]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/inode.c
ext4: modify block allocation algorithm for the last group
[linux-2.6-omap-h63xx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __FUNCTION__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 /**
247  *      ext4_block_to_path - parse the block number into array of offsets
248  *      @inode: inode in question (we are only interested in its superblock)
249  *      @i_block: block number to be parsed
250  *      @offsets: array to store the offsets in
251  *      @boundary: set this non-zero if the referred-to block is likely to be
252  *             followed (on disk) by an indirect block.
253  *
254  *      To store the locations of file's data ext4 uses a data structure common
255  *      for UNIX filesystems - tree of pointers anchored in the inode, with
256  *      data blocks at leaves and indirect blocks in intermediate nodes.
257  *      This function translates the block number into path in that tree -
258  *      return value is the path length and @offsets[n] is the offset of
259  *      pointer to (n+1)th node in the nth one. If @block is out of range
260  *      (negative or too large) warning is printed and zero returned.
261  *
262  *      Note: function doesn't find node addresses, so no IO is needed. All
263  *      we need to know is the capacity of indirect blocks (taken from the
264  *      inode->i_sb).
265  */
266
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276
277 static int ext4_block_to_path(struct inode *inode,
278                         ext4_lblk_t i_block,
279                         ext4_lblk_t offsets[4], int *boundary)
280 {
281         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283         const long direct_blocks = EXT4_NDIR_BLOCKS,
284                 indirect_blocks = ptrs,
285                 double_blocks = (1 << (ptrs_bits * 2));
286         int n = 0;
287         int final = 0;
288
289         if (i_block < 0) {
290                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291         } else if (i_block < direct_blocks) {
292                 offsets[n++] = i_block;
293                 final = direct_blocks;
294         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295                 offsets[n++] = EXT4_IND_BLOCK;
296                 offsets[n++] = i_block;
297                 final = ptrs;
298         } else if ((i_block -= indirect_blocks) < double_blocks) {
299                 offsets[n++] = EXT4_DIND_BLOCK;
300                 offsets[n++] = i_block >> ptrs_bits;
301                 offsets[n++] = i_block & (ptrs - 1);
302                 final = ptrs;
303         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304                 offsets[n++] = EXT4_TIND_BLOCK;
305                 offsets[n++] = i_block >> (ptrs_bits * 2);
306                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307                 offsets[n++] = i_block & (ptrs - 1);
308                 final = ptrs;
309         } else {
310                 ext4_warning(inode->i_sb, "ext4_block_to_path",
311                                 "block %lu > max",
312                                 i_block + direct_blocks +
313                                 indirect_blocks + double_blocks);
314         }
315         if (boundary)
316                 *boundary = final - 1 - (i_block & (ptrs - 1));
317         return n;
318 }
319
320 /**
321  *      ext4_get_branch - read the chain of indirect blocks leading to data
322  *      @inode: inode in question
323  *      @depth: depth of the chain (1 - direct pointer, etc.)
324  *      @offsets: offsets of pointers in inode/indirect blocks
325  *      @chain: place to store the result
326  *      @err: here we store the error value
327  *
328  *      Function fills the array of triples <key, p, bh> and returns %NULL
329  *      if everything went OK or the pointer to the last filled triple
330  *      (incomplete one) otherwise. Upon the return chain[i].key contains
331  *      the number of (i+1)-th block in the chain (as it is stored in memory,
332  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *      number (it points into struct inode for i==0 and into the bh->b_data
334  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *      block for i>0 and NULL for i==0. In other words, it holds the block
336  *      numbers of the chain, addresses they were taken from (and where we can
337  *      verify that chain did not change) and buffer_heads hosting these
338  *      numbers.
339  *
340  *      Function stops when it stumbles upon zero pointer (absent block)
341  *              (pointer to last triple returned, *@err == 0)
342  *      or when it gets an IO error reading an indirect block
343  *              (ditto, *@err == -EIO)
344  *      or when it reads all @depth-1 indirect blocks successfully and finds
345  *      the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351                                  ext4_lblk_t  *offsets,
352                                  Indirect chain[4], int *err)
353 {
354         struct super_block *sb = inode->i_sb;
355         Indirect *p = chain;
356         struct buffer_head *bh;
357
358         *err = 0;
359         /* i_data is not going away, no lock needed */
360         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361         if (!p->key)
362                 goto no_block;
363         while (--depth) {
364                 bh = sb_bread(sb, le32_to_cpu(p->key));
365                 if (!bh)
366                         goto failure;
367                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368                 /* Reader: end */
369                 if (!p->key)
370                         goto no_block;
371         }
372         return NULL;
373
374 failure:
375         *err = -EIO;
376 no_block:
377         return p;
378 }
379
380 /**
381  *      ext4_find_near - find a place for allocation with sufficient locality
382  *      @inode: owner
383  *      @ind: descriptor of indirect block.
384  *
385  *      This function returns the prefered place for block allocation.
386  *      It is used when heuristic for sequential allocation fails.
387  *      Rules are:
388  *        + if there is a block to the left of our position - allocate near it.
389  *        + if pointer will live in indirect block - allocate near that block.
390  *        + if pointer will live in inode - allocate in the same
391  *          cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *      Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402         struct ext4_inode_info *ei = EXT4_I(inode);
403         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404         __le32 *p;
405         ext4_fsblk_t bg_start;
406         ext4_fsblk_t last_block;
407         ext4_grpblk_t colour;
408
409         /* Try to find previous block */
410         for (p = ind->p - 1; p >= start; p--) {
411                 if (*p)
412                         return le32_to_cpu(*p);
413         }
414
415         /* No such thing, so let's try location of indirect block */
416         if (ind->bh)
417                 return ind->bh->b_blocknr;
418
419         /*
420          * It is going to be referred to from the inode itself? OK, just put it
421          * into the same cylinder group then.
422          */
423         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
424         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
425
426         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
427                 colour = (current->pid % 16) *
428                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
429         else
430                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
431         return bg_start + colour;
432 }
433
434 /**
435  *      ext4_find_goal - find a prefered place for allocation.
436  *      @inode: owner
437  *      @block:  block we want
438  *      @partial: pointer to the last triple within a chain
439  *
440  *      Normally this function find the prefered place for block allocation,
441  *      returns it.
442  */
443 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
444                 Indirect *partial)
445 {
446         struct ext4_block_alloc_info *block_i;
447
448         block_i =  EXT4_I(inode)->i_block_alloc_info;
449
450         /*
451          * try the heuristic for sequential allocation,
452          * failing that at least try to get decent locality.
453          */
454         if (block_i && (block == block_i->last_alloc_logical_block + 1)
455                 && (block_i->last_alloc_physical_block != 0)) {
456                 return block_i->last_alloc_physical_block + 1;
457         }
458
459         return ext4_find_near(inode, partial);
460 }
461
462 /**
463  *      ext4_blks_to_allocate: Look up the block map and count the number
464  *      of direct blocks need to be allocated for the given branch.
465  *
466  *      @branch: chain of indirect blocks
467  *      @k: number of blocks need for indirect blocks
468  *      @blks: number of data blocks to be mapped.
469  *      @blocks_to_boundary:  the offset in the indirect block
470  *
471  *      return the total number of blocks to be allocate, including the
472  *      direct and indirect blocks.
473  */
474 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
475                 int blocks_to_boundary)
476 {
477         unsigned long count = 0;
478
479         /*
480          * Simple case, [t,d]Indirect block(s) has not allocated yet
481          * then it's clear blocks on that path have not allocated
482          */
483         if (k > 0) {
484                 /* right now we don't handle cross boundary allocation */
485                 if (blks < blocks_to_boundary + 1)
486                         count += blks;
487                 else
488                         count += blocks_to_boundary + 1;
489                 return count;
490         }
491
492         count++;
493         while (count < blks && count <= blocks_to_boundary &&
494                 le32_to_cpu(*(branch[0].p + count)) == 0) {
495                 count++;
496         }
497         return count;
498 }
499
500 /**
501  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
502  *      @indirect_blks: the number of blocks need to allocate for indirect
503  *                      blocks
504  *
505  *      @new_blocks: on return it will store the new block numbers for
506  *      the indirect blocks(if needed) and the first direct block,
507  *      @blks:  on return it will store the total number of allocated
508  *              direct blocks
509  */
510 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
511                         ext4_fsblk_t goal, int indirect_blks, int blks,
512                         ext4_fsblk_t new_blocks[4], int *err)
513 {
514         int target, i;
515         unsigned long count = 0;
516         int index = 0;
517         ext4_fsblk_t current_block = 0;
518         int ret = 0;
519
520         /*
521          * Here we try to allocate the requested multiple blocks at once,
522          * on a best-effort basis.
523          * To build a branch, we should allocate blocks for
524          * the indirect blocks(if not allocated yet), and at least
525          * the first direct block of this branch.  That's the
526          * minimum number of blocks need to allocate(required)
527          */
528         target = blks + indirect_blks;
529
530         while (1) {
531                 count = target;
532                 /* allocating blocks for indirect blocks and direct blocks */
533                 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
534                 if (*err)
535                         goto failed_out;
536
537                 target -= count;
538                 /* allocate blocks for indirect blocks */
539                 while (index < indirect_blks && count) {
540                         new_blocks[index++] = current_block++;
541                         count--;
542                 }
543
544                 if (count > 0)
545                         break;
546         }
547
548         /* save the new block number for the first direct block */
549         new_blocks[index] = current_block;
550
551         /* total number of blocks allocated for direct blocks */
552         ret = count;
553         *err = 0;
554         return ret;
555 failed_out:
556         for (i = 0; i <index; i++)
557                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
558         return ret;
559 }
560
561 /**
562  *      ext4_alloc_branch - allocate and set up a chain of blocks.
563  *      @inode: owner
564  *      @indirect_blks: number of allocated indirect blocks
565  *      @blks: number of allocated direct blocks
566  *      @offsets: offsets (in the blocks) to store the pointers to next.
567  *      @branch: place to store the chain in.
568  *
569  *      This function allocates blocks, zeroes out all but the last one,
570  *      links them into chain and (if we are synchronous) writes them to disk.
571  *      In other words, it prepares a branch that can be spliced onto the
572  *      inode. It stores the information about that chain in the branch[], in
573  *      the same format as ext4_get_branch() would do. We are calling it after
574  *      we had read the existing part of chain and partial points to the last
575  *      triple of that (one with zero ->key). Upon the exit we have the same
576  *      picture as after the successful ext4_get_block(), except that in one
577  *      place chain is disconnected - *branch->p is still zero (we did not
578  *      set the last link), but branch->key contains the number that should
579  *      be placed into *branch->p to fill that gap.
580  *
581  *      If allocation fails we free all blocks we've allocated (and forget
582  *      their buffer_heads) and return the error value the from failed
583  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
584  *      as described above and return 0.
585  */
586 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
587                         int indirect_blks, int *blks, ext4_fsblk_t goal,
588                         ext4_lblk_t *offsets, Indirect *branch)
589 {
590         int blocksize = inode->i_sb->s_blocksize;
591         int i, n = 0;
592         int err = 0;
593         struct buffer_head *bh;
594         int num;
595         ext4_fsblk_t new_blocks[4];
596         ext4_fsblk_t current_block;
597
598         num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
599                                 *blks, new_blocks, &err);
600         if (err)
601                 return err;
602
603         branch[0].key = cpu_to_le32(new_blocks[0]);
604         /*
605          * metadata blocks and data blocks are allocated.
606          */
607         for (n = 1; n <= indirect_blks;  n++) {
608                 /*
609                  * Get buffer_head for parent block, zero it out
610                  * and set the pointer to new one, then send
611                  * parent to disk.
612                  */
613                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
614                 branch[n].bh = bh;
615                 lock_buffer(bh);
616                 BUFFER_TRACE(bh, "call get_create_access");
617                 err = ext4_journal_get_create_access(handle, bh);
618                 if (err) {
619                         unlock_buffer(bh);
620                         brelse(bh);
621                         goto failed;
622                 }
623
624                 memset(bh->b_data, 0, blocksize);
625                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
626                 branch[n].key = cpu_to_le32(new_blocks[n]);
627                 *branch[n].p = branch[n].key;
628                 if ( n == indirect_blks) {
629                         current_block = new_blocks[n];
630                         /*
631                          * End of chain, update the last new metablock of
632                          * the chain to point to the new allocated
633                          * data blocks numbers
634                          */
635                         for (i=1; i < num; i++)
636                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
637                 }
638                 BUFFER_TRACE(bh, "marking uptodate");
639                 set_buffer_uptodate(bh);
640                 unlock_buffer(bh);
641
642                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
643                 err = ext4_journal_dirty_metadata(handle, bh);
644                 if (err)
645                         goto failed;
646         }
647         *blks = num;
648         return err;
649 failed:
650         /* Allocation failed, free what we already allocated */
651         for (i = 1; i <= n ; i++) {
652                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
653                 ext4_journal_forget(handle, branch[i].bh);
654         }
655         for (i = 0; i <indirect_blks; i++)
656                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
657
658         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
659
660         return err;
661 }
662
663 /**
664  * ext4_splice_branch - splice the allocated branch onto inode.
665  * @inode: owner
666  * @block: (logical) number of block we are adding
667  * @chain: chain of indirect blocks (with a missing link - see
668  *      ext4_alloc_branch)
669  * @where: location of missing link
670  * @num:   number of indirect blocks we are adding
671  * @blks:  number of direct blocks we are adding
672  *
673  * This function fills the missing link and does all housekeeping needed in
674  * inode (->i_blocks, etc.). In case of success we end up with the full
675  * chain to new block and return 0.
676  */
677 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
678                         ext4_lblk_t block, Indirect *where, int num, int blks)
679 {
680         int i;
681         int err = 0;
682         struct ext4_block_alloc_info *block_i;
683         ext4_fsblk_t current_block;
684
685         block_i = EXT4_I(inode)->i_block_alloc_info;
686         /*
687          * If we're splicing into a [td]indirect block (as opposed to the
688          * inode) then we need to get write access to the [td]indirect block
689          * before the splice.
690          */
691         if (where->bh) {
692                 BUFFER_TRACE(where->bh, "get_write_access");
693                 err = ext4_journal_get_write_access(handle, where->bh);
694                 if (err)
695                         goto err_out;
696         }
697         /* That's it */
698
699         *where->p = where->key;
700
701         /*
702          * Update the host buffer_head or inode to point to more just allocated
703          * direct blocks blocks
704          */
705         if (num == 0 && blks > 1) {
706                 current_block = le32_to_cpu(where->key) + 1;
707                 for (i = 1; i < blks; i++)
708                         *(where->p + i ) = cpu_to_le32(current_block++);
709         }
710
711         /*
712          * update the most recently allocated logical & physical block
713          * in i_block_alloc_info, to assist find the proper goal block for next
714          * allocation
715          */
716         if (block_i) {
717                 block_i->last_alloc_logical_block = block + blks - 1;
718                 block_i->last_alloc_physical_block =
719                                 le32_to_cpu(where[num].key) + blks - 1;
720         }
721
722         /* We are done with atomic stuff, now do the rest of housekeeping */
723
724         inode->i_ctime = ext4_current_time(inode);
725         ext4_mark_inode_dirty(handle, inode);
726
727         /* had we spliced it onto indirect block? */
728         if (where->bh) {
729                 /*
730                  * If we spliced it onto an indirect block, we haven't
731                  * altered the inode.  Note however that if it is being spliced
732                  * onto an indirect block at the very end of the file (the
733                  * file is growing) then we *will* alter the inode to reflect
734                  * the new i_size.  But that is not done here - it is done in
735                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
736                  */
737                 jbd_debug(5, "splicing indirect only\n");
738                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
739                 err = ext4_journal_dirty_metadata(handle, where->bh);
740                 if (err)
741                         goto err_out;
742         } else {
743                 /*
744                  * OK, we spliced it into the inode itself on a direct block.
745                  * Inode was dirtied above.
746                  */
747                 jbd_debug(5, "splicing direct\n");
748         }
749         return err;
750
751 err_out:
752         for (i = 1; i <= num; i++) {
753                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
754                 ext4_journal_forget(handle, where[i].bh);
755                 ext4_free_blocks(handle, inode,
756                                         le32_to_cpu(where[i-1].key), 1, 0);
757         }
758         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
759
760         return err;
761 }
762
763 /*
764  * Allocation strategy is simple: if we have to allocate something, we will
765  * have to go the whole way to leaf. So let's do it before attaching anything
766  * to tree, set linkage between the newborn blocks, write them if sync is
767  * required, recheck the path, free and repeat if check fails, otherwise
768  * set the last missing link (that will protect us from any truncate-generated
769  * removals - all blocks on the path are immune now) and possibly force the
770  * write on the parent block.
771  * That has a nice additional property: no special recovery from the failed
772  * allocations is needed - we simply release blocks and do not touch anything
773  * reachable from inode.
774  *
775  * `handle' can be NULL if create == 0.
776  *
777  * return > 0, # of blocks mapped or allocated.
778  * return = 0, if plain lookup failed.
779  * return < 0, error case.
780  *
781  *
782  * Need to be called with
783  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
784  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
785  */
786 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
787                 ext4_lblk_t iblock, unsigned long maxblocks,
788                 struct buffer_head *bh_result,
789                 int create, int extend_disksize)
790 {
791         int err = -EIO;
792         ext4_lblk_t offsets[4];
793         Indirect chain[4];
794         Indirect *partial;
795         ext4_fsblk_t goal;
796         int indirect_blks;
797         int blocks_to_boundary = 0;
798         int depth;
799         struct ext4_inode_info *ei = EXT4_I(inode);
800         int count = 0;
801         ext4_fsblk_t first_block = 0;
802
803
804         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
805         J_ASSERT(handle != NULL || create == 0);
806         depth = ext4_block_to_path(inode, iblock, offsets,
807                                         &blocks_to_boundary);
808
809         if (depth == 0)
810                 goto out;
811
812         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
813
814         /* Simplest case - block found, no allocation needed */
815         if (!partial) {
816                 first_block = le32_to_cpu(chain[depth - 1].key);
817                 clear_buffer_new(bh_result);
818                 count++;
819                 /*map more blocks*/
820                 while (count < maxblocks && count <= blocks_to_boundary) {
821                         ext4_fsblk_t blk;
822
823                         blk = le32_to_cpu(*(chain[depth-1].p + count));
824
825                         if (blk == first_block + count)
826                                 count++;
827                         else
828                                 break;
829                 }
830                 goto got_it;
831         }
832
833         /* Next simple case - plain lookup or failed read of indirect block */
834         if (!create || err == -EIO)
835                 goto cleanup;
836
837         /*
838          * Okay, we need to do block allocation.  Lazily initialize the block
839          * allocation info here if necessary
840         */
841         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
842                 ext4_init_block_alloc_info(inode);
843
844         goal = ext4_find_goal(inode, iblock, partial);
845
846         /* the number of blocks need to allocate for [d,t]indirect blocks */
847         indirect_blks = (chain + depth) - partial - 1;
848
849         /*
850          * Next look up the indirect map to count the totoal number of
851          * direct blocks to allocate for this branch.
852          */
853         count = ext4_blks_to_allocate(partial, indirect_blks,
854                                         maxblocks, blocks_to_boundary);
855         /*
856          * Block out ext4_truncate while we alter the tree
857          */
858         err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
859                                 offsets + (partial - chain), partial);
860
861         /*
862          * The ext4_splice_branch call will free and forget any buffers
863          * on the new chain if there is a failure, but that risks using
864          * up transaction credits, especially for bitmaps where the
865          * credits cannot be returned.  Can we handle this somehow?  We
866          * may need to return -EAGAIN upwards in the worst case.  --sct
867          */
868         if (!err)
869                 err = ext4_splice_branch(handle, inode, iblock,
870                                         partial, indirect_blks, count);
871         /*
872          * i_disksize growing is protected by i_data_sem.  Don't forget to
873          * protect it if you're about to implement concurrent
874          * ext4_get_block() -bzzz
875         */
876         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
877                 ei->i_disksize = inode->i_size;
878         if (err)
879                 goto cleanup;
880
881         set_buffer_new(bh_result);
882 got_it:
883         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
884         if (count > blocks_to_boundary)
885                 set_buffer_boundary(bh_result);
886         err = count;
887         /* Clean up and exit */
888         partial = chain + depth - 1;    /* the whole chain */
889 cleanup:
890         while (partial > chain) {
891                 BUFFER_TRACE(partial->bh, "call brelse");
892                 brelse(partial->bh);
893                 partial--;
894         }
895         BUFFER_TRACE(bh_result, "returned");
896 out:
897         return err;
898 }
899
900 /* Maximum number of blocks we map for direct IO at once. */
901 #define DIO_MAX_BLOCKS 4096
902 /*
903  * Number of credits we need for writing DIO_MAX_BLOCKS:
904  * We need sb + group descriptor + bitmap + inode -> 4
905  * For B blocks with A block pointers per block we need:
906  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
907  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
908  */
909 #define DIO_CREDITS 25
910
911 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
912                         unsigned long max_blocks, struct buffer_head *bh,
913                         int create, int extend_disksize)
914 {
915         int retval;
916         /*
917          * Try to see if we can get  the block without requesting
918          * for new file system block.
919          */
920         down_read((&EXT4_I(inode)->i_data_sem));
921         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
922                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
923                                 bh, 0, 0);
924         } else {
925                 retval = ext4_get_blocks_handle(handle,
926                                 inode, block, max_blocks, bh, 0, 0);
927         }
928         up_read((&EXT4_I(inode)->i_data_sem));
929         if (!create || (retval > 0))
930                 return retval;
931
932         /*
933          * We need to allocate new blocks which will result
934          * in i_data update
935          */
936         down_write((&EXT4_I(inode)->i_data_sem));
937         /*
938          * We need to check for EXT4 here because migrate
939          * could have changed the inode type in between
940          */
941         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
942                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
943                                 bh, create, extend_disksize);
944         } else {
945                 retval = ext4_get_blocks_handle(handle, inode, block,
946                                 max_blocks, bh, create, extend_disksize);
947         }
948         up_write((&EXT4_I(inode)->i_data_sem));
949         return retval;
950 }
951
952 static int ext4_get_block(struct inode *inode, sector_t iblock,
953                         struct buffer_head *bh_result, int create)
954 {
955         handle_t *handle = ext4_journal_current_handle();
956         int ret = 0, started = 0;
957         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
958
959         if (create && !handle) {
960                 /* Direct IO write... */
961                 if (max_blocks > DIO_MAX_BLOCKS)
962                         max_blocks = DIO_MAX_BLOCKS;
963                 handle = ext4_journal_start(inode, DIO_CREDITS +
964                               2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
965                 if (IS_ERR(handle)) {
966                         ret = PTR_ERR(handle);
967                         goto out;
968                 }
969                 started = 1;
970         }
971
972         ret = ext4_get_blocks_wrap(handle, inode, iblock,
973                                         max_blocks, bh_result, create, 0);
974         if (ret > 0) {
975                 bh_result->b_size = (ret << inode->i_blkbits);
976                 ret = 0;
977         }
978         if (started)
979                 ext4_journal_stop(handle);
980 out:
981         return ret;
982 }
983
984 /*
985  * `handle' can be NULL if create is zero
986  */
987 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
988                                 ext4_lblk_t block, int create, int *errp)
989 {
990         struct buffer_head dummy;
991         int fatal = 0, err;
992
993         J_ASSERT(handle != NULL || create == 0);
994
995         dummy.b_state = 0;
996         dummy.b_blocknr = -1000;
997         buffer_trace_init(&dummy.b_history);
998         err = ext4_get_blocks_wrap(handle, inode, block, 1,
999                                         &dummy, create, 1);
1000         /*
1001          * ext4_get_blocks_handle() returns number of blocks
1002          * mapped. 0 in case of a HOLE.
1003          */
1004         if (err > 0) {
1005                 if (err > 1)
1006                         WARN_ON(1);
1007                 err = 0;
1008         }
1009         *errp = err;
1010         if (!err && buffer_mapped(&dummy)) {
1011                 struct buffer_head *bh;
1012                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1013                 if (!bh) {
1014                         *errp = -EIO;
1015                         goto err;
1016                 }
1017                 if (buffer_new(&dummy)) {
1018                         J_ASSERT(create != 0);
1019                         J_ASSERT(handle != NULL);
1020
1021                         /*
1022                          * Now that we do not always journal data, we should
1023                          * keep in mind whether this should always journal the
1024                          * new buffer as metadata.  For now, regular file
1025                          * writes use ext4_get_block instead, so it's not a
1026                          * problem.
1027                          */
1028                         lock_buffer(bh);
1029                         BUFFER_TRACE(bh, "call get_create_access");
1030                         fatal = ext4_journal_get_create_access(handle, bh);
1031                         if (!fatal && !buffer_uptodate(bh)) {
1032                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1033                                 set_buffer_uptodate(bh);
1034                         }
1035                         unlock_buffer(bh);
1036                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1037                         err = ext4_journal_dirty_metadata(handle, bh);
1038                         if (!fatal)
1039                                 fatal = err;
1040                 } else {
1041                         BUFFER_TRACE(bh, "not a new buffer");
1042                 }
1043                 if (fatal) {
1044                         *errp = fatal;
1045                         brelse(bh);
1046                         bh = NULL;
1047                 }
1048                 return bh;
1049         }
1050 err:
1051         return NULL;
1052 }
1053
1054 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1055                                ext4_lblk_t block, int create, int *err)
1056 {
1057         struct buffer_head * bh;
1058
1059         bh = ext4_getblk(handle, inode, block, create, err);
1060         if (!bh)
1061                 return bh;
1062         if (buffer_uptodate(bh))
1063                 return bh;
1064         ll_rw_block(READ_META, 1, &bh);
1065         wait_on_buffer(bh);
1066         if (buffer_uptodate(bh))
1067                 return bh;
1068         put_bh(bh);
1069         *err = -EIO;
1070         return NULL;
1071 }
1072
1073 static int walk_page_buffers(   handle_t *handle,
1074                                 struct buffer_head *head,
1075                                 unsigned from,
1076                                 unsigned to,
1077                                 int *partial,
1078                                 int (*fn)(      handle_t *handle,
1079                                                 struct buffer_head *bh))
1080 {
1081         struct buffer_head *bh;
1082         unsigned block_start, block_end;
1083         unsigned blocksize = head->b_size;
1084         int err, ret = 0;
1085         struct buffer_head *next;
1086
1087         for (   bh = head, block_start = 0;
1088                 ret == 0 && (bh != head || !block_start);
1089                 block_start = block_end, bh = next)
1090         {
1091                 next = bh->b_this_page;
1092                 block_end = block_start + blocksize;
1093                 if (block_end <= from || block_start >= to) {
1094                         if (partial && !buffer_uptodate(bh))
1095                                 *partial = 1;
1096                         continue;
1097                 }
1098                 err = (*fn)(handle, bh);
1099                 if (!ret)
1100                         ret = err;
1101         }
1102         return ret;
1103 }
1104
1105 /*
1106  * To preserve ordering, it is essential that the hole instantiation and
1107  * the data write be encapsulated in a single transaction.  We cannot
1108  * close off a transaction and start a new one between the ext4_get_block()
1109  * and the commit_write().  So doing the jbd2_journal_start at the start of
1110  * prepare_write() is the right place.
1111  *
1112  * Also, this function can nest inside ext4_writepage() ->
1113  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1114  * has generated enough buffer credits to do the whole page.  So we won't
1115  * block on the journal in that case, which is good, because the caller may
1116  * be PF_MEMALLOC.
1117  *
1118  * By accident, ext4 can be reentered when a transaction is open via
1119  * quota file writes.  If we were to commit the transaction while thus
1120  * reentered, there can be a deadlock - we would be holding a quota
1121  * lock, and the commit would never complete if another thread had a
1122  * transaction open and was blocking on the quota lock - a ranking
1123  * violation.
1124  *
1125  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1126  * will _not_ run commit under these circumstances because handle->h_ref
1127  * is elevated.  We'll still have enough credits for the tiny quotafile
1128  * write.
1129  */
1130 static int do_journal_get_write_access(handle_t *handle,
1131                                         struct buffer_head *bh)
1132 {
1133         if (!buffer_mapped(bh) || buffer_freed(bh))
1134                 return 0;
1135         return ext4_journal_get_write_access(handle, bh);
1136 }
1137
1138 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1139                                 loff_t pos, unsigned len, unsigned flags,
1140                                 struct page **pagep, void **fsdata)
1141 {
1142         struct inode *inode = mapping->host;
1143         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1144         handle_t *handle;
1145         int retries = 0;
1146         struct page *page;
1147         pgoff_t index;
1148         unsigned from, to;
1149
1150         index = pos >> PAGE_CACHE_SHIFT;
1151         from = pos & (PAGE_CACHE_SIZE - 1);
1152         to = from + len;
1153
1154 retry:
1155         page = __grab_cache_page(mapping, index);
1156         if (!page)
1157                 return -ENOMEM;
1158         *pagep = page;
1159
1160         handle = ext4_journal_start(inode, needed_blocks);
1161         if (IS_ERR(handle)) {
1162                 unlock_page(page);
1163                 page_cache_release(page);
1164                 ret = PTR_ERR(handle);
1165                 goto out;
1166         }
1167
1168         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1169                                                         ext4_get_block);
1170
1171         if (!ret && ext4_should_journal_data(inode)) {
1172                 ret = walk_page_buffers(handle, page_buffers(page),
1173                                 from, to, NULL, do_journal_get_write_access);
1174         }
1175
1176         if (ret) {
1177                 ext4_journal_stop(handle);
1178                 unlock_page(page);
1179                 page_cache_release(page);
1180         }
1181
1182         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1183                 goto retry;
1184 out:
1185         return ret;
1186 }
1187
1188 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1189 {
1190         int err = jbd2_journal_dirty_data(handle, bh);
1191         if (err)
1192                 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1193                                                 bh, handle, err);
1194         return err;
1195 }
1196
1197 /* For write_end() in data=journal mode */
1198 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1199 {
1200         if (!buffer_mapped(bh) || buffer_freed(bh))
1201                 return 0;
1202         set_buffer_uptodate(bh);
1203         return ext4_journal_dirty_metadata(handle, bh);
1204 }
1205
1206 /*
1207  * Generic write_end handler for ordered and writeback ext4 journal modes.
1208  * We can't use generic_write_end, because that unlocks the page and we need to
1209  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1210  * after block_write_end.
1211  */
1212 static int ext4_generic_write_end(struct file *file,
1213                                 struct address_space *mapping,
1214                                 loff_t pos, unsigned len, unsigned copied,
1215                                 struct page *page, void *fsdata)
1216 {
1217         struct inode *inode = file->f_mapping->host;
1218
1219         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1220
1221         if (pos+copied > inode->i_size) {
1222                 i_size_write(inode, pos+copied);
1223                 mark_inode_dirty(inode);
1224         }
1225
1226         return copied;
1227 }
1228
1229 /*
1230  * We need to pick up the new inode size which generic_commit_write gave us
1231  * `file' can be NULL - eg, when called from page_symlink().
1232  *
1233  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1234  * buffers are managed internally.
1235  */
1236 static int ext4_ordered_write_end(struct file *file,
1237                                 struct address_space *mapping,
1238                                 loff_t pos, unsigned len, unsigned copied,
1239                                 struct page *page, void *fsdata)
1240 {
1241         handle_t *handle = ext4_journal_current_handle();
1242         struct inode *inode = file->f_mapping->host;
1243         unsigned from, to;
1244         int ret = 0, ret2;
1245
1246         from = pos & (PAGE_CACHE_SIZE - 1);
1247         to = from + len;
1248
1249         ret = walk_page_buffers(handle, page_buffers(page),
1250                 from, to, NULL, ext4_journal_dirty_data);
1251
1252         if (ret == 0) {
1253                 /*
1254                  * generic_write_end() will run mark_inode_dirty() if i_size
1255                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1256                  * into that.
1257                  */
1258                 loff_t new_i_size;
1259
1260                 new_i_size = pos + copied;
1261                 if (new_i_size > EXT4_I(inode)->i_disksize)
1262                         EXT4_I(inode)->i_disksize = new_i_size;
1263                 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1264                                                         page, fsdata);
1265                 if (copied < 0)
1266                         ret = copied;
1267         }
1268         ret2 = ext4_journal_stop(handle);
1269         if (!ret)
1270                 ret = ret2;
1271         unlock_page(page);
1272         page_cache_release(page);
1273
1274         return ret ? ret : copied;
1275 }
1276
1277 static int ext4_writeback_write_end(struct file *file,
1278                                 struct address_space *mapping,
1279                                 loff_t pos, unsigned len, unsigned copied,
1280                                 struct page *page, void *fsdata)
1281 {
1282         handle_t *handle = ext4_journal_current_handle();
1283         struct inode *inode = file->f_mapping->host;
1284         int ret = 0, ret2;
1285         loff_t new_i_size;
1286
1287         new_i_size = pos + copied;
1288         if (new_i_size > EXT4_I(inode)->i_disksize)
1289                 EXT4_I(inode)->i_disksize = new_i_size;
1290
1291         copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1292                                                         page, fsdata);
1293         if (copied < 0)
1294                 ret = copied;
1295
1296         ret2 = ext4_journal_stop(handle);
1297         if (!ret)
1298                 ret = ret2;
1299         unlock_page(page);
1300         page_cache_release(page);
1301
1302         return ret ? ret : copied;
1303 }
1304
1305 static int ext4_journalled_write_end(struct file *file,
1306                                 struct address_space *mapping,
1307                                 loff_t pos, unsigned len, unsigned copied,
1308                                 struct page *page, void *fsdata)
1309 {
1310         handle_t *handle = ext4_journal_current_handle();
1311         struct inode *inode = mapping->host;
1312         int ret = 0, ret2;
1313         int partial = 0;
1314         unsigned from, to;
1315
1316         from = pos & (PAGE_CACHE_SIZE - 1);
1317         to = from + len;
1318
1319         if (copied < len) {
1320                 if (!PageUptodate(page))
1321                         copied = 0;
1322                 page_zero_new_buffers(page, from+copied, to);
1323         }
1324
1325         ret = walk_page_buffers(handle, page_buffers(page), from,
1326                                 to, &partial, write_end_fn);
1327         if (!partial)
1328                 SetPageUptodate(page);
1329         if (pos+copied > inode->i_size)
1330                 i_size_write(inode, pos+copied);
1331         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1332         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1333                 EXT4_I(inode)->i_disksize = inode->i_size;
1334                 ret2 = ext4_mark_inode_dirty(handle, inode);
1335                 if (!ret)
1336                         ret = ret2;
1337         }
1338
1339         ret2 = ext4_journal_stop(handle);
1340         if (!ret)
1341                 ret = ret2;
1342         unlock_page(page);
1343         page_cache_release(page);
1344
1345         return ret ? ret : copied;
1346 }
1347
1348 /*
1349  * bmap() is special.  It gets used by applications such as lilo and by
1350  * the swapper to find the on-disk block of a specific piece of data.
1351  *
1352  * Naturally, this is dangerous if the block concerned is still in the
1353  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1354  * filesystem and enables swap, then they may get a nasty shock when the
1355  * data getting swapped to that swapfile suddenly gets overwritten by
1356  * the original zero's written out previously to the journal and
1357  * awaiting writeback in the kernel's buffer cache.
1358  *
1359  * So, if we see any bmap calls here on a modified, data-journaled file,
1360  * take extra steps to flush any blocks which might be in the cache.
1361  */
1362 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1363 {
1364         struct inode *inode = mapping->host;
1365         journal_t *journal;
1366         int err;
1367
1368         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1369                 /*
1370                  * This is a REALLY heavyweight approach, but the use of
1371                  * bmap on dirty files is expected to be extremely rare:
1372                  * only if we run lilo or swapon on a freshly made file
1373                  * do we expect this to happen.
1374                  *
1375                  * (bmap requires CAP_SYS_RAWIO so this does not
1376                  * represent an unprivileged user DOS attack --- we'd be
1377                  * in trouble if mortal users could trigger this path at
1378                  * will.)
1379                  *
1380                  * NB. EXT4_STATE_JDATA is not set on files other than
1381                  * regular files.  If somebody wants to bmap a directory
1382                  * or symlink and gets confused because the buffer
1383                  * hasn't yet been flushed to disk, they deserve
1384                  * everything they get.
1385                  */
1386
1387                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1388                 journal = EXT4_JOURNAL(inode);
1389                 jbd2_journal_lock_updates(journal);
1390                 err = jbd2_journal_flush(journal);
1391                 jbd2_journal_unlock_updates(journal);
1392
1393                 if (err)
1394                         return 0;
1395         }
1396
1397         return generic_block_bmap(mapping,block,ext4_get_block);
1398 }
1399
1400 static int bget_one(handle_t *handle, struct buffer_head *bh)
1401 {
1402         get_bh(bh);
1403         return 0;
1404 }
1405
1406 static int bput_one(handle_t *handle, struct buffer_head *bh)
1407 {
1408         put_bh(bh);
1409         return 0;
1410 }
1411
1412 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1413 {
1414         if (buffer_mapped(bh))
1415                 return ext4_journal_dirty_data(handle, bh);
1416         return 0;
1417 }
1418
1419 /*
1420  * Note that we always start a transaction even if we're not journalling
1421  * data.  This is to preserve ordering: any hole instantiation within
1422  * __block_write_full_page -> ext4_get_block() should be journalled
1423  * along with the data so we don't crash and then get metadata which
1424  * refers to old data.
1425  *
1426  * In all journalling modes block_write_full_page() will start the I/O.
1427  *
1428  * Problem:
1429  *
1430  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1431  *              ext4_writepage()
1432  *
1433  * Similar for:
1434  *
1435  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1436  *
1437  * Same applies to ext4_get_block().  We will deadlock on various things like
1438  * lock_journal and i_data_sem
1439  *
1440  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1441  * allocations fail.
1442  *
1443  * 16May01: If we're reentered then journal_current_handle() will be
1444  *          non-zero. We simply *return*.
1445  *
1446  * 1 July 2001: @@@ FIXME:
1447  *   In journalled data mode, a data buffer may be metadata against the
1448  *   current transaction.  But the same file is part of a shared mapping
1449  *   and someone does a writepage() on it.
1450  *
1451  *   We will move the buffer onto the async_data list, but *after* it has
1452  *   been dirtied. So there's a small window where we have dirty data on
1453  *   BJ_Metadata.
1454  *
1455  *   Note that this only applies to the last partial page in the file.  The
1456  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1457  *   broken code anyway: it's wrong for msync()).
1458  *
1459  *   It's a rare case: affects the final partial page, for journalled data
1460  *   where the file is subject to bith write() and writepage() in the same
1461  *   transction.  To fix it we'll need a custom block_write_full_page().
1462  *   We'll probably need that anyway for journalling writepage() output.
1463  *
1464  * We don't honour synchronous mounts for writepage().  That would be
1465  * disastrous.  Any write() or metadata operation will sync the fs for
1466  * us.
1467  *
1468  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1469  * we don't need to open a transaction here.
1470  */
1471 static int ext4_ordered_writepage(struct page *page,
1472                                 struct writeback_control *wbc)
1473 {
1474         struct inode *inode = page->mapping->host;
1475         struct buffer_head *page_bufs;
1476         handle_t *handle = NULL;
1477         int ret = 0;
1478         int err;
1479
1480         J_ASSERT(PageLocked(page));
1481
1482         /*
1483          * We give up here if we're reentered, because it might be for a
1484          * different filesystem.
1485          */
1486         if (ext4_journal_current_handle())
1487                 goto out_fail;
1488
1489         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1490
1491         if (IS_ERR(handle)) {
1492                 ret = PTR_ERR(handle);
1493                 goto out_fail;
1494         }
1495
1496         if (!page_has_buffers(page)) {
1497                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1498                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1499         }
1500         page_bufs = page_buffers(page);
1501         walk_page_buffers(handle, page_bufs, 0,
1502                         PAGE_CACHE_SIZE, NULL, bget_one);
1503
1504         ret = block_write_full_page(page, ext4_get_block, wbc);
1505
1506         /*
1507          * The page can become unlocked at any point now, and
1508          * truncate can then come in and change things.  So we
1509          * can't touch *page from now on.  But *page_bufs is
1510          * safe due to elevated refcount.
1511          */
1512
1513         /*
1514          * And attach them to the current transaction.  But only if
1515          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1516          * and generally junk.
1517          */
1518         if (ret == 0) {
1519                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1520                                         NULL, jbd2_journal_dirty_data_fn);
1521                 if (!ret)
1522                         ret = err;
1523         }
1524         walk_page_buffers(handle, page_bufs, 0,
1525                         PAGE_CACHE_SIZE, NULL, bput_one);
1526         err = ext4_journal_stop(handle);
1527         if (!ret)
1528                 ret = err;
1529         return ret;
1530
1531 out_fail:
1532         redirty_page_for_writepage(wbc, page);
1533         unlock_page(page);
1534         return ret;
1535 }
1536
1537 static int ext4_writeback_writepage(struct page *page,
1538                                 struct writeback_control *wbc)
1539 {
1540         struct inode *inode = page->mapping->host;
1541         handle_t *handle = NULL;
1542         int ret = 0;
1543         int err;
1544
1545         if (ext4_journal_current_handle())
1546                 goto out_fail;
1547
1548         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1549         if (IS_ERR(handle)) {
1550                 ret = PTR_ERR(handle);
1551                 goto out_fail;
1552         }
1553
1554         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1555                 ret = nobh_writepage(page, ext4_get_block, wbc);
1556         else
1557                 ret = block_write_full_page(page, ext4_get_block, wbc);
1558
1559         err = ext4_journal_stop(handle);
1560         if (!ret)
1561                 ret = err;
1562         return ret;
1563
1564 out_fail:
1565         redirty_page_for_writepage(wbc, page);
1566         unlock_page(page);
1567         return ret;
1568 }
1569
1570 static int ext4_journalled_writepage(struct page *page,
1571                                 struct writeback_control *wbc)
1572 {
1573         struct inode *inode = page->mapping->host;
1574         handle_t *handle = NULL;
1575         int ret = 0;
1576         int err;
1577
1578         if (ext4_journal_current_handle())
1579                 goto no_write;
1580
1581         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1582         if (IS_ERR(handle)) {
1583                 ret = PTR_ERR(handle);
1584                 goto no_write;
1585         }
1586
1587         if (!page_has_buffers(page) || PageChecked(page)) {
1588                 /*
1589                  * It's mmapped pagecache.  Add buffers and journal it.  There
1590                  * doesn't seem much point in redirtying the page here.
1591                  */
1592                 ClearPageChecked(page);
1593                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1594                                         ext4_get_block);
1595                 if (ret != 0) {
1596                         ext4_journal_stop(handle);
1597                         goto out_unlock;
1598                 }
1599                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1600                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1601
1602                 err = walk_page_buffers(handle, page_buffers(page), 0,
1603                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1604                 if (ret == 0)
1605                         ret = err;
1606                 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1607                 unlock_page(page);
1608         } else {
1609                 /*
1610                  * It may be a page full of checkpoint-mode buffers.  We don't
1611                  * really know unless we go poke around in the buffer_heads.
1612                  * But block_write_full_page will do the right thing.
1613                  */
1614                 ret = block_write_full_page(page, ext4_get_block, wbc);
1615         }
1616         err = ext4_journal_stop(handle);
1617         if (!ret)
1618                 ret = err;
1619 out:
1620         return ret;
1621
1622 no_write:
1623         redirty_page_for_writepage(wbc, page);
1624 out_unlock:
1625         unlock_page(page);
1626         goto out;
1627 }
1628
1629 static int ext4_readpage(struct file *file, struct page *page)
1630 {
1631         return mpage_readpage(page, ext4_get_block);
1632 }
1633
1634 static int
1635 ext4_readpages(struct file *file, struct address_space *mapping,
1636                 struct list_head *pages, unsigned nr_pages)
1637 {
1638         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1639 }
1640
1641 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1642 {
1643         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1644
1645         /*
1646          * If it's a full truncate we just forget about the pending dirtying
1647          */
1648         if (offset == 0)
1649                 ClearPageChecked(page);
1650
1651         jbd2_journal_invalidatepage(journal, page, offset);
1652 }
1653
1654 static int ext4_releasepage(struct page *page, gfp_t wait)
1655 {
1656         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1657
1658         WARN_ON(PageChecked(page));
1659         if (!page_has_buffers(page))
1660                 return 0;
1661         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1662 }
1663
1664 /*
1665  * If the O_DIRECT write will extend the file then add this inode to the
1666  * orphan list.  So recovery will truncate it back to the original size
1667  * if the machine crashes during the write.
1668  *
1669  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1670  * crashes then stale disk data _may_ be exposed inside the file. But current
1671  * VFS code falls back into buffered path in that case so we are safe.
1672  */
1673 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1674                         const struct iovec *iov, loff_t offset,
1675                         unsigned long nr_segs)
1676 {
1677         struct file *file = iocb->ki_filp;
1678         struct inode *inode = file->f_mapping->host;
1679         struct ext4_inode_info *ei = EXT4_I(inode);
1680         handle_t *handle;
1681         ssize_t ret;
1682         int orphan = 0;
1683         size_t count = iov_length(iov, nr_segs);
1684
1685         if (rw == WRITE) {
1686                 loff_t final_size = offset + count;
1687
1688                 if (final_size > inode->i_size) {
1689                         /* Credits for sb + inode write */
1690                         handle = ext4_journal_start(inode, 2);
1691                         if (IS_ERR(handle)) {
1692                                 ret = PTR_ERR(handle);
1693                                 goto out;
1694                         }
1695                         ret = ext4_orphan_add(handle, inode);
1696                         if (ret) {
1697                                 ext4_journal_stop(handle);
1698                                 goto out;
1699                         }
1700                         orphan = 1;
1701                         ei->i_disksize = inode->i_size;
1702                         ext4_journal_stop(handle);
1703                 }
1704         }
1705
1706         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1707                                  offset, nr_segs,
1708                                  ext4_get_block, NULL);
1709
1710         if (orphan) {
1711                 int err;
1712
1713                 /* Credits for sb + inode write */
1714                 handle = ext4_journal_start(inode, 2);
1715                 if (IS_ERR(handle)) {
1716                         /* This is really bad luck. We've written the data
1717                          * but cannot extend i_size. Bail out and pretend
1718                          * the write failed... */
1719                         ret = PTR_ERR(handle);
1720                         goto out;
1721                 }
1722                 if (inode->i_nlink)
1723                         ext4_orphan_del(handle, inode);
1724                 if (ret > 0) {
1725                         loff_t end = offset + ret;
1726                         if (end > inode->i_size) {
1727                                 ei->i_disksize = end;
1728                                 i_size_write(inode, end);
1729                                 /*
1730                                  * We're going to return a positive `ret'
1731                                  * here due to non-zero-length I/O, so there's
1732                                  * no way of reporting error returns from
1733                                  * ext4_mark_inode_dirty() to userspace.  So
1734                                  * ignore it.
1735                                  */
1736                                 ext4_mark_inode_dirty(handle, inode);
1737                         }
1738                 }
1739                 err = ext4_journal_stop(handle);
1740                 if (ret == 0)
1741                         ret = err;
1742         }
1743 out:
1744         return ret;
1745 }
1746
1747 /*
1748  * Pages can be marked dirty completely asynchronously from ext4's journalling
1749  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1750  * much here because ->set_page_dirty is called under VFS locks.  The page is
1751  * not necessarily locked.
1752  *
1753  * We cannot just dirty the page and leave attached buffers clean, because the
1754  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1755  * or jbddirty because all the journalling code will explode.
1756  *
1757  * So what we do is to mark the page "pending dirty" and next time writepage
1758  * is called, propagate that into the buffers appropriately.
1759  */
1760 static int ext4_journalled_set_page_dirty(struct page *page)
1761 {
1762         SetPageChecked(page);
1763         return __set_page_dirty_nobuffers(page);
1764 }
1765
1766 static const struct address_space_operations ext4_ordered_aops = {
1767         .readpage       = ext4_readpage,
1768         .readpages      = ext4_readpages,
1769         .writepage      = ext4_ordered_writepage,
1770         .sync_page      = block_sync_page,
1771         .write_begin    = ext4_write_begin,
1772         .write_end      = ext4_ordered_write_end,
1773         .bmap           = ext4_bmap,
1774         .invalidatepage = ext4_invalidatepage,
1775         .releasepage    = ext4_releasepage,
1776         .direct_IO      = ext4_direct_IO,
1777         .migratepage    = buffer_migrate_page,
1778 };
1779
1780 static const struct address_space_operations ext4_writeback_aops = {
1781         .readpage       = ext4_readpage,
1782         .readpages      = ext4_readpages,
1783         .writepage      = ext4_writeback_writepage,
1784         .sync_page      = block_sync_page,
1785         .write_begin    = ext4_write_begin,
1786         .write_end      = ext4_writeback_write_end,
1787         .bmap           = ext4_bmap,
1788         .invalidatepage = ext4_invalidatepage,
1789         .releasepage    = ext4_releasepage,
1790         .direct_IO      = ext4_direct_IO,
1791         .migratepage    = buffer_migrate_page,
1792 };
1793
1794 static const struct address_space_operations ext4_journalled_aops = {
1795         .readpage       = ext4_readpage,
1796         .readpages      = ext4_readpages,
1797         .writepage      = ext4_journalled_writepage,
1798         .sync_page      = block_sync_page,
1799         .write_begin    = ext4_write_begin,
1800         .write_end      = ext4_journalled_write_end,
1801         .set_page_dirty = ext4_journalled_set_page_dirty,
1802         .bmap           = ext4_bmap,
1803         .invalidatepage = ext4_invalidatepage,
1804         .releasepage    = ext4_releasepage,
1805 };
1806
1807 void ext4_set_aops(struct inode *inode)
1808 {
1809         if (ext4_should_order_data(inode))
1810                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1811         else if (ext4_should_writeback_data(inode))
1812                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1813         else
1814                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1815 }
1816
1817 /*
1818  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1819  * up to the end of the block which corresponds to `from'.
1820  * This required during truncate. We need to physically zero the tail end
1821  * of that block so it doesn't yield old data if the file is later grown.
1822  */
1823 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1824                 struct address_space *mapping, loff_t from)
1825 {
1826         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1827         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1828         unsigned blocksize, length, pos;
1829         ext4_lblk_t iblock;
1830         struct inode *inode = mapping->host;
1831         struct buffer_head *bh;
1832         int err = 0;
1833
1834         blocksize = inode->i_sb->s_blocksize;
1835         length = blocksize - (offset & (blocksize - 1));
1836         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1837
1838         /*
1839          * For "nobh" option,  we can only work if we don't need to
1840          * read-in the page - otherwise we create buffers to do the IO.
1841          */
1842         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1843              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1844                 zero_user(page, offset, length);
1845                 set_page_dirty(page);
1846                 goto unlock;
1847         }
1848
1849         if (!page_has_buffers(page))
1850                 create_empty_buffers(page, blocksize, 0);
1851
1852         /* Find the buffer that contains "offset" */
1853         bh = page_buffers(page);
1854         pos = blocksize;
1855         while (offset >= pos) {
1856                 bh = bh->b_this_page;
1857                 iblock++;
1858                 pos += blocksize;
1859         }
1860
1861         err = 0;
1862         if (buffer_freed(bh)) {
1863                 BUFFER_TRACE(bh, "freed: skip");
1864                 goto unlock;
1865         }
1866
1867         if (!buffer_mapped(bh)) {
1868                 BUFFER_TRACE(bh, "unmapped");
1869                 ext4_get_block(inode, iblock, bh, 0);
1870                 /* unmapped? It's a hole - nothing to do */
1871                 if (!buffer_mapped(bh)) {
1872                         BUFFER_TRACE(bh, "still unmapped");
1873                         goto unlock;
1874                 }
1875         }
1876
1877         /* Ok, it's mapped. Make sure it's up-to-date */
1878         if (PageUptodate(page))
1879                 set_buffer_uptodate(bh);
1880
1881         if (!buffer_uptodate(bh)) {
1882                 err = -EIO;
1883                 ll_rw_block(READ, 1, &bh);
1884                 wait_on_buffer(bh);
1885                 /* Uhhuh. Read error. Complain and punt. */
1886                 if (!buffer_uptodate(bh))
1887                         goto unlock;
1888         }
1889
1890         if (ext4_should_journal_data(inode)) {
1891                 BUFFER_TRACE(bh, "get write access");
1892                 err = ext4_journal_get_write_access(handle, bh);
1893                 if (err)
1894                         goto unlock;
1895         }
1896
1897         zero_user(page, offset, length);
1898
1899         BUFFER_TRACE(bh, "zeroed end of block");
1900
1901         err = 0;
1902         if (ext4_should_journal_data(inode)) {
1903                 err = ext4_journal_dirty_metadata(handle, bh);
1904         } else {
1905                 if (ext4_should_order_data(inode))
1906                         err = ext4_journal_dirty_data(handle, bh);
1907                 mark_buffer_dirty(bh);
1908         }
1909
1910 unlock:
1911         unlock_page(page);
1912         page_cache_release(page);
1913         return err;
1914 }
1915
1916 /*
1917  * Probably it should be a library function... search for first non-zero word
1918  * or memcmp with zero_page, whatever is better for particular architecture.
1919  * Linus?
1920  */
1921 static inline int all_zeroes(__le32 *p, __le32 *q)
1922 {
1923         while (p < q)
1924                 if (*p++)
1925                         return 0;
1926         return 1;
1927 }
1928
1929 /**
1930  *      ext4_find_shared - find the indirect blocks for partial truncation.
1931  *      @inode:   inode in question
1932  *      @depth:   depth of the affected branch
1933  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1934  *      @chain:   place to store the pointers to partial indirect blocks
1935  *      @top:     place to the (detached) top of branch
1936  *
1937  *      This is a helper function used by ext4_truncate().
1938  *
1939  *      When we do truncate() we may have to clean the ends of several
1940  *      indirect blocks but leave the blocks themselves alive. Block is
1941  *      partially truncated if some data below the new i_size is refered
1942  *      from it (and it is on the path to the first completely truncated
1943  *      data block, indeed).  We have to free the top of that path along
1944  *      with everything to the right of the path. Since no allocation
1945  *      past the truncation point is possible until ext4_truncate()
1946  *      finishes, we may safely do the latter, but top of branch may
1947  *      require special attention - pageout below the truncation point
1948  *      might try to populate it.
1949  *
1950  *      We atomically detach the top of branch from the tree, store the
1951  *      block number of its root in *@top, pointers to buffer_heads of
1952  *      partially truncated blocks - in @chain[].bh and pointers to
1953  *      their last elements that should not be removed - in
1954  *      @chain[].p. Return value is the pointer to last filled element
1955  *      of @chain.
1956  *
1957  *      The work left to caller to do the actual freeing of subtrees:
1958  *              a) free the subtree starting from *@top
1959  *              b) free the subtrees whose roots are stored in
1960  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1961  *              c) free the subtrees growing from the inode past the @chain[0].
1962  *                      (no partially truncated stuff there).  */
1963
1964 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1965                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1966 {
1967         Indirect *partial, *p;
1968         int k, err;
1969
1970         *top = 0;
1971         /* Make k index the deepest non-null offest + 1 */
1972         for (k = depth; k > 1 && !offsets[k-1]; k--)
1973                 ;
1974         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1975         /* Writer: pointers */
1976         if (!partial)
1977                 partial = chain + k-1;
1978         /*
1979          * If the branch acquired continuation since we've looked at it -
1980          * fine, it should all survive and (new) top doesn't belong to us.
1981          */
1982         if (!partial->key && *partial->p)
1983                 /* Writer: end */
1984                 goto no_top;
1985         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1986                 ;
1987         /*
1988          * OK, we've found the last block that must survive. The rest of our
1989          * branch should be detached before unlocking. However, if that rest
1990          * of branch is all ours and does not grow immediately from the inode
1991          * it's easier to cheat and just decrement partial->p.
1992          */
1993         if (p == chain + k - 1 && p > chain) {
1994                 p->p--;
1995         } else {
1996                 *top = *p->p;
1997                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1998 #if 0
1999                 *p->p = 0;
2000 #endif
2001         }
2002         /* Writer: end */
2003
2004         while(partial > p) {
2005                 brelse(partial->bh);
2006                 partial--;
2007         }
2008 no_top:
2009         return partial;
2010 }
2011
2012 /*
2013  * Zero a number of block pointers in either an inode or an indirect block.
2014  * If we restart the transaction we must again get write access to the
2015  * indirect block for further modification.
2016  *
2017  * We release `count' blocks on disk, but (last - first) may be greater
2018  * than `count' because there can be holes in there.
2019  */
2020 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2021                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2022                 unsigned long count, __le32 *first, __le32 *last)
2023 {
2024         __le32 *p;
2025         if (try_to_extend_transaction(handle, inode)) {
2026                 if (bh) {
2027                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2028                         ext4_journal_dirty_metadata(handle, bh);
2029                 }
2030                 ext4_mark_inode_dirty(handle, inode);
2031                 ext4_journal_test_restart(handle, inode);
2032                 if (bh) {
2033                         BUFFER_TRACE(bh, "retaking write access");
2034                         ext4_journal_get_write_access(handle, bh);
2035                 }
2036         }
2037
2038         /*
2039          * Any buffers which are on the journal will be in memory. We find
2040          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2041          * on them.  We've already detached each block from the file, so
2042          * bforget() in jbd2_journal_forget() should be safe.
2043          *
2044          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2045          */
2046         for (p = first; p < last; p++) {
2047                 u32 nr = le32_to_cpu(*p);
2048                 if (nr) {
2049                         struct buffer_head *tbh;
2050
2051                         *p = 0;
2052                         tbh = sb_find_get_block(inode->i_sb, nr);
2053                         ext4_forget(handle, 0, inode, tbh, nr);
2054                 }
2055         }
2056
2057         ext4_free_blocks(handle, inode, block_to_free, count, 0);
2058 }
2059
2060 /**
2061  * ext4_free_data - free a list of data blocks
2062  * @handle:     handle for this transaction
2063  * @inode:      inode we are dealing with
2064  * @this_bh:    indirect buffer_head which contains *@first and *@last
2065  * @first:      array of block numbers
2066  * @last:       points immediately past the end of array
2067  *
2068  * We are freeing all blocks refered from that array (numbers are stored as
2069  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2070  *
2071  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2072  * blocks are contiguous then releasing them at one time will only affect one
2073  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2074  * actually use a lot of journal space.
2075  *
2076  * @this_bh will be %NULL if @first and @last point into the inode's direct
2077  * block pointers.
2078  */
2079 static void ext4_free_data(handle_t *handle, struct inode *inode,
2080                            struct buffer_head *this_bh,
2081                            __le32 *first, __le32 *last)
2082 {
2083         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2084         unsigned long count = 0;            /* Number of blocks in the run */
2085         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2086                                                corresponding to
2087                                                block_to_free */
2088         ext4_fsblk_t nr;                    /* Current block # */
2089         __le32 *p;                          /* Pointer into inode/ind
2090                                                for current block */
2091         int err;
2092
2093         if (this_bh) {                          /* For indirect block */
2094                 BUFFER_TRACE(this_bh, "get_write_access");
2095                 err = ext4_journal_get_write_access(handle, this_bh);
2096                 /* Important: if we can't update the indirect pointers
2097                  * to the blocks, we can't free them. */
2098                 if (err)
2099                         return;
2100         }
2101
2102         for (p = first; p < last; p++) {
2103                 nr = le32_to_cpu(*p);
2104                 if (nr) {
2105                         /* accumulate blocks to free if they're contiguous */
2106                         if (count == 0) {
2107                                 block_to_free = nr;
2108                                 block_to_free_p = p;
2109                                 count = 1;
2110                         } else if (nr == block_to_free + count) {
2111                                 count++;
2112                         } else {
2113                                 ext4_clear_blocks(handle, inode, this_bh,
2114                                                   block_to_free,
2115                                                   count, block_to_free_p, p);
2116                                 block_to_free = nr;
2117                                 block_to_free_p = p;
2118                                 count = 1;
2119                         }
2120                 }
2121         }
2122
2123         if (count > 0)
2124                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2125                                   count, block_to_free_p, p);
2126
2127         if (this_bh) {
2128                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2129                 ext4_journal_dirty_metadata(handle, this_bh);
2130         }
2131 }
2132
2133 /**
2134  *      ext4_free_branches - free an array of branches
2135  *      @handle: JBD handle for this transaction
2136  *      @inode: inode we are dealing with
2137  *      @parent_bh: the buffer_head which contains *@first and *@last
2138  *      @first: array of block numbers
2139  *      @last:  pointer immediately past the end of array
2140  *      @depth: depth of the branches to free
2141  *
2142  *      We are freeing all blocks refered from these branches (numbers are
2143  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2144  *      appropriately.
2145  */
2146 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2147                                struct buffer_head *parent_bh,
2148                                __le32 *first, __le32 *last, int depth)
2149 {
2150         ext4_fsblk_t nr;
2151         __le32 *p;
2152
2153         if (is_handle_aborted(handle))
2154                 return;
2155
2156         if (depth--) {
2157                 struct buffer_head *bh;
2158                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2159                 p = last;
2160                 while (--p >= first) {
2161                         nr = le32_to_cpu(*p);
2162                         if (!nr)
2163                                 continue;               /* A hole */
2164
2165                         /* Go read the buffer for the next level down */
2166                         bh = sb_bread(inode->i_sb, nr);
2167
2168                         /*
2169                          * A read failure? Report error and clear slot
2170                          * (should be rare).
2171                          */
2172                         if (!bh) {
2173                                 ext4_error(inode->i_sb, "ext4_free_branches",
2174                                            "Read failure, inode=%lu, block=%llu",
2175                                            inode->i_ino, nr);
2176                                 continue;
2177                         }
2178
2179                         /* This zaps the entire block.  Bottom up. */
2180                         BUFFER_TRACE(bh, "free child branches");
2181                         ext4_free_branches(handle, inode, bh,
2182                                            (__le32*)bh->b_data,
2183                                            (__le32*)bh->b_data + addr_per_block,
2184                                            depth);
2185
2186                         /*
2187                          * We've probably journalled the indirect block several
2188                          * times during the truncate.  But it's no longer
2189                          * needed and we now drop it from the transaction via
2190                          * jbd2_journal_revoke().
2191                          *
2192                          * That's easy if it's exclusively part of this
2193                          * transaction.  But if it's part of the committing
2194                          * transaction then jbd2_journal_forget() will simply
2195                          * brelse() it.  That means that if the underlying
2196                          * block is reallocated in ext4_get_block(),
2197                          * unmap_underlying_metadata() will find this block
2198                          * and will try to get rid of it.  damn, damn.
2199                          *
2200                          * If this block has already been committed to the
2201                          * journal, a revoke record will be written.  And
2202                          * revoke records must be emitted *before* clearing
2203                          * this block's bit in the bitmaps.
2204                          */
2205                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2206
2207                         /*
2208                          * Everything below this this pointer has been
2209                          * released.  Now let this top-of-subtree go.
2210                          *
2211                          * We want the freeing of this indirect block to be
2212                          * atomic in the journal with the updating of the
2213                          * bitmap block which owns it.  So make some room in
2214                          * the journal.
2215                          *
2216                          * We zero the parent pointer *after* freeing its
2217                          * pointee in the bitmaps, so if extend_transaction()
2218                          * for some reason fails to put the bitmap changes and
2219                          * the release into the same transaction, recovery
2220                          * will merely complain about releasing a free block,
2221                          * rather than leaking blocks.
2222                          */
2223                         if (is_handle_aborted(handle))
2224                                 return;
2225                         if (try_to_extend_transaction(handle, inode)) {
2226                                 ext4_mark_inode_dirty(handle, inode);
2227                                 ext4_journal_test_restart(handle, inode);
2228                         }
2229
2230                         ext4_free_blocks(handle, inode, nr, 1, 1);
2231
2232                         if (parent_bh) {
2233                                 /*
2234                                  * The block which we have just freed is
2235                                  * pointed to by an indirect block: journal it
2236                                  */
2237                                 BUFFER_TRACE(parent_bh, "get_write_access");
2238                                 if (!ext4_journal_get_write_access(handle,
2239                                                                    parent_bh)){
2240                                         *p = 0;
2241                                         BUFFER_TRACE(parent_bh,
2242                                         "call ext4_journal_dirty_metadata");
2243                                         ext4_journal_dirty_metadata(handle,
2244                                                                     parent_bh);
2245                                 }
2246                         }
2247                 }
2248         } else {
2249                 /* We have reached the bottom of the tree. */
2250                 BUFFER_TRACE(parent_bh, "free data blocks");
2251                 ext4_free_data(handle, inode, parent_bh, first, last);
2252         }
2253 }
2254
2255 /*
2256  * ext4_truncate()
2257  *
2258  * We block out ext4_get_block() block instantiations across the entire
2259  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2260  * simultaneously on behalf of the same inode.
2261  *
2262  * As we work through the truncate and commmit bits of it to the journal there
2263  * is one core, guiding principle: the file's tree must always be consistent on
2264  * disk.  We must be able to restart the truncate after a crash.
2265  *
2266  * The file's tree may be transiently inconsistent in memory (although it
2267  * probably isn't), but whenever we close off and commit a journal transaction,
2268  * the contents of (the filesystem + the journal) must be consistent and
2269  * restartable.  It's pretty simple, really: bottom up, right to left (although
2270  * left-to-right works OK too).
2271  *
2272  * Note that at recovery time, journal replay occurs *before* the restart of
2273  * truncate against the orphan inode list.
2274  *
2275  * The committed inode has the new, desired i_size (which is the same as
2276  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2277  * that this inode's truncate did not complete and it will again call
2278  * ext4_truncate() to have another go.  So there will be instantiated blocks
2279  * to the right of the truncation point in a crashed ext4 filesystem.  But
2280  * that's fine - as long as they are linked from the inode, the post-crash
2281  * ext4_truncate() run will find them and release them.
2282  */
2283 void ext4_truncate(struct inode *inode)
2284 {
2285         handle_t *handle;
2286         struct ext4_inode_info *ei = EXT4_I(inode);
2287         __le32 *i_data = ei->i_data;
2288         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2289         struct address_space *mapping = inode->i_mapping;
2290         ext4_lblk_t offsets[4];
2291         Indirect chain[4];
2292         Indirect *partial;
2293         __le32 nr = 0;
2294         int n;
2295         ext4_lblk_t last_block;
2296         unsigned blocksize = inode->i_sb->s_blocksize;
2297         struct page *page;
2298
2299         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2300             S_ISLNK(inode->i_mode)))
2301                 return;
2302         if (ext4_inode_is_fast_symlink(inode))
2303                 return;
2304         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2305                 return;
2306
2307         /*
2308          * We have to lock the EOF page here, because lock_page() nests
2309          * outside jbd2_journal_start().
2310          */
2311         if ((inode->i_size & (blocksize - 1)) == 0) {
2312                 /* Block boundary? Nothing to do */
2313                 page = NULL;
2314         } else {
2315                 page = grab_cache_page(mapping,
2316                                 inode->i_size >> PAGE_CACHE_SHIFT);
2317                 if (!page)
2318                         return;
2319         }
2320
2321         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2322                 ext4_ext_truncate(inode, page);
2323                 return;
2324         }
2325
2326         handle = start_transaction(inode);
2327         if (IS_ERR(handle)) {
2328                 if (page) {
2329                         clear_highpage(page);
2330                         flush_dcache_page(page);
2331                         unlock_page(page);
2332                         page_cache_release(page);
2333                 }
2334                 return;         /* AKPM: return what? */
2335         }
2336
2337         last_block = (inode->i_size + blocksize-1)
2338                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2339
2340         if (page)
2341                 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2342
2343         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2344         if (n == 0)
2345                 goto out_stop;  /* error */
2346
2347         /*
2348          * OK.  This truncate is going to happen.  We add the inode to the
2349          * orphan list, so that if this truncate spans multiple transactions,
2350          * and we crash, we will resume the truncate when the filesystem
2351          * recovers.  It also marks the inode dirty, to catch the new size.
2352          *
2353          * Implication: the file must always be in a sane, consistent
2354          * truncatable state while each transaction commits.
2355          */
2356         if (ext4_orphan_add(handle, inode))
2357                 goto out_stop;
2358
2359         /*
2360          * The orphan list entry will now protect us from any crash which
2361          * occurs before the truncate completes, so it is now safe to propagate
2362          * the new, shorter inode size (held for now in i_size) into the
2363          * on-disk inode. We do this via i_disksize, which is the value which
2364          * ext4 *really* writes onto the disk inode.
2365          */
2366         ei->i_disksize = inode->i_size;
2367
2368         /*
2369          * From here we block out all ext4_get_block() callers who want to
2370          * modify the block allocation tree.
2371          */
2372         down_write(&ei->i_data_sem);
2373
2374         if (n == 1) {           /* direct blocks */
2375                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2376                                i_data + EXT4_NDIR_BLOCKS);
2377                 goto do_indirects;
2378         }
2379
2380         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2381         /* Kill the top of shared branch (not detached) */
2382         if (nr) {
2383                 if (partial == chain) {
2384                         /* Shared branch grows from the inode */
2385                         ext4_free_branches(handle, inode, NULL,
2386                                            &nr, &nr+1, (chain+n-1) - partial);
2387                         *partial->p = 0;
2388                         /*
2389                          * We mark the inode dirty prior to restart,
2390                          * and prior to stop.  No need for it here.
2391                          */
2392                 } else {
2393                         /* Shared branch grows from an indirect block */
2394                         BUFFER_TRACE(partial->bh, "get_write_access");
2395                         ext4_free_branches(handle, inode, partial->bh,
2396                                         partial->p,
2397                                         partial->p+1, (chain+n-1) - partial);
2398                 }
2399         }
2400         /* Clear the ends of indirect blocks on the shared branch */
2401         while (partial > chain) {
2402                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2403                                    (__le32*)partial->bh->b_data+addr_per_block,
2404                                    (chain+n-1) - partial);
2405                 BUFFER_TRACE(partial->bh, "call brelse");
2406                 brelse (partial->bh);
2407                 partial--;
2408         }
2409 do_indirects:
2410         /* Kill the remaining (whole) subtrees */
2411         switch (offsets[0]) {
2412         default:
2413                 nr = i_data[EXT4_IND_BLOCK];
2414                 if (nr) {
2415                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2416                         i_data[EXT4_IND_BLOCK] = 0;
2417                 }
2418         case EXT4_IND_BLOCK:
2419                 nr = i_data[EXT4_DIND_BLOCK];
2420                 if (nr) {
2421                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2422                         i_data[EXT4_DIND_BLOCK] = 0;
2423                 }
2424         case EXT4_DIND_BLOCK:
2425                 nr = i_data[EXT4_TIND_BLOCK];
2426                 if (nr) {
2427                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2428                         i_data[EXT4_TIND_BLOCK] = 0;
2429                 }
2430         case EXT4_TIND_BLOCK:
2431                 ;
2432         }
2433
2434         ext4_discard_reservation(inode);
2435
2436         up_write(&ei->i_data_sem);
2437         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2438         ext4_mark_inode_dirty(handle, inode);
2439
2440         /*
2441          * In a multi-transaction truncate, we only make the final transaction
2442          * synchronous
2443          */
2444         if (IS_SYNC(inode))
2445                 handle->h_sync = 1;
2446 out_stop:
2447         /*
2448          * If this was a simple ftruncate(), and the file will remain alive
2449          * then we need to clear up the orphan record which we created above.
2450          * However, if this was a real unlink then we were called by
2451          * ext4_delete_inode(), and we allow that function to clean up the
2452          * orphan info for us.
2453          */
2454         if (inode->i_nlink)
2455                 ext4_orphan_del(handle, inode);
2456
2457         ext4_journal_stop(handle);
2458 }
2459
2460 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2461                 unsigned long ino, struct ext4_iloc *iloc)
2462 {
2463         unsigned long desc, group_desc;
2464         ext4_group_t block_group;
2465         unsigned long offset;
2466         ext4_fsblk_t block;
2467         struct buffer_head *bh;
2468         struct ext4_group_desc * gdp;
2469
2470         if (!ext4_valid_inum(sb, ino)) {
2471                 /*
2472                  * This error is already checked for in namei.c unless we are
2473                  * looking at an NFS filehandle, in which case no error
2474                  * report is needed
2475                  */
2476                 return 0;
2477         }
2478
2479         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2480         if (block_group >= EXT4_SB(sb)->s_groups_count) {
2481                 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2482                 return 0;
2483         }
2484         smp_rmb();
2485         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2486         desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2487         bh = EXT4_SB(sb)->s_group_desc[group_desc];
2488         if (!bh) {
2489                 ext4_error (sb, "ext4_get_inode_block",
2490                             "Descriptor not loaded");
2491                 return 0;
2492         }
2493
2494         gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2495                 desc * EXT4_DESC_SIZE(sb));
2496         /*
2497          * Figure out the offset within the block group inode table
2498          */
2499         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2500                 EXT4_INODE_SIZE(sb);
2501         block = ext4_inode_table(sb, gdp) +
2502                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2503
2504         iloc->block_group = block_group;
2505         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2506         return block;
2507 }
2508
2509 /*
2510  * ext4_get_inode_loc returns with an extra refcount against the inode's
2511  * underlying buffer_head on success. If 'in_mem' is true, we have all
2512  * data in memory that is needed to recreate the on-disk version of this
2513  * inode.
2514  */
2515 static int __ext4_get_inode_loc(struct inode *inode,
2516                                 struct ext4_iloc *iloc, int in_mem)
2517 {
2518         ext4_fsblk_t block;
2519         struct buffer_head *bh;
2520
2521         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2522         if (!block)
2523                 return -EIO;
2524
2525         bh = sb_getblk(inode->i_sb, block);
2526         if (!bh) {
2527                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2528                                 "unable to read inode block - "
2529                                 "inode=%lu, block=%llu",
2530                                  inode->i_ino, block);
2531                 return -EIO;
2532         }
2533         if (!buffer_uptodate(bh)) {
2534                 lock_buffer(bh);
2535                 if (buffer_uptodate(bh)) {
2536                         /* someone brought it uptodate while we waited */
2537                         unlock_buffer(bh);
2538                         goto has_buffer;
2539                 }
2540
2541                 /*
2542                  * If we have all information of the inode in memory and this
2543                  * is the only valid inode in the block, we need not read the
2544                  * block.
2545                  */
2546                 if (in_mem) {
2547                         struct buffer_head *bitmap_bh;
2548                         struct ext4_group_desc *desc;
2549                         int inodes_per_buffer;
2550                         int inode_offset, i;
2551                         ext4_group_t block_group;
2552                         int start;
2553
2554                         block_group = (inode->i_ino - 1) /
2555                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2556                         inodes_per_buffer = bh->b_size /
2557                                 EXT4_INODE_SIZE(inode->i_sb);
2558                         inode_offset = ((inode->i_ino - 1) %
2559                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2560                         start = inode_offset & ~(inodes_per_buffer - 1);
2561
2562                         /* Is the inode bitmap in cache? */
2563                         desc = ext4_get_group_desc(inode->i_sb,
2564                                                 block_group, NULL);
2565                         if (!desc)
2566                                 goto make_io;
2567
2568                         bitmap_bh = sb_getblk(inode->i_sb,
2569                                 ext4_inode_bitmap(inode->i_sb, desc));
2570                         if (!bitmap_bh)
2571                                 goto make_io;
2572
2573                         /*
2574                          * If the inode bitmap isn't in cache then the
2575                          * optimisation may end up performing two reads instead
2576                          * of one, so skip it.
2577                          */
2578                         if (!buffer_uptodate(bitmap_bh)) {
2579                                 brelse(bitmap_bh);
2580                                 goto make_io;
2581                         }
2582                         for (i = start; i < start + inodes_per_buffer; i++) {
2583                                 if (i == inode_offset)
2584                                         continue;
2585                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2586                                         break;
2587                         }
2588                         brelse(bitmap_bh);
2589                         if (i == start + inodes_per_buffer) {
2590                                 /* all other inodes are free, so skip I/O */
2591                                 memset(bh->b_data, 0, bh->b_size);
2592                                 set_buffer_uptodate(bh);
2593                                 unlock_buffer(bh);
2594                                 goto has_buffer;
2595                         }
2596                 }
2597
2598 make_io:
2599                 /*
2600                  * There are other valid inodes in the buffer, this inode
2601                  * has in-inode xattrs, or we don't have this inode in memory.
2602                  * Read the block from disk.
2603                  */
2604                 get_bh(bh);
2605                 bh->b_end_io = end_buffer_read_sync;
2606                 submit_bh(READ_META, bh);
2607                 wait_on_buffer(bh);
2608                 if (!buffer_uptodate(bh)) {
2609                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2610                                         "unable to read inode block - "
2611                                         "inode=%lu, block=%llu",
2612                                         inode->i_ino, block);
2613                         brelse(bh);
2614                         return -EIO;
2615                 }
2616         }
2617 has_buffer:
2618         iloc->bh = bh;
2619         return 0;
2620 }
2621
2622 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2623 {
2624         /* We have all inode data except xattrs in memory here. */
2625         return __ext4_get_inode_loc(inode, iloc,
2626                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2627 }
2628
2629 void ext4_set_inode_flags(struct inode *inode)
2630 {
2631         unsigned int flags = EXT4_I(inode)->i_flags;
2632
2633         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2634         if (flags & EXT4_SYNC_FL)
2635                 inode->i_flags |= S_SYNC;
2636         if (flags & EXT4_APPEND_FL)
2637                 inode->i_flags |= S_APPEND;
2638         if (flags & EXT4_IMMUTABLE_FL)
2639                 inode->i_flags |= S_IMMUTABLE;
2640         if (flags & EXT4_NOATIME_FL)
2641                 inode->i_flags |= S_NOATIME;
2642         if (flags & EXT4_DIRSYNC_FL)
2643                 inode->i_flags |= S_DIRSYNC;
2644 }
2645
2646 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2647 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2648 {
2649         unsigned int flags = ei->vfs_inode.i_flags;
2650
2651         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2652                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2653         if (flags & S_SYNC)
2654                 ei->i_flags |= EXT4_SYNC_FL;
2655         if (flags & S_APPEND)
2656                 ei->i_flags |= EXT4_APPEND_FL;
2657         if (flags & S_IMMUTABLE)
2658                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2659         if (flags & S_NOATIME)
2660                 ei->i_flags |= EXT4_NOATIME_FL;
2661         if (flags & S_DIRSYNC)
2662                 ei->i_flags |= EXT4_DIRSYNC_FL;
2663 }
2664 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2665                                         struct ext4_inode_info *ei)
2666 {
2667         blkcnt_t i_blocks ;
2668         struct inode *inode = &(ei->vfs_inode);
2669         struct super_block *sb = inode->i_sb;
2670
2671         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2672                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2673                 /* we are using combined 48 bit field */
2674                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2675                                         le32_to_cpu(raw_inode->i_blocks_lo);
2676                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2677                         /* i_blocks represent file system block size */
2678                         return i_blocks  << (inode->i_blkbits - 9);
2679                 } else {
2680                         return i_blocks;
2681                 }
2682         } else {
2683                 return le32_to_cpu(raw_inode->i_blocks_lo);
2684         }
2685 }
2686
2687 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2688 {
2689         struct ext4_iloc iloc;
2690         struct ext4_inode *raw_inode;
2691         struct ext4_inode_info *ei;
2692         struct buffer_head *bh;
2693         struct inode *inode;
2694         long ret;
2695         int block;
2696
2697         inode = iget_locked(sb, ino);
2698         if (!inode)
2699                 return ERR_PTR(-ENOMEM);
2700         if (!(inode->i_state & I_NEW))
2701                 return inode;
2702
2703         ei = EXT4_I(inode);
2704 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2705         ei->i_acl = EXT4_ACL_NOT_CACHED;
2706         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2707 #endif
2708         ei->i_block_alloc_info = NULL;
2709
2710         ret = __ext4_get_inode_loc(inode, &iloc, 0);
2711         if (ret < 0)
2712                 goto bad_inode;
2713         bh = iloc.bh;
2714         raw_inode = ext4_raw_inode(&iloc);
2715         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2716         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2717         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2718         if(!(test_opt (inode->i_sb, NO_UID32))) {
2719                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2720                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2721         }
2722         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2723
2724         ei->i_state = 0;
2725         ei->i_dir_start_lookup = 0;
2726         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2727         /* We now have enough fields to check if the inode was active or not.
2728          * This is needed because nfsd might try to access dead inodes
2729          * the test is that same one that e2fsck uses
2730          * NeilBrown 1999oct15
2731          */
2732         if (inode->i_nlink == 0) {
2733                 if (inode->i_mode == 0 ||
2734                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2735                         /* this inode is deleted */
2736                         brelse (bh);
2737                         ret = -ESTALE;
2738                         goto bad_inode;
2739                 }
2740                 /* The only unlinked inodes we let through here have
2741                  * valid i_mode and are being read by the orphan
2742                  * recovery code: that's fine, we're about to complete
2743                  * the process of deleting those. */
2744         }
2745         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2746         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2747         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2748         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2749             cpu_to_le32(EXT4_OS_HURD)) {
2750                 ei->i_file_acl |=
2751                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2752         }
2753         inode->i_size = ext4_isize(raw_inode);
2754         ei->i_disksize = inode->i_size;
2755         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2756         ei->i_block_group = iloc.block_group;
2757         /*
2758          * NOTE! The in-memory inode i_data array is in little-endian order
2759          * even on big-endian machines: we do NOT byteswap the block numbers!
2760          */
2761         for (block = 0; block < EXT4_N_BLOCKS; block++)
2762                 ei->i_data[block] = raw_inode->i_block[block];
2763         INIT_LIST_HEAD(&ei->i_orphan);
2764
2765         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2766                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2767                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2768                     EXT4_INODE_SIZE(inode->i_sb)) {
2769                         brelse (bh);
2770                         ret = -EIO;
2771                         goto bad_inode;
2772                 }
2773                 if (ei->i_extra_isize == 0) {
2774                         /* The extra space is currently unused. Use it. */
2775                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2776                                             EXT4_GOOD_OLD_INODE_SIZE;
2777                 } else {
2778                         __le32 *magic = (void *)raw_inode +
2779                                         EXT4_GOOD_OLD_INODE_SIZE +
2780                                         ei->i_extra_isize;
2781                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2782                                  ei->i_state |= EXT4_STATE_XATTR;
2783                 }
2784         } else
2785                 ei->i_extra_isize = 0;
2786
2787         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2788         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2789         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2790         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2791
2792         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2793         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2794                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2795                         inode->i_version |=
2796                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2797         }
2798
2799         if (S_ISREG(inode->i_mode)) {
2800                 inode->i_op = &ext4_file_inode_operations;
2801                 inode->i_fop = &ext4_file_operations;
2802                 ext4_set_aops(inode);
2803         } else if (S_ISDIR(inode->i_mode)) {
2804                 inode->i_op = &ext4_dir_inode_operations;
2805                 inode->i_fop = &ext4_dir_operations;
2806         } else if (S_ISLNK(inode->i_mode)) {
2807                 if (ext4_inode_is_fast_symlink(inode))
2808                         inode->i_op = &ext4_fast_symlink_inode_operations;
2809                 else {
2810                         inode->i_op = &ext4_symlink_inode_operations;
2811                         ext4_set_aops(inode);
2812                 }
2813         } else {
2814                 inode->i_op = &ext4_special_inode_operations;
2815                 if (raw_inode->i_block[0])
2816                         init_special_inode(inode, inode->i_mode,
2817                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2818                 else
2819                         init_special_inode(inode, inode->i_mode,
2820                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2821         }
2822         brelse (iloc.bh);
2823         ext4_set_inode_flags(inode);
2824         unlock_new_inode(inode);
2825         return inode;
2826
2827 bad_inode:
2828         iget_failed(inode);
2829         return ERR_PTR(ret);
2830 }
2831
2832 static int ext4_inode_blocks_set(handle_t *handle,
2833                                 struct ext4_inode *raw_inode,
2834                                 struct ext4_inode_info *ei)
2835 {
2836         struct inode *inode = &(ei->vfs_inode);
2837         u64 i_blocks = inode->i_blocks;
2838         struct super_block *sb = inode->i_sb;
2839         int err = 0;
2840
2841         if (i_blocks <= ~0U) {
2842                 /*
2843                  * i_blocks can be represnted in a 32 bit variable
2844                  * as multiple of 512 bytes
2845                  */
2846                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2847                 raw_inode->i_blocks_high = 0;
2848                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2849         } else if (i_blocks <= 0xffffffffffffULL) {
2850                 /*
2851                  * i_blocks can be represented in a 48 bit variable
2852                  * as multiple of 512 bytes
2853                  */
2854                 err = ext4_update_rocompat_feature(handle, sb,
2855                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2856                 if (err)
2857                         goto  err_out;
2858                 /* i_block is stored in the split  48 bit fields */
2859                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2860                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2861                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2862         } else {
2863                 /*
2864                  * i_blocks should be represented in a 48 bit variable
2865                  * as multiple of  file system block size
2866                  */
2867                 err = ext4_update_rocompat_feature(handle, sb,
2868                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2869                 if (err)
2870                         goto  err_out;
2871                 ei->i_flags |= EXT4_HUGE_FILE_FL;
2872                 /* i_block is stored in file system block size */
2873                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2874                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2875                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2876         }
2877 err_out:
2878         return err;
2879 }
2880
2881 /*
2882  * Post the struct inode info into an on-disk inode location in the
2883  * buffer-cache.  This gobbles the caller's reference to the
2884  * buffer_head in the inode location struct.
2885  *
2886  * The caller must have write access to iloc->bh.
2887  */
2888 static int ext4_do_update_inode(handle_t *handle,
2889                                 struct inode *inode,
2890                                 struct ext4_iloc *iloc)
2891 {
2892         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2893         struct ext4_inode_info *ei = EXT4_I(inode);
2894         struct buffer_head *bh = iloc->bh;
2895         int err = 0, rc, block;
2896
2897         /* For fields not not tracking in the in-memory inode,
2898          * initialise them to zero for new inodes. */
2899         if (ei->i_state & EXT4_STATE_NEW)
2900                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2901
2902         ext4_get_inode_flags(ei);
2903         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2904         if(!(test_opt(inode->i_sb, NO_UID32))) {
2905                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2906                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2907 /*
2908  * Fix up interoperability with old kernels. Otherwise, old inodes get
2909  * re-used with the upper 16 bits of the uid/gid intact
2910  */
2911                 if(!ei->i_dtime) {
2912                         raw_inode->i_uid_high =
2913                                 cpu_to_le16(high_16_bits(inode->i_uid));
2914                         raw_inode->i_gid_high =
2915                                 cpu_to_le16(high_16_bits(inode->i_gid));
2916                 } else {
2917                         raw_inode->i_uid_high = 0;
2918                         raw_inode->i_gid_high = 0;
2919                 }
2920         } else {
2921                 raw_inode->i_uid_low =
2922                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2923                 raw_inode->i_gid_low =
2924                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2925                 raw_inode->i_uid_high = 0;
2926                 raw_inode->i_gid_high = 0;
2927         }
2928         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2929
2930         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2931         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2932         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2933         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2934
2935         if (ext4_inode_blocks_set(handle, raw_inode, ei))
2936                 goto out_brelse;
2937         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2938         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2939         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2940             cpu_to_le32(EXT4_OS_HURD))
2941                 raw_inode->i_file_acl_high =
2942                         cpu_to_le16(ei->i_file_acl >> 32);
2943         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2944         ext4_isize_set(raw_inode, ei->i_disksize);
2945         if (ei->i_disksize > 0x7fffffffULL) {
2946                 struct super_block *sb = inode->i_sb;
2947                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2948                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2949                                 EXT4_SB(sb)->s_es->s_rev_level ==
2950                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2951                         /* If this is the first large file
2952                          * created, add a flag to the superblock.
2953                          */
2954                         err = ext4_journal_get_write_access(handle,
2955                                         EXT4_SB(sb)->s_sbh);
2956                         if (err)
2957                                 goto out_brelse;
2958                         ext4_update_dynamic_rev(sb);
2959                         EXT4_SET_RO_COMPAT_FEATURE(sb,
2960                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2961                         sb->s_dirt = 1;
2962                         handle->h_sync = 1;
2963                         err = ext4_journal_dirty_metadata(handle,
2964                                         EXT4_SB(sb)->s_sbh);
2965                 }
2966         }
2967         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2968         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2969                 if (old_valid_dev(inode->i_rdev)) {
2970                         raw_inode->i_block[0] =
2971                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2972                         raw_inode->i_block[1] = 0;
2973                 } else {
2974                         raw_inode->i_block[0] = 0;
2975                         raw_inode->i_block[1] =
2976                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2977                         raw_inode->i_block[2] = 0;
2978                 }
2979         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2980                 raw_inode->i_block[block] = ei->i_data[block];
2981
2982         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2983         if (ei->i_extra_isize) {
2984                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2985                         raw_inode->i_version_hi =
2986                         cpu_to_le32(inode->i_version >> 32);
2987                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2988         }
2989
2990
2991         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2992         rc = ext4_journal_dirty_metadata(handle, bh);
2993         if (!err)
2994                 err = rc;
2995         ei->i_state &= ~EXT4_STATE_NEW;
2996
2997 out_brelse:
2998         brelse (bh);
2999         ext4_std_error(inode->i_sb, err);
3000         return err;
3001 }
3002
3003 /*
3004  * ext4_write_inode()
3005  *
3006  * We are called from a few places:
3007  *
3008  * - Within generic_file_write() for O_SYNC files.
3009  *   Here, there will be no transaction running. We wait for any running
3010  *   trasnaction to commit.
3011  *
3012  * - Within sys_sync(), kupdate and such.
3013  *   We wait on commit, if tol to.
3014  *
3015  * - Within prune_icache() (PF_MEMALLOC == true)
3016  *   Here we simply return.  We can't afford to block kswapd on the
3017  *   journal commit.
3018  *
3019  * In all cases it is actually safe for us to return without doing anything,
3020  * because the inode has been copied into a raw inode buffer in
3021  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3022  * knfsd.
3023  *
3024  * Note that we are absolutely dependent upon all inode dirtiers doing the
3025  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3026  * which we are interested.
3027  *
3028  * It would be a bug for them to not do this.  The code:
3029  *
3030  *      mark_inode_dirty(inode)
3031  *      stuff();
3032  *      inode->i_size = expr;
3033  *
3034  * is in error because a kswapd-driven write_inode() could occur while
3035  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3036  * will no longer be on the superblock's dirty inode list.
3037  */
3038 int ext4_write_inode(struct inode *inode, int wait)
3039 {
3040         if (current->flags & PF_MEMALLOC)
3041                 return 0;
3042
3043         if (ext4_journal_current_handle()) {
3044                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3045                 dump_stack();
3046                 return -EIO;
3047         }
3048
3049         if (!wait)
3050                 return 0;
3051
3052         return ext4_force_commit(inode->i_sb);
3053 }
3054
3055 /*
3056  * ext4_setattr()
3057  *
3058  * Called from notify_change.
3059  *
3060  * We want to trap VFS attempts to truncate the file as soon as
3061  * possible.  In particular, we want to make sure that when the VFS
3062  * shrinks i_size, we put the inode on the orphan list and modify
3063  * i_disksize immediately, so that during the subsequent flushing of
3064  * dirty pages and freeing of disk blocks, we can guarantee that any
3065  * commit will leave the blocks being flushed in an unused state on
3066  * disk.  (On recovery, the inode will get truncated and the blocks will
3067  * be freed, so we have a strong guarantee that no future commit will
3068  * leave these blocks visible to the user.)
3069  *
3070  * Called with inode->sem down.
3071  */
3072 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3073 {
3074         struct inode *inode = dentry->d_inode;
3075         int error, rc = 0;
3076         const unsigned int ia_valid = attr->ia_valid;
3077
3078         error = inode_change_ok(inode, attr);
3079         if (error)
3080                 return error;
3081
3082         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3083                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3084                 handle_t *handle;
3085
3086                 /* (user+group)*(old+new) structure, inode write (sb,
3087                  * inode block, ? - but truncate inode update has it) */
3088                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3089                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3090                 if (IS_ERR(handle)) {
3091                         error = PTR_ERR(handle);
3092                         goto err_out;
3093                 }
3094                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3095                 if (error) {
3096                         ext4_journal_stop(handle);
3097                         return error;
3098                 }
3099                 /* Update corresponding info in inode so that everything is in
3100                  * one transaction */
3101                 if (attr->ia_valid & ATTR_UID)
3102                         inode->i_uid = attr->ia_uid;
3103                 if (attr->ia_valid & ATTR_GID)
3104                         inode->i_gid = attr->ia_gid;
3105                 error = ext4_mark_inode_dirty(handle, inode);
3106                 ext4_journal_stop(handle);
3107         }
3108
3109         if (attr->ia_valid & ATTR_SIZE) {
3110                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3111                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3112
3113                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3114                                 error = -EFBIG;
3115                                 goto err_out;
3116                         }
3117                 }
3118         }
3119
3120         if (S_ISREG(inode->i_mode) &&
3121             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3122                 handle_t *handle;
3123
3124                 handle = ext4_journal_start(inode, 3);
3125                 if (IS_ERR(handle)) {
3126                         error = PTR_ERR(handle);
3127                         goto err_out;
3128                 }
3129
3130                 error = ext4_orphan_add(handle, inode);
3131                 EXT4_I(inode)->i_disksize = attr->ia_size;
3132                 rc = ext4_mark_inode_dirty(handle, inode);
3133                 if (!error)
3134                         error = rc;
3135                 ext4_journal_stop(handle);
3136         }
3137
3138         rc = inode_setattr(inode, attr);
3139
3140         /* If inode_setattr's call to ext4_truncate failed to get a
3141          * transaction handle at all, we need to clean up the in-core
3142          * orphan list manually. */
3143         if (inode->i_nlink)
3144                 ext4_orphan_del(NULL, inode);
3145
3146         if (!rc && (ia_valid & ATTR_MODE))
3147                 rc = ext4_acl_chmod(inode);
3148
3149 err_out:
3150         ext4_std_error(inode->i_sb, error);
3151         if (!error)
3152                 error = rc;
3153         return error;
3154 }
3155
3156
3157 /*
3158  * How many blocks doth make a writepage()?
3159  *
3160  * With N blocks per page, it may be:
3161  * N data blocks
3162  * 2 indirect block
3163  * 2 dindirect
3164  * 1 tindirect
3165  * N+5 bitmap blocks (from the above)
3166  * N+5 group descriptor summary blocks
3167  * 1 inode block
3168  * 1 superblock.
3169  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3170  *
3171  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3172  *
3173  * With ordered or writeback data it's the same, less the N data blocks.
3174  *
3175  * If the inode's direct blocks can hold an integral number of pages then a
3176  * page cannot straddle two indirect blocks, and we can only touch one indirect
3177  * and dindirect block, and the "5" above becomes "3".
3178  *
3179  * This still overestimates under most circumstances.  If we were to pass the
3180  * start and end offsets in here as well we could do block_to_path() on each
3181  * block and work out the exact number of indirects which are touched.  Pah.
3182  */
3183
3184 int ext4_writepage_trans_blocks(struct inode *inode)
3185 {
3186         int bpp = ext4_journal_blocks_per_page(inode);
3187         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3188         int ret;
3189
3190         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3191                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3192
3193         if (ext4_should_journal_data(inode))
3194                 ret = 3 * (bpp + indirects) + 2;
3195         else
3196                 ret = 2 * (bpp + indirects) + 2;
3197
3198 #ifdef CONFIG_QUOTA
3199         /* We know that structure was already allocated during DQUOT_INIT so
3200          * we will be updating only the data blocks + inodes */
3201         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3202 #endif
3203
3204         return ret;
3205 }
3206
3207 /*
3208  * The caller must have previously called ext4_reserve_inode_write().
3209  * Give this, we know that the caller already has write access to iloc->bh.
3210  */
3211 int ext4_mark_iloc_dirty(handle_t *handle,
3212                 struct inode *inode, struct ext4_iloc *iloc)
3213 {
3214         int err = 0;
3215
3216         if (test_opt(inode->i_sb, I_VERSION))
3217                 inode_inc_iversion(inode);
3218
3219         /* the do_update_inode consumes one bh->b_count */
3220         get_bh(iloc->bh);
3221
3222         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3223         err = ext4_do_update_inode(handle, inode, iloc);
3224         put_bh(iloc->bh);
3225         return err;
3226 }
3227
3228 /*
3229  * On success, We end up with an outstanding reference count against
3230  * iloc->bh.  This _must_ be cleaned up later.
3231  */
3232
3233 int
3234 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3235                          struct ext4_iloc *iloc)
3236 {
3237         int err = 0;
3238         if (handle) {
3239                 err = ext4_get_inode_loc(inode, iloc);
3240                 if (!err) {
3241                         BUFFER_TRACE(iloc->bh, "get_write_access");
3242                         err = ext4_journal_get_write_access(handle, iloc->bh);
3243                         if (err) {
3244                                 brelse(iloc->bh);
3245                                 iloc->bh = NULL;
3246                         }
3247                 }
3248         }
3249         ext4_std_error(inode->i_sb, err);
3250         return err;
3251 }
3252
3253 /*
3254  * Expand an inode by new_extra_isize bytes.
3255  * Returns 0 on success or negative error number on failure.
3256  */
3257 static int ext4_expand_extra_isize(struct inode *inode,
3258                                    unsigned int new_extra_isize,
3259                                    struct ext4_iloc iloc,
3260                                    handle_t *handle)
3261 {
3262         struct ext4_inode *raw_inode;
3263         struct ext4_xattr_ibody_header *header;
3264         struct ext4_xattr_entry *entry;
3265
3266         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3267                 return 0;
3268
3269         raw_inode = ext4_raw_inode(&iloc);
3270
3271         header = IHDR(inode, raw_inode);
3272         entry = IFIRST(header);
3273
3274         /* No extended attributes present */
3275         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3276                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3277                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3278                         new_extra_isize);
3279                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3280                 return 0;
3281         }
3282
3283         /* try to expand with EAs present */
3284         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3285                                           raw_inode, handle);
3286 }
3287
3288 /*
3289  * What we do here is to mark the in-core inode as clean with respect to inode
3290  * dirtiness (it may still be data-dirty).
3291  * This means that the in-core inode may be reaped by prune_icache
3292  * without having to perform any I/O.  This is a very good thing,
3293  * because *any* task may call prune_icache - even ones which
3294  * have a transaction open against a different journal.
3295  *
3296  * Is this cheating?  Not really.  Sure, we haven't written the
3297  * inode out, but prune_icache isn't a user-visible syncing function.
3298  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3299  * we start and wait on commits.
3300  *
3301  * Is this efficient/effective?  Well, we're being nice to the system
3302  * by cleaning up our inodes proactively so they can be reaped
3303  * without I/O.  But we are potentially leaving up to five seconds'
3304  * worth of inodes floating about which prune_icache wants us to
3305  * write out.  One way to fix that would be to get prune_icache()
3306  * to do a write_super() to free up some memory.  It has the desired
3307  * effect.
3308  */
3309 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3310 {
3311         struct ext4_iloc iloc;
3312         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3313         static unsigned int mnt_count;
3314         int err, ret;
3315
3316         might_sleep();
3317         err = ext4_reserve_inode_write(handle, inode, &iloc);
3318         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3319             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3320                 /*
3321                  * We need extra buffer credits since we may write into EA block
3322                  * with this same handle. If journal_extend fails, then it will
3323                  * only result in a minor loss of functionality for that inode.
3324                  * If this is felt to be critical, then e2fsck should be run to
3325                  * force a large enough s_min_extra_isize.
3326                  */
3327                 if ((jbd2_journal_extend(handle,
3328                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3329                         ret = ext4_expand_extra_isize(inode,
3330                                                       sbi->s_want_extra_isize,
3331                                                       iloc, handle);
3332                         if (ret) {
3333                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3334                                 if (mnt_count !=
3335                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3336                                         ext4_warning(inode->i_sb, __FUNCTION__,
3337                                         "Unable to expand inode %lu. Delete"
3338                                         " some EAs or run e2fsck.",
3339                                         inode->i_ino);
3340                                         mnt_count =
3341                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3342                                 }
3343                         }
3344                 }
3345         }
3346         if (!err)
3347                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3348         return err;
3349 }
3350
3351 /*
3352  * ext4_dirty_inode() is called from __mark_inode_dirty()
3353  *
3354  * We're really interested in the case where a file is being extended.
3355  * i_size has been changed by generic_commit_write() and we thus need
3356  * to include the updated inode in the current transaction.
3357  *
3358  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3359  * are allocated to the file.
3360  *
3361  * If the inode is marked synchronous, we don't honour that here - doing
3362  * so would cause a commit on atime updates, which we don't bother doing.
3363  * We handle synchronous inodes at the highest possible level.
3364  */
3365 void ext4_dirty_inode(struct inode *inode)
3366 {
3367         handle_t *current_handle = ext4_journal_current_handle();
3368         handle_t *handle;
3369
3370         handle = ext4_journal_start(inode, 2);
3371         if (IS_ERR(handle))
3372                 goto out;
3373         if (current_handle &&
3374                 current_handle->h_transaction != handle->h_transaction) {
3375                 /* This task has a transaction open against a different fs */
3376                 printk(KERN_EMERG "%s: transactions do not match!\n",
3377                        __FUNCTION__);
3378         } else {
3379                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3380                                 current_handle);
3381                 ext4_mark_inode_dirty(handle, inode);
3382         }
3383         ext4_journal_stop(handle);
3384 out:
3385         return;
3386 }
3387
3388 #if 0
3389 /*
3390  * Bind an inode's backing buffer_head into this transaction, to prevent
3391  * it from being flushed to disk early.  Unlike
3392  * ext4_reserve_inode_write, this leaves behind no bh reference and
3393  * returns no iloc structure, so the caller needs to repeat the iloc
3394  * lookup to mark the inode dirty later.
3395  */
3396 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3397 {
3398         struct ext4_iloc iloc;
3399
3400         int err = 0;
3401         if (handle) {
3402                 err = ext4_get_inode_loc(inode, &iloc);
3403                 if (!err) {
3404                         BUFFER_TRACE(iloc.bh, "get_write_access");
3405                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3406                         if (!err)
3407                                 err = ext4_journal_dirty_metadata(handle,
3408                                                                   iloc.bh);
3409                         brelse(iloc.bh);
3410                 }
3411         }
3412         ext4_std_error(inode->i_sb, err);
3413         return err;
3414 }
3415 #endif
3416
3417 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3418 {
3419         journal_t *journal;
3420         handle_t *handle;
3421         int err;
3422
3423         /*
3424          * We have to be very careful here: changing a data block's
3425          * journaling status dynamically is dangerous.  If we write a
3426          * data block to the journal, change the status and then delete
3427          * that block, we risk forgetting to revoke the old log record
3428          * from the journal and so a subsequent replay can corrupt data.
3429          * So, first we make sure that the journal is empty and that
3430          * nobody is changing anything.
3431          */
3432
3433         journal = EXT4_JOURNAL(inode);
3434         if (is_journal_aborted(journal))
3435                 return -EROFS;
3436
3437         jbd2_journal_lock_updates(journal);
3438         jbd2_journal_flush(journal);
3439
3440         /*
3441          * OK, there are no updates running now, and all cached data is
3442          * synced to disk.  We are now in a completely consistent state
3443          * which doesn't have anything in the journal, and we know that
3444          * no filesystem updates are running, so it is safe to modify
3445          * the inode's in-core data-journaling state flag now.
3446          */
3447
3448         if (val)
3449                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3450         else
3451                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3452         ext4_set_aops(inode);
3453
3454         jbd2_journal_unlock_updates(journal);
3455
3456         /* Finally we can mark the inode as dirty. */
3457
3458         handle = ext4_journal_start(inode, 1);
3459         if (IS_ERR(handle))
3460                 return PTR_ERR(handle);
3461
3462         err = ext4_mark_inode_dirty(handle, inode);
3463         handle->h_sync = 1;
3464         ext4_journal_stop(handle);
3465         ext4_std_error(inode->i_sb, err);
3466
3467         return err;
3468 }