]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/inode.c
Merge branch 'master' of /pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6-omap-h63xx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __FUNCTION__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 /**
247  *      ext4_block_to_path - parse the block number into array of offsets
248  *      @inode: inode in question (we are only interested in its superblock)
249  *      @i_block: block number to be parsed
250  *      @offsets: array to store the offsets in
251  *      @boundary: set this non-zero if the referred-to block is likely to be
252  *             followed (on disk) by an indirect block.
253  *
254  *      To store the locations of file's data ext4 uses a data structure common
255  *      for UNIX filesystems - tree of pointers anchored in the inode, with
256  *      data blocks at leaves and indirect blocks in intermediate nodes.
257  *      This function translates the block number into path in that tree -
258  *      return value is the path length and @offsets[n] is the offset of
259  *      pointer to (n+1)th node in the nth one. If @block is out of range
260  *      (negative or too large) warning is printed and zero returned.
261  *
262  *      Note: function doesn't find node addresses, so no IO is needed. All
263  *      we need to know is the capacity of indirect blocks (taken from the
264  *      inode->i_sb).
265  */
266
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276
277 static int ext4_block_to_path(struct inode *inode,
278                         ext4_lblk_t i_block,
279                         ext4_lblk_t offsets[4], int *boundary)
280 {
281         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283         const long direct_blocks = EXT4_NDIR_BLOCKS,
284                 indirect_blocks = ptrs,
285                 double_blocks = (1 << (ptrs_bits * 2));
286         int n = 0;
287         int final = 0;
288
289         if (i_block < 0) {
290                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291         } else if (i_block < direct_blocks) {
292                 offsets[n++] = i_block;
293                 final = direct_blocks;
294         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295                 offsets[n++] = EXT4_IND_BLOCK;
296                 offsets[n++] = i_block;
297                 final = ptrs;
298         } else if ((i_block -= indirect_blocks) < double_blocks) {
299                 offsets[n++] = EXT4_DIND_BLOCK;
300                 offsets[n++] = i_block >> ptrs_bits;
301                 offsets[n++] = i_block & (ptrs - 1);
302                 final = ptrs;
303         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304                 offsets[n++] = EXT4_TIND_BLOCK;
305                 offsets[n++] = i_block >> (ptrs_bits * 2);
306                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307                 offsets[n++] = i_block & (ptrs - 1);
308                 final = ptrs;
309         } else {
310                 ext4_warning(inode->i_sb, "ext4_block_to_path",
311                                 "block %lu > max",
312                                 i_block + direct_blocks +
313                                 indirect_blocks + double_blocks);
314         }
315         if (boundary)
316                 *boundary = final - 1 - (i_block & (ptrs - 1));
317         return n;
318 }
319
320 /**
321  *      ext4_get_branch - read the chain of indirect blocks leading to data
322  *      @inode: inode in question
323  *      @depth: depth of the chain (1 - direct pointer, etc.)
324  *      @offsets: offsets of pointers in inode/indirect blocks
325  *      @chain: place to store the result
326  *      @err: here we store the error value
327  *
328  *      Function fills the array of triples <key, p, bh> and returns %NULL
329  *      if everything went OK or the pointer to the last filled triple
330  *      (incomplete one) otherwise. Upon the return chain[i].key contains
331  *      the number of (i+1)-th block in the chain (as it is stored in memory,
332  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *      number (it points into struct inode for i==0 and into the bh->b_data
334  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *      block for i>0 and NULL for i==0. In other words, it holds the block
336  *      numbers of the chain, addresses they were taken from (and where we can
337  *      verify that chain did not change) and buffer_heads hosting these
338  *      numbers.
339  *
340  *      Function stops when it stumbles upon zero pointer (absent block)
341  *              (pointer to last triple returned, *@err == 0)
342  *      or when it gets an IO error reading an indirect block
343  *              (ditto, *@err == -EIO)
344  *      or when it reads all @depth-1 indirect blocks successfully and finds
345  *      the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351                                  ext4_lblk_t  *offsets,
352                                  Indirect chain[4], int *err)
353 {
354         struct super_block *sb = inode->i_sb;
355         Indirect *p = chain;
356         struct buffer_head *bh;
357
358         *err = 0;
359         /* i_data is not going away, no lock needed */
360         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361         if (!p->key)
362                 goto no_block;
363         while (--depth) {
364                 bh = sb_bread(sb, le32_to_cpu(p->key));
365                 if (!bh)
366                         goto failure;
367                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368                 /* Reader: end */
369                 if (!p->key)
370                         goto no_block;
371         }
372         return NULL;
373
374 failure:
375         *err = -EIO;
376 no_block:
377         return p;
378 }
379
380 /**
381  *      ext4_find_near - find a place for allocation with sufficient locality
382  *      @inode: owner
383  *      @ind: descriptor of indirect block.
384  *
385  *      This function returns the prefered place for block allocation.
386  *      It is used when heuristic for sequential allocation fails.
387  *      Rules are:
388  *        + if there is a block to the left of our position - allocate near it.
389  *        + if pointer will live in indirect block - allocate near that block.
390  *        + if pointer will live in inode - allocate in the same
391  *          cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *      Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402         struct ext4_inode_info *ei = EXT4_I(inode);
403         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404         __le32 *p;
405         ext4_fsblk_t bg_start;
406         ext4_grpblk_t colour;
407
408         /* Try to find previous block */
409         for (p = ind->p - 1; p >= start; p--) {
410                 if (*p)
411                         return le32_to_cpu(*p);
412         }
413
414         /* No such thing, so let's try location of indirect block */
415         if (ind->bh)
416                 return ind->bh->b_blocknr;
417
418         /*
419          * It is going to be referred to from the inode itself? OK, just put it
420          * into the same cylinder group then.
421          */
422         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423         colour = (current->pid % 16) *
424                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425         return bg_start + colour;
426 }
427
428 /**
429  *      ext4_find_goal - find a prefered place for allocation.
430  *      @inode: owner
431  *      @block:  block we want
432  *      @partial: pointer to the last triple within a chain
433  *
434  *      Normally this function find the prefered place for block allocation,
435  *      returns it.
436  */
437 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
438                 Indirect *partial)
439 {
440         struct ext4_block_alloc_info *block_i;
441
442         block_i =  EXT4_I(inode)->i_block_alloc_info;
443
444         /*
445          * try the heuristic for sequential allocation,
446          * failing that at least try to get decent locality.
447          */
448         if (block_i && (block == block_i->last_alloc_logical_block + 1)
449                 && (block_i->last_alloc_physical_block != 0)) {
450                 return block_i->last_alloc_physical_block + 1;
451         }
452
453         return ext4_find_near(inode, partial);
454 }
455
456 /**
457  *      ext4_blks_to_allocate: Look up the block map and count the number
458  *      of direct blocks need to be allocated for the given branch.
459  *
460  *      @branch: chain of indirect blocks
461  *      @k: number of blocks need for indirect blocks
462  *      @blks: number of data blocks to be mapped.
463  *      @blocks_to_boundary:  the offset in the indirect block
464  *
465  *      return the total number of blocks to be allocate, including the
466  *      direct and indirect blocks.
467  */
468 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
469                 int blocks_to_boundary)
470 {
471         unsigned long count = 0;
472
473         /*
474          * Simple case, [t,d]Indirect block(s) has not allocated yet
475          * then it's clear blocks on that path have not allocated
476          */
477         if (k > 0) {
478                 /* right now we don't handle cross boundary allocation */
479                 if (blks < blocks_to_boundary + 1)
480                         count += blks;
481                 else
482                         count += blocks_to_boundary + 1;
483                 return count;
484         }
485
486         count++;
487         while (count < blks && count <= blocks_to_boundary &&
488                 le32_to_cpu(*(branch[0].p + count)) == 0) {
489                 count++;
490         }
491         return count;
492 }
493
494 /**
495  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
496  *      @indirect_blks: the number of blocks need to allocate for indirect
497  *                      blocks
498  *
499  *      @new_blocks: on return it will store the new block numbers for
500  *      the indirect blocks(if needed) and the first direct block,
501  *      @blks:  on return it will store the total number of allocated
502  *              direct blocks
503  */
504 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
505                         ext4_fsblk_t goal, int indirect_blks, int blks,
506                         ext4_fsblk_t new_blocks[4], int *err)
507 {
508         int target, i;
509         unsigned long count = 0;
510         int index = 0;
511         ext4_fsblk_t current_block = 0;
512         int ret = 0;
513
514         /*
515          * Here we try to allocate the requested multiple blocks at once,
516          * on a best-effort basis.
517          * To build a branch, we should allocate blocks for
518          * the indirect blocks(if not allocated yet), and at least
519          * the first direct block of this branch.  That's the
520          * minimum number of blocks need to allocate(required)
521          */
522         target = blks + indirect_blks;
523
524         while (1) {
525                 count = target;
526                 /* allocating blocks for indirect blocks and direct blocks */
527                 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
528                 if (*err)
529                         goto failed_out;
530
531                 target -= count;
532                 /* allocate blocks for indirect blocks */
533                 while (index < indirect_blks && count) {
534                         new_blocks[index++] = current_block++;
535                         count--;
536                 }
537
538                 if (count > 0)
539                         break;
540         }
541
542         /* save the new block number for the first direct block */
543         new_blocks[index] = current_block;
544
545         /* total number of blocks allocated for direct blocks */
546         ret = count;
547         *err = 0;
548         return ret;
549 failed_out:
550         for (i = 0; i <index; i++)
551                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
552         return ret;
553 }
554
555 /**
556  *      ext4_alloc_branch - allocate and set up a chain of blocks.
557  *      @inode: owner
558  *      @indirect_blks: number of allocated indirect blocks
559  *      @blks: number of allocated direct blocks
560  *      @offsets: offsets (in the blocks) to store the pointers to next.
561  *      @branch: place to store the chain in.
562  *
563  *      This function allocates blocks, zeroes out all but the last one,
564  *      links them into chain and (if we are synchronous) writes them to disk.
565  *      In other words, it prepares a branch that can be spliced onto the
566  *      inode. It stores the information about that chain in the branch[], in
567  *      the same format as ext4_get_branch() would do. We are calling it after
568  *      we had read the existing part of chain and partial points to the last
569  *      triple of that (one with zero ->key). Upon the exit we have the same
570  *      picture as after the successful ext4_get_block(), except that in one
571  *      place chain is disconnected - *branch->p is still zero (we did not
572  *      set the last link), but branch->key contains the number that should
573  *      be placed into *branch->p to fill that gap.
574  *
575  *      If allocation fails we free all blocks we've allocated (and forget
576  *      their buffer_heads) and return the error value the from failed
577  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
578  *      as described above and return 0.
579  */
580 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
581                         int indirect_blks, int *blks, ext4_fsblk_t goal,
582                         ext4_lblk_t *offsets, Indirect *branch)
583 {
584         int blocksize = inode->i_sb->s_blocksize;
585         int i, n = 0;
586         int err = 0;
587         struct buffer_head *bh;
588         int num;
589         ext4_fsblk_t new_blocks[4];
590         ext4_fsblk_t current_block;
591
592         num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
593                                 *blks, new_blocks, &err);
594         if (err)
595                 return err;
596
597         branch[0].key = cpu_to_le32(new_blocks[0]);
598         /*
599          * metadata blocks and data blocks are allocated.
600          */
601         for (n = 1; n <= indirect_blks;  n++) {
602                 /*
603                  * Get buffer_head for parent block, zero it out
604                  * and set the pointer to new one, then send
605                  * parent to disk.
606                  */
607                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
608                 branch[n].bh = bh;
609                 lock_buffer(bh);
610                 BUFFER_TRACE(bh, "call get_create_access");
611                 err = ext4_journal_get_create_access(handle, bh);
612                 if (err) {
613                         unlock_buffer(bh);
614                         brelse(bh);
615                         goto failed;
616                 }
617
618                 memset(bh->b_data, 0, blocksize);
619                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
620                 branch[n].key = cpu_to_le32(new_blocks[n]);
621                 *branch[n].p = branch[n].key;
622                 if ( n == indirect_blks) {
623                         current_block = new_blocks[n];
624                         /*
625                          * End of chain, update the last new metablock of
626                          * the chain to point to the new allocated
627                          * data blocks numbers
628                          */
629                         for (i=1; i < num; i++)
630                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
631                 }
632                 BUFFER_TRACE(bh, "marking uptodate");
633                 set_buffer_uptodate(bh);
634                 unlock_buffer(bh);
635
636                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
637                 err = ext4_journal_dirty_metadata(handle, bh);
638                 if (err)
639                         goto failed;
640         }
641         *blks = num;
642         return err;
643 failed:
644         /* Allocation failed, free what we already allocated */
645         for (i = 1; i <= n ; i++) {
646                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
647                 ext4_journal_forget(handle, branch[i].bh);
648         }
649         for (i = 0; i <indirect_blks; i++)
650                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
651
652         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
653
654         return err;
655 }
656
657 /**
658  * ext4_splice_branch - splice the allocated branch onto inode.
659  * @inode: owner
660  * @block: (logical) number of block we are adding
661  * @chain: chain of indirect blocks (with a missing link - see
662  *      ext4_alloc_branch)
663  * @where: location of missing link
664  * @num:   number of indirect blocks we are adding
665  * @blks:  number of direct blocks we are adding
666  *
667  * This function fills the missing link and does all housekeeping needed in
668  * inode (->i_blocks, etc.). In case of success we end up with the full
669  * chain to new block and return 0.
670  */
671 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
672                         ext4_lblk_t block, Indirect *where, int num, int blks)
673 {
674         int i;
675         int err = 0;
676         struct ext4_block_alloc_info *block_i;
677         ext4_fsblk_t current_block;
678
679         block_i = EXT4_I(inode)->i_block_alloc_info;
680         /*
681          * If we're splicing into a [td]indirect block (as opposed to the
682          * inode) then we need to get write access to the [td]indirect block
683          * before the splice.
684          */
685         if (where->bh) {
686                 BUFFER_TRACE(where->bh, "get_write_access");
687                 err = ext4_journal_get_write_access(handle, where->bh);
688                 if (err)
689                         goto err_out;
690         }
691         /* That's it */
692
693         *where->p = where->key;
694
695         /*
696          * Update the host buffer_head or inode to point to more just allocated
697          * direct blocks blocks
698          */
699         if (num == 0 && blks > 1) {
700                 current_block = le32_to_cpu(where->key) + 1;
701                 for (i = 1; i < blks; i++)
702                         *(where->p + i ) = cpu_to_le32(current_block++);
703         }
704
705         /*
706          * update the most recently allocated logical & physical block
707          * in i_block_alloc_info, to assist find the proper goal block for next
708          * allocation
709          */
710         if (block_i) {
711                 block_i->last_alloc_logical_block = block + blks - 1;
712                 block_i->last_alloc_physical_block =
713                                 le32_to_cpu(where[num].key) + blks - 1;
714         }
715
716         /* We are done with atomic stuff, now do the rest of housekeeping */
717
718         inode->i_ctime = ext4_current_time(inode);
719         ext4_mark_inode_dirty(handle, inode);
720
721         /* had we spliced it onto indirect block? */
722         if (where->bh) {
723                 /*
724                  * If we spliced it onto an indirect block, we haven't
725                  * altered the inode.  Note however that if it is being spliced
726                  * onto an indirect block at the very end of the file (the
727                  * file is growing) then we *will* alter the inode to reflect
728                  * the new i_size.  But that is not done here - it is done in
729                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
730                  */
731                 jbd_debug(5, "splicing indirect only\n");
732                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
733                 err = ext4_journal_dirty_metadata(handle, where->bh);
734                 if (err)
735                         goto err_out;
736         } else {
737                 /*
738                  * OK, we spliced it into the inode itself on a direct block.
739                  * Inode was dirtied above.
740                  */
741                 jbd_debug(5, "splicing direct\n");
742         }
743         return err;
744
745 err_out:
746         for (i = 1; i <= num; i++) {
747                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
748                 ext4_journal_forget(handle, where[i].bh);
749                 ext4_free_blocks(handle, inode,
750                                         le32_to_cpu(where[i-1].key), 1, 0);
751         }
752         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
753
754         return err;
755 }
756
757 /*
758  * Allocation strategy is simple: if we have to allocate something, we will
759  * have to go the whole way to leaf. So let's do it before attaching anything
760  * to tree, set linkage between the newborn blocks, write them if sync is
761  * required, recheck the path, free and repeat if check fails, otherwise
762  * set the last missing link (that will protect us from any truncate-generated
763  * removals - all blocks on the path are immune now) and possibly force the
764  * write on the parent block.
765  * That has a nice additional property: no special recovery from the failed
766  * allocations is needed - we simply release blocks and do not touch anything
767  * reachable from inode.
768  *
769  * `handle' can be NULL if create == 0.
770  *
771  * The BKL may not be held on entry here.  Be sure to take it early.
772  * return > 0, # of blocks mapped or allocated.
773  * return = 0, if plain lookup failed.
774  * return < 0, error case.
775  *
776  *
777  * Need to be called with
778  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
779  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
780  */
781 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
782                 ext4_lblk_t iblock, unsigned long maxblocks,
783                 struct buffer_head *bh_result,
784                 int create, int extend_disksize)
785 {
786         int err = -EIO;
787         ext4_lblk_t offsets[4];
788         Indirect chain[4];
789         Indirect *partial;
790         ext4_fsblk_t goal;
791         int indirect_blks;
792         int blocks_to_boundary = 0;
793         int depth;
794         struct ext4_inode_info *ei = EXT4_I(inode);
795         int count = 0;
796         ext4_fsblk_t first_block = 0;
797
798
799         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
800         J_ASSERT(handle != NULL || create == 0);
801         depth = ext4_block_to_path(inode, iblock, offsets,
802                                         &blocks_to_boundary);
803
804         if (depth == 0)
805                 goto out;
806
807         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
808
809         /* Simplest case - block found, no allocation needed */
810         if (!partial) {
811                 first_block = le32_to_cpu(chain[depth - 1].key);
812                 clear_buffer_new(bh_result);
813                 count++;
814                 /*map more blocks*/
815                 while (count < maxblocks && count <= blocks_to_boundary) {
816                         ext4_fsblk_t blk;
817
818                         blk = le32_to_cpu(*(chain[depth-1].p + count));
819
820                         if (blk == first_block + count)
821                                 count++;
822                         else
823                                 break;
824                 }
825                 goto got_it;
826         }
827
828         /* Next simple case - plain lookup or failed read of indirect block */
829         if (!create || err == -EIO)
830                 goto cleanup;
831
832         /*
833          * Okay, we need to do block allocation.  Lazily initialize the block
834          * allocation info here if necessary
835         */
836         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
837                 ext4_init_block_alloc_info(inode);
838
839         goal = ext4_find_goal(inode, iblock, partial);
840
841         /* the number of blocks need to allocate for [d,t]indirect blocks */
842         indirect_blks = (chain + depth) - partial - 1;
843
844         /*
845          * Next look up the indirect map to count the totoal number of
846          * direct blocks to allocate for this branch.
847          */
848         count = ext4_blks_to_allocate(partial, indirect_blks,
849                                         maxblocks, blocks_to_boundary);
850         /*
851          * Block out ext4_truncate while we alter the tree
852          */
853         err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
854                                 offsets + (partial - chain), partial);
855
856         /*
857          * The ext4_splice_branch call will free and forget any buffers
858          * on the new chain if there is a failure, but that risks using
859          * up transaction credits, especially for bitmaps where the
860          * credits cannot be returned.  Can we handle this somehow?  We
861          * may need to return -EAGAIN upwards in the worst case.  --sct
862          */
863         if (!err)
864                 err = ext4_splice_branch(handle, inode, iblock,
865                                         partial, indirect_blks, count);
866         /*
867          * i_disksize growing is protected by i_data_sem.  Don't forget to
868          * protect it if you're about to implement concurrent
869          * ext4_get_block() -bzzz
870         */
871         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
872                 ei->i_disksize = inode->i_size;
873         if (err)
874                 goto cleanup;
875
876         set_buffer_new(bh_result);
877 got_it:
878         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
879         if (count > blocks_to_boundary)
880                 set_buffer_boundary(bh_result);
881         err = count;
882         /* Clean up and exit */
883         partial = chain + depth - 1;    /* the whole chain */
884 cleanup:
885         while (partial > chain) {
886                 BUFFER_TRACE(partial->bh, "call brelse");
887                 brelse(partial->bh);
888                 partial--;
889         }
890         BUFFER_TRACE(bh_result, "returned");
891 out:
892         return err;
893 }
894
895 /* Maximum number of blocks we map for direct IO at once. */
896 #define DIO_MAX_BLOCKS 4096
897 /*
898  * Number of credits we need for writing DIO_MAX_BLOCKS:
899  * We need sb + group descriptor + bitmap + inode -> 4
900  * For B blocks with A block pointers per block we need:
901  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
902  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
903  */
904 #define DIO_CREDITS 25
905
906 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
907                         unsigned long max_blocks, struct buffer_head *bh,
908                         int create, int extend_disksize)
909 {
910         int retval;
911         /*
912          * Try to see if we can get  the block without requesting
913          * for new file system block.
914          */
915         down_read((&EXT4_I(inode)->i_data_sem));
916         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
917                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
918                                 bh, 0, 0);
919         } else {
920                 retval = ext4_get_blocks_handle(handle,
921                                 inode, block, max_blocks, bh, 0, 0);
922         }
923         up_read((&EXT4_I(inode)->i_data_sem));
924         if (!create || (retval > 0))
925                 return retval;
926
927         /*
928          * We need to allocate new blocks which will result
929          * in i_data update
930          */
931         down_write((&EXT4_I(inode)->i_data_sem));
932         /*
933          * We need to check for EXT4 here because migrate
934          * could have changed the inode type in between
935          */
936         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
937                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
938                                 bh, create, extend_disksize);
939         } else {
940                 retval = ext4_get_blocks_handle(handle, inode, block,
941                                 max_blocks, bh, create, extend_disksize);
942         }
943         up_write((&EXT4_I(inode)->i_data_sem));
944         return retval;
945 }
946
947 static int ext4_get_block(struct inode *inode, sector_t iblock,
948                         struct buffer_head *bh_result, int create)
949 {
950         handle_t *handle = ext4_journal_current_handle();
951         int ret = 0, started = 0;
952         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
953
954         if (create && !handle) {
955                 /* Direct IO write... */
956                 if (max_blocks > DIO_MAX_BLOCKS)
957                         max_blocks = DIO_MAX_BLOCKS;
958                 handle = ext4_journal_start(inode, DIO_CREDITS +
959                               2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
960                 if (IS_ERR(handle)) {
961                         ret = PTR_ERR(handle);
962                         goto out;
963                 }
964                 started = 1;
965         }
966
967         ret = ext4_get_blocks_wrap(handle, inode, iblock,
968                                         max_blocks, bh_result, create, 0);
969         if (ret > 0) {
970                 bh_result->b_size = (ret << inode->i_blkbits);
971                 ret = 0;
972         }
973         if (started)
974                 ext4_journal_stop(handle);
975 out:
976         return ret;
977 }
978
979 /*
980  * `handle' can be NULL if create is zero
981  */
982 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
983                                 ext4_lblk_t block, int create, int *errp)
984 {
985         struct buffer_head dummy;
986         int fatal = 0, err;
987
988         J_ASSERT(handle != NULL || create == 0);
989
990         dummy.b_state = 0;
991         dummy.b_blocknr = -1000;
992         buffer_trace_init(&dummy.b_history);
993         err = ext4_get_blocks_wrap(handle, inode, block, 1,
994                                         &dummy, create, 1);
995         /*
996          * ext4_get_blocks_handle() returns number of blocks
997          * mapped. 0 in case of a HOLE.
998          */
999         if (err > 0) {
1000                 if (err > 1)
1001                         WARN_ON(1);
1002                 err = 0;
1003         }
1004         *errp = err;
1005         if (!err && buffer_mapped(&dummy)) {
1006                 struct buffer_head *bh;
1007                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1008                 if (!bh) {
1009                         *errp = -EIO;
1010                         goto err;
1011                 }
1012                 if (buffer_new(&dummy)) {
1013                         J_ASSERT(create != 0);
1014                         J_ASSERT(handle != NULL);
1015
1016                         /*
1017                          * Now that we do not always journal data, we should
1018                          * keep in mind whether this should always journal the
1019                          * new buffer as metadata.  For now, regular file
1020                          * writes use ext4_get_block instead, so it's not a
1021                          * problem.
1022                          */
1023                         lock_buffer(bh);
1024                         BUFFER_TRACE(bh, "call get_create_access");
1025                         fatal = ext4_journal_get_create_access(handle, bh);
1026                         if (!fatal && !buffer_uptodate(bh)) {
1027                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1028                                 set_buffer_uptodate(bh);
1029                         }
1030                         unlock_buffer(bh);
1031                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1032                         err = ext4_journal_dirty_metadata(handle, bh);
1033                         if (!fatal)
1034                                 fatal = err;
1035                 } else {
1036                         BUFFER_TRACE(bh, "not a new buffer");
1037                 }
1038                 if (fatal) {
1039                         *errp = fatal;
1040                         brelse(bh);
1041                         bh = NULL;
1042                 }
1043                 return bh;
1044         }
1045 err:
1046         return NULL;
1047 }
1048
1049 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1050                                ext4_lblk_t block, int create, int *err)
1051 {
1052         struct buffer_head * bh;
1053
1054         bh = ext4_getblk(handle, inode, block, create, err);
1055         if (!bh)
1056                 return bh;
1057         if (buffer_uptodate(bh))
1058                 return bh;
1059         ll_rw_block(READ_META, 1, &bh);
1060         wait_on_buffer(bh);
1061         if (buffer_uptodate(bh))
1062                 return bh;
1063         put_bh(bh);
1064         *err = -EIO;
1065         return NULL;
1066 }
1067
1068 static int walk_page_buffers(   handle_t *handle,
1069                                 struct buffer_head *head,
1070                                 unsigned from,
1071                                 unsigned to,
1072                                 int *partial,
1073                                 int (*fn)(      handle_t *handle,
1074                                                 struct buffer_head *bh))
1075 {
1076         struct buffer_head *bh;
1077         unsigned block_start, block_end;
1078         unsigned blocksize = head->b_size;
1079         int err, ret = 0;
1080         struct buffer_head *next;
1081
1082         for (   bh = head, block_start = 0;
1083                 ret == 0 && (bh != head || !block_start);
1084                 block_start = block_end, bh = next)
1085         {
1086                 next = bh->b_this_page;
1087                 block_end = block_start + blocksize;
1088                 if (block_end <= from || block_start >= to) {
1089                         if (partial && !buffer_uptodate(bh))
1090                                 *partial = 1;
1091                         continue;
1092                 }
1093                 err = (*fn)(handle, bh);
1094                 if (!ret)
1095                         ret = err;
1096         }
1097         return ret;
1098 }
1099
1100 /*
1101  * To preserve ordering, it is essential that the hole instantiation and
1102  * the data write be encapsulated in a single transaction.  We cannot
1103  * close off a transaction and start a new one between the ext4_get_block()
1104  * and the commit_write().  So doing the jbd2_journal_start at the start of
1105  * prepare_write() is the right place.
1106  *
1107  * Also, this function can nest inside ext4_writepage() ->
1108  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1109  * has generated enough buffer credits to do the whole page.  So we won't
1110  * block on the journal in that case, which is good, because the caller may
1111  * be PF_MEMALLOC.
1112  *
1113  * By accident, ext4 can be reentered when a transaction is open via
1114  * quota file writes.  If we were to commit the transaction while thus
1115  * reentered, there can be a deadlock - we would be holding a quota
1116  * lock, and the commit would never complete if another thread had a
1117  * transaction open and was blocking on the quota lock - a ranking
1118  * violation.
1119  *
1120  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1121  * will _not_ run commit under these circumstances because handle->h_ref
1122  * is elevated.  We'll still have enough credits for the tiny quotafile
1123  * write.
1124  */
1125 static int do_journal_get_write_access(handle_t *handle,
1126                                         struct buffer_head *bh)
1127 {
1128         if (!buffer_mapped(bh) || buffer_freed(bh))
1129                 return 0;
1130         return ext4_journal_get_write_access(handle, bh);
1131 }
1132
1133 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134                                 loff_t pos, unsigned len, unsigned flags,
1135                                 struct page **pagep, void **fsdata)
1136 {
1137         struct inode *inode = mapping->host;
1138         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1139         handle_t *handle;
1140         int retries = 0;
1141         struct page *page;
1142         pgoff_t index;
1143         unsigned from, to;
1144
1145         index = pos >> PAGE_CACHE_SHIFT;
1146         from = pos & (PAGE_CACHE_SIZE - 1);
1147         to = from + len;
1148
1149 retry:
1150         page = __grab_cache_page(mapping, index);
1151         if (!page)
1152                 return -ENOMEM;
1153         *pagep = page;
1154
1155         handle = ext4_journal_start(inode, needed_blocks);
1156         if (IS_ERR(handle)) {
1157                 unlock_page(page);
1158                 page_cache_release(page);
1159                 ret = PTR_ERR(handle);
1160                 goto out;
1161         }
1162
1163         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1164                                                         ext4_get_block);
1165
1166         if (!ret && ext4_should_journal_data(inode)) {
1167                 ret = walk_page_buffers(handle, page_buffers(page),
1168                                 from, to, NULL, do_journal_get_write_access);
1169         }
1170
1171         if (ret) {
1172                 ext4_journal_stop(handle);
1173                 unlock_page(page);
1174                 page_cache_release(page);
1175         }
1176
1177         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1178                 goto retry;
1179 out:
1180         return ret;
1181 }
1182
1183 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1184 {
1185         int err = jbd2_journal_dirty_data(handle, bh);
1186         if (err)
1187                 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1188                                                 bh, handle, err);
1189         return err;
1190 }
1191
1192 /* For write_end() in data=journal mode */
1193 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1194 {
1195         if (!buffer_mapped(bh) || buffer_freed(bh))
1196                 return 0;
1197         set_buffer_uptodate(bh);
1198         return ext4_journal_dirty_metadata(handle, bh);
1199 }
1200
1201 /*
1202  * Generic write_end handler for ordered and writeback ext4 journal modes.
1203  * We can't use generic_write_end, because that unlocks the page and we need to
1204  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1205  * after block_write_end.
1206  */
1207 static int ext4_generic_write_end(struct file *file,
1208                                 struct address_space *mapping,
1209                                 loff_t pos, unsigned len, unsigned copied,
1210                                 struct page *page, void *fsdata)
1211 {
1212         struct inode *inode = file->f_mapping->host;
1213
1214         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1215
1216         if (pos+copied > inode->i_size) {
1217                 i_size_write(inode, pos+copied);
1218                 mark_inode_dirty(inode);
1219         }
1220
1221         return copied;
1222 }
1223
1224 /*
1225  * We need to pick up the new inode size which generic_commit_write gave us
1226  * `file' can be NULL - eg, when called from page_symlink().
1227  *
1228  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1229  * buffers are managed internally.
1230  */
1231 static int ext4_ordered_write_end(struct file *file,
1232                                 struct address_space *mapping,
1233                                 loff_t pos, unsigned len, unsigned copied,
1234                                 struct page *page, void *fsdata)
1235 {
1236         handle_t *handle = ext4_journal_current_handle();
1237         struct inode *inode = file->f_mapping->host;
1238         unsigned from, to;
1239         int ret = 0, ret2;
1240
1241         from = pos & (PAGE_CACHE_SIZE - 1);
1242         to = from + len;
1243
1244         ret = walk_page_buffers(handle, page_buffers(page),
1245                 from, to, NULL, ext4_journal_dirty_data);
1246
1247         if (ret == 0) {
1248                 /*
1249                  * generic_write_end() will run mark_inode_dirty() if i_size
1250                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1251                  * into that.
1252                  */
1253                 loff_t new_i_size;
1254
1255                 new_i_size = pos + copied;
1256                 if (new_i_size > EXT4_I(inode)->i_disksize)
1257                         EXT4_I(inode)->i_disksize = new_i_size;
1258                 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1259                                                         page, fsdata);
1260                 if (copied < 0)
1261                         ret = copied;
1262         }
1263         ret2 = ext4_journal_stop(handle);
1264         if (!ret)
1265                 ret = ret2;
1266         unlock_page(page);
1267         page_cache_release(page);
1268
1269         return ret ? ret : copied;
1270 }
1271
1272 static int ext4_writeback_write_end(struct file *file,
1273                                 struct address_space *mapping,
1274                                 loff_t pos, unsigned len, unsigned copied,
1275                                 struct page *page, void *fsdata)
1276 {
1277         handle_t *handle = ext4_journal_current_handle();
1278         struct inode *inode = file->f_mapping->host;
1279         int ret = 0, ret2;
1280         loff_t new_i_size;
1281
1282         new_i_size = pos + copied;
1283         if (new_i_size > EXT4_I(inode)->i_disksize)
1284                 EXT4_I(inode)->i_disksize = new_i_size;
1285
1286         copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1287                                                         page, fsdata);
1288         if (copied < 0)
1289                 ret = copied;
1290
1291         ret2 = ext4_journal_stop(handle);
1292         if (!ret)
1293                 ret = ret2;
1294         unlock_page(page);
1295         page_cache_release(page);
1296
1297         return ret ? ret : copied;
1298 }
1299
1300 static int ext4_journalled_write_end(struct file *file,
1301                                 struct address_space *mapping,
1302                                 loff_t pos, unsigned len, unsigned copied,
1303                                 struct page *page, void *fsdata)
1304 {
1305         handle_t *handle = ext4_journal_current_handle();
1306         struct inode *inode = mapping->host;
1307         int ret = 0, ret2;
1308         int partial = 0;
1309         unsigned from, to;
1310
1311         from = pos & (PAGE_CACHE_SIZE - 1);
1312         to = from + len;
1313
1314         if (copied < len) {
1315                 if (!PageUptodate(page))
1316                         copied = 0;
1317                 page_zero_new_buffers(page, from+copied, to);
1318         }
1319
1320         ret = walk_page_buffers(handle, page_buffers(page), from,
1321                                 to, &partial, write_end_fn);
1322         if (!partial)
1323                 SetPageUptodate(page);
1324         if (pos+copied > inode->i_size)
1325                 i_size_write(inode, pos+copied);
1326         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1327         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1328                 EXT4_I(inode)->i_disksize = inode->i_size;
1329                 ret2 = ext4_mark_inode_dirty(handle, inode);
1330                 if (!ret)
1331                         ret = ret2;
1332         }
1333
1334         ret2 = ext4_journal_stop(handle);
1335         if (!ret)
1336                 ret = ret2;
1337         unlock_page(page);
1338         page_cache_release(page);
1339
1340         return ret ? ret : copied;
1341 }
1342
1343 /*
1344  * bmap() is special.  It gets used by applications such as lilo and by
1345  * the swapper to find the on-disk block of a specific piece of data.
1346  *
1347  * Naturally, this is dangerous if the block concerned is still in the
1348  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1349  * filesystem and enables swap, then they may get a nasty shock when the
1350  * data getting swapped to that swapfile suddenly gets overwritten by
1351  * the original zero's written out previously to the journal and
1352  * awaiting writeback in the kernel's buffer cache.
1353  *
1354  * So, if we see any bmap calls here on a modified, data-journaled file,
1355  * take extra steps to flush any blocks which might be in the cache.
1356  */
1357 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1358 {
1359         struct inode *inode = mapping->host;
1360         journal_t *journal;
1361         int err;
1362
1363         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1364                 /*
1365                  * This is a REALLY heavyweight approach, but the use of
1366                  * bmap on dirty files is expected to be extremely rare:
1367                  * only if we run lilo or swapon on a freshly made file
1368                  * do we expect this to happen.
1369                  *
1370                  * (bmap requires CAP_SYS_RAWIO so this does not
1371                  * represent an unprivileged user DOS attack --- we'd be
1372                  * in trouble if mortal users could trigger this path at
1373                  * will.)
1374                  *
1375                  * NB. EXT4_STATE_JDATA is not set on files other than
1376                  * regular files.  If somebody wants to bmap a directory
1377                  * or symlink and gets confused because the buffer
1378                  * hasn't yet been flushed to disk, they deserve
1379                  * everything they get.
1380                  */
1381
1382                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1383                 journal = EXT4_JOURNAL(inode);
1384                 jbd2_journal_lock_updates(journal);
1385                 err = jbd2_journal_flush(journal);
1386                 jbd2_journal_unlock_updates(journal);
1387
1388                 if (err)
1389                         return 0;
1390         }
1391
1392         return generic_block_bmap(mapping,block,ext4_get_block);
1393 }
1394
1395 static int bget_one(handle_t *handle, struct buffer_head *bh)
1396 {
1397         get_bh(bh);
1398         return 0;
1399 }
1400
1401 static int bput_one(handle_t *handle, struct buffer_head *bh)
1402 {
1403         put_bh(bh);
1404         return 0;
1405 }
1406
1407 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1408 {
1409         if (buffer_mapped(bh))
1410                 return ext4_journal_dirty_data(handle, bh);
1411         return 0;
1412 }
1413
1414 /*
1415  * Note that we always start a transaction even if we're not journalling
1416  * data.  This is to preserve ordering: any hole instantiation within
1417  * __block_write_full_page -> ext4_get_block() should be journalled
1418  * along with the data so we don't crash and then get metadata which
1419  * refers to old data.
1420  *
1421  * In all journalling modes block_write_full_page() will start the I/O.
1422  *
1423  * Problem:
1424  *
1425  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1426  *              ext4_writepage()
1427  *
1428  * Similar for:
1429  *
1430  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1431  *
1432  * Same applies to ext4_get_block().  We will deadlock on various things like
1433  * lock_journal and i_data_sem
1434  *
1435  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1436  * allocations fail.
1437  *
1438  * 16May01: If we're reentered then journal_current_handle() will be
1439  *          non-zero. We simply *return*.
1440  *
1441  * 1 July 2001: @@@ FIXME:
1442  *   In journalled data mode, a data buffer may be metadata against the
1443  *   current transaction.  But the same file is part of a shared mapping
1444  *   and someone does a writepage() on it.
1445  *
1446  *   We will move the buffer onto the async_data list, but *after* it has
1447  *   been dirtied. So there's a small window where we have dirty data on
1448  *   BJ_Metadata.
1449  *
1450  *   Note that this only applies to the last partial page in the file.  The
1451  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1452  *   broken code anyway: it's wrong for msync()).
1453  *
1454  *   It's a rare case: affects the final partial page, for journalled data
1455  *   where the file is subject to bith write() and writepage() in the same
1456  *   transction.  To fix it we'll need a custom block_write_full_page().
1457  *   We'll probably need that anyway for journalling writepage() output.
1458  *
1459  * We don't honour synchronous mounts for writepage().  That would be
1460  * disastrous.  Any write() or metadata operation will sync the fs for
1461  * us.
1462  *
1463  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1464  * we don't need to open a transaction here.
1465  */
1466 static int ext4_ordered_writepage(struct page *page,
1467                                 struct writeback_control *wbc)
1468 {
1469         struct inode *inode = page->mapping->host;
1470         struct buffer_head *page_bufs;
1471         handle_t *handle = NULL;
1472         int ret = 0;
1473         int err;
1474
1475         J_ASSERT(PageLocked(page));
1476
1477         /*
1478          * We give up here if we're reentered, because it might be for a
1479          * different filesystem.
1480          */
1481         if (ext4_journal_current_handle())
1482                 goto out_fail;
1483
1484         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1485
1486         if (IS_ERR(handle)) {
1487                 ret = PTR_ERR(handle);
1488                 goto out_fail;
1489         }
1490
1491         if (!page_has_buffers(page)) {
1492                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1493                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1494         }
1495         page_bufs = page_buffers(page);
1496         walk_page_buffers(handle, page_bufs, 0,
1497                         PAGE_CACHE_SIZE, NULL, bget_one);
1498
1499         ret = block_write_full_page(page, ext4_get_block, wbc);
1500
1501         /*
1502          * The page can become unlocked at any point now, and
1503          * truncate can then come in and change things.  So we
1504          * can't touch *page from now on.  But *page_bufs is
1505          * safe due to elevated refcount.
1506          */
1507
1508         /*
1509          * And attach them to the current transaction.  But only if
1510          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1511          * and generally junk.
1512          */
1513         if (ret == 0) {
1514                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1515                                         NULL, jbd2_journal_dirty_data_fn);
1516                 if (!ret)
1517                         ret = err;
1518         }
1519         walk_page_buffers(handle, page_bufs, 0,
1520                         PAGE_CACHE_SIZE, NULL, bput_one);
1521         err = ext4_journal_stop(handle);
1522         if (!ret)
1523                 ret = err;
1524         return ret;
1525
1526 out_fail:
1527         redirty_page_for_writepage(wbc, page);
1528         unlock_page(page);
1529         return ret;
1530 }
1531
1532 static int ext4_writeback_writepage(struct page *page,
1533                                 struct writeback_control *wbc)
1534 {
1535         struct inode *inode = page->mapping->host;
1536         handle_t *handle = NULL;
1537         int ret = 0;
1538         int err;
1539
1540         if (ext4_journal_current_handle())
1541                 goto out_fail;
1542
1543         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1544         if (IS_ERR(handle)) {
1545                 ret = PTR_ERR(handle);
1546                 goto out_fail;
1547         }
1548
1549         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1550                 ret = nobh_writepage(page, ext4_get_block, wbc);
1551         else
1552                 ret = block_write_full_page(page, ext4_get_block, wbc);
1553
1554         err = ext4_journal_stop(handle);
1555         if (!ret)
1556                 ret = err;
1557         return ret;
1558
1559 out_fail:
1560         redirty_page_for_writepage(wbc, page);
1561         unlock_page(page);
1562         return ret;
1563 }
1564
1565 static int ext4_journalled_writepage(struct page *page,
1566                                 struct writeback_control *wbc)
1567 {
1568         struct inode *inode = page->mapping->host;
1569         handle_t *handle = NULL;
1570         int ret = 0;
1571         int err;
1572
1573         if (ext4_journal_current_handle())
1574                 goto no_write;
1575
1576         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1577         if (IS_ERR(handle)) {
1578                 ret = PTR_ERR(handle);
1579                 goto no_write;
1580         }
1581
1582         if (!page_has_buffers(page) || PageChecked(page)) {
1583                 /*
1584                  * It's mmapped pagecache.  Add buffers and journal it.  There
1585                  * doesn't seem much point in redirtying the page here.
1586                  */
1587                 ClearPageChecked(page);
1588                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1589                                         ext4_get_block);
1590                 if (ret != 0) {
1591                         ext4_journal_stop(handle);
1592                         goto out_unlock;
1593                 }
1594                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1595                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1596
1597                 err = walk_page_buffers(handle, page_buffers(page), 0,
1598                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1599                 if (ret == 0)
1600                         ret = err;
1601                 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1602                 unlock_page(page);
1603         } else {
1604                 /*
1605                  * It may be a page full of checkpoint-mode buffers.  We don't
1606                  * really know unless we go poke around in the buffer_heads.
1607                  * But block_write_full_page will do the right thing.
1608                  */
1609                 ret = block_write_full_page(page, ext4_get_block, wbc);
1610         }
1611         err = ext4_journal_stop(handle);
1612         if (!ret)
1613                 ret = err;
1614 out:
1615         return ret;
1616
1617 no_write:
1618         redirty_page_for_writepage(wbc, page);
1619 out_unlock:
1620         unlock_page(page);
1621         goto out;
1622 }
1623
1624 static int ext4_readpage(struct file *file, struct page *page)
1625 {
1626         return mpage_readpage(page, ext4_get_block);
1627 }
1628
1629 static int
1630 ext4_readpages(struct file *file, struct address_space *mapping,
1631                 struct list_head *pages, unsigned nr_pages)
1632 {
1633         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1634 }
1635
1636 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1637 {
1638         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1639
1640         /*
1641          * If it's a full truncate we just forget about the pending dirtying
1642          */
1643         if (offset == 0)
1644                 ClearPageChecked(page);
1645
1646         jbd2_journal_invalidatepage(journal, page, offset);
1647 }
1648
1649 static int ext4_releasepage(struct page *page, gfp_t wait)
1650 {
1651         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1652
1653         WARN_ON(PageChecked(page));
1654         if (!page_has_buffers(page))
1655                 return 0;
1656         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1657 }
1658
1659 /*
1660  * If the O_DIRECT write will extend the file then add this inode to the
1661  * orphan list.  So recovery will truncate it back to the original size
1662  * if the machine crashes during the write.
1663  *
1664  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1665  * crashes then stale disk data _may_ be exposed inside the file. But current
1666  * VFS code falls back into buffered path in that case so we are safe.
1667  */
1668 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1669                         const struct iovec *iov, loff_t offset,
1670                         unsigned long nr_segs)
1671 {
1672         struct file *file = iocb->ki_filp;
1673         struct inode *inode = file->f_mapping->host;
1674         struct ext4_inode_info *ei = EXT4_I(inode);
1675         handle_t *handle;
1676         ssize_t ret;
1677         int orphan = 0;
1678         size_t count = iov_length(iov, nr_segs);
1679
1680         if (rw == WRITE) {
1681                 loff_t final_size = offset + count;
1682
1683                 if (final_size > inode->i_size) {
1684                         /* Credits for sb + inode write */
1685                         handle = ext4_journal_start(inode, 2);
1686                         if (IS_ERR(handle)) {
1687                                 ret = PTR_ERR(handle);
1688                                 goto out;
1689                         }
1690                         ret = ext4_orphan_add(handle, inode);
1691                         if (ret) {
1692                                 ext4_journal_stop(handle);
1693                                 goto out;
1694                         }
1695                         orphan = 1;
1696                         ei->i_disksize = inode->i_size;
1697                         ext4_journal_stop(handle);
1698                 }
1699         }
1700
1701         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1702                                  offset, nr_segs,
1703                                  ext4_get_block, NULL);
1704
1705         if (orphan) {
1706                 int err;
1707
1708                 /* Credits for sb + inode write */
1709                 handle = ext4_journal_start(inode, 2);
1710                 if (IS_ERR(handle)) {
1711                         /* This is really bad luck. We've written the data
1712                          * but cannot extend i_size. Bail out and pretend
1713                          * the write failed... */
1714                         ret = PTR_ERR(handle);
1715                         goto out;
1716                 }
1717                 if (inode->i_nlink)
1718                         ext4_orphan_del(handle, inode);
1719                 if (ret > 0) {
1720                         loff_t end = offset + ret;
1721                         if (end > inode->i_size) {
1722                                 ei->i_disksize = end;
1723                                 i_size_write(inode, end);
1724                                 /*
1725                                  * We're going to return a positive `ret'
1726                                  * here due to non-zero-length I/O, so there's
1727                                  * no way of reporting error returns from
1728                                  * ext4_mark_inode_dirty() to userspace.  So
1729                                  * ignore it.
1730                                  */
1731                                 ext4_mark_inode_dirty(handle, inode);
1732                         }
1733                 }
1734                 err = ext4_journal_stop(handle);
1735                 if (ret == 0)
1736                         ret = err;
1737         }
1738 out:
1739         return ret;
1740 }
1741
1742 /*
1743  * Pages can be marked dirty completely asynchronously from ext4's journalling
1744  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1745  * much here because ->set_page_dirty is called under VFS locks.  The page is
1746  * not necessarily locked.
1747  *
1748  * We cannot just dirty the page and leave attached buffers clean, because the
1749  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1750  * or jbddirty because all the journalling code will explode.
1751  *
1752  * So what we do is to mark the page "pending dirty" and next time writepage
1753  * is called, propagate that into the buffers appropriately.
1754  */
1755 static int ext4_journalled_set_page_dirty(struct page *page)
1756 {
1757         SetPageChecked(page);
1758         return __set_page_dirty_nobuffers(page);
1759 }
1760
1761 static const struct address_space_operations ext4_ordered_aops = {
1762         .readpage       = ext4_readpage,
1763         .readpages      = ext4_readpages,
1764         .writepage      = ext4_ordered_writepage,
1765         .sync_page      = block_sync_page,
1766         .write_begin    = ext4_write_begin,
1767         .write_end      = ext4_ordered_write_end,
1768         .bmap           = ext4_bmap,
1769         .invalidatepage = ext4_invalidatepage,
1770         .releasepage    = ext4_releasepage,
1771         .direct_IO      = ext4_direct_IO,
1772         .migratepage    = buffer_migrate_page,
1773 };
1774
1775 static const struct address_space_operations ext4_writeback_aops = {
1776         .readpage       = ext4_readpage,
1777         .readpages      = ext4_readpages,
1778         .writepage      = ext4_writeback_writepage,
1779         .sync_page      = block_sync_page,
1780         .write_begin    = ext4_write_begin,
1781         .write_end      = ext4_writeback_write_end,
1782         .bmap           = ext4_bmap,
1783         .invalidatepage = ext4_invalidatepage,
1784         .releasepage    = ext4_releasepage,
1785         .direct_IO      = ext4_direct_IO,
1786         .migratepage    = buffer_migrate_page,
1787 };
1788
1789 static const struct address_space_operations ext4_journalled_aops = {
1790         .readpage       = ext4_readpage,
1791         .readpages      = ext4_readpages,
1792         .writepage      = ext4_journalled_writepage,
1793         .sync_page      = block_sync_page,
1794         .write_begin    = ext4_write_begin,
1795         .write_end      = ext4_journalled_write_end,
1796         .set_page_dirty = ext4_journalled_set_page_dirty,
1797         .bmap           = ext4_bmap,
1798         .invalidatepage = ext4_invalidatepage,
1799         .releasepage    = ext4_releasepage,
1800 };
1801
1802 void ext4_set_aops(struct inode *inode)
1803 {
1804         if (ext4_should_order_data(inode))
1805                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1806         else if (ext4_should_writeback_data(inode))
1807                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1808         else
1809                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1810 }
1811
1812 /*
1813  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1814  * up to the end of the block which corresponds to `from'.
1815  * This required during truncate. We need to physically zero the tail end
1816  * of that block so it doesn't yield old data if the file is later grown.
1817  */
1818 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1819                 struct address_space *mapping, loff_t from)
1820 {
1821         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1822         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1823         unsigned blocksize, length, pos;
1824         ext4_lblk_t iblock;
1825         struct inode *inode = mapping->host;
1826         struct buffer_head *bh;
1827         int err = 0;
1828
1829         blocksize = inode->i_sb->s_blocksize;
1830         length = blocksize - (offset & (blocksize - 1));
1831         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1832
1833         /*
1834          * For "nobh" option,  we can only work if we don't need to
1835          * read-in the page - otherwise we create buffers to do the IO.
1836          */
1837         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1838              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1839                 zero_user(page, offset, length);
1840                 set_page_dirty(page);
1841                 goto unlock;
1842         }
1843
1844         if (!page_has_buffers(page))
1845                 create_empty_buffers(page, blocksize, 0);
1846
1847         /* Find the buffer that contains "offset" */
1848         bh = page_buffers(page);
1849         pos = blocksize;
1850         while (offset >= pos) {
1851                 bh = bh->b_this_page;
1852                 iblock++;
1853                 pos += blocksize;
1854         }
1855
1856         err = 0;
1857         if (buffer_freed(bh)) {
1858                 BUFFER_TRACE(bh, "freed: skip");
1859                 goto unlock;
1860         }
1861
1862         if (!buffer_mapped(bh)) {
1863                 BUFFER_TRACE(bh, "unmapped");
1864                 ext4_get_block(inode, iblock, bh, 0);
1865                 /* unmapped? It's a hole - nothing to do */
1866                 if (!buffer_mapped(bh)) {
1867                         BUFFER_TRACE(bh, "still unmapped");
1868                         goto unlock;
1869                 }
1870         }
1871
1872         /* Ok, it's mapped. Make sure it's up-to-date */
1873         if (PageUptodate(page))
1874                 set_buffer_uptodate(bh);
1875
1876         if (!buffer_uptodate(bh)) {
1877                 err = -EIO;
1878                 ll_rw_block(READ, 1, &bh);
1879                 wait_on_buffer(bh);
1880                 /* Uhhuh. Read error. Complain and punt. */
1881                 if (!buffer_uptodate(bh))
1882                         goto unlock;
1883         }
1884
1885         if (ext4_should_journal_data(inode)) {
1886                 BUFFER_TRACE(bh, "get write access");
1887                 err = ext4_journal_get_write_access(handle, bh);
1888                 if (err)
1889                         goto unlock;
1890         }
1891
1892         zero_user(page, offset, length);
1893
1894         BUFFER_TRACE(bh, "zeroed end of block");
1895
1896         err = 0;
1897         if (ext4_should_journal_data(inode)) {
1898                 err = ext4_journal_dirty_metadata(handle, bh);
1899         } else {
1900                 if (ext4_should_order_data(inode))
1901                         err = ext4_journal_dirty_data(handle, bh);
1902                 mark_buffer_dirty(bh);
1903         }
1904
1905 unlock:
1906         unlock_page(page);
1907         page_cache_release(page);
1908         return err;
1909 }
1910
1911 /*
1912  * Probably it should be a library function... search for first non-zero word
1913  * or memcmp with zero_page, whatever is better for particular architecture.
1914  * Linus?
1915  */
1916 static inline int all_zeroes(__le32 *p, __le32 *q)
1917 {
1918         while (p < q)
1919                 if (*p++)
1920                         return 0;
1921         return 1;
1922 }
1923
1924 /**
1925  *      ext4_find_shared - find the indirect blocks for partial truncation.
1926  *      @inode:   inode in question
1927  *      @depth:   depth of the affected branch
1928  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1929  *      @chain:   place to store the pointers to partial indirect blocks
1930  *      @top:     place to the (detached) top of branch
1931  *
1932  *      This is a helper function used by ext4_truncate().
1933  *
1934  *      When we do truncate() we may have to clean the ends of several
1935  *      indirect blocks but leave the blocks themselves alive. Block is
1936  *      partially truncated if some data below the new i_size is refered
1937  *      from it (and it is on the path to the first completely truncated
1938  *      data block, indeed).  We have to free the top of that path along
1939  *      with everything to the right of the path. Since no allocation
1940  *      past the truncation point is possible until ext4_truncate()
1941  *      finishes, we may safely do the latter, but top of branch may
1942  *      require special attention - pageout below the truncation point
1943  *      might try to populate it.
1944  *
1945  *      We atomically detach the top of branch from the tree, store the
1946  *      block number of its root in *@top, pointers to buffer_heads of
1947  *      partially truncated blocks - in @chain[].bh and pointers to
1948  *      their last elements that should not be removed - in
1949  *      @chain[].p. Return value is the pointer to last filled element
1950  *      of @chain.
1951  *
1952  *      The work left to caller to do the actual freeing of subtrees:
1953  *              a) free the subtree starting from *@top
1954  *              b) free the subtrees whose roots are stored in
1955  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1956  *              c) free the subtrees growing from the inode past the @chain[0].
1957  *                      (no partially truncated stuff there).  */
1958
1959 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1960                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1961 {
1962         Indirect *partial, *p;
1963         int k, err;
1964
1965         *top = 0;
1966         /* Make k index the deepest non-null offest + 1 */
1967         for (k = depth; k > 1 && !offsets[k-1]; k--)
1968                 ;
1969         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1970         /* Writer: pointers */
1971         if (!partial)
1972                 partial = chain + k-1;
1973         /*
1974          * If the branch acquired continuation since we've looked at it -
1975          * fine, it should all survive and (new) top doesn't belong to us.
1976          */
1977         if (!partial->key && *partial->p)
1978                 /* Writer: end */
1979                 goto no_top;
1980         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1981                 ;
1982         /*
1983          * OK, we've found the last block that must survive. The rest of our
1984          * branch should be detached before unlocking. However, if that rest
1985          * of branch is all ours and does not grow immediately from the inode
1986          * it's easier to cheat and just decrement partial->p.
1987          */
1988         if (p == chain + k - 1 && p > chain) {
1989                 p->p--;
1990         } else {
1991                 *top = *p->p;
1992                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1993 #if 0
1994                 *p->p = 0;
1995 #endif
1996         }
1997         /* Writer: end */
1998
1999         while(partial > p) {
2000                 brelse(partial->bh);
2001                 partial--;
2002         }
2003 no_top:
2004         return partial;
2005 }
2006
2007 /*
2008  * Zero a number of block pointers in either an inode or an indirect block.
2009  * If we restart the transaction we must again get write access to the
2010  * indirect block for further modification.
2011  *
2012  * We release `count' blocks on disk, but (last - first) may be greater
2013  * than `count' because there can be holes in there.
2014  */
2015 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2016                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2017                 unsigned long count, __le32 *first, __le32 *last)
2018 {
2019         __le32 *p;
2020         if (try_to_extend_transaction(handle, inode)) {
2021                 if (bh) {
2022                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2023                         ext4_journal_dirty_metadata(handle, bh);
2024                 }
2025                 ext4_mark_inode_dirty(handle, inode);
2026                 ext4_journal_test_restart(handle, inode);
2027                 if (bh) {
2028                         BUFFER_TRACE(bh, "retaking write access");
2029                         ext4_journal_get_write_access(handle, bh);
2030                 }
2031         }
2032
2033         /*
2034          * Any buffers which are on the journal will be in memory. We find
2035          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2036          * on them.  We've already detached each block from the file, so
2037          * bforget() in jbd2_journal_forget() should be safe.
2038          *
2039          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2040          */
2041         for (p = first; p < last; p++) {
2042                 u32 nr = le32_to_cpu(*p);
2043                 if (nr) {
2044                         struct buffer_head *tbh;
2045
2046                         *p = 0;
2047                         tbh = sb_find_get_block(inode->i_sb, nr);
2048                         ext4_forget(handle, 0, inode, tbh, nr);
2049                 }
2050         }
2051
2052         ext4_free_blocks(handle, inode, block_to_free, count, 0);
2053 }
2054
2055 /**
2056  * ext4_free_data - free a list of data blocks
2057  * @handle:     handle for this transaction
2058  * @inode:      inode we are dealing with
2059  * @this_bh:    indirect buffer_head which contains *@first and *@last
2060  * @first:      array of block numbers
2061  * @last:       points immediately past the end of array
2062  *
2063  * We are freeing all blocks refered from that array (numbers are stored as
2064  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2065  *
2066  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2067  * blocks are contiguous then releasing them at one time will only affect one
2068  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2069  * actually use a lot of journal space.
2070  *
2071  * @this_bh will be %NULL if @first and @last point into the inode's direct
2072  * block pointers.
2073  */
2074 static void ext4_free_data(handle_t *handle, struct inode *inode,
2075                            struct buffer_head *this_bh,
2076                            __le32 *first, __le32 *last)
2077 {
2078         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2079         unsigned long count = 0;            /* Number of blocks in the run */
2080         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2081                                                corresponding to
2082                                                block_to_free */
2083         ext4_fsblk_t nr;                    /* Current block # */
2084         __le32 *p;                          /* Pointer into inode/ind
2085                                                for current block */
2086         int err;
2087
2088         if (this_bh) {                          /* For indirect block */
2089                 BUFFER_TRACE(this_bh, "get_write_access");
2090                 err = ext4_journal_get_write_access(handle, this_bh);
2091                 /* Important: if we can't update the indirect pointers
2092                  * to the blocks, we can't free them. */
2093                 if (err)
2094                         return;
2095         }
2096
2097         for (p = first; p < last; p++) {
2098                 nr = le32_to_cpu(*p);
2099                 if (nr) {
2100                         /* accumulate blocks to free if they're contiguous */
2101                         if (count == 0) {
2102                                 block_to_free = nr;
2103                                 block_to_free_p = p;
2104                                 count = 1;
2105                         } else if (nr == block_to_free + count) {
2106                                 count++;
2107                         } else {
2108                                 ext4_clear_blocks(handle, inode, this_bh,
2109                                                   block_to_free,
2110                                                   count, block_to_free_p, p);
2111                                 block_to_free = nr;
2112                                 block_to_free_p = p;
2113                                 count = 1;
2114                         }
2115                 }
2116         }
2117
2118         if (count > 0)
2119                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2120                                   count, block_to_free_p, p);
2121
2122         if (this_bh) {
2123                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2124                 ext4_journal_dirty_metadata(handle, this_bh);
2125         }
2126 }
2127
2128 /**
2129  *      ext4_free_branches - free an array of branches
2130  *      @handle: JBD handle for this transaction
2131  *      @inode: inode we are dealing with
2132  *      @parent_bh: the buffer_head which contains *@first and *@last
2133  *      @first: array of block numbers
2134  *      @last:  pointer immediately past the end of array
2135  *      @depth: depth of the branches to free
2136  *
2137  *      We are freeing all blocks refered from these branches (numbers are
2138  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2139  *      appropriately.
2140  */
2141 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2142                                struct buffer_head *parent_bh,
2143                                __le32 *first, __le32 *last, int depth)
2144 {
2145         ext4_fsblk_t nr;
2146         __le32 *p;
2147
2148         if (is_handle_aborted(handle))
2149                 return;
2150
2151         if (depth--) {
2152                 struct buffer_head *bh;
2153                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2154                 p = last;
2155                 while (--p >= first) {
2156                         nr = le32_to_cpu(*p);
2157                         if (!nr)
2158                                 continue;               /* A hole */
2159
2160                         /* Go read the buffer for the next level down */
2161                         bh = sb_bread(inode->i_sb, nr);
2162
2163                         /*
2164                          * A read failure? Report error and clear slot
2165                          * (should be rare).
2166                          */
2167                         if (!bh) {
2168                                 ext4_error(inode->i_sb, "ext4_free_branches",
2169                                            "Read failure, inode=%lu, block=%llu",
2170                                            inode->i_ino, nr);
2171                                 continue;
2172                         }
2173
2174                         /* This zaps the entire block.  Bottom up. */
2175                         BUFFER_TRACE(bh, "free child branches");
2176                         ext4_free_branches(handle, inode, bh,
2177                                            (__le32*)bh->b_data,
2178                                            (__le32*)bh->b_data + addr_per_block,
2179                                            depth);
2180
2181                         /*
2182                          * We've probably journalled the indirect block several
2183                          * times during the truncate.  But it's no longer
2184                          * needed and we now drop it from the transaction via
2185                          * jbd2_journal_revoke().
2186                          *
2187                          * That's easy if it's exclusively part of this
2188                          * transaction.  But if it's part of the committing
2189                          * transaction then jbd2_journal_forget() will simply
2190                          * brelse() it.  That means that if the underlying
2191                          * block is reallocated in ext4_get_block(),
2192                          * unmap_underlying_metadata() will find this block
2193                          * and will try to get rid of it.  damn, damn.
2194                          *
2195                          * If this block has already been committed to the
2196                          * journal, a revoke record will be written.  And
2197                          * revoke records must be emitted *before* clearing
2198                          * this block's bit in the bitmaps.
2199                          */
2200                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2201
2202                         /*
2203                          * Everything below this this pointer has been
2204                          * released.  Now let this top-of-subtree go.
2205                          *
2206                          * We want the freeing of this indirect block to be
2207                          * atomic in the journal with the updating of the
2208                          * bitmap block which owns it.  So make some room in
2209                          * the journal.
2210                          *
2211                          * We zero the parent pointer *after* freeing its
2212                          * pointee in the bitmaps, so if extend_transaction()
2213                          * for some reason fails to put the bitmap changes and
2214                          * the release into the same transaction, recovery
2215                          * will merely complain about releasing a free block,
2216                          * rather than leaking blocks.
2217                          */
2218                         if (is_handle_aborted(handle))
2219                                 return;
2220                         if (try_to_extend_transaction(handle, inode)) {
2221                                 ext4_mark_inode_dirty(handle, inode);
2222                                 ext4_journal_test_restart(handle, inode);
2223                         }
2224
2225                         ext4_free_blocks(handle, inode, nr, 1, 1);
2226
2227                         if (parent_bh) {
2228                                 /*
2229                                  * The block which we have just freed is
2230                                  * pointed to by an indirect block: journal it
2231                                  */
2232                                 BUFFER_TRACE(parent_bh, "get_write_access");
2233                                 if (!ext4_journal_get_write_access(handle,
2234                                                                    parent_bh)){
2235                                         *p = 0;
2236                                         BUFFER_TRACE(parent_bh,
2237                                         "call ext4_journal_dirty_metadata");
2238                                         ext4_journal_dirty_metadata(handle,
2239                                                                     parent_bh);
2240                                 }
2241                         }
2242                 }
2243         } else {
2244                 /* We have reached the bottom of the tree. */
2245                 BUFFER_TRACE(parent_bh, "free data blocks");
2246                 ext4_free_data(handle, inode, parent_bh, first, last);
2247         }
2248 }
2249
2250 /*
2251  * ext4_truncate()
2252  *
2253  * We block out ext4_get_block() block instantiations across the entire
2254  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2255  * simultaneously on behalf of the same inode.
2256  *
2257  * As we work through the truncate and commmit bits of it to the journal there
2258  * is one core, guiding principle: the file's tree must always be consistent on
2259  * disk.  We must be able to restart the truncate after a crash.
2260  *
2261  * The file's tree may be transiently inconsistent in memory (although it
2262  * probably isn't), but whenever we close off and commit a journal transaction,
2263  * the contents of (the filesystem + the journal) must be consistent and
2264  * restartable.  It's pretty simple, really: bottom up, right to left (although
2265  * left-to-right works OK too).
2266  *
2267  * Note that at recovery time, journal replay occurs *before* the restart of
2268  * truncate against the orphan inode list.
2269  *
2270  * The committed inode has the new, desired i_size (which is the same as
2271  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2272  * that this inode's truncate did not complete and it will again call
2273  * ext4_truncate() to have another go.  So there will be instantiated blocks
2274  * to the right of the truncation point in a crashed ext4 filesystem.  But
2275  * that's fine - as long as they are linked from the inode, the post-crash
2276  * ext4_truncate() run will find them and release them.
2277  */
2278 void ext4_truncate(struct inode *inode)
2279 {
2280         handle_t *handle;
2281         struct ext4_inode_info *ei = EXT4_I(inode);
2282         __le32 *i_data = ei->i_data;
2283         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2284         struct address_space *mapping = inode->i_mapping;
2285         ext4_lblk_t offsets[4];
2286         Indirect chain[4];
2287         Indirect *partial;
2288         __le32 nr = 0;
2289         int n;
2290         ext4_lblk_t last_block;
2291         unsigned blocksize = inode->i_sb->s_blocksize;
2292         struct page *page;
2293
2294         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2295             S_ISLNK(inode->i_mode)))
2296                 return;
2297         if (ext4_inode_is_fast_symlink(inode))
2298                 return;
2299         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2300                 return;
2301
2302         /*
2303          * We have to lock the EOF page here, because lock_page() nests
2304          * outside jbd2_journal_start().
2305          */
2306         if ((inode->i_size & (blocksize - 1)) == 0) {
2307                 /* Block boundary? Nothing to do */
2308                 page = NULL;
2309         } else {
2310                 page = grab_cache_page(mapping,
2311                                 inode->i_size >> PAGE_CACHE_SHIFT);
2312                 if (!page)
2313                         return;
2314         }
2315
2316         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2317                 ext4_ext_truncate(inode, page);
2318                 return;
2319         }
2320
2321         handle = start_transaction(inode);
2322         if (IS_ERR(handle)) {
2323                 if (page) {
2324                         clear_highpage(page);
2325                         flush_dcache_page(page);
2326                         unlock_page(page);
2327                         page_cache_release(page);
2328                 }
2329                 return;         /* AKPM: return what? */
2330         }
2331
2332         last_block = (inode->i_size + blocksize-1)
2333                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2334
2335         if (page)
2336                 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2337
2338         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2339         if (n == 0)
2340                 goto out_stop;  /* error */
2341
2342         /*
2343          * OK.  This truncate is going to happen.  We add the inode to the
2344          * orphan list, so that if this truncate spans multiple transactions,
2345          * and we crash, we will resume the truncate when the filesystem
2346          * recovers.  It also marks the inode dirty, to catch the new size.
2347          *
2348          * Implication: the file must always be in a sane, consistent
2349          * truncatable state while each transaction commits.
2350          */
2351         if (ext4_orphan_add(handle, inode))
2352                 goto out_stop;
2353
2354         /*
2355          * The orphan list entry will now protect us from any crash which
2356          * occurs before the truncate completes, so it is now safe to propagate
2357          * the new, shorter inode size (held for now in i_size) into the
2358          * on-disk inode. We do this via i_disksize, which is the value which
2359          * ext4 *really* writes onto the disk inode.
2360          */
2361         ei->i_disksize = inode->i_size;
2362
2363         /*
2364          * From here we block out all ext4_get_block() callers who want to
2365          * modify the block allocation tree.
2366          */
2367         down_write(&ei->i_data_sem);
2368
2369         if (n == 1) {           /* direct blocks */
2370                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2371                                i_data + EXT4_NDIR_BLOCKS);
2372                 goto do_indirects;
2373         }
2374
2375         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2376         /* Kill the top of shared branch (not detached) */
2377         if (nr) {
2378                 if (partial == chain) {
2379                         /* Shared branch grows from the inode */
2380                         ext4_free_branches(handle, inode, NULL,
2381                                            &nr, &nr+1, (chain+n-1) - partial);
2382                         *partial->p = 0;
2383                         /*
2384                          * We mark the inode dirty prior to restart,
2385                          * and prior to stop.  No need for it here.
2386                          */
2387                 } else {
2388                         /* Shared branch grows from an indirect block */
2389                         BUFFER_TRACE(partial->bh, "get_write_access");
2390                         ext4_free_branches(handle, inode, partial->bh,
2391                                         partial->p,
2392                                         partial->p+1, (chain+n-1) - partial);
2393                 }
2394         }
2395         /* Clear the ends of indirect blocks on the shared branch */
2396         while (partial > chain) {
2397                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2398                                    (__le32*)partial->bh->b_data+addr_per_block,
2399                                    (chain+n-1) - partial);
2400                 BUFFER_TRACE(partial->bh, "call brelse");
2401                 brelse (partial->bh);
2402                 partial--;
2403         }
2404 do_indirects:
2405         /* Kill the remaining (whole) subtrees */
2406         switch (offsets[0]) {
2407         default:
2408                 nr = i_data[EXT4_IND_BLOCK];
2409                 if (nr) {
2410                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2411                         i_data[EXT4_IND_BLOCK] = 0;
2412                 }
2413         case EXT4_IND_BLOCK:
2414                 nr = i_data[EXT4_DIND_BLOCK];
2415                 if (nr) {
2416                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2417                         i_data[EXT4_DIND_BLOCK] = 0;
2418                 }
2419         case EXT4_DIND_BLOCK:
2420                 nr = i_data[EXT4_TIND_BLOCK];
2421                 if (nr) {
2422                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2423                         i_data[EXT4_TIND_BLOCK] = 0;
2424                 }
2425         case EXT4_TIND_BLOCK:
2426                 ;
2427         }
2428
2429         ext4_discard_reservation(inode);
2430
2431         up_write(&ei->i_data_sem);
2432         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2433         ext4_mark_inode_dirty(handle, inode);
2434
2435         /*
2436          * In a multi-transaction truncate, we only make the final transaction
2437          * synchronous
2438          */
2439         if (IS_SYNC(inode))
2440                 handle->h_sync = 1;
2441 out_stop:
2442         /*
2443          * If this was a simple ftruncate(), and the file will remain alive
2444          * then we need to clear up the orphan record which we created above.
2445          * However, if this was a real unlink then we were called by
2446          * ext4_delete_inode(), and we allow that function to clean up the
2447          * orphan info for us.
2448          */
2449         if (inode->i_nlink)
2450                 ext4_orphan_del(handle, inode);
2451
2452         ext4_journal_stop(handle);
2453 }
2454
2455 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2456                 unsigned long ino, struct ext4_iloc *iloc)
2457 {
2458         unsigned long desc, group_desc;
2459         ext4_group_t block_group;
2460         unsigned long offset;
2461         ext4_fsblk_t block;
2462         struct buffer_head *bh;
2463         struct ext4_group_desc * gdp;
2464
2465         if (!ext4_valid_inum(sb, ino)) {
2466                 /*
2467                  * This error is already checked for in namei.c unless we are
2468                  * looking at an NFS filehandle, in which case no error
2469                  * report is needed
2470                  */
2471                 return 0;
2472         }
2473
2474         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2475         if (block_group >= EXT4_SB(sb)->s_groups_count) {
2476                 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2477                 return 0;
2478         }
2479         smp_rmb();
2480         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2481         desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2482         bh = EXT4_SB(sb)->s_group_desc[group_desc];
2483         if (!bh) {
2484                 ext4_error (sb, "ext4_get_inode_block",
2485                             "Descriptor not loaded");
2486                 return 0;
2487         }
2488
2489         gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2490                 desc * EXT4_DESC_SIZE(sb));
2491         /*
2492          * Figure out the offset within the block group inode table
2493          */
2494         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2495                 EXT4_INODE_SIZE(sb);
2496         block = ext4_inode_table(sb, gdp) +
2497                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2498
2499         iloc->block_group = block_group;
2500         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2501         return block;
2502 }
2503
2504 /*
2505  * ext4_get_inode_loc returns with an extra refcount against the inode's
2506  * underlying buffer_head on success. If 'in_mem' is true, we have all
2507  * data in memory that is needed to recreate the on-disk version of this
2508  * inode.
2509  */
2510 static int __ext4_get_inode_loc(struct inode *inode,
2511                                 struct ext4_iloc *iloc, int in_mem)
2512 {
2513         ext4_fsblk_t block;
2514         struct buffer_head *bh;
2515
2516         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2517         if (!block)
2518                 return -EIO;
2519
2520         bh = sb_getblk(inode->i_sb, block);
2521         if (!bh) {
2522                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2523                                 "unable to read inode block - "
2524                                 "inode=%lu, block=%llu",
2525                                  inode->i_ino, block);
2526                 return -EIO;
2527         }
2528         if (!buffer_uptodate(bh)) {
2529                 lock_buffer(bh);
2530                 if (buffer_uptodate(bh)) {
2531                         /* someone brought it uptodate while we waited */
2532                         unlock_buffer(bh);
2533                         goto has_buffer;
2534                 }
2535
2536                 /*
2537                  * If we have all information of the inode in memory and this
2538                  * is the only valid inode in the block, we need not read the
2539                  * block.
2540                  */
2541                 if (in_mem) {
2542                         struct buffer_head *bitmap_bh;
2543                         struct ext4_group_desc *desc;
2544                         int inodes_per_buffer;
2545                         int inode_offset, i;
2546                         ext4_group_t block_group;
2547                         int start;
2548
2549                         block_group = (inode->i_ino - 1) /
2550                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2551                         inodes_per_buffer = bh->b_size /
2552                                 EXT4_INODE_SIZE(inode->i_sb);
2553                         inode_offset = ((inode->i_ino - 1) %
2554                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2555                         start = inode_offset & ~(inodes_per_buffer - 1);
2556
2557                         /* Is the inode bitmap in cache? */
2558                         desc = ext4_get_group_desc(inode->i_sb,
2559                                                 block_group, NULL);
2560                         if (!desc)
2561                                 goto make_io;
2562
2563                         bitmap_bh = sb_getblk(inode->i_sb,
2564                                 ext4_inode_bitmap(inode->i_sb, desc));
2565                         if (!bitmap_bh)
2566                                 goto make_io;
2567
2568                         /*
2569                          * If the inode bitmap isn't in cache then the
2570                          * optimisation may end up performing two reads instead
2571                          * of one, so skip it.
2572                          */
2573                         if (!buffer_uptodate(bitmap_bh)) {
2574                                 brelse(bitmap_bh);
2575                                 goto make_io;
2576                         }
2577                         for (i = start; i < start + inodes_per_buffer; i++) {
2578                                 if (i == inode_offset)
2579                                         continue;
2580                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2581                                         break;
2582                         }
2583                         brelse(bitmap_bh);
2584                         if (i == start + inodes_per_buffer) {
2585                                 /* all other inodes are free, so skip I/O */
2586                                 memset(bh->b_data, 0, bh->b_size);
2587                                 set_buffer_uptodate(bh);
2588                                 unlock_buffer(bh);
2589                                 goto has_buffer;
2590                         }
2591                 }
2592
2593 make_io:
2594                 /*
2595                  * There are other valid inodes in the buffer, this inode
2596                  * has in-inode xattrs, or we don't have this inode in memory.
2597                  * Read the block from disk.
2598                  */
2599                 get_bh(bh);
2600                 bh->b_end_io = end_buffer_read_sync;
2601                 submit_bh(READ_META, bh);
2602                 wait_on_buffer(bh);
2603                 if (!buffer_uptodate(bh)) {
2604                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2605                                         "unable to read inode block - "
2606                                         "inode=%lu, block=%llu",
2607                                         inode->i_ino, block);
2608                         brelse(bh);
2609                         return -EIO;
2610                 }
2611         }
2612 has_buffer:
2613         iloc->bh = bh;
2614         return 0;
2615 }
2616
2617 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2618 {
2619         /* We have all inode data except xattrs in memory here. */
2620         return __ext4_get_inode_loc(inode, iloc,
2621                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2622 }
2623
2624 void ext4_set_inode_flags(struct inode *inode)
2625 {
2626         unsigned int flags = EXT4_I(inode)->i_flags;
2627
2628         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2629         if (flags & EXT4_SYNC_FL)
2630                 inode->i_flags |= S_SYNC;
2631         if (flags & EXT4_APPEND_FL)
2632                 inode->i_flags |= S_APPEND;
2633         if (flags & EXT4_IMMUTABLE_FL)
2634                 inode->i_flags |= S_IMMUTABLE;
2635         if (flags & EXT4_NOATIME_FL)
2636                 inode->i_flags |= S_NOATIME;
2637         if (flags & EXT4_DIRSYNC_FL)
2638                 inode->i_flags |= S_DIRSYNC;
2639 }
2640
2641 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2642 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2643 {
2644         unsigned int flags = ei->vfs_inode.i_flags;
2645
2646         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2647                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2648         if (flags & S_SYNC)
2649                 ei->i_flags |= EXT4_SYNC_FL;
2650         if (flags & S_APPEND)
2651                 ei->i_flags |= EXT4_APPEND_FL;
2652         if (flags & S_IMMUTABLE)
2653                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2654         if (flags & S_NOATIME)
2655                 ei->i_flags |= EXT4_NOATIME_FL;
2656         if (flags & S_DIRSYNC)
2657                 ei->i_flags |= EXT4_DIRSYNC_FL;
2658 }
2659 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2660                                         struct ext4_inode_info *ei)
2661 {
2662         blkcnt_t i_blocks ;
2663         struct inode *inode = &(ei->vfs_inode);
2664         struct super_block *sb = inode->i_sb;
2665
2666         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2667                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2668                 /* we are using combined 48 bit field */
2669                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2670                                         le32_to_cpu(raw_inode->i_blocks_lo);
2671                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2672                         /* i_blocks represent file system block size */
2673                         return i_blocks  << (inode->i_blkbits - 9);
2674                 } else {
2675                         return i_blocks;
2676                 }
2677         } else {
2678                 return le32_to_cpu(raw_inode->i_blocks_lo);
2679         }
2680 }
2681
2682 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2683 {
2684         struct ext4_iloc iloc;
2685         struct ext4_inode *raw_inode;
2686         struct ext4_inode_info *ei;
2687         struct buffer_head *bh;
2688         struct inode *inode;
2689         long ret;
2690         int block;
2691
2692         inode = iget_locked(sb, ino);
2693         if (!inode)
2694                 return ERR_PTR(-ENOMEM);
2695         if (!(inode->i_state & I_NEW))
2696                 return inode;
2697
2698         ei = EXT4_I(inode);
2699 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2700         ei->i_acl = EXT4_ACL_NOT_CACHED;
2701         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2702 #endif
2703         ei->i_block_alloc_info = NULL;
2704
2705         ret = __ext4_get_inode_loc(inode, &iloc, 0);
2706         if (ret < 0)
2707                 goto bad_inode;
2708         bh = iloc.bh;
2709         raw_inode = ext4_raw_inode(&iloc);
2710         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2711         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2712         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2713         if(!(test_opt (inode->i_sb, NO_UID32))) {
2714                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2715                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2716         }
2717         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2718
2719         ei->i_state = 0;
2720         ei->i_dir_start_lookup = 0;
2721         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2722         /* We now have enough fields to check if the inode was active or not.
2723          * This is needed because nfsd might try to access dead inodes
2724          * the test is that same one that e2fsck uses
2725          * NeilBrown 1999oct15
2726          */
2727         if (inode->i_nlink == 0) {
2728                 if (inode->i_mode == 0 ||
2729                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2730                         /* this inode is deleted */
2731                         brelse (bh);
2732                         ret = -ESTALE;
2733                         goto bad_inode;
2734                 }
2735                 /* The only unlinked inodes we let through here have
2736                  * valid i_mode and are being read by the orphan
2737                  * recovery code: that's fine, we're about to complete
2738                  * the process of deleting those. */
2739         }
2740         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2741         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2742         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2743         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2744             cpu_to_le32(EXT4_OS_HURD)) {
2745                 ei->i_file_acl |=
2746                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2747         }
2748         inode->i_size = ext4_isize(raw_inode);
2749         ei->i_disksize = inode->i_size;
2750         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2751         ei->i_block_group = iloc.block_group;
2752         /*
2753          * NOTE! The in-memory inode i_data array is in little-endian order
2754          * even on big-endian machines: we do NOT byteswap the block numbers!
2755          */
2756         for (block = 0; block < EXT4_N_BLOCKS; block++)
2757                 ei->i_data[block] = raw_inode->i_block[block];
2758         INIT_LIST_HEAD(&ei->i_orphan);
2759
2760         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2761                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2762                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2763                     EXT4_INODE_SIZE(inode->i_sb)) {
2764                         brelse (bh);
2765                         ret = -EIO;
2766                         goto bad_inode;
2767                 }
2768                 if (ei->i_extra_isize == 0) {
2769                         /* The extra space is currently unused. Use it. */
2770                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2771                                             EXT4_GOOD_OLD_INODE_SIZE;
2772                 } else {
2773                         __le32 *magic = (void *)raw_inode +
2774                                         EXT4_GOOD_OLD_INODE_SIZE +
2775                                         ei->i_extra_isize;
2776                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2777                                  ei->i_state |= EXT4_STATE_XATTR;
2778                 }
2779         } else
2780                 ei->i_extra_isize = 0;
2781
2782         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2783         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2784         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2785         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2786
2787         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2788         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2789                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2790                         inode->i_version |=
2791                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2792         }
2793
2794         if (S_ISREG(inode->i_mode)) {
2795                 inode->i_op = &ext4_file_inode_operations;
2796                 inode->i_fop = &ext4_file_operations;
2797                 ext4_set_aops(inode);
2798         } else if (S_ISDIR(inode->i_mode)) {
2799                 inode->i_op = &ext4_dir_inode_operations;
2800                 inode->i_fop = &ext4_dir_operations;
2801         } else if (S_ISLNK(inode->i_mode)) {
2802                 if (ext4_inode_is_fast_symlink(inode))
2803                         inode->i_op = &ext4_fast_symlink_inode_operations;
2804                 else {
2805                         inode->i_op = &ext4_symlink_inode_operations;
2806                         ext4_set_aops(inode);
2807                 }
2808         } else {
2809                 inode->i_op = &ext4_special_inode_operations;
2810                 if (raw_inode->i_block[0])
2811                         init_special_inode(inode, inode->i_mode,
2812                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2813                 else
2814                         init_special_inode(inode, inode->i_mode,
2815                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2816         }
2817         brelse (iloc.bh);
2818         ext4_set_inode_flags(inode);
2819         unlock_new_inode(inode);
2820         return inode;
2821
2822 bad_inode:
2823         iget_failed(inode);
2824         return ERR_PTR(ret);
2825 }
2826
2827 static int ext4_inode_blocks_set(handle_t *handle,
2828                                 struct ext4_inode *raw_inode,
2829                                 struct ext4_inode_info *ei)
2830 {
2831         struct inode *inode = &(ei->vfs_inode);
2832         u64 i_blocks = inode->i_blocks;
2833         struct super_block *sb = inode->i_sb;
2834         int err = 0;
2835
2836         if (i_blocks <= ~0U) {
2837                 /*
2838                  * i_blocks can be represnted in a 32 bit variable
2839                  * as multiple of 512 bytes
2840                  */
2841                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2842                 raw_inode->i_blocks_high = 0;
2843                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2844         } else if (i_blocks <= 0xffffffffffffULL) {
2845                 /*
2846                  * i_blocks can be represented in a 48 bit variable
2847                  * as multiple of 512 bytes
2848                  */
2849                 err = ext4_update_rocompat_feature(handle, sb,
2850                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2851                 if (err)
2852                         goto  err_out;
2853                 /* i_block is stored in the split  48 bit fields */
2854                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2855                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2856                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2857         } else {
2858                 /*
2859                  * i_blocks should be represented in a 48 bit variable
2860                  * as multiple of  file system block size
2861                  */
2862                 err = ext4_update_rocompat_feature(handle, sb,
2863                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2864                 if (err)
2865                         goto  err_out;
2866                 ei->i_flags |= EXT4_HUGE_FILE_FL;
2867                 /* i_block is stored in file system block size */
2868                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2869                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2870                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2871         }
2872 err_out:
2873         return err;
2874 }
2875
2876 /*
2877  * Post the struct inode info into an on-disk inode location in the
2878  * buffer-cache.  This gobbles the caller's reference to the
2879  * buffer_head in the inode location struct.
2880  *
2881  * The caller must have write access to iloc->bh.
2882  */
2883 static int ext4_do_update_inode(handle_t *handle,
2884                                 struct inode *inode,
2885                                 struct ext4_iloc *iloc)
2886 {
2887         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2888         struct ext4_inode_info *ei = EXT4_I(inode);
2889         struct buffer_head *bh = iloc->bh;
2890         int err = 0, rc, block;
2891
2892         /* For fields not not tracking in the in-memory inode,
2893          * initialise them to zero for new inodes. */
2894         if (ei->i_state & EXT4_STATE_NEW)
2895                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2896
2897         ext4_get_inode_flags(ei);
2898         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2899         if(!(test_opt(inode->i_sb, NO_UID32))) {
2900                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2901                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2902 /*
2903  * Fix up interoperability with old kernels. Otherwise, old inodes get
2904  * re-used with the upper 16 bits of the uid/gid intact
2905  */
2906                 if(!ei->i_dtime) {
2907                         raw_inode->i_uid_high =
2908                                 cpu_to_le16(high_16_bits(inode->i_uid));
2909                         raw_inode->i_gid_high =
2910                                 cpu_to_le16(high_16_bits(inode->i_gid));
2911                 } else {
2912                         raw_inode->i_uid_high = 0;
2913                         raw_inode->i_gid_high = 0;
2914                 }
2915         } else {
2916                 raw_inode->i_uid_low =
2917                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2918                 raw_inode->i_gid_low =
2919                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2920                 raw_inode->i_uid_high = 0;
2921                 raw_inode->i_gid_high = 0;
2922         }
2923         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2924
2925         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2926         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2927         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2928         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2929
2930         if (ext4_inode_blocks_set(handle, raw_inode, ei))
2931                 goto out_brelse;
2932         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2933         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2934         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2935             cpu_to_le32(EXT4_OS_HURD))
2936                 raw_inode->i_file_acl_high =
2937                         cpu_to_le16(ei->i_file_acl >> 32);
2938         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2939         ext4_isize_set(raw_inode, ei->i_disksize);
2940         if (ei->i_disksize > 0x7fffffffULL) {
2941                 struct super_block *sb = inode->i_sb;
2942                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2943                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2944                                 EXT4_SB(sb)->s_es->s_rev_level ==
2945                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2946                         /* If this is the first large file
2947                          * created, add a flag to the superblock.
2948                          */
2949                         err = ext4_journal_get_write_access(handle,
2950                                         EXT4_SB(sb)->s_sbh);
2951                         if (err)
2952                                 goto out_brelse;
2953                         ext4_update_dynamic_rev(sb);
2954                         EXT4_SET_RO_COMPAT_FEATURE(sb,
2955                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2956                         sb->s_dirt = 1;
2957                         handle->h_sync = 1;
2958                         err = ext4_journal_dirty_metadata(handle,
2959                                         EXT4_SB(sb)->s_sbh);
2960                 }
2961         }
2962         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2963         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2964                 if (old_valid_dev(inode->i_rdev)) {
2965                         raw_inode->i_block[0] =
2966                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2967                         raw_inode->i_block[1] = 0;
2968                 } else {
2969                         raw_inode->i_block[0] = 0;
2970                         raw_inode->i_block[1] =
2971                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2972                         raw_inode->i_block[2] = 0;
2973                 }
2974         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2975                 raw_inode->i_block[block] = ei->i_data[block];
2976
2977         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2978         if (ei->i_extra_isize) {
2979                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2980                         raw_inode->i_version_hi =
2981                         cpu_to_le32(inode->i_version >> 32);
2982                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2983         }
2984
2985
2986         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2987         rc = ext4_journal_dirty_metadata(handle, bh);
2988         if (!err)
2989                 err = rc;
2990         ei->i_state &= ~EXT4_STATE_NEW;
2991
2992 out_brelse:
2993         brelse (bh);
2994         ext4_std_error(inode->i_sb, err);
2995         return err;
2996 }
2997
2998 /*
2999  * ext4_write_inode()
3000  *
3001  * We are called from a few places:
3002  *
3003  * - Within generic_file_write() for O_SYNC files.
3004  *   Here, there will be no transaction running. We wait for any running
3005  *   trasnaction to commit.
3006  *
3007  * - Within sys_sync(), kupdate and such.
3008  *   We wait on commit, if tol to.
3009  *
3010  * - Within prune_icache() (PF_MEMALLOC == true)
3011  *   Here we simply return.  We can't afford to block kswapd on the
3012  *   journal commit.
3013  *
3014  * In all cases it is actually safe for us to return without doing anything,
3015  * because the inode has been copied into a raw inode buffer in
3016  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3017  * knfsd.
3018  *
3019  * Note that we are absolutely dependent upon all inode dirtiers doing the
3020  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3021  * which we are interested.
3022  *
3023  * It would be a bug for them to not do this.  The code:
3024  *
3025  *      mark_inode_dirty(inode)
3026  *      stuff();
3027  *      inode->i_size = expr;
3028  *
3029  * is in error because a kswapd-driven write_inode() could occur while
3030  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3031  * will no longer be on the superblock's dirty inode list.
3032  */
3033 int ext4_write_inode(struct inode *inode, int wait)
3034 {
3035         if (current->flags & PF_MEMALLOC)
3036                 return 0;
3037
3038         if (ext4_journal_current_handle()) {
3039                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3040                 dump_stack();
3041                 return -EIO;
3042         }
3043
3044         if (!wait)
3045                 return 0;
3046
3047         return ext4_force_commit(inode->i_sb);
3048 }
3049
3050 /*
3051  * ext4_setattr()
3052  *
3053  * Called from notify_change.
3054  *
3055  * We want to trap VFS attempts to truncate the file as soon as
3056  * possible.  In particular, we want to make sure that when the VFS
3057  * shrinks i_size, we put the inode on the orphan list and modify
3058  * i_disksize immediately, so that during the subsequent flushing of
3059  * dirty pages and freeing of disk blocks, we can guarantee that any
3060  * commit will leave the blocks being flushed in an unused state on
3061  * disk.  (On recovery, the inode will get truncated and the blocks will
3062  * be freed, so we have a strong guarantee that no future commit will
3063  * leave these blocks visible to the user.)
3064  *
3065  * Called with inode->sem down.
3066  */
3067 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3068 {
3069         struct inode *inode = dentry->d_inode;
3070         int error, rc = 0;
3071         const unsigned int ia_valid = attr->ia_valid;
3072
3073         error = inode_change_ok(inode, attr);
3074         if (error)
3075                 return error;
3076
3077         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3078                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3079                 handle_t *handle;
3080
3081                 /* (user+group)*(old+new) structure, inode write (sb,
3082                  * inode block, ? - but truncate inode update has it) */
3083                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3084                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3085                 if (IS_ERR(handle)) {
3086                         error = PTR_ERR(handle);
3087                         goto err_out;
3088                 }
3089                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3090                 if (error) {
3091                         ext4_journal_stop(handle);
3092                         return error;
3093                 }
3094                 /* Update corresponding info in inode so that everything is in
3095                  * one transaction */
3096                 if (attr->ia_valid & ATTR_UID)
3097                         inode->i_uid = attr->ia_uid;
3098                 if (attr->ia_valid & ATTR_GID)
3099                         inode->i_gid = attr->ia_gid;
3100                 error = ext4_mark_inode_dirty(handle, inode);
3101                 ext4_journal_stop(handle);
3102         }
3103
3104         if (attr->ia_valid & ATTR_SIZE) {
3105                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3106                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3107
3108                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3109                                 error = -EFBIG;
3110                                 goto err_out;
3111                         }
3112                 }
3113         }
3114
3115         if (S_ISREG(inode->i_mode) &&
3116             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3117                 handle_t *handle;
3118
3119                 handle = ext4_journal_start(inode, 3);
3120                 if (IS_ERR(handle)) {
3121                         error = PTR_ERR(handle);
3122                         goto err_out;
3123                 }
3124
3125                 error = ext4_orphan_add(handle, inode);
3126                 EXT4_I(inode)->i_disksize = attr->ia_size;
3127                 rc = ext4_mark_inode_dirty(handle, inode);
3128                 if (!error)
3129                         error = rc;
3130                 ext4_journal_stop(handle);
3131         }
3132
3133         rc = inode_setattr(inode, attr);
3134
3135         /* If inode_setattr's call to ext4_truncate failed to get a
3136          * transaction handle at all, we need to clean up the in-core
3137          * orphan list manually. */
3138         if (inode->i_nlink)
3139                 ext4_orphan_del(NULL, inode);
3140
3141         if (!rc && (ia_valid & ATTR_MODE))
3142                 rc = ext4_acl_chmod(inode);
3143
3144 err_out:
3145         ext4_std_error(inode->i_sb, error);
3146         if (!error)
3147                 error = rc;
3148         return error;
3149 }
3150
3151
3152 /*
3153  * How many blocks doth make a writepage()?
3154  *
3155  * With N blocks per page, it may be:
3156  * N data blocks
3157  * 2 indirect block
3158  * 2 dindirect
3159  * 1 tindirect
3160  * N+5 bitmap blocks (from the above)
3161  * N+5 group descriptor summary blocks
3162  * 1 inode block
3163  * 1 superblock.
3164  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3165  *
3166  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3167  *
3168  * With ordered or writeback data it's the same, less the N data blocks.
3169  *
3170  * If the inode's direct blocks can hold an integral number of pages then a
3171  * page cannot straddle two indirect blocks, and we can only touch one indirect
3172  * and dindirect block, and the "5" above becomes "3".
3173  *
3174  * This still overestimates under most circumstances.  If we were to pass the
3175  * start and end offsets in here as well we could do block_to_path() on each
3176  * block and work out the exact number of indirects which are touched.  Pah.
3177  */
3178
3179 int ext4_writepage_trans_blocks(struct inode *inode)
3180 {
3181         int bpp = ext4_journal_blocks_per_page(inode);
3182         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3183         int ret;
3184
3185         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3186                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3187
3188         if (ext4_should_journal_data(inode))
3189                 ret = 3 * (bpp + indirects) + 2;
3190         else
3191                 ret = 2 * (bpp + indirects) + 2;
3192
3193 #ifdef CONFIG_QUOTA
3194         /* We know that structure was already allocated during DQUOT_INIT so
3195          * we will be updating only the data blocks + inodes */
3196         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3197 #endif
3198
3199         return ret;
3200 }
3201
3202 /*
3203  * The caller must have previously called ext4_reserve_inode_write().
3204  * Give this, we know that the caller already has write access to iloc->bh.
3205  */
3206 int ext4_mark_iloc_dirty(handle_t *handle,
3207                 struct inode *inode, struct ext4_iloc *iloc)
3208 {
3209         int err = 0;
3210
3211         if (test_opt(inode->i_sb, I_VERSION))
3212                 inode_inc_iversion(inode);
3213
3214         /* the do_update_inode consumes one bh->b_count */
3215         get_bh(iloc->bh);
3216
3217         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3218         err = ext4_do_update_inode(handle, inode, iloc);
3219         put_bh(iloc->bh);
3220         return err;
3221 }
3222
3223 /*
3224  * On success, We end up with an outstanding reference count against
3225  * iloc->bh.  This _must_ be cleaned up later.
3226  */
3227
3228 int
3229 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3230                          struct ext4_iloc *iloc)
3231 {
3232         int err = 0;
3233         if (handle) {
3234                 err = ext4_get_inode_loc(inode, iloc);
3235                 if (!err) {
3236                         BUFFER_TRACE(iloc->bh, "get_write_access");
3237                         err = ext4_journal_get_write_access(handle, iloc->bh);
3238                         if (err) {
3239                                 brelse(iloc->bh);
3240                                 iloc->bh = NULL;
3241                         }
3242                 }
3243         }
3244         ext4_std_error(inode->i_sb, err);
3245         return err;
3246 }
3247
3248 /*
3249  * Expand an inode by new_extra_isize bytes.
3250  * Returns 0 on success or negative error number on failure.
3251  */
3252 static int ext4_expand_extra_isize(struct inode *inode,
3253                                    unsigned int new_extra_isize,
3254                                    struct ext4_iloc iloc,
3255                                    handle_t *handle)
3256 {
3257         struct ext4_inode *raw_inode;
3258         struct ext4_xattr_ibody_header *header;
3259         struct ext4_xattr_entry *entry;
3260
3261         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3262                 return 0;
3263
3264         raw_inode = ext4_raw_inode(&iloc);
3265
3266         header = IHDR(inode, raw_inode);
3267         entry = IFIRST(header);
3268
3269         /* No extended attributes present */
3270         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3271                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3272                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3273                         new_extra_isize);
3274                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3275                 return 0;
3276         }
3277
3278         /* try to expand with EAs present */
3279         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3280                                           raw_inode, handle);
3281 }
3282
3283 /*
3284  * What we do here is to mark the in-core inode as clean with respect to inode
3285  * dirtiness (it may still be data-dirty).
3286  * This means that the in-core inode may be reaped by prune_icache
3287  * without having to perform any I/O.  This is a very good thing,
3288  * because *any* task may call prune_icache - even ones which
3289  * have a transaction open against a different journal.
3290  *
3291  * Is this cheating?  Not really.  Sure, we haven't written the
3292  * inode out, but prune_icache isn't a user-visible syncing function.
3293  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3294  * we start and wait on commits.
3295  *
3296  * Is this efficient/effective?  Well, we're being nice to the system
3297  * by cleaning up our inodes proactively so they can be reaped
3298  * without I/O.  But we are potentially leaving up to five seconds'
3299  * worth of inodes floating about which prune_icache wants us to
3300  * write out.  One way to fix that would be to get prune_icache()
3301  * to do a write_super() to free up some memory.  It has the desired
3302  * effect.
3303  */
3304 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3305 {
3306         struct ext4_iloc iloc;
3307         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3308         static unsigned int mnt_count;
3309         int err, ret;
3310
3311         might_sleep();
3312         err = ext4_reserve_inode_write(handle, inode, &iloc);
3313         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3314             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3315                 /*
3316                  * We need extra buffer credits since we may write into EA block
3317                  * with this same handle. If journal_extend fails, then it will
3318                  * only result in a minor loss of functionality for that inode.
3319                  * If this is felt to be critical, then e2fsck should be run to
3320                  * force a large enough s_min_extra_isize.
3321                  */
3322                 if ((jbd2_journal_extend(handle,
3323                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3324                         ret = ext4_expand_extra_isize(inode,
3325                                                       sbi->s_want_extra_isize,
3326                                                       iloc, handle);
3327                         if (ret) {
3328                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3329                                 if (mnt_count !=
3330                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3331                                         ext4_warning(inode->i_sb, __FUNCTION__,
3332                                         "Unable to expand inode %lu. Delete"
3333                                         " some EAs or run e2fsck.",
3334                                         inode->i_ino);
3335                                         mnt_count =
3336                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3337                                 }
3338                         }
3339                 }
3340         }
3341         if (!err)
3342                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3343         return err;
3344 }
3345
3346 /*
3347  * ext4_dirty_inode() is called from __mark_inode_dirty()
3348  *
3349  * We're really interested in the case where a file is being extended.
3350  * i_size has been changed by generic_commit_write() and we thus need
3351  * to include the updated inode in the current transaction.
3352  *
3353  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3354  * are allocated to the file.
3355  *
3356  * If the inode is marked synchronous, we don't honour that here - doing
3357  * so would cause a commit on atime updates, which we don't bother doing.
3358  * We handle synchronous inodes at the highest possible level.
3359  */
3360 void ext4_dirty_inode(struct inode *inode)
3361 {
3362         handle_t *current_handle = ext4_journal_current_handle();
3363         handle_t *handle;
3364
3365         handle = ext4_journal_start(inode, 2);
3366         if (IS_ERR(handle))
3367                 goto out;
3368         if (current_handle &&
3369                 current_handle->h_transaction != handle->h_transaction) {
3370                 /* This task has a transaction open against a different fs */
3371                 printk(KERN_EMERG "%s: transactions do not match!\n",
3372                        __FUNCTION__);
3373         } else {
3374                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3375                                 current_handle);
3376                 ext4_mark_inode_dirty(handle, inode);
3377         }
3378         ext4_journal_stop(handle);
3379 out:
3380         return;
3381 }
3382
3383 #if 0
3384 /*
3385  * Bind an inode's backing buffer_head into this transaction, to prevent
3386  * it from being flushed to disk early.  Unlike
3387  * ext4_reserve_inode_write, this leaves behind no bh reference and
3388  * returns no iloc structure, so the caller needs to repeat the iloc
3389  * lookup to mark the inode dirty later.
3390  */
3391 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3392 {
3393         struct ext4_iloc iloc;
3394
3395         int err = 0;
3396         if (handle) {
3397                 err = ext4_get_inode_loc(inode, &iloc);
3398                 if (!err) {
3399                         BUFFER_TRACE(iloc.bh, "get_write_access");
3400                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3401                         if (!err)
3402                                 err = ext4_journal_dirty_metadata(handle,
3403                                                                   iloc.bh);
3404                         brelse(iloc.bh);
3405                 }
3406         }
3407         ext4_std_error(inode->i_sb, err);
3408         return err;
3409 }
3410 #endif
3411
3412 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3413 {
3414         journal_t *journal;
3415         handle_t *handle;
3416         int err;
3417
3418         /*
3419          * We have to be very careful here: changing a data block's
3420          * journaling status dynamically is dangerous.  If we write a
3421          * data block to the journal, change the status and then delete
3422          * that block, we risk forgetting to revoke the old log record
3423          * from the journal and so a subsequent replay can corrupt data.
3424          * So, first we make sure that the journal is empty and that
3425          * nobody is changing anything.
3426          */
3427
3428         journal = EXT4_JOURNAL(inode);
3429         if (is_journal_aborted(journal))
3430                 return -EROFS;
3431
3432         jbd2_journal_lock_updates(journal);
3433         jbd2_journal_flush(journal);
3434
3435         /*
3436          * OK, there are no updates running now, and all cached data is
3437          * synced to disk.  We are now in a completely consistent state
3438          * which doesn't have anything in the journal, and we know that
3439          * no filesystem updates are running, so it is safe to modify
3440          * the inode's in-core data-journaling state flag now.
3441          */
3442
3443         if (val)
3444                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3445         else
3446                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3447         ext4_set_aops(inode);
3448
3449         jbd2_journal_unlock_updates(journal);
3450
3451         /* Finally we can mark the inode as dirty. */
3452
3453         handle = ext4_journal_start(inode, 1);
3454         if (IS_ERR(handle))
3455                 return PTR_ERR(handle);
3456
3457         err = ext4_mark_inode_dirty(handle, inode);
3458         handle->h_sync = 1;
3459         ext4_journal_stop(handle);
3460         ext4_std_error(inode->i_sb, err);
3461
3462         return err;
3463 }