3183         int err = 0;
3184
3185         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3186         if (!page)
3187                 return -EINVAL;
3188
3189         blocksize = inode->i_sb->s_blocksize;
3190         length = blocksize - (offset & (blocksize - 1));
3191         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3192
3193         /*
3194          * For "nobh" option,  we can only work if we don't need to
3195          * read-in the page - otherwise we create buffers to do the IO.
3196          */
3197         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3198              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3199                 zero_user(page, offset, length);
3200                 set_page_dirty(page);
3201                 goto unlock;
3202         }
3203
3204         if (!page_has_buffers(page))
3205                 create_empty_buffers(page, blocksize, 0);
3206
3207         /* Find the buffer that contains "offset" */
3208         bh = page_buffers(page);
3209         pos = blocksize;
3210         while (offset >= pos) {
3211                 bh = bh->b_this_page;
3212                 iblock++;
3213                 pos += blocksize;
3214         }
3215
3216         err = 0;
3217         if (buffer_freed(bh)) {
3218                 BUFFER_TRACE(bh, "freed: skip");
3219                 goto unlock;
3220         }
3221
3222         if (!buffer_mapped(bh)) {
3223                 BUFFER_TRACE(bh, "unmapped");
3224                 ext4_get_block(inode, iblock, bh, 0);
3225                 /* unmapped? It's a hole - nothing to do */
3226                 if (!buffer_mapped(bh)) {
3227                         BUFFER_TRACE(bh, "still unmapped");
3228                         goto unlock;
3229                 }
3230         }
3231
3232         /* Ok, it's mapped. Make sure it's up-to-date */
3233         if (PageUptodate(page))
3234                 set_buffer_uptodate(bh);
3235
3236         if (!buffer_uptodate(bh)) {
3237                 err = -EIO;
3238                 ll_rw_block(READ, 1, &bh);
3239                 wait_on_buffer(bh);
3240                 /* Uhhuh. Read error. Complain and punt. */
3241                 if (!buffer_uptodate(bh))
3242                         goto unlock;
3243         }
3244
3245         if (ext4_should_journal_data(inode)) {
3246                 BUFFER_TRACE(bh, "get write access");
3247                 err = ext4_journal_get_write_access(handle, bh);
3248                 if (err)
3249                         goto unlock;
3250         }
3251
3252         zero_user(page, offset, length);
3253
3254         BUFFER_TRACE(bh, "zeroed end of block");
3255
3256         err = 0;
3257         if (ext4_should_journal_data(inode)) {
3258                 err = ext4_journal_dirty_metadata(handle, bh);
3259         } else {
3260                 if (ext4_should_order_data(inode))
3261                         err = ext4_jbd2_file_inode(handle, inode);
3262                 mark_buffer_dirty(bh);
3263         }
3264
3265 unlock:
3266         unlock_page(page);
3267         page_cache_release(page);
3268         return err;
3269 }
3270
3271 /*
3272  * Probably it should be a library function... search for first non-zero word
3273  * or memcmp with zero_page, whatever is better for particular architecture.
3274  * Linus?
3275  */
3276 static inline int all_zeroes(__le32 *p, __le32 *q)
3277 {
3278         while (p < q)
3279                 if (*p++)
3280                         return 0;
3281         return 1;
3282 }
3283
3284 /**
3285  *      ext4_find_shared - find the indirect blocks for partial truncation.
3286  *      @inode:   inode in question
3287  *      @depth:   depth of the affected branch
3288  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3289  *      @chain:   place to store the pointers to partial indirect blocks
3290  *      @top:     place to the (detached) top of branch
3291  *
3292  *      This is a helper function used by ext4_truncate().
3293  *
3294  *      When we do truncate() we may have to clean the ends of several
3295  *      indirect blocks but leave the blocks themselves alive. Block is
3296  *      partially truncated if some data below the new i_size is refered
3297  *      from it (and it is on the path to the first completely truncated
3298  *      data block, indeed).  We have to free the top of that path along
3299  *      with everything to the right of the path. Since no allocation
3300  *      past the truncation point is possible until ext4_truncate()
3301  *      finishes, we may safely do the latter, but top of branch may
3302  *      require special attention - pageout below the truncation point
3303  *      might try to populate it.
3304  *
3305  *      We atomically detach the top of branch from the tree, store the
3306  *      block number of its root in *@top, pointers to buffer_heads of
3307  *      partially truncated blocks - in @chain[].bh and pointers to
3308  *      their last elements that should not be removed - in
3309  *      @chain[].p. Return value is the pointer to last filled element
3310  *      of @chain.
3311  *
3312  *      The work left to caller to do the actual freeing of subtrees:
3313  *              a) free the subtree starting from *@top
3314  *              b) free the subtrees whose roots are stored in
3315  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3316  *              c) free the subtrees growing from the inode past the @chain[0].
3317  *                      (no partially truncated stuff there).  */
3318
3319 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3320                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3321 {
3322         Indirect *partial, *p;
3323         int k, err;
3324
3325         *top = 0;
3326         /* Make k index the deepest non-null offest + 1 */
3327         for (k = depth; k > 1 && !offsets[k-1]; k--)
3328                 ;
3329         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3330         /* Writer: pointers */
3331         if (!partial)
3332                 partial = chain + k-1;
3333         /*
3334          * If the branch acquired continuation since we've looked at it -
3335          * fine, it should all survive and (new) top doesn't belong to us.
3336          */
3337         if (!partial->key && *partial->p)
3338                 /* Writer: end */
3339                 goto no_top;
3340         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3341                 ;
3342         /*
3343          * OK, we've found the last block that must survive. The rest of our
3344          * branch should be detached before unlocking. However, if that rest
3345          * of branch is all ours and does not grow immediately from the inode
3346          * it's easier to cheat and just decrement partial->p.
3347          */
3348         if (p == chain + k - 1 && p > chain) {
3349                 p->p--;
3350         } else {
3351                 *top = *p->p;
3352                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3353 #if 0
3354                 *p->p = 0;
3355 #endif
3356         }
3357         /* Writer: end */
3358
3359         while (partial > p) {
3360                 brelse(partial->bh);
3361                 partial--;
3362         }
3363 no_top:
3364         return partial;
3365 }
3366
3367 /*
3368  * Zero a number of block pointers in either an inode or an indirect block.
3369  * If we restart the transaction we must again get write access to the
3370  * indirect block for further modification.
3371  *
3372  * We release `count' blocks on disk, but (last - first) may be greater
3373  * than `count' because there can be holes in there.
3374  */
3375 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3376                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3377                 unsigned long count, __le32 *first, __le32 *last)
3378 {
3379         __le32 *p;
3380         if (try_to_extend_transaction(handle, inode)) {
3381                 if (bh) {
3382                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3383                         ext4_journal_dirty_metadata(handle, bh);
3384                 }
3385                 ext4_mark_inode_dirty(handle, inode);
3386                 ext4_journal_test_restart(handle, inode);
3387                 if (bh) {
3388                         BUFFER_TRACE(bh, "retaking write access");
3389                         ext4_journal_get_write_access(handle, bh);
3390                 }
3391         }
3392
3393         /*
3394          * Any buffers which are on the journal will be in memory. We find
3395          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3396          * on them.  We've already detached each block from the file, so
3397          * bforget() in jbd2_journal_forget() should be safe.
3398          *
3399          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3400          */
3401         for (p = first; p < last; p++) {
3402                 u32 nr = le32_to_cpu(*p);
3403                 if (nr) {
3404                         struct buffer_head *tbh;
3405
3406                         *p = 0;
3407                         tbh = sb_find_get_block(inode->i_sb, nr);
3408                         ext4_forget(handle, 0, inode, tbh, nr);
3409                 }
3410         }
3411
3412         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3413 }
3414
3415 /**
3416  * ext4_free_data - free a list of data blocks
3417  * @handle:     handle for this transaction
3418  * @inode:      inode we are dealing with
3419  * @this_bh:    indirect buffer_head which contains *@first and *@last
3420  * @first:      array of block numbers
3421  * @last:       points immediately past the end of array
3422  *
3423  * We are freeing all blocks refered from that array (numbers are stored as
3424  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3425  *
3426  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3427  * blocks are contiguous then releasing them at one time will only affect one
3428  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3429  * actually use a lot of journal space.
3430  *
3431  * @this_bh will be %NULL if @first and @last point into the inode's direct
3432  * block pointers.
3433  */
3434 static void ext4_free_data(handle_t *handle, struct inode *inode,
3435                            struct buffer_head *this_bh,
3436                            __le32 *first, __le32 *last)
3437 {
3438         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3439         unsigned long count = 0;            /* Number of blocks in the run */
3440         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3441                                                corresponding to
3442                                                block_to_free */
3443         ext4_fsblk_t nr;                    /* Current block # */
3444         __le32 *p;                          /* Pointer into inode/ind
3445                                                for current block */
3446         int err;
3447
3448         if (this_bh) {                          /* For indirect block */
3449                 BUFFER_TRACE(this_bh, "get_write_access");
3450                 err = ext4_journal_get_write_access(handle, this_bh);
3451                 /* Important: if we can't update the indirect pointers
3452                  * to the blocks, we can't free them. */
3453                 if (err)
3454                         return;
3455         }
3456
3457         for (p = first; p < last; p++) {
3458                 nr = le32_to_cpu(*p);
3459                 if (nr) {
3460                         /* accumulate blocks to free if they're contiguous */
3461                         if (count == 0) {
3462                                 block_to_free = nr;
3463                                 block_to_free_p = p;
3464                                 count = 1;
3465                         } else if (nr == block_to_free + count) {
3466                                 count++;
3467                         } else {
3468                                 ext4_clear_blocks(handle, inode, this_bh,
3469                                                   block_to_free,
3470                                                   count, block_to_free_p, p);
3471                                 block_to_free = nr;
3472                                 block_to_free_p = p;
3473                                 count = 1;
3474                         }
3475                 }
3476         }
3477
3478         if (count > 0)
3479                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3480                                   count, block_to_free_p, p);
3481
3482         if (this_bh) {
3483                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3484
3485                 /*
3486                  * The buffer head should have an attached journal head at this
3487                  * point. However, if the data is corrupted and an indirect
3488                  * block pointed to itself, it would have been detached when
3489                  * the block was cleared. Check for this instead of OOPSing.
3490                  */
3491                 if (bh2jh(this_bh))
3492                         ext4_journal_dirty_metadata(handle, this_bh);
3493                 else
3494                         ext4_error(inode->i_sb, __func__,
3495                                    "circular indirect block detected, "
3496                                    "inode=%lu, block=%llu",
3497                                    inode->i_ino,
3498                                    (unsigned long long) this_bh->b_blocknr);
3499         }
3500 }
3501
3502 /**
3503  *      ext4_free_branches - free an array of branches
3504  *      @handle: JBD handle for this transaction
3505  *      @inode: inode we are dealing with
3506  *      @parent_bh: the buffer_head which contains *@first and *@last
3507  *      @first: array of block numbers
3508  *      @last:  pointer immediately past the end of array
3509  *      @depth: depth of the branches to free
3510  *
3511  *      We are freeing all blocks refered from these branches (numbers are
3512  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3513  *      appropriately.
3514  */
3515 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3516                                struct buffer_head *parent_bh,
3517                                __le32 *first, __le32 *last, int depth)
3518 {
3519         ext4_fsblk_t nr;
3520         __le32 *p;
3521
3522         if (is_handle_aborted(handle))
3523                 return;
3524
3525         if (depth--) {
3526                 struct buffer_head *bh;
3527                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3528                 p = last;
3529                 while (--p >= first) {
3530                         nr = le32_to_cpu(*p);
3531                         if (!nr)
3532                                 continue;               /* A hole */
3533
3534                         /* Go read the buffer for the next level down */
3535                         bh = sb_bread(inode->i_sb, nr);
3536
3537                         /*
3538                          * A read failure? Report error and clear slot
3539                          * (should be rare).
3540                          */
3541                         if (!bh) {
3542                                 ext4_error(inode->i_sb, "ext4_free_branches",
3543                                            "Read failure, inode=%lu, block=%llu",
3544                                            inode->i_ino, nr);
3545                                 continue;
3546                         }
3547
3548                         /* This zaps the entire block.  Bottom up. */
3549                         BUFFER_TRACE(bh, "free child branches");
3550                         ext4_free_branches(handle, inode, bh,
3551                                         (__le32 *) bh->b_data,
3552                                         (__le32 *) bh->b_data + addr_per_block,
3553                                         depth);
3554
3555                         /*
3556                          * We've probably journalled the indirect block several
3557                          * times during the truncate.  But it's no longer
3558                          * needed and we now drop it from the transaction via
3559                          * jbd2_journal_revoke().
3560                          *
3561                          * That's easy if it's exclusively part of this
3562                          * transaction.  But if it's part of the committing
3563                          * transaction then jbd2_journal_forget() will simply
3564                          * brelse() it.  That means that if the underlying
3565                          * block is reallocated in ext4_get_block(),
3566                          * unmap_underlying_metadata() will find this block
3567                          * and will try to get rid of it.  damn, damn.
3568                          *
3569                          * If this block has already been committed to the
3570                          * journal, a revoke record will be written.  And
3571                          * revoke records must be emitted *before* clearing
3572                          * this block's bit in the bitmaps.
3573                          */
3574                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3575
3576                         /*
3577                          * Everything below this this pointer has been
3578                          * released.  Now let this top-of-subtree go.
3579                          *
3580                          * We want the freeing of this indirect block to be
3581                          * atomic in the journal with the updating of the
3582                          * bitmap block which owns it.  So make some room in
3583                          * the journal.
3584                          *
3585                          * We zero the parent pointer *after* freeing its
3586                          * pointee in the bitmaps, so if extend_transaction()
3587                          * for some reason fails to put the bitmap changes and
3588                          * the release into the same transaction, recovery
3589                          * will merely complain about releasing a free block,
3590                          * rather than leaking blocks.
3591                          */
3592                         if (is_handle_aborted(handle))
3593                                 return;
3594                         if (try_to_extend_transaction(handle, inode)) {
3595                                 ext4_mark_inode_dirty(handle, inode);
3596                                 ext4_journal_test_restart(handle, inode);
3597                         }
3598
3599                         ext4_free_blocks(handle, inode, nr, 1, 1);
3600
3601                         if (parent_bh) {
3602                                 /*
3603                                  * The block which we have just freed is
3604                                  * pointed to by an indirect block: journal it
3605                                  */
3606                                 BUFFER_TRACE(parent_bh, "get_write_access");
3607                                 if (!ext4_journal_get_write_access(handle,
3608                                                                    parent_bh)){
3609                                         *p = 0;
3610                                         BUFFER_TRACE(parent_bh,
3611                                         "call ext4_journal_dirty_metadata");
3612                                         ext4_journal_dirty_metadata(handle,
3613                                                                     parent_bh);
3614                                 }
3615                         }
3616                 }
3617         } else {
3618                 /* We have reached the bottom of the tree. */
3619                 BUFFER_TRACE(parent_bh, "free data blocks");
3620                 ext4_free_data(handle, inode, parent_bh, first, last);
3621         }
3622 }
3623
3624 int ext4_can_truncate(struct inode *inode)
3625 {
3626         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3627                 return 0;
3628         if (S_ISREG(inode->i_mode))
3629                 return 1;
3630         if (S_ISDIR(inode->i_mode))
3631                 return 1;
3632         if (S_ISLNK(inode->i_mode))
3633                 return !ext4_inode_is_fast_symlink(inode);
3634         return 0;
3635 }
3636
3637 /*
3638  * ext4_truncate()
3639  *
3640  * We block out ext4_get_block() block instantiations across the entire
3641  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3642  * simultaneously on behalf of the same inode.
3643  *
3644  * As we work through the truncate and commmit bits of it to the journal there
3645  * is one core, guiding principle: the file's tree must always be consistent on
3646  * disk.  We must be able to restart the truncate after a crash.
3647  *
3648  * The file's tree may be transiently inconsistent in memory (although it
3649  * probably isn't), but whenever we close off and commit a journal transaction,
3650  * the contents of (the filesystem + the journal) must be consistent and
3651  * restartable.  It's pretty simple, really: bottom up, right to left (although
3652  * left-to-right works OK too).
3653  *
3654  * Note that at recovery time, journal replay occurs *before* the restart of
3655  * truncate against the orphan inode list.
3656  *
3657  * The committed inode has the new, desired i_size (which is the same as
3658  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3659  * that this inode's truncate did not complete and it will again call
3660  * ext4_truncate() to have another go.  So there will be instantiated blocks
3661  * to the right of the truncation point in a crashed ext4 filesystem.  But
3662  * that's fine - as long as they are linked from the inode, the post-crash
3663  * ext4_truncate() run will find them and release them.
3664  */
3665 void ext4_truncate(struct inode *inode)
3666 {
3667         handle_t *handle;
3668         struct ext4_inode_info *ei = EXT4_I(inode);
3669         __le32 *i_data = ei->i_data;
3670         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3671         struct address_space *mapping = inode->i_mapping;
3672         ext4_lblk_t offsets[4];
3673         Indirect chain[4];
3674         Indirect *partial;
3675         __le32 nr = 0;
3676         int n;
3677         ext4_lblk_t last_block;
3678         unsigned blocksize = inode->i_sb->s_blocksize;
3679
3680         if (!ext4_can_truncate(inode))
3681                 return;
3682
3683         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3684                 ext4_ext_truncate(inode);
3685                 return;
3686         }
3687
3688         handle = start_transaction(inode);
3689         if (IS_ERR(handle))
3690                 return;         /* AKPM: return what? */
3691
3692         last_block = (inode->i_size + blocksize-1)
3693                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3694
3695         if (inode->i_size & (blocksize - 1))
3696                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3697                         goto out_stop;
3698
3699         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3700         if (n == 0)
3701                 goto out_stop;  /* error */
3702
3703         /*
3704          * OK.  This truncate is going to happen.  We add the inode to the
3705          * orphan list, so that if this truncate spans multiple transactions,
3706          * and we crash, we will resume the truncate when the filesystem
3707          * recovers.  It also marks the inode dirty, to catch the new size.
3708          *
3709          * Implication: the file must always be in a sane, consistent
3710          * truncatable state while each transaction commits.
3711          */
3712         if (ext4_orphan_add(handle, inode))
3713                 goto out_stop;
3714
3715         /*
3716          * From here we block out all ext4_get_block() callers who want to
3717          * modify the block allocation tree.
3718          */
3719         down_write(&ei->i_data_sem);
3720
3721         ext4_discard_reservation(inode);
3722
3723         /*
3724          * The orphan list entry will now protect us from any crash which
3725          * occurs before the truncate completes, so it is now safe to propagate
3726          * the new, shorter inode size (held for now in i_size) into the
3727          * on-disk inode. We do this via i_disksize, which is the value which
3728          * ext4 *really* writes onto the disk inode.
3729          */
3730         ei->i_disksize = inode->i_size;
3731
3732         if (n == 1) {           /* direct blocks */
3733                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3734                                i_data + EXT4_NDIR_BLOCKS);
3735                 goto do_indirects;
3736         }
3737
3738         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3739         /* Kill the top of shared branch (not detached) */
3740         if (nr) {
3741                 if (partial == chain) {
3742                         /* Shared branch grows from the inode */
3743                         ext4_free_branches(handle, inode, NULL,
3744                                            &nr, &nr+1, (chain+n-1) - partial);
3745                         *partial->p = 0;
3746                         /*
3747                          * We mark the inode dirty prior to restart,
3748                          * and prior to stop.  No need for it here.
3749                          */
3750                 } else {
3751                         /* Shared branch grows from an indirect block */
3752                         BUFFER_TRACE(partial->bh, "get_write_access");
3753                         ext4_free_branches(handle, inode, partial->bh,
3754                                         partial->p,
3755                                         partial->p+1, (chain+n-1) - partial);
3756                 }
3757         }
3758         /* Clear the ends of indirect blocks on the shared branch */
3759         while (partial > chain) {
3760                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3761                                    (__le32*)partial->bh->b_data+addr_per_block,
3762                                    (chain+n-1) - partial);
3763                 BUFFER_TRACE(partial->bh, "call brelse");
3764                 brelse (partial->bh);
3765                 partial--;
3766         }
3767 do_indirects:
3768         /* Kill the remaining (whole) subtrees */
3769         switch (offsets[0]) {
3770         default:
3771                 nr = i_data[EXT4_IND_BLOCK];
3772                 if (nr) {
3773                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3774                         i_data[EXT4_IND_BLOCK] = 0;
3775                 }
3776         case EXT4_IND_BLOCK:
3777                 nr = i_data[EXT4_DIND_BLOCK];
3778                 if (nr) {
3779                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3780                         i_data[EXT4_DIND_BLOCK] = 0;
3781                 }
3782         case EXT4_DIND_BLOCK:
3783                 nr = i_data[EXT4_TIND_BLOCK];
3784                 if (nr) {
3785                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3786                         i_data[EXT4_TIND_BLOCK] = 0;
3787                 }
3788         case EXT4_TIND_BLOCK:
3789                 ;
3790         }
3791
3792         up_write(&ei->i_data_sem);
3793         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3794         ext4_mark_inode_dirty(handle, inode);
3795
3796         /*
3797          * In a multi-transaction truncate, we only make the final transaction
3798          * synchronous
3799          */
3800         if (IS_SYNC(inode))
3801                 handle->h_sync = 1;
3802 out_stop:
3803         /*
3804          * If this was a simple ftruncate(), and the file will remain alive
3805          * then we need to clear up the orphan record which we created above.
3806          * However, if this was a real unlink then we were called by
3807          * ext4_delete_inode(), and we allow that function to clean up the
3808          * orphan info for us.
3809          */
3810         if (inode->i_nlink)
3811                 ext4_orphan_del(handle, inode);
3812
3813         ext4_journal_stop(handle);
3814 }
3815
3816 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3817                 unsigned long ino, struct ext4_iloc *iloc)
3818 {
3819         ext4_group_t block_group;
3820         unsigned long offset;
3821         ext4_fsblk_t block;
3822         struct ext4_group_desc *gdp;
3823
3824         if (!ext4_valid_inum(sb, ino)) {
3825                 /*
3826                  * This error is already checked for in namei.c unless we are
3827                  * looking at an NFS filehandle, in which case no error
3828                  * report is needed
3829                  */
3830                 return 0;
3831         }
3832
3833         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3834         gdp = ext4_get_group_desc(sb, block_group, NULL);
3835         if (!gdp)
3836                 return 0;
3837
3838         /*
3839          * Figure out the offset within the block group inode table
3840          */
3841         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3842                 EXT4_INODE_SIZE(sb);
3843         block = ext4_inode_table(sb, gdp) +
3844                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3845
3846         iloc->block_group = block_group;
3847         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3848         return block;
3849 }
3850
3851 /*
3852  * ext4_get_inode_loc returns with an extra refcount against the inode's
3853  * underlying buffer_head on success. If 'in_mem' is true, we have all
3854  * data in memory that is needed to recreate the on-disk version of this
3855  * inode.
3856  */
3857 static int __ext4_get_inode_loc(struct inode *inode,
3858                                 struct ext4_iloc *iloc, int in_mem)
3859 {
3860         ext4_fsblk_t block;
3861         struct buffer_head *bh;
3862
3863         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3864         if (!block)
3865                 return -EIO;
3866
3867         bh = sb_getblk(inode->i_sb, block);
3868         if (!bh) {
3869                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3870                                 "unable to read inode block - "
3871                                 "inode=%lu, block=%llu",
3872                                  inode->i_ino, block);
3873                 return -EIO;
3874         }
3875         if (!buffer_uptodate(bh)) {
3876                 lock_buffer(bh);
3877
3878                 /*
3879                  * If the buffer has the write error flag, we have failed
3880                  * to write out another inode in the same block.  In this
3881                  * case, we don't have to read the block because we may
3882                  * read the old inode data successfully.
3883                  */
3884                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3885                         set_buffer_uptodate(bh);
3886
3887                 if (buffer_uptodate(bh)) {
3888                         /* someone brought it uptodate while we waited */
3889                         unlock_buffer(bh);
3890                         goto has_buffer;
3891                 }
3892
3893                 /*
3894                  * If we have all information of the inode in memory and this
3895                  * is the only valid inode in the block, we need not read the
3896                  * block.
3897                  */
3898                 if (in_mem) {
3899                         struct buffer_head *bitmap_bh;
3900                         struct ext4_group_desc *desc;
3901                         int inodes_per_buffer;
3902                         int inode_offset, i;
3903                         ext4_group_t block_group;
3904                         int start;
3905
3906                         block_group = (inode->i_ino - 1) /
3907                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3908                         inodes_per_buffer = bh->b_size /
3909                                 EXT4_INODE_SIZE(inode->i_sb);
3910                         inode_offset = ((inode->i_ino - 1) %
3911                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3912                         start = inode_offset & ~(inodes_per_buffer - 1);
3913
3914                         /* Is the inode bitmap in cache? */
3915                         desc = ext4_get_group_desc(inode->i_sb,
3916                                                 block_group, NULL);
3917                         if (!desc)
3918                                 goto make_io;
3919
3920                         bitmap_bh = sb_getblk(inode->i_sb,
3921                                 ext4_inode_bitmap(inode->i_sb, desc));
3922                         if (!bitmap_bh)
3923                                 goto make_io;
3924
3925                         /*
3926                          * If the inode bitmap isn't in cache then the
3927                          * optimisation may end up performing two reads instead
3928                          * of one, so skip it.
3929                          */
3930                         if (!buffer_uptodate(bitmap_bh)) {
3931                                 brelse(bitmap_bh);
3932                                 goto make_io;
3933                         }
3934                         for (i = start; i < start + inodes_per_buffer; i++) {
3935                                 if (i == inode_offset)
3936                                         continue;
3937                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3938                                         break;
3939                         }
3940                         brelse(bitmap_bh);
3941                         if (i == start + inodes_per_buffer) {
3942                                 /* all other inodes are free, so skip I/O */
3943                                 memset(bh->b_data, 0, bh->b_size);
3944                                 set_buffer_uptodate(bh);
3945                                 unlock_buffer(bh);
3946                                 goto has_buffer;
3947                         }
3948                 }
3949
3950 make_io:
3951                 /*
3952                  * There are other valid inodes in the buffer, this inode
3953                  * has in-inode xattrs, or we don't have this inode in memory.
3954                  * Read the block from disk.
3955                  */
3956                 get_bh(bh);
3957                 bh->b_end_io = end_buffer_read_sync;
3958                 submit_bh(READ_META, bh);
3959                 wait_on_buffer(bh);
3960                 if (!buffer_uptodate(bh)) {
3961                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3962                                         "unable to read inode block - "
3963                                         "inode=%lu, block=%llu",
3964                                         inode->i_ino, block);
3965                         brelse(bh);
3966                         return -EIO;
3967                 }
3968         }
3969 has_buffer:
3970         iloc->bh = bh;
3971         return 0;
3972 }
3973
3974 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3975 {
3976         /* We have all inode data except xattrs in memory here. */
3977         return __ext4_get_inode_loc(inode, iloc,
3978                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3979 }
3980
3981 void ext4_set_inode_flags(struct inode *inode)
3982 {
3983         unsigned int flags = EXT4_I(inode)->i_flags;
3984
3985         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3986         if (flags & EXT4_SYNC_FL)
3987                 inode->i_flags |= S_SYNC;
3988         if (flags & EXT4_APPEND_FL)
3989                 inode->i_flags |= S_APPEND;
3990         if (flags & EXT4_IMMUTABLE_FL)
3991                 inode->i_flags |= S_IMMUTABLE;
3992         if (flags & EXT4_NOATIME_FL)
3993                 inode->i_flags |= S_NOATIME;
3994         if (flags & EXT4_DIRSYNC_FL)
3995                 inode->i_flags |= S_DIRSYNC;
3996 }
3997
3998 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3999 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4000 {
4001         unsigned int flags = ei->vfs_inode.i_flags;
4002
4003         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4004                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4005         if (flags & S_SYNC)
4006                 ei->i_flags |= EXT4_SYNC_FL;
4007         if (flags & S_APPEND)
4008                 ei->i_flags |= EXT4_APPEND_FL;
4009         if (flags & S_IMMUTABLE)
4010                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4011         if (flags & S_NOATIME)
4012                 ei->i_flags |= EXT4_NOATIME_FL;
4013         if (flags & S_DIRSYNC)
4014                 ei->i_flags |= EXT4_DIRSYNC_FL;
4015 }
4016 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4017                                         struct ext4_inode_info *ei)
4018 {
4019         blkcnt_t i_blocks ;
4020         struct inode *inode = &(ei->vfs_inode);
4021         struct super_block *sb = inode->i_sb;
4022
4023         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4024                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4025                 /* we are using combined 48 bit field */
4026                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4027                                         le32_to_cpu(raw_inode->i_blocks_lo);
4028                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4029                         /* i_blocks represent file system block size */
4030                         return i_blocks  << (inode->i_blkbits - 9);
4031                 } else {
4032                         return i_blocks;
4033                 }
4034         } else {
4035                 return le32_to_cpu(raw_inode->i_blocks_lo);
4036         }
4037 }
4038
4039 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4040 {
4041         struct ext4_iloc iloc;
4042         struct ext4_inode *raw_inode;
4043         struct ext4_inode_info *ei;
4044         struct buffer_head *bh;
4045         struct inode *inode;
4046         long ret;
4047         int block;
4048
4049         inode = iget_locked(sb, ino);
4050         if (!inode)
4051                 return ERR_PTR(-ENOMEM);
4052         if (!(inode->i_state & I_NEW))
4053                 return inode;
4054
4055         ei = EXT4_I(inode);
4056 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4057         ei->i_acl = EXT4_ACL_NOT_CACHED;
4058         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4059 #endif
4060         ei->i_block_alloc_info = NULL;
4061
4062         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4063         if (ret < 0)
4064                 goto bad_inode;
4065         bh = iloc.bh;
4066         raw_inode = ext4_raw_inode(&iloc);
4067         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4068         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4069         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4070         if (!(test_opt(inode->i_sb, NO_UID32))) {
4071                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4072                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4073         }
4074         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4075
4076         ei->i_state = 0;
4077         ei->i_dir_start_lookup = 0;
4078         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4079         /* We now have enough fields to check if the inode was active or not.
4080          * This is needed because nfsd might try to access dead inodes
4081          * the test is that same one that e2fsck uses
4082          * NeilBrown 1999oct15
4083          */
4084         if (inode->i_nlink == 0) {
4085                 if (inode->i_mode == 0 ||
4086                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4087                         /* this inode is deleted */
4088                         brelse(bh);
4089                         ret = -ESTALE;
4090                         goto bad_inode;
4091                 }
4092                 /* The only unlinked inodes we let through here have
4093                  * valid i_mode and are being read by the orphan
4094                  * recovery code: that's fine, we're about to complete
4095                  * the process of deleting those. */
4096         }
4097         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4098         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4099         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4100         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4101             cpu_to_le32(EXT4_OS_HURD)) {
4102                 ei->i_file_acl |=
4103                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4104         }
4105         inode->i_size = ext4_isize(raw_inode);
4106         ei->i_disksize = inode->i_size;
4107         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4108         ei->i_block_group = iloc.block_group;
4109         /*
4110          * NOTE! The in-memory inode i_data array is in little-endian order
4111          * even on big-endian machines: we do NOT byteswap the block numbers!
4112          */
4113         for (block = 0; block < EXT4_N_BLOCKS; block++)
4114                 ei->i_data[block] = raw_inode->i_block[block];
4115         INIT_LIST_HEAD(&ei->i_orphan);
4116
4117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4118                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4119                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4120                     EXT4_INODE_SIZE(inode->i_sb)) {
4121                         brelse(bh);
4122                         ret = -EIO;
4123                         goto bad_inode;
4124                 }
4125                 if (ei->i_extra_isize == 0) {
4126                         /* The extra space is currently unused. Use it. */
4127                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4128                                             EXT4_GOOD_OLD_INODE_SIZE;
4129                 } else {
4130                         __le32 *magic = (void *)raw_inode +
4131                                         EXT4_GOOD_OLD_INODE_SIZE +
4132                                         ei->i_extra_isize;
4133                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4134                                  ei->i_state |= EXT4_STATE_XATTR;
4135                 }
4136         } else
4137                 ei->i_extra_isize = 0;
4138
4139         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4140         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4141         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4142         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4143
4144         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4145         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4146                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4147                         inode->i_version |=
4148                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4149         }
4150
4151         if (S_ISREG(inode->i_mode)) {
4152                 inode->i_op = &ext4_file_inode_operations;
4153                 inode->i_fop = &ext4_file_operations;
4154                 ext4_set_aops(inode);
4155         } else if (S_ISDIR(inode->i_mode)) {
4156                 inode->i_op = &ext4_dir_inode_operations;
4157                 inode->i_fop = &ext4_dir_operations;
4158         } else if (S_ISLNK(inode->i_mode)) {
4159                 if (ext4_inode_is_fast_symlink(inode))
4160                         inode->i_op = &ext4_fast_symlink_inode_operations;
4161                 else {
4162                         inode->i_op = &ext4_symlink_inode_operations;
4163                         ext4_set_aops(inode);
4164                 }
4165         } else {
4166                 inode->i_op = &ext4_special_inode_operations;
4167                 if (raw_inode->i_block[0])
4168                         init_special_inode(inode, inode->i_mode,
4169                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4170                 else
4171                         init_special_inode(inode, inode->i_mode,
4172                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4173         }
4174         brelse(iloc.bh);
4175         ext4_set_inode_flags(inode);
4176         unlock_new_inode(inode);
4177         return inode;
4178
4179 bad_inode:
4180         iget_failed(inode);
4181         return ERR_PTR(ret);
4182 }
4183
4184 static int ext4_inode_blocks_set(handle_t *handle,
4185                                 struct ext4_inode *raw_inode,
4186                                 struct ext4_inode_info *ei)
4187 {
4188         struct inode *inode = &(ei->vfs_inode);
4189         u64 i_blocks = inode->i_blocks;
4190         struct super_block *sb = inode->i_sb;
4191         int err = 0;
4192
4193         if (i_blocks <= ~0U) {
4194                 /*
4195                  * i_blocks can be represnted in a 32 bit variable
4196                  * as multiple of 512 bytes
4197                  */
4198                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4199                 raw_inode->i_blocks_high = 0;
4200                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4201         } else if (i_blocks <= 0xffffffffffffULL) {
4202                 /*
4203                  * i_blocks can be represented in a 48 bit variable
4204                  * as multiple of 512 bytes
4205                  */
4206                 err = ext4_update_rocompat_feature(handle, sb,
4207                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4208                 if (err)
4209                         goto  err_out;
4210                 /* i_block is stored in the split  48 bit fields */
4211                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4212                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4213                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4214         } else {
4215                 /*
4216                  * i_blocks should be represented in a 48 bit variable
4217                  * as multiple of  file system block size
4218                  */
4219                 err = ext4_update_rocompat_feature(handle, sb,
4220                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4221                 if (err)
4222                         goto  err_out;
4223                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4224                 /* i_block is stored in file system block size */
4225                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4226                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4227                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4228         }
4229 err_out:
4230         return err;
4231 }
4232
4233 /*
4234  * Post the struct inode info into an on-disk inode location in the
4235  * buffer-cache.  This gobbles the caller's reference to the
4236  * buffer_head in the inode location struct.
4237  *
4238  * The caller must have write access to iloc->bh.
4239  */
4240 static int ext4_do_update_inode(handle_t *handle,
4241                                 struct inode *inode,
4242                                 struct ext4_iloc *iloc)
4243 {
4244         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4245         struct ext4_inode_info *ei = EXT4_I(inode);
4246         struct buffer_head *bh = iloc->bh;
4247         int err = 0, rc, block;
4248
4249         /* For fields not not tracking in the in-memory inode,
4250          * initialise them to zero for new inodes. */
4251         if (ei->i_state & EXT4_STATE_NEW)
4252                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4253
4254         ext4_get_inode_flags(ei);
4255         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4256         if (!(test_opt(inode->i_sb, NO_UID32))) {
4257                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4258                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4259 /*
4260  * Fix up interoperability with old kernels. Otherwise, old inodes get
4261  * re-used with the upper 16 bits of the uid/gid intact
4262  */
4263                 if (!ei->i_dtime) {
4264                         raw_inode->i_uid_high =
4265                                 cpu_to_le16(high_16_bits(inode->i_uid));
4266                         raw_inode->i_gid_high =
4267                                 cpu_to_le16(high_16_bits(inode->i_gid));
4268                 } else {
4269                         raw_inode->i_uid_high = 0;
4270                         raw_inode->i_gid_high = 0;
4271                 }
4272         } else {
4273                 raw_inode->i_uid_low =
4274                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4275                 raw_inode->i_gid_low =
4276                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4277                 raw_inode->i_uid_high = 0;
4278                 raw_inode->i_gid_high = 0;
4279         }
4280         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4281
4282         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4283         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4284         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4285         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4286
4287         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4288                 goto out_brelse;
4289         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4290         /* clear the migrate flag in the raw_inode */
4291         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4292         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4293             cpu_to_le32(EXT4_OS_HURD))
4294                 raw_inode->i_file_acl_high =
4295                         cpu_to_le16(ei->i_file_acl >> 32);
4296         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4297         ext4_isize_set(raw_inode, ei->i_disksize);
4298         if (ei->i_disksize > 0x7fffffffULL) {
4299                 struct super_block *sb = inode->i_sb;
4300                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4301                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4302                                 EXT4_SB(sb)->s_es->s_rev_level ==
4303                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4304                         /* If this is the first large file
4305                          * created, add a flag to the superblock.
4306                          */
4307                         err = ext4_journal_get_write_access(handle,
4308                                         EXT4_SB(sb)->s_sbh);
4309                         if (err)
4310                                 goto out_brelse;
4311                         ext4_update_dynamic_rev(sb);
4312                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4313                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4314                         sb->s_dirt = 1;
4315                         handle->h_sync = 1;
4316                         err = ext4_journal_dirty_metadata(handle,
4317                                         EXT4_SB(sb)->s_sbh);
4318                 }
4319         }
4320         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4321         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4322                 if (old_valid_dev(inode->i_rdev)) {
4323                         raw_inode->i_block[0] =
4324                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4325                         raw_inode->i_block[1] = 0;
4326                 } else {
4327                         raw_inode->i_block[0] = 0;
4328                         raw_inode->i_block[1] =
4329                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4330                         raw_inode->i_block[2] = 0;
4331                 }
4332         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4333                 raw_inode->i_block[block] = ei->i_data[block];
4334
4335         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4336         if (ei->i_extra_isize) {
4337                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4338                         raw_inode->i_version_hi =
4339                         cpu_to_le32(inode->i_version >> 32);
4340                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4341         }
4342
4343
4344         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4345         rc = ext4_journal_dirty_metadata(handle, bh);
4346         if (!err)
4347                 err = rc;
4348         ei->i_state &= ~EXT4_STATE_NEW;
4349
4350 out_brelse:
4351         brelse(bh);
4352         ext4_std_error(inode->i_sb, err);
4353         return err;
4354 }
4355
4356 /*
4357  * ext4_write_inode()
4358  *
4359  * We are called from a few places:
4360  *
4361  * - Within generic_file_write() for O_SYNC files.
4362  *   Here, there will be no transaction running. We wait for any running
4363  *   trasnaction to commit.
4364  *
4365  * - Within sys_sync(), kupdate and such.
4366  *   We wait on commit, if tol to.
4367  *
4368  * - Within prune_icache() (PF_MEMALLOC == true)
4369  *   Here we simply return.  We can't afford to block kswapd on the
4370  *   journal commit.
4371  *
4372  * In all cases it is actually safe for us to return without doing anything,
4373  * because the inode has been copied into a raw inode buffer in
4374  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4375  * knfsd.
4376  *
4377  * Note that we are absolutely dependent upon all inode dirtiers doing the
4378  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4379  * which we are interested.
4380  *
4381  * It would be a bug for them to not do this.  The code:
4382  *
4383  *      mark_inode_dirty(inode)
4384  *      stuff();
4385  *      inode->i_size = expr;
4386  *
4387  * is in error because a kswapd-driven write_inode() could occur while
4388  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4389  * will no longer be on the superblock's dirty inode list.
4390  */
4391 int ext4_write_inode(struct inode *inode, int wait)
4392 {
4393         if (current->flags & PF_MEMALLOC)
4394                 return 0;
4395
4396         if (ext4_journal_current_handle()) {
4397                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4398                 dump_stack();
4399                 return -EIO;
4400         }
4401
4402         if (!wait)
4403                 return 0;
4404
4405         return ext4_force_commit(inode->i_sb);
4406 }
4407
4408 /*
4409  * ext4_setattr()
4410  *
4411  * Called from notify_change.
4412  *
4413  * We want to trap VFS attempts to truncate the file as soon as
4414  * possible.  In particular, we want to make sure that when the VFS
4415  * shrinks i_size, we put the inode on the orphan list and modify
4416  * i_disksize immediately, so that during the subsequent flushing of
4417  * dirty pages and freeing of disk blocks, we can guarantee that any
4418  * commit will leave the blocks being flushed in an unused state on
4419  * disk.  (On recovery, the inode will get truncated and the blocks will
4420  * be freed, so we have a strong guarantee that no future commit will
4421  * leave these blocks visible to the user.)
4422  *
4423  * Another thing we have to assure is that if we are in ordered mode
4424  * and inode is still attached to the committing transaction, we must
4425  * we start writeout of all the dirty pages which are being truncated.
4426  * This way we are sure that all the data written in the previous
4427  * transaction are already on disk (truncate waits for pages under
4428  * writeback).
4429  *
4430  * Called with inode->i_mutex down.
4431  */
4432 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4433 {
4434         struct inode *inode = dentry->d_inode;
4435         int error, rc = 0;
4436         const unsigned int ia_valid = attr->ia_valid;
4437
4438         error = inode_change_ok(inode, attr);
4439         if (error)
4440                 return error;
4441
4442         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4443                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4444                 handle_t *handle;
4445
4446                 /* (user+group)*(old+new) structure, inode write (sb,
4447                  * inode block, ? - but truncate inode update has it) */
4448                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4449                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4450                 if (IS_ERR(handle)) {
4451                         error = PTR_ERR(handle);
4452                         goto err_out;
4453                 }
4454                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4455                 if (error) {
4456                         ext4_journal_stop(handle);
4457                         return error;
4458                 }
4459                 /* Update corresponding info in inode so that everything is in
4460                  * one transaction */
4461                 if (attr->ia_valid & ATTR_UID)
4462                         inode->i_uid = attr->ia_uid;
4463                 if (attr->ia_valid & ATTR_GID)
4464                         inode->i_gid = attr->ia_gid;
4465                 error = ext4_mark_inode_dirty(handle, inode);
4466                 ext4_journal_stop(handle);
4467         }
4468
4469         if (attr->ia_valid & ATTR_SIZE) {
4470                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4471                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4472
4473                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4474                                 error = -EFBIG;
4475                                 goto err_out;
4476                         }
4477                 }
4478         }
4479
4480         if (S_ISREG(inode->i_mode) &&
4481             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4482                 handle_t *handle;
4483
4484                 handle = ext4_journal_start(inode, 3);
4485                 if (IS_ERR(handle)) {
4486                         error = PTR_ERR(handle);
4487                         goto err_out;
4488                 }
4489
4490                 error = ext4_orphan_add(handle, inode);
4491                 EXT4_I(inode)->i_disksize = attr->ia_size;
4492                 rc = ext4_mark_inode_dirty(handle, inode);
4493                 if (!error)
4494                         error = rc;
4495                 ext4_journal_stop(handle);
4496
4497                 if (ext4_should_order_data(inode)) {
4498                         error = ext4_begin_ordered_truncate(inode,
4499                                                             attr->ia_size);
4500                         if (error) {
4501                                 /* Do as much error cleanup as possible */
4502                                 handle = ext4_journal_start(inode, 3);
4503                                 if (IS_ERR(handle)) {
4504                                         ext4_orphan_del(NULL, inode);
4505                                         goto err_out;
4506                                 }
4507                                 ext4_orphan_del(handle, inode);
4508                                 ext4_journal_stop(handle);
4509                                 goto err_out;
4510                         }
4511                 }
4512         }
4513
4514         rc = inode_setattr(inode, attr);
4515
4516         /* If inode_setattr's call to ext4_truncate failed to get a
4517          * transaction handle at all, we need to clean up the in-core
4518          * orphan list manually. */
4519         if (inode->i_nlink)
4520                 ext4_orphan_del(NULL, inode);
4521
4522         if (!rc && (ia_valid & ATTR_MODE))
4523                 rc = ext4_acl_chmod(inode);
4524
4525 err_out:
4526         ext4_std_error(inode->i_sb, error);
4527         if (!error)
4528                 error = rc;
4529         return error;
4530 }
4531
4532 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4533                  struct kstat *stat)
4534 {
4535         struct inode *inode;
4536         unsigned long delalloc_blocks;
4537
4538         inode = dentry->d_inode;
4539         generic_fillattr(inode, stat);
4540
4541         /*
4542          * We can't update i_blocks if the block allocation is delayed
4543          * otherwise in the case of system crash before the real block
4544          * allocation is done, we will have i_blocks inconsistent with
4545          * on-disk file blocks.
4546          * We always keep i_blocks updated together with real
4547          * allocation. But to not confuse with user, stat
4548          * will return the blocks that include the delayed allocation
4549          * blocks for this file.
4550          */
4551         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4552         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4553         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4554
4555         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4556         return 0;
4557 }
4558
4559 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4560                                       int chunk)
4561 {
4562         int indirects;
4563
4564         /* if nrblocks are contiguous */
4565         if (chunk) {
4566                 /*
4567                  * With N contiguous data blocks, it need at most
4568                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4569                  * 2 dindirect blocks
4570                  * 1 tindirect block
4571                  */
4572                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4573                 return indirects + 3;
4574         }
4575         /*
4576          * if nrblocks are not contiguous, worse case, each block touch
4577          * a indirect block, and each indirect block touch a double indirect
4578          * block, plus a triple indirect block
4579          */
4580         indirects = nrblocks * 2 + 1;
4581         return indirects;
4582 }
4583
4584 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4585 {
4586         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4587                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4588         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4589 }
4590 /*
4591  * Account for index blocks, block groups bitmaps and block group
4592  * descriptor blocks if modify datablocks and index blocks
4593  * worse case, the indexs blocks spread over different block groups
4594  *
4595  * If datablocks are discontiguous, they are possible to spread over
4596  * different block groups too. If they are contiugous, with flexbg,
4597  * they could still across block group boundary.
4598  *
4599  * Also account for superblock, inode, quota and xattr blocks
4600  */
4601 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4602 {
4603         int groups, gdpblocks;
4604         int idxblocks;
4605         int ret = 0;
4606
4607         /*
4608          * How many index blocks need to touch to modify nrblocks?
4609          * The "Chunk" flag indicating whether the nrblocks is
4610          * physically contiguous on disk
4611          *
4612          * For Direct IO and fallocate, they calls get_block to allocate
4613          * one single extent at a time, so they could set the "Chunk" flag
4614          */
4615         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4616
4617         ret = idxblocks;
4618
4619         /*
4620          * Now let's see how many group bitmaps and group descriptors need
4621          * to account
4622          */
4623         groups = idxblocks;
4624         if (chunk)
4625                 groups += 1;
4626         else
4627                 groups += nrblocks;
4628
4629         gdpblocks = groups;
4630         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4631                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4632         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4633                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4634
4635         /* bitmaps and block group descriptor blocks */
4636         ret += groups + gdpblocks;
4637
4638         /* Blocks for super block, inode, quota and xattr blocks */
4639         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4640
4641         return ret;
4642 }
4643
4644 /*
4645  * Calulate the total number of credits to reserve to fit
4646  * the modification of a single pages into a single transaction,
4647  * which may include multiple chunks of block allocations.
4648  *
4649  * This could be called via ext4_write_begin()
4650  *
4651  * We need to consider the worse case, when
4652  * one new block per extent.
4653  */
4654 int ext4_writepage_trans_blocks(struct inode *inode)
4655 {
4656         int bpp = ext4_journal_blocks_per_page(inode);
4657         int ret;
4658
4659         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4660
4661         /* Account for data blocks for journalled mode */
4662         if (ext4_should_journal_data(inode))
4663                 ret += bpp;
4664         return ret;
4665 }
4666
4667 /*
4668  * Calculate the journal credits for a chunk of data modification.
4669  *
4670  * This is called from DIO, fallocate or whoever calling
4671  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4672  *
4673  * journal buffers for data blocks are not included here, as DIO
4674  * and fallocate do no need to journal data buffers.
4675  */
4676 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4677 {
4678         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4679 }
4680
4681 /*
4682  * The caller must have previously called ext4_reserve_inode_write().
4683  * Give this, we know that the caller already has write access to iloc->bh.
4684  */
4685 int ext4_mark_iloc_dirty(handle_t *handle,
4686                 struct inode *inode, struct ext4_iloc *iloc)
4687 {
4688         int err = 0;
4689
4690         if (test_opt(inode->i_sb, I_VERSION))
4691                 inode_inc_iversion(inode);
4692
4693         /* the do_update_inode consumes one bh->b_count */
4694         get_bh(iloc->bh);
4695
4696         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4697         err = ext4_do_update_inode(handle, inode, iloc);
4698         put_bh(iloc->bh);
4699         return err;
4700 }
4701
4702 /*
4703  * On success, We end up with an outstanding reference count against
4704  * iloc->bh.  This _must_ be cleaned up later.
4705  */
4706
4707 int
4708 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4709                          struct ext4_iloc *iloc)
4710 {
4711         int err = 0;
4712         if (handle) {
4713                 err = ext4_get_inode_loc(inode, iloc);
4714                 if (!err) {
4715                         BUFFER_TRACE(iloc->bh, "get_write_access");
4716                         err = ext4_journal_get_write_access(handle, iloc->bh);
4717                         if (err) {
4718                                 brelse(iloc->bh);
4719                                 iloc->bh = NULL;
4720                         }
4721                 }
4722         }
4723         ext4_std_error(inode->i_sb, err);
4724         return err;
4725 }
4726
4727 /*
4728  * Expand an inode by new_extra_isize bytes.
4729  * Returns 0 on success or negative error number on failure.
4730  */
4731 static int ext4_expand_extra_isize(struct inode *inode,
4732                                    unsigned int new_extra_isize,
4733                                    struct ext4_iloc iloc,
4734                                    handle_t *handle)
4735 {
4736         struct ext4_inode *raw_inode;
4737         struct ext4_xattr_ibody_header *header;
4738         struct ext4_xattr_entry *entry;
4739
4740         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4741                 return 0;
4742
4743         raw_inode = ext4_raw_inode(&iloc);
4744
4745         header = IHDR(inode, raw_inode);
4746         entry = IFIRST(header);
4747
4748         /* No extended attributes present */
4749         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4750                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4751                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4752                         new_extra_isize);
4753                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4754                 return 0;
4755         }
4756
4757         /* try to expand with EAs present */
4758         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4759                                           raw_inode, handle);
4760 }
4761
4762 /*
4763  * What we do here is to mark the in-core inode as clean with respect to inode
4764  * dirtiness (it may still be data-dirty).
4765  * This means that the in-core inode may be reaped by prune_icache
4766  * without having to perform any I/O.  This is a very good thing,
4767  * because *any* task may call prune_icache - even ones which
4768  * have a transaction open against a different journal.
4769  *
4770  * Is this cheating?  Not really.  Sure, we haven't written the
4771  * inode out, but prune_icache isn't a user-visible syncing function.
4772  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4773  * we start and wait on commits.
4774  *
4775  * Is this efficient/effective?  Well, we're being nice to the system
4776  * by cleaning up our inodes proactively so they can be reaped
4777  * without I/O.  But we are potentially leaving up to five seconds'
4778  * worth of inodes floating about which prune_icache wants us to
4779  * write out.  One way to fix that would be to get prune_icache()
4780  * to do a write_super() to free up some memory.  It has the desired
4781  * effect.
4782  */
4783 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4784 {
4785         struct ext4_iloc iloc;
4786         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4787         static unsigned int mnt_count;
4788         int err, ret;
4789
4790         might_sleep();
4791         err = ext4_reserve_inode_write(handle, inode, &iloc);
4792         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4793             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4794                 /*
4795                  * We need extra buffer credits since we may write into EA block
4796                  * with this same handle. If journal_extend fails, then it will
4797                  * only result in a minor loss of functionality for that inode.
4798                  * If this is felt to be critical, then e2fsck should be run to
4799                  * force a large enough s_min_extra_isize.
4800                  */
4801                 if ((jbd2_journal_extend(handle,
4802                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4803                         ret = ext4_expand_extra_isize(inode,
4804                                                       sbi->s_want_extra_isize,
4805                                                       iloc, handle);
4806                         if (ret) {
4807                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4808                                 if (mnt_count !=
4809                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4810                                         ext4_warning(inode->i_sb, __func__,
4811                                         "Unable to expand inode %lu. Delete"
4812                                         " some EAs or run e2fsck.",
4813                                         inode->i_ino);
4814                                         mnt_count =
4815                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4816                                 }
4817                         }
4818                 }
4819         }
4820         if (!err)
4821                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4822         return err;
4823 }
4824
4825 /*
4826  * ext4_dirty_inode() is called from __mark_inode_dirty()
4827  *
4828  * We're really interested in the case where a file is being extended.
4829  * i_size has been changed by generic_commit_write() and we thus need
4830  * to include the updated inode in the current transaction.
4831  *
4832  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4833  * are allocated to the file.
4834  *
4835  * If the inode is marked synchronous, we don't honour that here - doing
4836  * so would cause a commit on atime updates, which we don't bother doing.
4837  * We handle synchronous inodes at the highest possible level.
4838  */
4839 void ext4_dirty_inode(struct inode *inode)
4840 {
4841         handle_t *current_handle = ext4_journal_current_handle();
4842         handle_t *handle;
4843
4844         handle = ext4_journal_start(inode, 2);
4845         if (IS_ERR(handle))
4846                 goto out;
4847         if (current_handle &&
4848                 current_handle->h_transaction != handle->h_transaction) {
4849                 /* This task has a transaction open against a different fs */
4850                 printk(KERN_EMERG "%s: transactions do not match!\n",
4851                        __func__);
4852         } else {
4853                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4854                                 current_handle);
4855                 ext4_mark_inode_dirty(handle, inode);
4856         }
4857         ext4_journal_stop(handle);
4858 out:
4859         return;
4860 }
4861
4862 #if 0
4863 /*
4864  * Bind an inode's backing buffer_head into this transaction, to prevent
4865  * it from being flushed to disk early.  Unlike
4866  * ext4_reserve_inode_write, this leaves behind no bh reference and
4867  * returns no iloc structure, so the caller needs to repeat the iloc
4868  * lookup to mark the inode dirty later.
4869  */
4870 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4871 {
4872         struct ext4_iloc iloc;
4873
4874         int err = 0;
4875         if (handle) {
4876                 err = ext4_get_inode_loc(inode, &iloc);
4877                 if (!err) {
4878                         BUFFER_TRACE(iloc.bh, "get_write_access");
4879                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4880                         if (!err)
4881                                 err = ext4_journal_dirty_metadata(handle,
4882                                                                   iloc.bh);
4883                         brelse(iloc.bh);
4884                 }
4885         }
4886         ext4_std_error(inode->i_sb, err);
4887         return err;
4888 }
4889 #endif
4890
4891 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4892 {
4893         journal_t *journal;
4894         handle_t *handle;
4895         int err;
4896
4897         /*
4898          * We have to be very careful here: changing a data block's
4899          * journaling status dynamically is dangerous.  If we write a
4900          * data block to the journal, change the status and then delete
4901          * that block, we risk forgetting to revoke the old log record
4902          * from the journal and so a subsequent replay can corrupt data.
4903          * So, first we make sure that the journal is empty and that
4904          * nobody is changing anything.
4905          */
4906
4907         journal = EXT4_JOURNAL(inode);
4908         if (is_journal_aborted(journal))
4909                 return -EROFS;
4910
4911         jbd2_journal_lock_updates(journal);
4912         jbd2_journal_flush(journal);
4913
4914         /*
4915          * OK, there are no updates running now, and all cached data is
4916          * synced to disk.  We are now in a completely consistent state
4917          * which doesn't have anything in the journal, and we know that
4918          * no filesystem updates are running, so it is safe to modify
4919          * the inode's in-core data-journaling state flag now.
4920          */
4921
4922         if (val)
4923                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4924         else
4925                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4926         ext4_set_aops(inode);
4927
4928         jbd2_journal_unlock_updates(journal);
4929
4930         /* Finally we can mark the inode as dirty. */
4931
4932         handle = ext4_journal_start(inode, 1);
4933         if (IS_ERR(handle))
4934                 return PTR_ERR(handle);
4935
4936         err = ext4_mark_inode_dirty(handle, inode);
4937         handle->h_sync = 1;
4938         ext4_journal_stop(handle);
4939         ext4_std_error(inode->i_sb, err);
4940
4941         return err;
4942 }
4943
4944 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4945 {
4946         return !buffer_mapped(bh);
4947 }
4948
4949 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4950 {
4951         loff_t size;
4952         unsigned long len;
4953         int ret = -EINVAL;
4954         void *fsdata;
4955         struct file *file = vma->vm_file;
4956         struct inode *inode = file->f_path.dentry->d_inode;
4957         struct address_space *mapping = inode->i_mapping;
4958
4959         /*
4960          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4961          * get i_mutex because we are already holding mmap_sem.
4962          */
4963         down_read(&inode->i_alloc_sem);
4964         size = i_size_read(inode);
4965         if (page->mapping != mapping || size <= page_offset(page)
4966             || !PageUptodate(page)) {
4967                 /* page got truncated from under us? */
4968                 goto out_unlock;
4969         }
4970         ret = 0;
4971         if (PageMappedToDisk(page))
4972                 goto out_unlock;
4973
4974         if (page->index == size >> PAGE_CACHE_SHIFT)
4975                 len = size & ~PAGE_CACHE_MASK;
4976         else
4977                 len = PAGE_CACHE_SIZE;
4978
4979         if (page_has_buffers(page)) {
4980                 /* return if we have all the buffers mapped */
4981                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4982                                        ext4_bh_unmapped))
4983                         goto out_unlock;
4984         }
4985         /*
4986          * OK, we need to fill the hole... Do write_begin write_end
4987          * to do block allocation/reservation.We are not holding
4988          * inode.i__mutex here. That allow * parallel write_begin,
4989          * write_end call. lock_page prevent this from happening
4990          * on the same page though
4991          */
4992         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4993                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4994         if (ret < 0)
4995                 goto out_unlock;
4996         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4997                         len, len, page, fsdata);
4998         if (ret < 0)
4999                 goto out_unlock;
5000         ret = 0;
5001 out_unlock:
5002         up_read(&inode->i_alloc_sem);
5003         return ret;
5004 }