]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/inode.c
ext4: Retry block reservation
[linux-2.6-omap-h63xx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         struct ext4_block_alloc_info *block_i;
490
491         block_i =  EXT4_I(inode)->i_block_alloc_info;
492
493         /*
494          * try the heuristic for sequential allocation,
495          * failing that at least try to get decent locality.
496          */
497         if (block_i && (block == block_i->last_alloc_logical_block + 1)
498                 && (block_i->last_alloc_physical_block != 0)) {
499                 return block_i->last_alloc_physical_block + 1;
500         }
501
502         return ext4_find_near(inode, partial);
503 }
504
505 /**
506  *      ext4_blks_to_allocate: Look up the block map and count the number
507  *      of direct blocks need to be allocated for the given branch.
508  *
509  *      @branch: chain of indirect blocks
510  *      @k: number of blocks need for indirect blocks
511  *      @blks: number of data blocks to be mapped.
512  *      @blocks_to_boundary:  the offset in the indirect block
513  *
514  *      return the total number of blocks to be allocate, including the
515  *      direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518                 int blocks_to_boundary)
519 {
520         unsigned long count = 0;
521
522         /*
523          * Simple case, [t,d]Indirect block(s) has not allocated yet
524          * then it's clear blocks on that path have not allocated
525          */
526         if (k > 0) {
527                 /* right now we don't handle cross boundary allocation */
528                 if (blks < blocks_to_boundary + 1)
529                         count += blks;
530                 else
531                         count += blocks_to_boundary + 1;
532                 return count;
533         }
534
535         count++;
536         while (count < blks && count <= blocks_to_boundary &&
537                 le32_to_cpu(*(branch[0].p + count)) == 0) {
538                 count++;
539         }
540         return count;
541 }
542
543 /**
544  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *      @indirect_blks: the number of blocks need to allocate for indirect
546  *                      blocks
547  *
548  *      @new_blocks: on return it will store the new block numbers for
549  *      the indirect blocks(if needed) and the first direct block,
550  *      @blks:  on return it will store the total number of allocated
551  *              direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
555                                 int indirect_blks, int blks,
556                                 ext4_fsblk_t new_blocks[4], int *err)
557 {
558         int target, i;
559         unsigned long count = 0, blk_allocated = 0;
560         int index = 0;
561         ext4_fsblk_t current_block = 0;
562         int ret = 0;
563
564         /*
565          * Here we try to allocate the requested multiple blocks at once,
566          * on a best-effort basis.
567          * To build a branch, we should allocate blocks for
568          * the indirect blocks(if not allocated yet), and at least
569          * the first direct block of this branch.  That's the
570          * minimum number of blocks need to allocate(required)
571          */
572         /* first we try to allocate the indirect blocks */
573         target = indirect_blks;
574         while (target > 0) {
575                 count = target;
576                 /* allocating blocks for indirect blocks and direct blocks */
577                 current_block = ext4_new_meta_blocks(handle, inode,
578                                                         goal, &count, err);
579                 if (*err)
580                         goto failed_out;
581
582                 target -= count;
583                 /* allocate blocks for indirect blocks */
584                 while (index < indirect_blks && count) {
585                         new_blocks[index++] = current_block++;
586                         count--;
587                 }
588                 if (count > 0) {
589                         /*
590                          * save the new block number
591                          * for the first direct block
592                          */
593                         new_blocks[index] = current_block;
594                         printk(KERN_INFO "%s returned more blocks than "
595                                                 "requested\n", __func__);
596                         WARN_ON(1);
597                         break;
598                 }
599         }
600
601         target = blks - count ;
602         blk_allocated = count;
603         if (!target)
604                 goto allocated;
605         /* Now allocate data blocks */
606         count = target;
607         /* allocating blocks for data blocks */
608         current_block = ext4_new_blocks(handle, inode, iblock,
609                                                 goal, &count, err);
610         if (*err && (target == blks)) {
611                 /*
612                  * if the allocation failed and we didn't allocate
613                  * any blocks before
614                  */
615                 goto failed_out;
616         }
617         if (!*err) {
618                 if (target == blks) {
619                 /*
620                  * save the new block number
621                  * for the first direct block
622                  */
623                         new_blocks[index] = current_block;
624                 }
625                 blk_allocated += count;
626         }
627 allocated:
628         /* total number of blocks allocated for direct blocks */
629         ret = blk_allocated;
630         *err = 0;
631         return ret;
632 failed_out:
633         for (i = 0; i < index; i++)
634                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635         return ret;
636 }
637
638 /**
639  *      ext4_alloc_branch - allocate and set up a chain of blocks.
640  *      @inode: owner
641  *      @indirect_blks: number of allocated indirect blocks
642  *      @blks: number of allocated direct blocks
643  *      @offsets: offsets (in the blocks) to store the pointers to next.
644  *      @branch: place to store the chain in.
645  *
646  *      This function allocates blocks, zeroes out all but the last one,
647  *      links them into chain and (if we are synchronous) writes them to disk.
648  *      In other words, it prepares a branch that can be spliced onto the
649  *      inode. It stores the information about that chain in the branch[], in
650  *      the same format as ext4_get_branch() would do. We are calling it after
651  *      we had read the existing part of chain and partial points to the last
652  *      triple of that (one with zero ->key). Upon the exit we have the same
653  *      picture as after the successful ext4_get_block(), except that in one
654  *      place chain is disconnected - *branch->p is still zero (we did not
655  *      set the last link), but branch->key contains the number that should
656  *      be placed into *branch->p to fill that gap.
657  *
658  *      If allocation fails we free all blocks we've allocated (and forget
659  *      their buffer_heads) and return the error value the from failed
660  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *      as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664                                 ext4_lblk_t iblock, int indirect_blks,
665                                 int *blks, ext4_fsblk_t goal,
666                                 ext4_lblk_t *offsets, Indirect *branch)
667 {
668         int blocksize = inode->i_sb->s_blocksize;
669         int i, n = 0;
670         int err = 0;
671         struct buffer_head *bh;
672         int num;
673         ext4_fsblk_t new_blocks[4];
674         ext4_fsblk_t current_block;
675
676         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677                                 *blks, new_blocks, &err);
678         if (err)
679                 return err;
680
681         branch[0].key = cpu_to_le32(new_blocks[0]);
682         /*
683          * metadata blocks and data blocks are allocated.
684          */
685         for (n = 1; n <= indirect_blks;  n++) {
686                 /*
687                  * Get buffer_head for parent block, zero it out
688                  * and set the pointer to new one, then send
689                  * parent to disk.
690                  */
691                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692                 branch[n].bh = bh;
693                 lock_buffer(bh);
694                 BUFFER_TRACE(bh, "call get_create_access");
695                 err = ext4_journal_get_create_access(handle, bh);
696                 if (err) {
697                         unlock_buffer(bh);
698                         brelse(bh);
699                         goto failed;
700                 }
701
702                 memset(bh->b_data, 0, blocksize);
703                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704                 branch[n].key = cpu_to_le32(new_blocks[n]);
705                 *branch[n].p = branch[n].key;
706                 if (n == indirect_blks) {
707                         current_block = new_blocks[n];
708                         /*
709                          * End of chain, update the last new metablock of
710                          * the chain to point to the new allocated
711                          * data blocks numbers
712                          */
713                         for (i=1; i < num; i++)
714                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
715                 }
716                 BUFFER_TRACE(bh, "marking uptodate");
717                 set_buffer_uptodate(bh);
718                 unlock_buffer(bh);
719
720                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721                 err = ext4_journal_dirty_metadata(handle, bh);
722                 if (err)
723                         goto failed;
724         }
725         *blks = num;
726         return err;
727 failed:
728         /* Allocation failed, free what we already allocated */
729         for (i = 1; i <= n ; i++) {
730                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731                 ext4_journal_forget(handle, branch[i].bh);
732         }
733         for (i = 0; i < indirect_blks; i++)
734                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738         return err;
739 }
740
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *      ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756                         ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758         int i;
759         int err = 0;
760         struct ext4_block_alloc_info *block_i;
761         ext4_fsblk_t current_block;
762
763         block_i = EXT4_I(inode)->i_block_alloc_info;
764         /*
765          * If we're splicing into a [td]indirect block (as opposed to the
766          * inode) then we need to get write access to the [td]indirect block
767          * before the splice.
768          */
769         if (where->bh) {
770                 BUFFER_TRACE(where->bh, "get_write_access");
771                 err = ext4_journal_get_write_access(handle, where->bh);
772                 if (err)
773                         goto err_out;
774         }
775         /* That's it */
776
777         *where->p = where->key;
778
779         /*
780          * Update the host buffer_head or inode to point to more just allocated
781          * direct blocks blocks
782          */
783         if (num == 0 && blks > 1) {
784                 current_block = le32_to_cpu(where->key) + 1;
785                 for (i = 1; i < blks; i++)
786                         *(where->p + i) = cpu_to_le32(current_block++);
787         }
788
789         /*
790          * update the most recently allocated logical & physical block
791          * in i_block_alloc_info, to assist find the proper goal block for next
792          * allocation
793          */
794         if (block_i) {
795                 block_i->last_alloc_logical_block = block + blks - 1;
796                 block_i->last_alloc_physical_block =
797                                 le32_to_cpu(where[num].key) + blks - 1;
798         }
799
800         /* We are done with atomic stuff, now do the rest of housekeeping */
801
802         inode->i_ctime = ext4_current_time(inode);
803         ext4_mark_inode_dirty(handle, inode);
804
805         /* had we spliced it onto indirect block? */
806         if (where->bh) {
807                 /*
808                  * If we spliced it onto an indirect block, we haven't
809                  * altered the inode.  Note however that if it is being spliced
810                  * onto an indirect block at the very end of the file (the
811                  * file is growing) then we *will* alter the inode to reflect
812                  * the new i_size.  But that is not done here - it is done in
813                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814                  */
815                 jbd_debug(5, "splicing indirect only\n");
816                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817                 err = ext4_journal_dirty_metadata(handle, where->bh);
818                 if (err)
819                         goto err_out;
820         } else {
821                 /*
822                  * OK, we spliced it into the inode itself on a direct block.
823                  * Inode was dirtied above.
824                  */
825                 jbd_debug(5, "splicing direct\n");
826         }
827         return err;
828
829 err_out:
830         for (i = 1; i <= num; i++) {
831                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832                 ext4_journal_forget(handle, where[i].bh);
833                 ext4_free_blocks(handle, inode,
834                                         le32_to_cpu(where[i-1].key), 1, 0);
835         }
836         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837
838         return err;
839 }
840
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865                 ext4_lblk_t iblock, unsigned long maxblocks,
866                 struct buffer_head *bh_result,
867                 int create, int extend_disksize)
868 {
869         int err = -EIO;
870         ext4_lblk_t offsets[4];
871         Indirect chain[4];
872         Indirect *partial;
873         ext4_fsblk_t goal;
874         int indirect_blks;
875         int blocks_to_boundary = 0;
876         int depth;
877         struct ext4_inode_info *ei = EXT4_I(inode);
878         int count = 0;
879         ext4_fsblk_t first_block = 0;
880         loff_t disksize;
881
882
883         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884         J_ASSERT(handle != NULL || create == 0);
885         depth = ext4_block_to_path(inode, iblock, offsets,
886                                         &blocks_to_boundary);
887
888         if (depth == 0)
889                 goto out;
890
891         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892
893         /* Simplest case - block found, no allocation needed */
894         if (!partial) {
895                 first_block = le32_to_cpu(chain[depth - 1].key);
896                 clear_buffer_new(bh_result);
897                 count++;
898                 /*map more blocks*/
899                 while (count < maxblocks && count <= blocks_to_boundary) {
900                         ext4_fsblk_t blk;
901
902                         blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904                         if (blk == first_block + count)
905                                 count++;
906                         else
907                                 break;
908                 }
909                 goto got_it;
910         }
911
912         /* Next simple case - plain lookup or failed read of indirect block */
913         if (!create || err == -EIO)
914                 goto cleanup;
915
916         /*
917          * Okay, we need to do block allocation.  Lazily initialize the block
918          * allocation info here if necessary
919         */
920         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921                 ext4_init_block_alloc_info(inode);
922
923         goal = ext4_find_goal(inode, iblock, partial);
924
925         /* the number of blocks need to allocate for [d,t]indirect blocks */
926         indirect_blks = (chain + depth) - partial - 1;
927
928         /*
929          * Next look up the indirect map to count the totoal number of
930          * direct blocks to allocate for this branch.
931          */
932         count = ext4_blks_to_allocate(partial, indirect_blks,
933                                         maxblocks, blocks_to_boundary);
934         /*
935          * Block out ext4_truncate while we alter the tree
936          */
937         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938                                         &count, goal,
939                                         offsets + (partial - chain), partial);
940
941         /*
942          * The ext4_splice_branch call will free and forget any buffers
943          * on the new chain if there is a failure, but that risks using
944          * up transaction credits, especially for bitmaps where the
945          * credits cannot be returned.  Can we handle this somehow?  We
946          * may need to return -EAGAIN upwards in the worst case.  --sct
947          */
948         if (!err)
949                 err = ext4_splice_branch(handle, inode, iblock,
950                                         partial, indirect_blks, count);
951         /*
952          * i_disksize growing is protected by i_data_sem.  Don't forget to
953          * protect it if you're about to implement concurrent
954          * ext4_get_block() -bzzz
955         */
956         if (!err && extend_disksize) {
957                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958                 if (disksize > i_size_read(inode))
959                         disksize = i_size_read(inode);
960                 if (disksize > ei->i_disksize)
961                         ei->i_disksize = disksize;
962         }
963         if (err)
964                 goto cleanup;
965
966         set_buffer_new(bh_result);
967 got_it:
968         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969         if (count > blocks_to_boundary)
970                 set_buffer_boundary(bh_result);
971         err = count;
972         /* Clean up and exit */
973         partial = chain + depth - 1;    /* the whole chain */
974 cleanup:
975         while (partial > chain) {
976                 BUFFER_TRACE(partial->bh, "call brelse");
977                 brelse(partial->bh);
978                 partial--;
979         }
980         BUFFER_TRACE(bh_result, "returned");
981 out:
982         return err;
983 }
984
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992         int ind_blks, dind_blks, tind_blks;
993
994         /* number of new indirect blocks needed */
995         ind_blks = (blocks + icap - 1) / icap;
996
997         dind_blks = (ind_blks + icap - 1) / icap;
998
999         tind_blks = 1;
1000
1001         return ind_blks + dind_blks + tind_blks;
1002 }
1003
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010         if (!blocks)
1011                 return 0;
1012
1013         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014                 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016         return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022         int total, mdb, mdb_free;
1023
1024         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025         /* recalculate the number of metablocks still need to be reserved */
1026         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027         mdb = ext4_calc_metadata_amount(inode, total);
1028
1029         /* figure out how many metablocks to release */
1030         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033         /* Account for allocated meta_blocks */
1034         mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1035
1036         /* update fs free blocks counter for truncate case */
1037         percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1038
1039         /* update per-inode reservations */
1040         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1041         EXT4_I(inode)->i_reserved_data_blocks -= used;
1042
1043         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1044         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1045         EXT4_I(inode)->i_allocated_meta_blocks = 0;
1046         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047 }
1048
1049 /*
1050  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1051  * and returns if the blocks are already mapped.
1052  *
1053  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1054  * and store the allocated blocks in the result buffer head and mark it
1055  * mapped.
1056  *
1057  * If file type is extents based, it will call ext4_ext_get_blocks(),
1058  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1059  * based files
1060  *
1061  * On success, it returns the number of blocks being mapped or allocate.
1062  * if create==0 and the blocks are pre-allocated and uninitialized block,
1063  * the result buffer head is unmapped. If the create ==1, it will make sure
1064  * the buffer head is mapped.
1065  *
1066  * It returns 0 if plain look up failed (blocks have not been allocated), in
1067  * that casem, buffer head is unmapped
1068  *
1069  * It returns the error in case of allocation failure.
1070  */
1071 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1072                         unsigned long max_blocks, struct buffer_head *bh,
1073                         int create, int extend_disksize, int flag)
1074 {
1075         int retval;
1076
1077         clear_buffer_mapped(bh);
1078
1079         /*
1080          * Try to see if we can get  the block without requesting
1081          * for new file system block.
1082          */
1083         down_read((&EXT4_I(inode)->i_data_sem));
1084         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1085                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1086                                 bh, 0, 0);
1087         } else {
1088                 retval = ext4_get_blocks_handle(handle,
1089                                 inode, block, max_blocks, bh, 0, 0);
1090         }
1091         up_read((&EXT4_I(inode)->i_data_sem));
1092
1093         /* If it is only a block(s) look up */
1094         if (!create)
1095                 return retval;
1096
1097         /*
1098          * Returns if the blocks have already allocated
1099          *
1100          * Note that if blocks have been preallocated
1101          * ext4_ext_get_block() returns th create = 0
1102          * with buffer head unmapped.
1103          */
1104         if (retval > 0 && buffer_mapped(bh))
1105                 return retval;
1106
1107         /*
1108          * New blocks allocate and/or writing to uninitialized extent
1109          * will possibly result in updating i_data, so we take
1110          * the write lock of i_data_sem, and call get_blocks()
1111          * with create == 1 flag.
1112          */
1113         down_write((&EXT4_I(inode)->i_data_sem));
1114
1115         /*
1116          * if the caller is from delayed allocation writeout path
1117          * we have already reserved fs blocks for allocation
1118          * let the underlying get_block() function know to
1119          * avoid double accounting
1120          */
1121         if (flag)
1122                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1123         /*
1124          * We need to check for EXT4 here because migrate
1125          * could have changed the inode type in between
1126          */
1127         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1128                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1129                                 bh, create, extend_disksize);
1130         } else {
1131                 retval = ext4_get_blocks_handle(handle, inode, block,
1132                                 max_blocks, bh, create, extend_disksize);
1133
1134                 if (retval > 0 && buffer_new(bh)) {
1135                         /*
1136                          * We allocated new blocks which will result in
1137                          * i_data's format changing.  Force the migrate
1138                          * to fail by clearing migrate flags
1139                          */
1140                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1141                                                         ~EXT4_EXT_MIGRATE;
1142                 }
1143         }
1144
1145         if (flag) {
1146                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1147                 /*
1148                  * Update reserved blocks/metadata blocks
1149                  * after successful block allocation
1150                  * which were deferred till now
1151                  */
1152                 if ((retval > 0) && buffer_delay(bh))
1153                         ext4_da_update_reserve_space(inode, retval);
1154         }
1155
1156         up_write((&EXT4_I(inode)->i_data_sem));
1157         return retval;
1158 }
1159
1160 /* Maximum number of blocks we map for direct IO at once. */
1161 #define DIO_MAX_BLOCKS 4096
1162
1163 static int ext4_get_block(struct inode *inode, sector_t iblock,
1164                         struct buffer_head *bh_result, int create)
1165 {
1166         handle_t *handle = ext4_journal_current_handle();
1167         int ret = 0, started = 0;
1168         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1169         int dio_credits;
1170
1171         if (create && !handle) {
1172                 /* Direct IO write... */
1173                 if (max_blocks > DIO_MAX_BLOCKS)
1174                         max_blocks = DIO_MAX_BLOCKS;
1175                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1176                 handle = ext4_journal_start(inode, dio_credits);
1177                 if (IS_ERR(handle)) {
1178                         ret = PTR_ERR(handle);
1179                         goto out;
1180                 }
1181                 started = 1;
1182         }
1183
1184         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1185                                         max_blocks, bh_result, create, 0, 0);
1186         if (ret > 0) {
1187                 bh_result->b_size = (ret << inode->i_blkbits);
1188                 ret = 0;
1189         }
1190         if (started)
1191                 ext4_journal_stop(handle);
1192 out:
1193         return ret;
1194 }
1195
1196 /*
1197  * `handle' can be NULL if create is zero
1198  */
1199 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1200                                 ext4_lblk_t block, int create, int *errp)
1201 {
1202         struct buffer_head dummy;
1203         int fatal = 0, err;
1204
1205         J_ASSERT(handle != NULL || create == 0);
1206
1207         dummy.b_state = 0;
1208         dummy.b_blocknr = -1000;
1209         buffer_trace_init(&dummy.b_history);
1210         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1211                                         &dummy, create, 1, 0);
1212         /*
1213          * ext4_get_blocks_handle() returns number of blocks
1214          * mapped. 0 in case of a HOLE.
1215          */
1216         if (err > 0) {
1217                 if (err > 1)
1218                         WARN_ON(1);
1219                 err = 0;
1220         }
1221         *errp = err;
1222         if (!err && buffer_mapped(&dummy)) {
1223                 struct buffer_head *bh;
1224                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1225                 if (!bh) {
1226                         *errp = -EIO;
1227                         goto err;
1228                 }
1229                 if (buffer_new(&dummy)) {
1230                         J_ASSERT(create != 0);
1231                         J_ASSERT(handle != NULL);
1232
1233                         /*
1234                          * Now that we do not always journal data, we should
1235                          * keep in mind whether this should always journal the
1236                          * new buffer as metadata.  For now, regular file
1237                          * writes use ext4_get_block instead, so it's not a
1238                          * problem.
1239                          */
1240                         lock_buffer(bh);
1241                         BUFFER_TRACE(bh, "call get_create_access");
1242                         fatal = ext4_journal_get_create_access(handle, bh);
1243                         if (!fatal && !buffer_uptodate(bh)) {
1244                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1245                                 set_buffer_uptodate(bh);
1246                         }
1247                         unlock_buffer(bh);
1248                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1249                         err = ext4_journal_dirty_metadata(handle, bh);
1250                         if (!fatal)
1251                                 fatal = err;
1252                 } else {
1253                         BUFFER_TRACE(bh, "not a new buffer");
1254                 }
1255                 if (fatal) {
1256                         *errp = fatal;
1257                         brelse(bh);
1258                         bh = NULL;
1259                 }
1260                 return bh;
1261         }
1262 err:
1263         return NULL;
1264 }
1265
1266 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1267                                ext4_lblk_t block, int create, int *err)
1268 {
1269         struct buffer_head *bh;
1270
1271         bh = ext4_getblk(handle, inode, block, create, err);
1272         if (!bh)
1273                 return bh;
1274         if (buffer_uptodate(bh))
1275                 return bh;
1276         ll_rw_block(READ_META, 1, &bh);
1277         wait_on_buffer(bh);
1278         if (buffer_uptodate(bh))
1279                 return bh;
1280         put_bh(bh);
1281         *err = -EIO;
1282         return NULL;
1283 }
1284
1285 static int walk_page_buffers(handle_t *handle,
1286                              struct buffer_head *head,
1287                              unsigned from,
1288                              unsigned to,
1289                              int *partial,
1290                              int (*fn)(handle_t *handle,
1291                                        struct buffer_head *bh))
1292 {
1293         struct buffer_head *bh;
1294         unsigned block_start, block_end;
1295         unsigned blocksize = head->b_size;
1296         int err, ret = 0;
1297         struct buffer_head *next;
1298
1299         for (bh = head, block_start = 0;
1300              ret == 0 && (bh != head || !block_start);
1301              block_start = block_end, bh = next)
1302         {
1303                 next = bh->b_this_page;
1304                 block_end = block_start + blocksize;
1305                 if (block_end <= from || block_start >= to) {
1306                         if (partial && !buffer_uptodate(bh))
1307                                 *partial = 1;
1308                         continue;
1309                 }
1310                 err = (*fn)(handle, bh);
1311                 if (!ret)
1312                         ret = err;
1313         }
1314         return ret;
1315 }
1316
1317 /*
1318  * To preserve ordering, it is essential that the hole instantiation and
1319  * the data write be encapsulated in a single transaction.  We cannot
1320  * close off a transaction and start a new one between the ext4_get_block()
1321  * and the commit_write().  So doing the jbd2_journal_start at the start of
1322  * prepare_write() is the right place.
1323  *
1324  * Also, this function can nest inside ext4_writepage() ->
1325  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1326  * has generated enough buffer credits to do the whole page.  So we won't
1327  * block on the journal in that case, which is good, because the caller may
1328  * be PF_MEMALLOC.
1329  *
1330  * By accident, ext4 can be reentered when a transaction is open via
1331  * quota file writes.  If we were to commit the transaction while thus
1332  * reentered, there can be a deadlock - we would be holding a quota
1333  * lock, and the commit would never complete if another thread had a
1334  * transaction open and was blocking on the quota lock - a ranking
1335  * violation.
1336  *
1337  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1338  * will _not_ run commit under these circumstances because handle->h_ref
1339  * is elevated.  We'll still have enough credits for the tiny quotafile
1340  * write.
1341  */
1342 static int do_journal_get_write_access(handle_t *handle,
1343                                         struct buffer_head *bh)
1344 {
1345         if (!buffer_mapped(bh) || buffer_freed(bh))
1346                 return 0;
1347         return ext4_journal_get_write_access(handle, bh);
1348 }
1349
1350 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1351                                 loff_t pos, unsigned len, unsigned flags,
1352                                 struct page **pagep, void **fsdata)
1353 {
1354         struct inode *inode = mapping->host;
1355         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1356         handle_t *handle;
1357         int retries = 0;
1358         struct page *page;
1359         pgoff_t index;
1360         unsigned from, to;
1361
1362         index = pos >> PAGE_CACHE_SHIFT;
1363         from = pos & (PAGE_CACHE_SIZE - 1);
1364         to = from + len;
1365
1366 retry:
1367         handle = ext4_journal_start(inode, needed_blocks);
1368         if (IS_ERR(handle)) {
1369                 ret = PTR_ERR(handle);
1370                 goto out;
1371         }
1372
1373         page = __grab_cache_page(mapping, index);
1374         if (!page) {
1375                 ext4_journal_stop(handle);
1376                 ret = -ENOMEM;
1377                 goto out;
1378         }
1379         *pagep = page;
1380
1381         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1382                                                         ext4_get_block);
1383
1384         if (!ret && ext4_should_journal_data(inode)) {
1385                 ret = walk_page_buffers(handle, page_buffers(page),
1386                                 from, to, NULL, do_journal_get_write_access);
1387         }
1388
1389         if (ret) {
1390                 unlock_page(page);
1391                 ext4_journal_stop(handle);
1392                 page_cache_release(page);
1393         }
1394
1395         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1396                 goto retry;
1397 out:
1398         return ret;
1399 }
1400
1401 /* For write_end() in data=journal mode */
1402 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1403 {
1404         if (!buffer_mapped(bh) || buffer_freed(bh))
1405                 return 0;
1406         set_buffer_uptodate(bh);
1407         return ext4_journal_dirty_metadata(handle, bh);
1408 }
1409
1410 /*
1411  * We need to pick up the new inode size which generic_commit_write gave us
1412  * `file' can be NULL - eg, when called from page_symlink().
1413  *
1414  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1415  * buffers are managed internally.
1416  */
1417 static int ext4_ordered_write_end(struct file *file,
1418                                 struct address_space *mapping,
1419                                 loff_t pos, unsigned len, unsigned copied,
1420                                 struct page *page, void *fsdata)
1421 {
1422         handle_t *handle = ext4_journal_current_handle();
1423         struct inode *inode = mapping->host;
1424         int ret = 0, ret2;
1425
1426         ret = ext4_jbd2_file_inode(handle, inode);
1427
1428         if (ret == 0) {
1429                 /*
1430                  * generic_write_end() will run mark_inode_dirty() if i_size
1431                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1432                  * into that.
1433                  */
1434                 loff_t new_i_size;
1435
1436                 new_i_size = pos + copied;
1437                 if (new_i_size > EXT4_I(inode)->i_disksize)
1438                         EXT4_I(inode)->i_disksize = new_i_size;
1439                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1440                                                         page, fsdata);
1441                 copied = ret2;
1442                 if (ret2 < 0)
1443                         ret = ret2;
1444         }
1445         ret2 = ext4_journal_stop(handle);
1446         if (!ret)
1447                 ret = ret2;
1448
1449         return ret ? ret : copied;
1450 }
1451
1452 static int ext4_writeback_write_end(struct file *file,
1453                                 struct address_space *mapping,
1454                                 loff_t pos, unsigned len, unsigned copied,
1455                                 struct page *page, void *fsdata)
1456 {
1457         handle_t *handle = ext4_journal_current_handle();
1458         struct inode *inode = mapping->host;
1459         int ret = 0, ret2;
1460         loff_t new_i_size;
1461
1462         new_i_size = pos + copied;
1463         if (new_i_size > EXT4_I(inode)->i_disksize)
1464                 EXT4_I(inode)->i_disksize = new_i_size;
1465
1466         ret2 = generic_write_end(file, mapping, pos, len, copied,
1467                                                         page, fsdata);
1468         copied = ret2;
1469         if (ret2 < 0)
1470                 ret = ret2;
1471
1472         ret2 = ext4_journal_stop(handle);
1473         if (!ret)
1474                 ret = ret2;
1475
1476         return ret ? ret : copied;
1477 }
1478
1479 static int ext4_journalled_write_end(struct file *file,
1480                                 struct address_space *mapping,
1481                                 loff_t pos, unsigned len, unsigned copied,
1482                                 struct page *page, void *fsdata)
1483 {
1484         handle_t *handle = ext4_journal_current_handle();
1485         struct inode *inode = mapping->host;
1486         int ret = 0, ret2;
1487         int partial = 0;
1488         unsigned from, to;
1489
1490         from = pos & (PAGE_CACHE_SIZE - 1);
1491         to = from + len;
1492
1493         if (copied < len) {
1494                 if (!PageUptodate(page))
1495                         copied = 0;
1496                 page_zero_new_buffers(page, from+copied, to);
1497         }
1498
1499         ret = walk_page_buffers(handle, page_buffers(page), from,
1500                                 to, &partial, write_end_fn);
1501         if (!partial)
1502                 SetPageUptodate(page);
1503         if (pos+copied > inode->i_size)
1504                 i_size_write(inode, pos+copied);
1505         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1506         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1507                 EXT4_I(inode)->i_disksize = inode->i_size;
1508                 ret2 = ext4_mark_inode_dirty(handle, inode);
1509                 if (!ret)
1510                         ret = ret2;
1511         }
1512
1513         unlock_page(page);
1514         ret2 = ext4_journal_stop(handle);
1515         if (!ret)
1516                 ret = ret2;
1517         page_cache_release(page);
1518
1519         return ret ? ret : copied;
1520 }
1521
1522 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1523 {
1524         int retries = 0;
1525        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1526        unsigned long md_needed, mdblocks, total = 0;
1527
1528         /*
1529          * recalculate the amount of metadata blocks to reserve
1530          * in order to allocate nrblocks
1531          * worse case is one extent per block
1532          */
1533 repeat:
1534         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1535         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1536         mdblocks = ext4_calc_metadata_amount(inode, total);
1537         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1538
1539         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1540         total = md_needed + nrblocks;
1541
1542         if (ext4_claim_free_blocks(sbi, total)) {
1543                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1545                         yield();
1546                         goto repeat;
1547                 }
1548                 return -ENOSPC;
1549         }
1550         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1551         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1552
1553         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1554         return 0;       /* success */
1555 }
1556
1557 static void ext4_da_release_space(struct inode *inode, int to_free)
1558 {
1559         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560         int total, mdb, mdb_free, release;
1561
1562         if (!to_free)
1563                 return;         /* Nothing to release, exit */
1564
1565         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1566
1567         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1568                 /*
1569                  * if there is no reserved blocks, but we try to free some
1570                  * then the counter is messed up somewhere.
1571                  * but since this function is called from invalidate
1572                  * page, it's harmless to return without any action
1573                  */
1574                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1575                             "blocks for inode %lu, but there is no reserved "
1576                             "data blocks\n", to_free, inode->i_ino);
1577                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1578                 return;
1579         }
1580
1581         /* recalculate the number of metablocks still need to be reserved */
1582         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1583         mdb = ext4_calc_metadata_amount(inode, total);
1584
1585         /* figure out how many metablocks to release */
1586         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1587         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1588
1589         release = to_free + mdb_free;
1590
1591         /* update fs free blocks counter for truncate case */
1592         percpu_counter_add(&sbi->s_freeblocks_counter, release);
1593
1594         /* update per-inode reservations */
1595         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1596         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1597
1598         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1599         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1600         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1601 }
1602
1603 static void ext4_da_page_release_reservation(struct page *page,
1604                                                 unsigned long offset)
1605 {
1606         int to_release = 0;
1607         struct buffer_head *head, *bh;
1608         unsigned int curr_off = 0;
1609
1610         head = page_buffers(page);
1611         bh = head;
1612         do {
1613                 unsigned int next_off = curr_off + bh->b_size;
1614
1615                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1616                         to_release++;
1617                         clear_buffer_delay(bh);
1618                 }
1619                 curr_off = next_off;
1620         } while ((bh = bh->b_this_page) != head);
1621         ext4_da_release_space(page->mapping->host, to_release);
1622 }
1623
1624 /*
1625  * Delayed allocation stuff
1626  */
1627
1628 struct mpage_da_data {
1629         struct inode *inode;
1630         struct buffer_head lbh;                 /* extent of blocks */
1631         unsigned long first_page, next_page;    /* extent of pages */
1632         get_block_t *get_block;
1633         struct writeback_control *wbc;
1634         int io_done;
1635         long pages_written;
1636 };
1637
1638 /*
1639  * mpage_da_submit_io - walks through extent of pages and try to write
1640  * them with writepage() call back
1641  *
1642  * @mpd->inode: inode
1643  * @mpd->first_page: first page of the extent
1644  * @mpd->next_page: page after the last page of the extent
1645  * @mpd->get_block: the filesystem's block mapper function
1646  *
1647  * By the time mpage_da_submit_io() is called we expect all blocks
1648  * to be allocated. this may be wrong if allocation failed.
1649  *
1650  * As pages are already locked by write_cache_pages(), we can't use it
1651  */
1652 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1653 {
1654         struct address_space *mapping = mpd->inode->i_mapping;
1655         int ret = 0, err, nr_pages, i;
1656         unsigned long index, end;
1657         struct pagevec pvec;
1658
1659         BUG_ON(mpd->next_page <= mpd->first_page);
1660         pagevec_init(&pvec, 0);
1661         index = mpd->first_page;
1662         end = mpd->next_page - 1;
1663
1664         while (index <= end) {
1665                 /* XXX: optimize tail */
1666                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1667                 if (nr_pages == 0)
1668                         break;
1669                 for (i = 0; i < nr_pages; i++) {
1670                         struct page *page = pvec.pages[i];
1671
1672                         index = page->index;
1673                         if (index > end)
1674                                 break;
1675                         index++;
1676
1677                         err = mapping->a_ops->writepage(page, mpd->wbc);
1678                         if (!err)
1679                                 mpd->pages_written++;
1680                         /*
1681                          * In error case, we have to continue because
1682                          * remaining pages are still locked
1683                          * XXX: unlock and re-dirty them?
1684                          */
1685                         if (ret == 0)
1686                                 ret = err;
1687                 }
1688                 pagevec_release(&pvec);
1689         }
1690         return ret;
1691 }
1692
1693 /*
1694  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1695  *
1696  * @mpd->inode - inode to walk through
1697  * @exbh->b_blocknr - first block on a disk
1698  * @exbh->b_size - amount of space in bytes
1699  * @logical - first logical block to start assignment with
1700  *
1701  * the function goes through all passed space and put actual disk
1702  * block numbers into buffer heads, dropping BH_Delay
1703  */
1704 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1705                                  struct buffer_head *exbh)
1706 {
1707         struct inode *inode = mpd->inode;
1708         struct address_space *mapping = inode->i_mapping;
1709         int blocks = exbh->b_size >> inode->i_blkbits;
1710         sector_t pblock = exbh->b_blocknr, cur_logical;
1711         struct buffer_head *head, *bh;
1712         pgoff_t index, end;
1713         struct pagevec pvec;
1714         int nr_pages, i;
1715
1716         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1717         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1718         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719
1720         pagevec_init(&pvec, 0);
1721
1722         while (index <= end) {
1723                 /* XXX: optimize tail */
1724                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1725                 if (nr_pages == 0)
1726                         break;
1727                 for (i = 0; i < nr_pages; i++) {
1728                         struct page *page = pvec.pages[i];
1729
1730                         index = page->index;
1731                         if (index > end)
1732                                 break;
1733                         index++;
1734
1735                         BUG_ON(!PageLocked(page));
1736                         BUG_ON(PageWriteback(page));
1737                         BUG_ON(!page_has_buffers(page));
1738
1739                         bh = page_buffers(page);
1740                         head = bh;
1741
1742                         /* skip blocks out of the range */
1743                         do {
1744                                 if (cur_logical >= logical)
1745                                         break;
1746                                 cur_logical++;
1747                         } while ((bh = bh->b_this_page) != head);
1748
1749                         do {
1750                                 if (cur_logical >= logical + blocks)
1751                                         break;
1752                                 if (buffer_delay(bh)) {
1753                                         bh->b_blocknr = pblock;
1754                                         clear_buffer_delay(bh);
1755                                         bh->b_bdev = inode->i_sb->s_bdev;
1756                                 } else if (buffer_unwritten(bh)) {
1757                                         bh->b_blocknr = pblock;
1758                                         clear_buffer_unwritten(bh);
1759                                         set_buffer_mapped(bh);
1760                                         set_buffer_new(bh);
1761                                         bh->b_bdev = inode->i_sb->s_bdev;
1762                                 } else if (buffer_mapped(bh))
1763                                         BUG_ON(bh->b_blocknr != pblock);
1764
1765                                 cur_logical++;
1766                                 pblock++;
1767                         } while ((bh = bh->b_this_page) != head);
1768                 }
1769                 pagevec_release(&pvec);
1770         }
1771 }
1772
1773
1774 /*
1775  * __unmap_underlying_blocks - just a helper function to unmap
1776  * set of blocks described by @bh
1777  */
1778 static inline void __unmap_underlying_blocks(struct inode *inode,
1779                                              struct buffer_head *bh)
1780 {
1781         struct block_device *bdev = inode->i_sb->s_bdev;
1782         int blocks, i;
1783
1784         blocks = bh->b_size >> inode->i_blkbits;
1785         for (i = 0; i < blocks; i++)
1786                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1787 }
1788
1789 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1790                                         sector_t logical, long blk_cnt)
1791 {
1792         int nr_pages, i;
1793         pgoff_t index, end;
1794         struct pagevec pvec;
1795         struct inode *inode = mpd->inode;
1796         struct address_space *mapping = inode->i_mapping;
1797
1798         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1799         end   = (logical + blk_cnt - 1) >>
1800                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1801         while (index <= end) {
1802                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1803                 if (nr_pages == 0)
1804                         break;
1805                 for (i = 0; i < nr_pages; i++) {
1806                         struct page *page = pvec.pages[i];
1807                         index = page->index;
1808                         if (index > end)
1809                                 break;
1810                         index++;
1811
1812                         BUG_ON(!PageLocked(page));
1813                         BUG_ON(PageWriteback(page));
1814                         block_invalidatepage(page, 0);
1815                         ClearPageUptodate(page);
1816                         unlock_page(page);
1817                 }
1818         }
1819         return;
1820 }
1821
1822 /*
1823  * mpage_da_map_blocks - go through given space
1824  *
1825  * @mpd->lbh - bh describing space
1826  * @mpd->get_block - the filesystem's block mapper function
1827  *
1828  * The function skips space we know is already mapped to disk blocks.
1829  *
1830  */
1831 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1832 {
1833         int err = 0;
1834         struct buffer_head new;
1835         struct buffer_head *lbh = &mpd->lbh;
1836         sector_t next = lbh->b_blocknr;
1837
1838         /*
1839          * We consider only non-mapped and non-allocated blocks
1840          */
1841         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1842                 return 0;
1843         new.b_state = lbh->b_state;
1844         new.b_blocknr = 0;
1845         new.b_size = lbh->b_size;
1846         /*
1847          * If we didn't accumulate anything
1848          * to write simply return
1849          */
1850         if (!new.b_size)
1851                 return 0;
1852         err = mpd->get_block(mpd->inode, next, &new, 1);
1853         if (err) {
1854
1855                 /* If get block returns with error
1856                  * we simply return. Later writepage
1857                  * will redirty the page and writepages
1858                  * will find the dirty page again
1859                  */
1860                 if (err == -EAGAIN)
1861                         return 0;
1862                 /*
1863                  * get block failure will cause us
1864                  * to loop in writepages. Because
1865                  * a_ops->writepage won't be able to
1866                  * make progress. The page will be redirtied
1867                  * by writepage and writepages will again
1868                  * try to write the same.
1869                  */
1870                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1871                                   "at logical offset %llu with max blocks "
1872                                   "%zd with error %d\n",
1873                                   __func__, mpd->inode->i_ino,
1874                                   (unsigned long long)next,
1875                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1876                 printk(KERN_EMERG "This should not happen.!! "
1877                                         "Data will be lost\n");
1878                 if (err == -ENOSPC) {
1879                         printk(KERN_CRIT "Total free blocks count %lld\n",
1880                                 ext4_count_free_blocks(mpd->inode->i_sb));
1881                 }
1882                 /* invlaidate all the pages */
1883                 ext4_da_block_invalidatepages(mpd, next,
1884                                 lbh->b_size >> mpd->inode->i_blkbits);
1885                 return err;
1886         }
1887         BUG_ON(new.b_size == 0);
1888
1889         if (buffer_new(&new))
1890                 __unmap_underlying_blocks(mpd->inode, &new);
1891
1892         /*
1893          * If blocks are delayed marked, we need to
1894          * put actual blocknr and drop delayed bit
1895          */
1896         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1897                 mpage_put_bnr_to_bhs(mpd, next, &new);
1898
1899         return 0;
1900 }
1901
1902 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1903                 (1 << BH_Delay) | (1 << BH_Unwritten))
1904
1905 /*
1906  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1907  *
1908  * @mpd->lbh - extent of blocks
1909  * @logical - logical number of the block in the file
1910  * @bh - bh of the block (used to access block's state)
1911  *
1912  * the function is used to collect contig. blocks in same state
1913  */
1914 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1915                                    sector_t logical, struct buffer_head *bh)
1916 {
1917         sector_t next;
1918         size_t b_size = bh->b_size;
1919         struct buffer_head *lbh = &mpd->lbh;
1920         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1921
1922         /* check if thereserved journal credits might overflow */
1923         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1924                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1925                         /*
1926                          * With non-extent format we are limited by the journal
1927                          * credit available.  Total credit needed to insert
1928                          * nrblocks contiguous blocks is dependent on the
1929                          * nrblocks.  So limit nrblocks.
1930                          */
1931                         goto flush_it;
1932                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1933                                 EXT4_MAX_TRANS_DATA) {
1934                         /*
1935                          * Adding the new buffer_head would make it cross the
1936                          * allowed limit for which we have journal credit
1937                          * reserved. So limit the new bh->b_size
1938                          */
1939                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1940                                                 mpd->inode->i_blkbits;
1941                         /* we will do mpage_da_submit_io in the next loop */
1942                 }
1943         }
1944         /*
1945          * First block in the extent
1946          */
1947         if (lbh->b_size == 0) {
1948                 lbh->b_blocknr = logical;
1949                 lbh->b_size = b_size;
1950                 lbh->b_state = bh->b_state & BH_FLAGS;
1951                 return;
1952         }
1953
1954         next = lbh->b_blocknr + nrblocks;
1955         /*
1956          * Can we merge the block to our big extent?
1957          */
1958         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1959                 lbh->b_size += b_size;
1960                 return;
1961         }
1962
1963 flush_it:
1964         /*
1965          * We couldn't merge the block to our extent, so we
1966          * need to flush current  extent and start new one
1967          */
1968         if (mpage_da_map_blocks(mpd) == 0)
1969                 mpage_da_submit_io(mpd);
1970         mpd->io_done = 1;
1971         return;
1972 }
1973
1974 /*
1975  * __mpage_da_writepage - finds extent of pages and blocks
1976  *
1977  * @page: page to consider
1978  * @wbc: not used, we just follow rules
1979  * @data: context
1980  *
1981  * The function finds extents of pages and scan them for all blocks.
1982  */
1983 static int __mpage_da_writepage(struct page *page,
1984                                 struct writeback_control *wbc, void *data)
1985 {
1986         struct mpage_da_data *mpd = data;
1987         struct inode *inode = mpd->inode;
1988         struct buffer_head *bh, *head, fake;
1989         sector_t logical;
1990
1991         if (mpd->io_done) {
1992                 /*
1993                  * Rest of the page in the page_vec
1994                  * redirty then and skip then. We will
1995                  * try to to write them again after
1996                  * starting a new transaction
1997                  */
1998                 redirty_page_for_writepage(wbc, page);
1999                 unlock_page(page);
2000                 return MPAGE_DA_EXTENT_TAIL;
2001         }
2002         /*
2003          * Can we merge this page to current extent?
2004          */
2005         if (mpd->next_page != page->index) {
2006                 /*
2007                  * Nope, we can't. So, we map non-allocated blocks
2008                  * and start IO on them using writepage()
2009                  */
2010                 if (mpd->next_page != mpd->first_page) {
2011                         if (mpage_da_map_blocks(mpd) == 0)
2012                                 mpage_da_submit_io(mpd);
2013                         /*
2014                          * skip rest of the page in the page_vec
2015                          */
2016                         mpd->io_done = 1;
2017                         redirty_page_for_writepage(wbc, page);
2018                         unlock_page(page);
2019                         return MPAGE_DA_EXTENT_TAIL;
2020                 }
2021
2022                 /*
2023                  * Start next extent of pages ...
2024                  */
2025                 mpd->first_page = page->index;
2026
2027                 /*
2028                  * ... and blocks
2029                  */
2030                 mpd->lbh.b_size = 0;
2031                 mpd->lbh.b_state = 0;
2032                 mpd->lbh.b_blocknr = 0;
2033         }
2034
2035         mpd->next_page = page->index + 1;
2036         logical = (sector_t) page->index <<
2037                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2038
2039         if (!page_has_buffers(page)) {
2040                 /*
2041                  * There is no attached buffer heads yet (mmap?)
2042                  * we treat the page asfull of dirty blocks
2043                  */
2044                 bh = &fake;
2045                 bh->b_size = PAGE_CACHE_SIZE;
2046                 bh->b_state = 0;
2047                 set_buffer_dirty(bh);
2048                 set_buffer_uptodate(bh);
2049                 mpage_add_bh_to_extent(mpd, logical, bh);
2050                 if (mpd->io_done)
2051                         return MPAGE_DA_EXTENT_TAIL;
2052         } else {
2053                 /*
2054                  * Page with regular buffer heads, just add all dirty ones
2055                  */
2056                 head = page_buffers(page);
2057                 bh = head;
2058                 do {
2059                         BUG_ON(buffer_locked(bh));
2060                         if (buffer_dirty(bh) &&
2061                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2062                                 mpage_add_bh_to_extent(mpd, logical, bh);
2063                                 if (mpd->io_done)
2064                                         return MPAGE_DA_EXTENT_TAIL;
2065                         }
2066                         logical++;
2067                 } while ((bh = bh->b_this_page) != head);
2068         }
2069
2070         return 0;
2071 }
2072
2073 /*
2074  * mpage_da_writepages - walk the list of dirty pages of the given
2075  * address space, allocates non-allocated blocks, maps newly-allocated
2076  * blocks to existing bhs and issue IO them
2077  *
2078  * @mapping: address space structure to write
2079  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2080  * @get_block: the filesystem's block mapper function.
2081  *
2082  * This is a library function, which implements the writepages()
2083  * address_space_operation.
2084  */
2085 static int mpage_da_writepages(struct address_space *mapping,
2086                                struct writeback_control *wbc,
2087                                get_block_t get_block)
2088 {
2089         struct mpage_da_data mpd;
2090         long to_write;
2091         int ret;
2092
2093         if (!get_block)
2094                 return generic_writepages(mapping, wbc);
2095
2096         mpd.wbc = wbc;
2097         mpd.inode = mapping->host;
2098         mpd.lbh.b_size = 0;
2099         mpd.lbh.b_state = 0;
2100         mpd.lbh.b_blocknr = 0;
2101         mpd.first_page = 0;
2102         mpd.next_page = 0;
2103         mpd.get_block = get_block;
2104         mpd.io_done = 0;
2105         mpd.pages_written = 0;
2106
2107         to_write = wbc->nr_to_write;
2108
2109         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2110
2111         /*
2112          * Handle last extent of pages
2113          */
2114         if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2115                 if (mpage_da_map_blocks(&mpd) == 0)
2116                         mpage_da_submit_io(&mpd);
2117         }
2118
2119         wbc->nr_to_write = to_write - mpd.pages_written;
2120         return ret;
2121 }
2122
2123 /*
2124  * this is a special callback for ->write_begin() only
2125  * it's intention is to return mapped block or reserve space
2126  */
2127 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2128                                   struct buffer_head *bh_result, int create)
2129 {
2130         int ret = 0;
2131
2132         BUG_ON(create == 0);
2133         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2134
2135         /*
2136          * first, we need to know whether the block is allocated already
2137          * preallocated blocks are unmapped but should treated
2138          * the same as allocated blocks.
2139          */
2140         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2141         if ((ret == 0) && !buffer_delay(bh_result)) {
2142                 /* the block isn't (pre)allocated yet, let's reserve space */
2143                 /*
2144                  * XXX: __block_prepare_write() unmaps passed block,
2145                  * is it OK?
2146                  */
2147                 ret = ext4_da_reserve_space(inode, 1);
2148                 if (ret)
2149                         /* not enough space to reserve */
2150                         return ret;
2151
2152                 map_bh(bh_result, inode->i_sb, 0);
2153                 set_buffer_new(bh_result);
2154                 set_buffer_delay(bh_result);
2155         } else if (ret > 0) {
2156                 bh_result->b_size = (ret << inode->i_blkbits);
2157                 ret = 0;
2158         }
2159
2160         return ret;
2161 }
2162 #define         EXT4_DELALLOC_RSVED     1
2163 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2164                                    struct buffer_head *bh_result, int create)
2165 {
2166         int ret;
2167         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2168         loff_t disksize = EXT4_I(inode)->i_disksize;
2169         handle_t *handle = NULL;
2170
2171         handle = ext4_journal_current_handle();
2172         if (!handle) {
2173                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2174                                    bh_result, 0, 0, 0);
2175                 BUG_ON(!ret);
2176         } else {
2177                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2178                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2179         }
2180
2181         if (ret > 0) {
2182                 bh_result->b_size = (ret << inode->i_blkbits);
2183
2184                 /*
2185                  * Update on-disk size along with block allocation
2186                  * we don't use 'extend_disksize' as size may change
2187                  * within already allocated block -bzzz
2188                  */
2189                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2190                 if (disksize > i_size_read(inode))
2191                         disksize = i_size_read(inode);
2192                 if (disksize > EXT4_I(inode)->i_disksize) {
2193                         /*
2194                          * XXX: replace with spinlock if seen contended -bzzz
2195                          */
2196                         down_write(&EXT4_I(inode)->i_data_sem);
2197                         if (disksize > EXT4_I(inode)->i_disksize)
2198                                 EXT4_I(inode)->i_disksize = disksize;
2199                         up_write(&EXT4_I(inode)->i_data_sem);
2200
2201                         if (EXT4_I(inode)->i_disksize == disksize) {
2202                                 ret = ext4_mark_inode_dirty(handle, inode);
2203                                 return ret;
2204                         }
2205                 }
2206                 ret = 0;
2207         }
2208         return ret;
2209 }
2210
2211 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2212 {
2213         /*
2214          * unmapped buffer is possible for holes.
2215          * delay buffer is possible with delayed allocation
2216          */
2217         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2218 }
2219
2220 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2221                                    struct buffer_head *bh_result, int create)
2222 {
2223         int ret = 0;
2224         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2225
2226         /*
2227          * we don't want to do block allocation in writepage
2228          * so call get_block_wrap with create = 0
2229          */
2230         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2231                                    bh_result, 0, 0, 0);
2232         if (ret > 0) {
2233                 bh_result->b_size = (ret << inode->i_blkbits);
2234                 ret = 0;
2235         }
2236         return ret;
2237 }
2238
2239 /*
2240  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2241  * get called via journal_submit_inode_data_buffers (no journal handle)
2242  * get called via shrink_page_list via pdflush (no journal handle)
2243  * or grab_page_cache when doing write_begin (have journal handle)
2244  */
2245 static int ext4_da_writepage(struct page *page,
2246                                 struct writeback_control *wbc)
2247 {
2248         int ret = 0;
2249         loff_t size;
2250         unsigned long len;
2251         struct buffer_head *page_bufs;
2252         struct inode *inode = page->mapping->host;
2253
2254         size = i_size_read(inode);
2255         if (page->index == size >> PAGE_CACHE_SHIFT)
2256                 len = size & ~PAGE_CACHE_MASK;
2257         else
2258                 len = PAGE_CACHE_SIZE;
2259
2260         if (page_has_buffers(page)) {
2261                 page_bufs = page_buffers(page);
2262                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2263                                         ext4_bh_unmapped_or_delay)) {
2264                         /*
2265                          * We don't want to do  block allocation
2266                          * So redirty the page and return
2267                          * We may reach here when we do a journal commit
2268                          * via journal_submit_inode_data_buffers.
2269                          * If we don't have mapping block we just ignore
2270                          * them. We can also reach here via shrink_page_list
2271                          */
2272                         redirty_page_for_writepage(wbc, page);
2273                         unlock_page(page);
2274                         return 0;
2275                 }
2276         } else {
2277                 /*
2278                  * The test for page_has_buffers() is subtle:
2279                  * We know the page is dirty but it lost buffers. That means
2280                  * that at some moment in time after write_begin()/write_end()
2281                  * has been called all buffers have been clean and thus they
2282                  * must have been written at least once. So they are all
2283                  * mapped and we can happily proceed with mapping them
2284                  * and writing the page.
2285                  *
2286                  * Try to initialize the buffer_heads and check whether
2287                  * all are mapped and non delay. We don't want to
2288                  * do block allocation here.
2289                  */
2290                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2291                                                 ext4_normal_get_block_write);
2292                 if (!ret) {
2293                         page_bufs = page_buffers(page);
2294                         /* check whether all are mapped and non delay */
2295                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2296                                                 ext4_bh_unmapped_or_delay)) {
2297                                 redirty_page_for_writepage(wbc, page);
2298                                 unlock_page(page);
2299                                 return 0;
2300                         }
2301                 } else {
2302                         /*
2303                          * We can't do block allocation here
2304                          * so just redity the page and unlock
2305                          * and return
2306                          */
2307                         redirty_page_for_writepage(wbc, page);
2308                         unlock_page(page);
2309                         return 0;
2310                 }
2311         }
2312
2313         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2314                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2315         else
2316                 ret = block_write_full_page(page,
2317                                                 ext4_normal_get_block_write,
2318                                                 wbc);
2319
2320         return ret;
2321 }
2322
2323 /*
2324  * This is called via ext4_da_writepages() to
2325  * calulate the total number of credits to reserve to fit
2326  * a single extent allocation into a single transaction,
2327  * ext4_da_writpeages() will loop calling this before
2328  * the block allocation.
2329  */
2330
2331 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2332 {
2333         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2334
2335         /*
2336          * With non-extent format the journal credit needed to
2337          * insert nrblocks contiguous block is dependent on
2338          * number of contiguous block. So we will limit
2339          * number of contiguous block to a sane value
2340          */
2341         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2342             (max_blocks > EXT4_MAX_TRANS_DATA))
2343                 max_blocks = EXT4_MAX_TRANS_DATA;
2344
2345         return ext4_chunk_trans_blocks(inode, max_blocks);
2346 }
2347
2348 static int ext4_da_writepages(struct address_space *mapping,
2349                               struct writeback_control *wbc)
2350 {
2351         handle_t *handle = NULL;
2352         loff_t range_start = 0;
2353         struct inode *inode = mapping->host;
2354         int needed_blocks, ret = 0, nr_to_writebump = 0;
2355         long to_write, pages_skipped = 0;
2356         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2357
2358         /*
2359          * No pages to write? This is mainly a kludge to avoid starting
2360          * a transaction for special inodes like journal inode on last iput()
2361          * because that could violate lock ordering on umount
2362          */
2363         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2364                 return 0;
2365         /*
2366          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2367          * This make sure small files blocks are allocated in
2368          * single attempt. This ensure that small files
2369          * get less fragmented.
2370          */
2371         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2372                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2373                 wbc->nr_to_write = sbi->s_mb_stream_request;
2374         }
2375
2376         if (!wbc->range_cyclic)
2377                 /*
2378                  * If range_cyclic is not set force range_cont
2379                  * and save the old writeback_index
2380                  */
2381                 wbc->range_cont = 1;
2382
2383         range_start =  wbc->range_start;
2384         pages_skipped = wbc->pages_skipped;
2385
2386 restart_loop:
2387         to_write = wbc->nr_to_write;
2388         while (!ret && to_write > 0) {
2389
2390                 /*
2391                  * we  insert one extent at a time. So we need
2392                  * credit needed for single extent allocation.
2393                  * journalled mode is currently not supported
2394                  * by delalloc
2395                  */
2396                 BUG_ON(ext4_should_journal_data(inode));
2397                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2398
2399                 /* start a new transaction*/
2400                 handle = ext4_journal_start(inode, needed_blocks);
2401                 if (IS_ERR(handle)) {
2402                         ret = PTR_ERR(handle);
2403                         printk(KERN_EMERG "%s: jbd2_start: "
2404                                "%ld pages, ino %lu; err %d\n", __func__,
2405                                 wbc->nr_to_write, inode->i_ino, ret);
2406                         dump_stack();
2407                         goto out_writepages;
2408                 }
2409                 if (ext4_should_order_data(inode)) {
2410                         /*
2411                          * With ordered mode we need to add
2412                          * the inode to the journal handl
2413                          * when we do block allocation.
2414                          */
2415                         ret = ext4_jbd2_file_inode(handle, inode);
2416                         if (ret) {
2417                                 ext4_journal_stop(handle);
2418                                 goto out_writepages;
2419                         }
2420                 }
2421
2422                 to_write -= wbc->nr_to_write;
2423                 ret = mpage_da_writepages(mapping, wbc,
2424                                           ext4_da_get_block_write);
2425                 ext4_journal_stop(handle);
2426                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2427                         /*
2428                          * got one extent now try with
2429                          * rest of the pages
2430                          */
2431                         to_write += wbc->nr_to_write;
2432                         ret = 0;
2433                 } else if (wbc->nr_to_write) {
2434                         /*
2435                          * There is no more writeout needed
2436                          * or we requested for a noblocking writeout
2437                          * and we found the device congested
2438                          */
2439                         to_write += wbc->nr_to_write;
2440                         break;
2441                 }
2442                 wbc->nr_to_write = to_write;
2443         }
2444
2445         if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2446                 /* We skipped pages in this loop */
2447                 wbc->range_start = range_start;
2448                 wbc->nr_to_write = to_write +
2449                                 wbc->pages_skipped - pages_skipped;
2450                 wbc->pages_skipped = pages_skipped;
2451                 goto restart_loop;
2452         }
2453
2454 out_writepages:
2455         wbc->nr_to_write = to_write - nr_to_writebump;
2456         wbc->range_start = range_start;
2457         return ret;
2458 }
2459
2460 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2461                                 loff_t pos, unsigned len, unsigned flags,
2462                                 struct page **pagep, void **fsdata)
2463 {
2464         int ret, retries = 0;
2465         struct page *page;
2466         pgoff_t index;
2467         unsigned from, to;
2468         struct inode *inode = mapping->host;
2469         handle_t *handle;
2470
2471         index = pos >> PAGE_CACHE_SHIFT;
2472         from = pos & (PAGE_CACHE_SIZE - 1);
2473         to = from + len;
2474
2475 retry:
2476         /*
2477          * With delayed allocation, we don't log the i_disksize update
2478          * if there is delayed block allocation. But we still need
2479          * to journalling the i_disksize update if writes to the end
2480          * of file which has an already mapped buffer.
2481          */
2482         handle = ext4_journal_start(inode, 1);
2483         if (IS_ERR(handle)) {
2484                 ret = PTR_ERR(handle);
2485                 goto out;
2486         }
2487
2488         page = __grab_cache_page(mapping, index);
2489         if (!page) {
2490                 ext4_journal_stop(handle);
2491                 ret = -ENOMEM;
2492                 goto out;
2493         }
2494         *pagep = page;
2495
2496         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2497                                                         ext4_da_get_block_prep);
2498         if (ret < 0) {
2499                 unlock_page(page);
2500                 ext4_journal_stop(handle);
2501                 page_cache_release(page);
2502         }
2503
2504         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2505                 goto retry;
2506 out:
2507         return ret;
2508 }
2509
2510 /*
2511  * Check if we should update i_disksize
2512  * when write to the end of file but not require block allocation
2513  */
2514 static int ext4_da_should_update_i_disksize(struct page *page,
2515                                          unsigned long offset)
2516 {
2517         struct buffer_head *bh;
2518         struct inode *inode = page->mapping->host;
2519         unsigned int idx;
2520         int i;
2521
2522         bh = page_buffers(page);
2523         idx = offset >> inode->i_blkbits;
2524
2525         for (i = 0; i < idx; i++)
2526                 bh = bh->b_this_page;
2527
2528         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2529                 return 0;
2530         return 1;
2531 }
2532
2533 static int ext4_da_write_end(struct file *file,
2534                                 struct address_space *mapping,
2535                                 loff_t pos, unsigned len, unsigned copied,
2536                                 struct page *page, void *fsdata)
2537 {
2538         struct inode *inode = mapping->host;
2539         int ret = 0, ret2;
2540         handle_t *handle = ext4_journal_current_handle();
2541         loff_t new_i_size;
2542         unsigned long start, end;
2543
2544         start = pos & (PAGE_CACHE_SIZE - 1);
2545         end = start + copied - 1;
2546
2547         /*
2548          * generic_write_end() will run mark_inode_dirty() if i_size
2549          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2550          * into that.
2551          */
2552
2553         new_i_size = pos + copied;
2554         if (new_i_size > EXT4_I(inode)->i_disksize) {
2555                 if (ext4_da_should_update_i_disksize(page, end)) {
2556                         down_write(&EXT4_I(inode)->i_data_sem);
2557                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2558                                 /*
2559                                  * Updating i_disksize when extending file
2560                                  * without needing block allocation
2561                                  */
2562                                 if (ext4_should_order_data(inode))
2563                                         ret = ext4_jbd2_file_inode(handle,
2564                                                                    inode);
2565
2566                                 EXT4_I(inode)->i_disksize = new_i_size;
2567                         }
2568                         up_write(&EXT4_I(inode)->i_data_sem);
2569                 }
2570         }
2571         ret2 = generic_write_end(file, mapping, pos, len, copied,
2572                                                         page, fsdata);
2573         copied = ret2;
2574         if (ret2 < 0)
2575                 ret = ret2;
2576         ret2 = ext4_journal_stop(handle);
2577         if (!ret)
2578                 ret = ret2;
2579
2580         return ret ? ret : copied;
2581 }
2582
2583 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2584 {
2585         /*
2586          * Drop reserved blocks
2587          */
2588         BUG_ON(!PageLocked(page));
2589         if (!page_has_buffers(page))
2590                 goto out;
2591
2592         ext4_da_page_release_reservation(page, offset);
2593
2594 out:
2595         ext4_invalidatepage(page, offset);
2596
2597         return;
2598 }
2599
2600
2601 /*
2602  * bmap() is special.  It gets used by applications such as lilo and by
2603  * the swapper to find the on-disk block of a specific piece of data.
2604  *
2605  * Naturally, this is dangerous if the block concerned is still in the
2606  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2607  * filesystem and enables swap, then they may get a nasty shock when the
2608  * data getting swapped to that swapfile suddenly gets overwritten by
2609  * the original zero's written out previously to the journal and
2610  * awaiting writeback in the kernel's buffer cache.
2611  *
2612  * So, if we see any bmap calls here on a modified, data-journaled file,
2613  * take extra steps to flush any blocks which might be in the cache.
2614  */
2615 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2616 {
2617         struct inode *inode = mapping->host;
2618         journal_t *journal;
2619         int err;
2620
2621         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2622                         test_opt(inode->i_sb, DELALLOC)) {
2623                 /*
2624                  * With delalloc we want to sync the file
2625                  * so that we can make sure we allocate
2626                  * blocks for file
2627                  */
2628                 filemap_write_and_wait(mapping);
2629         }
2630
2631         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2632                 /*
2633                  * This is a REALLY heavyweight approach, but the use of
2634                  * bmap on dirty files is expected to be extremely rare:
2635                  * only if we run lilo or swapon on a freshly made file
2636                  * do we expect this to happen.
2637                  *
2638                  * (bmap requires CAP_SYS_RAWIO so this does not
2639                  * represent an unprivileged user DOS attack --- we'd be
2640                  * in trouble if mortal users could trigger this path at
2641                  * will.)
2642                  *
2643                  * NB. EXT4_STATE_JDATA is not set on files other than
2644                  * regular files.  If somebody wants to bmap a directory
2645                  * or symlink and gets confused because the buffer
2646                  * hasn't yet been flushed to disk, they deserve
2647                  * everything they get.
2648                  */
2649
2650                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2651                 journal = EXT4_JOURNAL(inode);
2652                 jbd2_journal_lock_updates(journal);
2653                 err = jbd2_journal_flush(journal);
2654                 jbd2_journal_unlock_updates(journal);
2655
2656                 if (err)
2657                         return 0;
2658         }
2659
2660         return generic_block_bmap(mapping, block, ext4_get_block);
2661 }
2662
2663 static int bget_one(handle_t *handle, struct buffer_head *bh)
2664 {
2665         get_bh(bh);
2666         return 0;
2667 }
2668
2669 static int bput_one(handle_t *handle, struct buffer_head *bh)
2670 {
2671         put_bh(bh);
2672         return 0;
2673 }
2674
2675 /*
2676  * Note that we don't need to start a transaction unless we're journaling data
2677  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2678  * need to file the inode to the transaction's list in ordered mode because if
2679  * we are writing back data added by write(), the inode is already there and if
2680  * we are writing back data modified via mmap(), noone guarantees in which
2681  * transaction the data will hit the disk. In case we are journaling data, we
2682  * cannot start transaction directly because transaction start ranks above page
2683  * lock so we have to do some magic.
2684  *
2685  * In all journaling modes block_write_full_page() will start the I/O.
2686  *
2687  * Problem:
2688  *
2689  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2690  *              ext4_writepage()
2691  *
2692  * Similar for:
2693  *
2694  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2695  *
2696  * Same applies to ext4_get_block().  We will deadlock on various things like
2697  * lock_journal and i_data_sem
2698  *
2699  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2700  * allocations fail.
2701  *
2702  * 16May01: If we're reentered then journal_current_handle() will be
2703  *          non-zero. We simply *return*.
2704  *
2705  * 1 July 2001: @@@ FIXME:
2706  *   In journalled data mode, a data buffer may be metadata against the
2707  *   current transaction.  But the same file is part of a shared mapping
2708  *   and someone does a writepage() on it.
2709  *
2710  *   We will move the buffer onto the async_data list, but *after* it has
2711  *   been dirtied. So there's a small window where we have dirty data on
2712  *   BJ_Metadata.
2713  *
2714  *   Note that this only applies to the last partial page in the file.  The
2715  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2716  *   broken code anyway: it's wrong for msync()).
2717  *
2718  *   It's a rare case: affects the final partial page, for journalled data
2719  *   where the file is subject to bith write() and writepage() in the same
2720  *   transction.  To fix it we'll need a custom block_write_full_page().
2721  *   We'll probably need that anyway for journalling writepage() output.
2722  *
2723  * We don't honour synchronous mounts for writepage().  That would be
2724  * disastrous.  Any write() or metadata operation will sync the fs for
2725  * us.
2726  *
2727  */
2728 static int __ext4_normal_writepage(struct page *page,
2729                                 struct writeback_control *wbc)
2730 {
2731         struct inode *inode = page->mapping->host;
2732
2733         if (test_opt(inode->i_sb, NOBH))
2734                 return nobh_writepage(page,
2735                                         ext4_normal_get_block_write, wbc);
2736         else
2737                 return block_write_full_page(page,
2738                                                 ext4_normal_get_block_write,
2739                                                 wbc);
2740 }
2741
2742 static int ext4_normal_writepage(struct page *page,
2743                                 struct writeback_control *wbc)
2744 {
2745         struct inode *inode = page->mapping->host;
2746         loff_t size = i_size_read(inode);
2747         loff_t len;
2748
2749         J_ASSERT(PageLocked(page));
2750         if (page->index == size >> PAGE_CACHE_SHIFT)
2751                 len = size & ~PAGE_CACHE_MASK;
2752         else
2753                 len = PAGE_CACHE_SIZE;
2754
2755         if (page_has_buffers(page)) {
2756                 /* if page has buffers it should all be mapped
2757                  * and allocated. If there are not buffers attached
2758                  * to the page we know the page is dirty but it lost
2759                  * buffers. That means that at some moment in time
2760                  * after write_begin() / write_end() has been called
2761                  * all buffers have been clean and thus they must have been
2762                  * written at least once. So they are all mapped and we can
2763                  * happily proceed with mapping them and writing the page.
2764                  */
2765                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2766                                         ext4_bh_unmapped_or_delay));
2767         }
2768
2769         if (!ext4_journal_current_handle())
2770                 return __ext4_normal_writepage(page, wbc);
2771
2772         redirty_page_for_writepage(wbc, page);
2773         unlock_page(page);
2774         return 0;
2775 }
2776
2777 static int __ext4_journalled_writepage(struct page *page,
2778                                 struct writeback_control *wbc)
2779 {
2780         struct address_space *mapping = page->mapping;
2781         struct inode *inode = mapping->host;
2782         struct buffer_head *page_bufs;
2783         handle_t *handle = NULL;
2784         int ret = 0;
2785         int err;
2786
2787         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2788                                         ext4_normal_get_block_write);
2789         if (ret != 0)
2790                 goto out_unlock;
2791
2792         page_bufs = page_buffers(page);
2793         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2794                                                                 bget_one);
2795         /* As soon as we unlock the page, it can go away, but we have
2796          * references to buffers so we are safe */
2797         unlock_page(page);
2798
2799         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2800         if (IS_ERR(handle)) {
2801                 ret = PTR_ERR(handle);
2802                 goto out;
2803         }
2804
2805         ret = walk_page_buffers(handle, page_bufs, 0,
2806                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2807
2808         err = walk_page_buffers(handle, page_bufs, 0,
2809                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2810         if (ret == 0)
2811                 ret = err;
2812         err = ext4_journal_stop(handle);
2813         if (!ret)
2814                 ret = err;
2815
2816         walk_page_buffers(handle, page_bufs, 0,
2817                                 PAGE_CACHE_SIZE, NULL, bput_one);
2818         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2819         goto out;
2820
2821 out_unlock:
2822         unlock_page(page);
2823 out:
2824         return ret;
2825 }
2826
2827 static int ext4_journalled_writepage(struct page *page,
2828                                 struct writeback_control *wbc)
2829 {
2830         struct inode *inode = page->mapping->host;
2831         loff_t size = i_size_read(inode);
2832         loff_t len;
2833
2834         J_ASSERT(PageLocked(page));
2835         if (page->index == size >> PAGE_CACHE_SHIFT)
2836                 len = size & ~PAGE_CACHE_MASK;
2837         else
2838                 len = PAGE_CACHE_SIZE;
2839
2840         if (page_has_buffers(page)) {
2841                 /* if page has buffers it should all be mapped
2842                  * and allocated. If there are not buffers attached
2843                  * to the page we know the page is dirty but it lost
2844                  * buffers. That means that at some moment in time
2845                  * after write_begin() / write_end() has been called
2846                  * all buffers have been clean and thus they must have been
2847                  * written at least once. So they are all mapped and we can
2848                  * happily proceed with mapping them and writing the page.
2849                  */
2850                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2851                                         ext4_bh_unmapped_or_delay));
2852         }
2853
2854         if (ext4_journal_current_handle())
2855                 goto no_write;
2856
2857         if (PageChecked(page)) {
2858                 /*
2859                  * It's mmapped pagecache.  Add buffers and journal it.  There
2860                  * doesn't seem much point in redirtying the page here.
2861                  */
2862                 ClearPageChecked(page);
2863                 return __ext4_journalled_writepage(page, wbc);
2864         } else {
2865                 /*
2866                  * It may be a page full of checkpoint-mode buffers.  We don't
2867                  * really know unless we go poke around in the buffer_heads.
2868                  * But block_write_full_page will do the right thing.
2869                  */
2870                 return block_write_full_page(page,
2871                                                 ext4_normal_get_block_write,
2872                                                 wbc);
2873         }
2874 no_write:
2875         redirty_page_for_writepage(wbc, page);
2876         unlock_page(page);
2877         return 0;
2878 }
2879
2880 static int ext4_readpage(struct file *file, struct page *page)
2881 {
2882         return mpage_readpage(page, ext4_get_block);
2883 }
2884
2885 static int
2886 ext4_readpages(struct file *file, struct address_space *mapping,
2887                 struct list_head *pages, unsigned nr_pages)
2888 {
2889         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2890 }
2891
2892 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2893 {
2894         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2895
2896         /*
2897          * If it's a full truncate we just forget about the pending dirtying
2898          */
2899         if (offset == 0)
2900                 ClearPageChecked(page);
2901
2902         jbd2_journal_invalidatepage(journal, page, offset);
2903 }
2904
2905 static int ext4_releasepage(struct page *page, gfp_t wait)
2906 {
2907         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2908
2909         WARN_ON(PageChecked(page));
2910         if (!page_has_buffers(page))
2911                 return 0;
2912         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2913 }
2914
2915 /*
2916  * If the O_DIRECT write will extend the file then add this inode to the
2917  * orphan list.  So recovery will truncate it back to the original size
2918  * if the machine crashes during the write.
2919  *
2920  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2921  * crashes then stale disk data _may_ be exposed inside the file. But current
2922  * VFS code falls back into buffered path in that case so we are safe.
2923  */
2924 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2925                         const struct iovec *iov, loff_t offset,
2926                         unsigned long nr_segs)
2927 {
2928         struct file *file = iocb->ki_filp;
2929         struct inode *inode = file->f_mapping->host;
2930         struct ext4_inode_info *ei = EXT4_I(inode);
2931         handle_t *handle;
2932         ssize_t ret;
2933         int orphan = 0;
2934         size_t count = iov_length(iov, nr_segs);
2935
2936         if (rw == WRITE) {
2937                 loff_t final_size = offset + count;
2938
2939                 if (final_size > inode->i_size) {
2940                         /* Credits for sb + inode write */
2941                         handle = ext4_journal_start(inode, 2);
2942                         if (IS_ERR(handle)) {
2943                                 ret = PTR_ERR(handle);
2944                                 goto out;
2945                         }
2946                         ret = ext4_orphan_add(handle, inode);
2947                         if (ret) {
2948                                 ext4_journal_stop(handle);
2949                                 goto out;
2950                         }
2951                         orphan = 1;
2952                         ei->i_disksize = inode->i_size;
2953                         ext4_journal_stop(handle);
2954                 }
2955         }
2956
2957         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2958                                  offset, nr_segs,
2959                                  ext4_get_block, NULL);
2960
2961         if (orphan) {
2962                 int err;
2963
2964                 /* Credits for sb + inode write */
2965                 handle = ext4_journal_start(inode, 2);
2966                 if (IS_ERR(handle)) {
2967                         /* This is really bad luck. We've written the data
2968                          * but cannot extend i_size. Bail out and pretend
2969                          * the write failed... */
2970                         ret = PTR_ERR(handle);
2971                         goto out;
2972                 }
2973                 if (inode->i_nlink)
2974                         ext4_orphan_del(handle, inode);
2975                 if (ret > 0) {
2976                         loff_t end = offset + ret;
2977                         if (end > inode->i_size) {
2978                                 ei->i_disksize = end;
2979                                 i_size_write(inode, end);
2980                                 /*
2981                                  * We're going to return a positive `ret'
2982                                  * here due to non-zero-length I/O, so there's
2983                                  * no way of reporting error returns from
2984                                  * ext4_mark_inode_dirty() to userspace.  So
2985                                  * ignore it.
2986                                  */
2987                                 ext4_mark_inode_dirty(handle, inode);
2988                         }
2989                 }
2990                 err = ext4_journal_stop(handle);
2991                 if (ret == 0)
2992                         ret = err;
2993         }
2994 out:
2995         return ret;
2996 }
2997
2998 /*
2999  * Pages can be marked dirty completely asynchronously from ext4's journalling
3000  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3001  * much here because ->set_page_dirty is called under VFS locks.  The page is
3002  * not necessarily locked.
3003  *
3004  * We cannot just dirty the page and leave attached buffers clean, because the
3005  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3006  * or jbddirty because all the journalling code will explode.
3007  *
3008  * So what we do is to mark the page "pending dirty" and next time writepage
3009  * is called, propagate that into the buffers appropriately.
3010  */
3011 static int ext4_journalled_set_page_dirty(struct page *page)
3012 {
3013         SetPageChecked(page);
3014         return __set_page_dirty_nobuffers(page);
3015 }
3016
3017 static const struct address_space_operations ext4_ordered_aops = {
3018         .readpage               = ext4_readpage,
3019         .readpages              = ext4_readpages,
3020         .writepage              = ext4_normal_writepage,
3021         .sync_page              = block_sync_page,
3022         .write_begin            = ext4_write_begin,
3023         .write_end              = ext4_ordered_write_end,
3024         .bmap                   = ext4_bmap,
3025         .invalidatepage         = ext4_invalidatepage,
3026         .releasepage            = ext4_releasepage,
3027         .direct_IO              = ext4_direct_IO,
3028         .migratepage            = buffer_migrate_page,
3029         .is_partially_uptodate  = block_is_partially_uptodate,
3030 };
3031
3032 static const struct address_space_operations ext4_writeback_aops = {
3033         .readpage               = ext4_readpage,
3034         .readpages              = ext4_readpages,
3035         .writepage              = ext4_normal_writepage,
3036         .sync_page              = block_sync_page,
3037         .write_begin            = ext4_write_begin,
3038         .write_end              = ext4_writeback_write_end,
3039         .bmap                   = ext4_bmap,
3040         .invalidatepage         = ext4_invalidatepage,
3041         .releasepage            = ext4_releasepage,
3042         .direct_IO              = ext4_direct_IO,
3043         .migratepage            = buffer_migrate_page,
3044         .is_partially_uptodate  = block_is_partially_uptodate,
3045 };
3046
3047 static const struct address_space_operations ext4_journalled_aops = {
3048         .readpage               = ext4_readpage,
3049         .readpages              = ext4_readpages,
3050         .writepage              = ext4_journalled_writepage,
3051         .sync_page              = block_sync_page,
3052         .write_begin            = ext4_write_begin,
3053         .write_end              = ext4_journalled_write_end,
3054         .set_page_dirty         = ext4_journalled_set_page_dirty,
3055         .bmap                   = ext4_bmap,
3056         .invalidatepage         = ext4_invalidatepage,
3057         .releasepage            = ext4_releasepage,
3058         .is_partially_uptodate  = block_is_partially_uptodate,
3059 };
3060
3061 static const struct address_space_operations ext4_da_aops = {
3062         .readpage               = ext4_readpage,
3063         .readpages              = ext4_readpages,
3064         .writepage              = ext4_da_writepage,
3065         .writepages             = ext4_da_writepages,
3066         .sync_page              = block_sync_page,
3067         .write_begin            = ext4_da_write_begin,
3068         .write_end              = ext4_da_write_end,
3069         .bmap                   = ext4_bmap,
3070         .invalidatepage         = ext4_da_invalidatepage,
3071         .releasepage            = ext4_releasepage,
3072         .direct_IO              = ext4_direct_IO,
3073         .migratepage            = buffer_migrate_page,
3074         .is_partially_uptodate  = block_is_partially_uptodate,
3075 };
3076
3077 void ext4_set_aops(struct inode *inode)
3078 {
3079         if (ext4_should_order_data(inode) &&
3080                 test_opt(inode->i_sb, DELALLOC))
3081                 inode->i_mapping->a_ops = &ext4_da_aops;
3082         else if (ext4_should_order_data(inode))
3083                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3084         else if (ext4_should_writeback_data(inode) &&
3085                  test_opt(inode->i_sb, DELALLOC))
3086                 inode->i_mapping->a_ops = &ext4_da_aops;
3087         else if (ext4_should_writeback_data(inode))
3088                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3089         else
3090                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3091 }
3092
3093 /*
3094  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3095  * up to the end of the block which corresponds to `from'.
3096  * This required during truncate. We need to physically zero the tail end
3097  * of that block so it doesn't yield old data if the file is later grown.
3098  */
3099 int ext4_block_truncate_page(handle_t *handle,
3100                 struct address_space *mapping, loff_t from)
3101 {
3102         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3103         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3104         unsigned blocksize, length, pos;
3105         ext4_lblk_t iblock;
3106         struct inode *inode = mapping->host;
3107         struct buffer_head *bh;
3108         struct page *page;
3109         int err = 0;
3110
3111         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3112         if (!page)
3113                 return -EINVAL;
3114
3115         blocksize = inode->i_sb->s_blocksize;
3116         length = blocksize - (offset & (blocksize - 1));
3117         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3118
3119         /*
3120          * For "nobh" option,  we can only work if we don't need to
3121          * read-in the page - otherwise we create buffers to do the IO.
3122          */
3123         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3124              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3125                 zero_user(page, offset, length);
3126                 set_page_dirty(page);
3127                 goto unlock;
3128         }
3129
3130         if (!page_has_buffers(page))
3131                 create_empty_buffers(page, blocksize, 0);
3132
3133         /* Find the buffer that contains "offset" */
3134         bh = page_buffers(page);
3135         pos = blocksize;
3136         while (offset >= pos) {
3137                 bh = bh->b_this_page;
3138                 iblock++;
3139                 pos += blocksize;
3140         }
3141
3142         err = 0;
3143         if (buffer_freed(bh)) {
3144                 BUFFER_TRACE(bh, "freed: skip");
3145                 goto unlock;
3146         }
3147
3148         if (!buffer_mapped(bh)) {
3149                 BUFFER_TRACE(bh, "unmapped");
3150                 ext4_get_block(inode, iblock, bh, 0);
3151                 /* unmapped? It's a hole - nothing to do */
3152                 if (!buffer_mapped(bh)) {
3153                         BUFFER_TRACE(bh, "still unmapped");
3154                         goto unlock;
3155                 }
3156         }
3157
3158         /* Ok, it's mapped. Make sure it's up-to-date */
3159         if (PageUptodate(page))
3160                 set_buffer_uptodate(bh);
3161
3162         if (!buffer_uptodate(bh)) {
3163                 err = -EIO;
3164                 ll_rw_block(READ, 1, &bh);
3165                 wait_on_buffer(bh);
3166                 /* Uhhuh. Read error. Complain and punt. */
3167                 if (!buffer_uptodate(bh))
3168                         goto unlock;
3169         }
3170
3171         if (ext4_should_journal_data(inode)) {
3172                 BUFFER_TRACE(bh, "get write access");
3173                 err = ext4_journal_get_write_access(handle, bh);
3174                 if (err)
3175                         goto unlock;
3176         }
3177
3178         zero_user(page, offset, length);
3179
3180         BUFFER_TRACE(bh, "zeroed end of block");
3181
3182         err = 0;
3183         if (ext4_should_journal_data(inode)) {
3184                 err = ext4_journal_dirty_metadata(handle, bh);
3185         } else {
3186                 if (ext4_should_order_data(inode))
3187                         err = ext4_jbd2_file_inode(handle, inode);
3188                 mark_buffer_dirty(bh);
3189         }
3190
3191 unlock:
3192         unlock_page(page);
3193         page_cache_release(page);
3194         return err;
3195 }
3196
3197 /*
3198  * Probably it should be a library function... search for first non-zero word
3199  * or memcmp with zero_page, whatever is better for particular architecture.
3200  * Linus?
3201  */
3202 static inline int all_zeroes(__le32 *p, __le32 *q)
3203 {
3204         while (p < q)
3205                 if (*p++)
3206                         return 0;
3207         return 1;
3208 }
3209
3210 /**
3211  *      ext4_find_shared - find the indirect blocks for partial truncation.
3212  *      @inode:   inode in question
3213  *      @depth:   depth of the affected branch
3214  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3215  *      @chain:   place to store the pointers to partial indirect blocks
3216  *      @top:     place to the (detached) top of branch
3217  *
3218  *      This is a helper function used by ext4_truncate().
3219  *
3220  *      When we do truncate() we may have to clean the ends of several
3221  *      indirect blocks but leave the blocks themselves alive. Block is
3222  *      partially truncated if some data below the new i_size is refered
3223  *      from it (and it is on the path to the first completely truncated
3224  *      data block, indeed).  We have to free the top of that path along
3225  *      with everything to the right of the path. Since no allocation
3226  *      past the truncation point is possible until ext4_truncate()
3227  *      finishes, we may safely do the latter, but top of branch may
3228  *      require special attention - pageout below the truncation point
3229  *      might try to populate it.
3230  *
3231  *      We atomically detach the top of branch from the tree, store the
3232  *      block number of its root in *@top, pointers to buffer_heads of
3233  *      partially truncated blocks - in @chain[].bh and pointers to
3234  *      their last elements that should not be removed - in
3235  *      @chain[].p. Return value is the pointer to last filled element
3236  *      of @chain.
3237  *
3238  *      The work left to caller to do the actual freeing of subtrees:
3239  *              a) free the subtree starting from *@top
3240  *              b) free the subtrees whose roots are stored in
3241  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3242  *              c) free the subtrees growing from the inode past the @chain[0].
3243  *                      (no partially truncated stuff there).  */
3244
3245 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3246                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3247 {
3248         Indirect *partial, *p;
3249         int k, err;
3250
3251         *top = 0;
3252         /* Make k index the deepest non-null offest + 1 */
3253         for (k = depth; k > 1 && !offsets[k-1]; k--)
3254                 ;
3255         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3256         /* Writer: pointers */
3257         if (!partial)
3258                 partial = chain + k-1;
3259         /*
3260          * If the branch acquired continuation since we've looked at it -
3261          * fine, it should all survive and (new) top doesn't belong to us.
3262          */
3263         if (!partial->key && *partial->p)
3264                 /* Writer: end */
3265                 goto no_top;
3266         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3267                 ;
3268         /*
3269          * OK, we've found the last block that must survive. The rest of our
3270          * branch should be detached before unlocking. However, if that rest
3271          * of branch is all ours and does not grow immediately from the inode
3272          * it's easier to cheat and just decrement partial->p.
3273          */
3274         if (p == chain + k - 1 && p > chain) {
3275                 p->p--;
3276         } else {
3277                 *top = *p->p;
3278                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3279 #if 0
3280                 *p->p = 0;
3281 #endif
3282         }
3283         /* Writer: end */
3284
3285         while (partial > p) {
3286                 brelse(partial->bh);
3287                 partial--;
3288         }
3289 no_top:
3290         return partial;
3291 }
3292
3293 /*
3294  * Zero a number of block pointers in either an inode or an indirect block.
3295  * If we restart the transaction we must again get write access to the
3296  * indirect block for further modification.
3297  *
3298  * We release `count' blocks on disk, but (last - first) may be greater
3299  * than `count' because there can be holes in there.
3300  */
3301 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3302                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3303                 unsigned long count, __le32 *first, __le32 *last)
3304 {
3305         __le32 *p;
3306         if (try_to_extend_transaction(handle, inode)) {
3307                 if (bh) {
3308                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3309                         ext4_journal_dirty_metadata(handle, bh);
3310                 }
3311                 ext4_mark_inode_dirty(handle, inode);
3312                 ext4_journal_test_restart(handle, inode);
3313                 if (bh) {
3314                         BUFFER_TRACE(bh, "retaking write access");
3315                         ext4_journal_get_write_access(handle, bh);
3316                 }
3317         }
3318
3319         /*
3320          * Any buffers which are on the journal will be in memory. We find
3321          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3322          * on them.  We've already detached each block from the file, so
3323          * bforget() in jbd2_journal_forget() should be safe.
3324          *
3325          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3326          */
3327         for (p = first; p < last; p++) {
3328                 u32 nr = le32_to_cpu(*p);
3329                 if (nr) {
3330                         struct buffer_head *tbh;
3331
3332                         *p = 0;
3333                         tbh = sb_find_get_block(inode->i_sb, nr);
3334                         ext4_forget(handle, 0, inode, tbh, nr);
3335                 }
3336         }
3337
3338         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3339 }
3340
3341 /**
3342  * ext4_free_data - free a list of data blocks
3343  * @handle:     handle for this transaction
3344  * @inode:      inode we are dealing with
3345  * @this_bh:    indirect buffer_head which contains *@first and *@last
3346  * @first:      array of block numbers
3347  * @last:       points immediately past the end of array
3348  *
3349  * We are freeing all blocks refered from that array (numbers are stored as
3350  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3351  *
3352  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3353  * blocks are contiguous then releasing them at one time will only affect one
3354  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3355  * actually use a lot of journal space.
3356  *
3357  * @this_bh will be %NULL if @first and @last point into the inode's direct
3358  * block pointers.
3359  */
3360 static void ext4_free_data(handle_t *handle, struct inode *inode,
3361                            struct buffer_head *this_bh,
3362                            __le32 *first, __le32 *last)
3363 {
3364         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3365         unsigned long count = 0;            /* Number of blocks in the run */
3366         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3367                                                corresponding to
3368                                                block_to_free */
3369         ext4_fsblk_t nr;                    /* Current block # */
3370         __le32 *p;                          /* Pointer into inode/ind
3371                                                for current block */
3372         int err;
3373
3374         if (this_bh) {                          /* For indirect block */
3375                 BUFFER_TRACE(this_bh, "get_write_access");
3376                 err = ext4_journal_get_write_access(handle, this_bh);
3377                 /* Important: if we can't update the indirect pointers
3378                  * to the blocks, we can't free them. */
3379                 if (err)
3380                         return;
3381         }
3382
3383         for (p = first; p < last; p++) {
3384                 nr = le32_to_cpu(*p);
3385                 if (nr) {
3386                         /* accumulate blocks to free if they're contiguous */
3387                         if (count == 0) {
3388                                 block_to_free = nr;
3389                                 block_to_free_p = p;
3390                                 count = 1;
3391                         } else if (nr == block_to_free + count) {
3392                                 count++;
3393                         } else {
3394                                 ext4_clear_blocks(handle, inode, this_bh,
3395                                                   block_to_free,
3396                                                   count, block_to_free_p, p);
3397                                 block_to_free = nr;
3398                                 block_to_free_p = p;
3399                                 count = 1;
3400                         }
3401                 }
3402         }
3403
3404         if (count > 0)
3405                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3406                                   count, block_to_free_p, p);
3407
3408         if (this_bh) {
3409                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3410
3411                 /*
3412                  * The buffer head should have an attached journal head at this
3413                  * point. However, if the data is corrupted and an indirect
3414                  * block pointed to itself, it would have been detached when
3415                  * the block was cleared. Check for this instead of OOPSing.
3416                  */
3417                 if (bh2jh(this_bh))
3418                         ext4_journal_dirty_metadata(handle, this_bh);
3419                 else
3420                         ext4_error(inode->i_sb, __func__,
3421                                    "circular indirect block detected, "
3422                                    "inode=%lu, block=%llu",
3423                                    inode->i_ino,
3424                                    (unsigned long long) this_bh->b_blocknr);
3425         }
3426 }
3427
3428 /**
3429  *      ext4_free_branches - free an array of branches
3430  *      @handle: JBD handle for this transaction
3431  *      @inode: inode we are dealing with
3432  *      @parent_bh: the buffer_head which contains *@first and *@last
3433  *      @first: array of block numbers
3434  *      @last:  pointer immediately past the end of array
3435  *      @depth: depth of the branches to free
3436  *
3437  *      We are freeing all blocks refered from these branches (numbers are
3438  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3439  *      appropriately.
3440  */
3441 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3442                                struct buffer_head *parent_bh,
3443                                __le32 *first, __le32 *last, int depth)
3444 {
3445         ext4_fsblk_t nr;
3446         __le32 *p;
3447
3448         if (is_handle_aborted(handle))
3449                 return;
3450
3451         if (depth--) {
3452                 struct buffer_head *bh;
3453                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3454                 p = last;
3455                 while (--p >= first) {
3456                         nr = le32_to_cpu(*p);
3457                         if (!nr)
3458                                 continue;               /* A hole */
3459
3460                         /* Go read the buffer for the next level down */
3461                         bh = sb_bread(inode->i_sb, nr);
3462
3463                         /*
3464                          * A read failure? Report error and clear slot
3465                          * (should be rare).
3466                          */
3467                         if (!bh) {
3468                                 ext4_error(inode->i_sb, "ext4_free_branches",
3469                                            "Read failure, inode=%lu, block=%llu",
3470                                            inode->i_ino, nr);
3471                                 continue;
3472                         }
3473
3474                         /* This zaps the entire block.  Bottom up. */
3475                         BUFFER_TRACE(bh, "free child branches");
3476                         ext4_free_branches(handle, inode, bh,
3477                                         (__le32 *) bh->b_data,
3478                                         (__le32 *) bh->b_data + addr_per_block,
3479                                         depth);
3480
3481                         /*
3482                          * We've probably journalled the indirect block several
3483                          * times during the truncate.  But it's no longer
3484                          * needed and we now drop it from the transaction via
3485                          * jbd2_journal_revoke().
3486                          *
3487                          * That's easy if it's exclusively part of this
3488                          * transaction.  But if it's part of the committing
3489                          * transaction then jbd2_journal_forget() will simply
3490                          * brelse() it.  That means that if the underlying
3491                          * block is reallocated in ext4_get_block(),
3492                          * unmap_underlying_metadata() will find this block
3493                          * and will try to get rid of it.  damn, damn.
3494                          *
3495                          * If this block has already been committed to the
3496                          * journal, a revoke record will be written.  And
3497                          * revoke records must be emitted *before* clearing
3498                          * this block's bit in the bitmaps.
3499                          */
3500                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3501
3502                         /*
3503                          * Everything below this this pointer has been
3504                          * released.  Now let this top-of-subtree go.
3505                          *
3506                          * We want the freeing of this indirect block to be
3507                          * atomic in the journal with the updating of the
3508                          * bitmap block which owns it.  So make some room in
3509                          * the journal.
3510                          *
3511                          * We zero the parent pointer *after* freeing its
3512                          * pointee in the bitmaps, so if extend_transaction()
3513                          * for some reason fails to put the bitmap changes and
3514                          * the release into the same transaction, recovery
3515                          * will merely complain about releasing a free block,
3516                          * rather than leaking blocks.
3517                          */
3518                         if (is_handle_aborted(handle))
3519                                 return;
3520                         if (try_to_extend_transaction(handle, inode)) {
3521                                 ext4_mark_inode_dirty(handle, inode);
3522                                 ext4_journal_test_restart(handle, inode);
3523                         }
3524
3525                         ext4_free_blocks(handle, inode, nr, 1, 1);
3526
3527                         if (parent_bh) {
3528                                 /*
3529                                  * The block which we have just freed is
3530                                  * pointed to by an indirect block: journal it
3531                                  */
3532                                 BUFFER_TRACE(parent_bh, "get_write_access");
3533                                 if (!ext4_journal_get_write_access(handle,
3534                                                                    parent_bh)){
3535                                         *p = 0;
3536                                         BUFFER_TRACE(parent_bh,
3537                                         "call ext4_journal_dirty_metadata");
3538                                         ext4_journal_dirty_metadata(handle,
3539                                                                     parent_bh);
3540                                 }
3541                         }
3542                 }
3543         } else {
3544                 /* We have reached the bottom of the tree. */
3545                 BUFFER_TRACE(parent_bh, "free data blocks");
3546                 ext4_free_data(handle, inode, parent_bh, first, last);
3547         }
3548 }
3549
3550 int ext4_can_truncate(struct inode *inode)
3551 {
3552         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3553                 return 0;
3554         if (S_ISREG(inode->i_mode))
3555                 return 1;
3556         if (S_ISDIR(inode->i_mode))
3557                 return 1;
3558         if (S_ISLNK(inode->i_mode))
3559                 return !ext4_inode_is_fast_symlink(inode);
3560         return 0;
3561 }
3562
3563 /*
3564  * ext4_truncate()
3565  *
3566  * We block out ext4_get_block() block instantiations across the entire
3567  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3568  * simultaneously on behalf of the same inode.
3569  *
3570  * As we work through the truncate and commmit bits of it to the journal there
3571  * is one core, guiding principle: the file's tree must always be consistent on
3572  * disk.  We must be able to restart the truncate after a crash.
3573  *
3574  * The file's tree may be transiently inconsistent in memory (although it
3575  * probably isn't), but whenever we close off and commit a journal transaction,
3576  * the contents of (the filesystem + the journal) must be consistent and
3577  * restartable.  It's pretty simple, really: bottom up, right to left (although
3578  * left-to-right works OK too).
3579  *
3580  * Note that at recovery time, journal replay occurs *before* the restart of
3581  * truncate against the orphan inode list.
3582  *
3583  * The committed inode has the new, desired i_size (which is the same as
3584  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3585  * that this inode's truncate did not complete and it will again call
3586  * ext4_truncate() to have another go.  So there will be instantiated blocks
3587  * to the right of the truncation point in a crashed ext4 filesystem.  But
3588  * that's fine - as long as they are linked from the inode, the post-crash
3589  * ext4_truncate() run will find them and release them.
3590  */
3591 void ext4_truncate(struct inode *inode)
3592 {
3593         handle_t *handle;
3594         struct ext4_inode_info *ei = EXT4_I(inode);
3595         __le32 *i_data = ei->i_data;
3596         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3597         struct address_space *mapping = inode->i_mapping;
3598         ext4_lblk_t offsets[4];
3599         Indirect chain[4];
3600         Indirect *partial;
3601         __le32 nr = 0;
3602         int n;
3603         ext4_lblk_t last_block;
3604         unsigned blocksize = inode->i_sb->s_blocksize;
3605
3606         if (!ext4_can_truncate(inode))
3607                 return;
3608
3609         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3610                 ext4_ext_truncate(inode);
3611                 return;
3612         }
3613
3614         handle = start_transaction(inode);
3615         if (IS_ERR(handle))
3616                 return;         /* AKPM: return what? */
3617
3618         last_block = (inode->i_size + blocksize-1)
3619                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3620
3621         if (inode->i_size & (blocksize - 1))
3622                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3623                         goto out_stop;
3624
3625         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3626         if (n == 0)
3627                 goto out_stop;  /* error */
3628
3629         /*
3630          * OK.  This truncate is going to happen.  We add the inode to the
3631          * orphan list, so that if this truncate spans multiple transactions,
3632          * and we crash, we will resume the truncate when the filesystem
3633          * recovers.  It also marks the inode dirty, to catch the new size.
3634          *
3635          * Implication: the file must always be in a sane, consistent
3636          * truncatable state while each transaction commits.
3637          */
3638         if (ext4_orphan_add(handle, inode))
3639                 goto out_stop;
3640
3641         /*
3642          * From here we block out all ext4_get_block() callers who want to
3643          * modify the block allocation tree.
3644          */
3645         down_write(&ei->i_data_sem);
3646
3647         ext4_discard_reservation(inode);
3648
3649         /*
3650          * The orphan list entry will now protect us from any crash which
3651          * occurs before the truncate completes, so it is now safe to propagate
3652          * the new, shorter inode size (held for now in i_size) into the
3653          * on-disk inode. We do this via i_disksize, which is the value which
3654          * ext4 *really* writes onto the disk inode.
3655          */
3656         ei->i_disksize = inode->i_size;
3657
3658         if (n == 1) {           /* direct blocks */
3659                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3660                                i_data + EXT4_NDIR_BLOCKS);
3661                 goto do_indirects;
3662         }
3663
3664         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3665         /* Kill the top of shared branch (not detached) */
3666         if (nr) {
3667                 if (partial == chain) {
3668                         /* Shared branch grows from the inode */
3669                         ext4_free_branches(handle, inode, NULL,
3670                                            &nr, &nr+1, (chain+n-1) - partial);
3671                         *partial->p = 0;
3672                         /*
3673                          * We mark the inode dirty prior to restart,
3674                          * and prior to stop.  No need for it here.
3675                          */
3676                 } else {
3677                         /* Shared branch grows from an indirect block */
3678                         BUFFER_TRACE(partial->bh, "get_write_access");
3679                         ext4_free_branches(handle, inode, partial->bh,
3680                                         partial->p,
3681                                         partial->p+1, (chain+n-1) - partial);
3682                 }
3683         }
3684         /* Clear the ends of indirect blocks on the shared branch */
3685         while (partial > chain) {
3686                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3687                                    (__le32*)partial->bh->b_data+addr_per_block,
3688                                    (chain+n-1) - partial);
3689                 BUFFER_TRACE(partial->bh, "call brelse");
3690                 brelse (partial->bh);
3691                 partial--;
3692         }
3693 do_indirects:
3694         /* Kill the remaining (whole) subtrees */
3695         switch (offsets[0]) {
3696         default:
3697                 nr = i_data[EXT4_IND_BLOCK];
3698                 if (nr) {
3699                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3700                         i_data[EXT4_IND_BLOCK] = 0;
3701                 }
3702         case EXT4_IND_BLOCK:
3703                 nr = i_data[EXT4_DIND_BLOCK];
3704                 if (nr) {
3705                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3706                         i_data[EXT4_DIND_BLOCK] = 0;
3707                 }
3708         case EXT4_DIND_BLOCK:
3709                 nr = i_data[EXT4_TIND_BLOCK];
3710                 if (nr) {
3711                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3712                         i_data[EXT4_TIND_BLOCK] = 0;
3713                 }
3714         case EXT4_TIND_BLOCK:
3715                 ;
3716         }
3717
3718         up_write(&ei->i_data_sem);
3719         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3720         ext4_mark_inode_dirty(handle, inode);
3721
3722         /*
3723          * In a multi-transaction truncate, we only make the final transaction
3724          * synchronous
3725          */
3726         if (IS_SYNC(inode))
3727                 handle->h_sync = 1;
3728 out_stop:
3729         /*
3730          * If this was a simple ftruncate(), and the file will remain alive
3731          * then we need to clear up the orphan record which we created above.
3732          * However, if this was a real unlink then we were called by
3733          * ext4_delete_inode(), and we allow that function to clean up the
3734          * orphan info for us.
3735          */
3736         if (inode->i_nlink)
3737                 ext4_orphan_del(handle, inode);
3738
3739         ext4_journal_stop(handle);
3740 }
3741
3742 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3743                 unsigned long ino, struct ext4_iloc *iloc)
3744 {
3745         ext4_group_t block_group;
3746         unsigned long offset;
3747         ext4_fsblk_t block;
3748         struct ext4_group_desc *gdp;
3749
3750         if (!ext4_valid_inum(sb, ino)) {
3751                 /*
3752                  * This error is already checked for in namei.c unless we are
3753                  * looking at an NFS filehandle, in which case no error
3754                  * report is needed
3755                  */
3756                 return 0;
3757         }
3758
3759         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3760         gdp = ext4_get_group_desc(sb, block_group, NULL);
3761         if (!gdp)
3762                 return 0;
3763
3764         /*
3765          * Figure out the offset within the block group inode table
3766          */
3767         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3768                 EXT4_INODE_SIZE(sb);
3769         block = ext4_inode_table(sb, gdp) +
3770                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3771
3772         iloc->block_group = block_group;
3773         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3774         return block;
3775 }
3776
3777 /*
3778  * ext4_get_inode_loc returns with an extra refcount against the inode's
3779  * underlying buffer_head on success. If 'in_mem' is true, we have all
3780  * data in memory that is needed to recreate the on-disk version of this
3781  * inode.
3782  */
3783 static int __ext4_get_inode_loc(struct inode *inode,
3784                                 struct ext4_iloc *iloc, int in_mem)
3785 {
3786         ext4_fsblk_t block;
3787         struct buffer_head *bh;
3788
3789         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3790         if (!block)
3791                 return -EIO;
3792
3793         bh = sb_getblk(inode->i_sb, block);
3794         if (!bh) {
3795                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3796                                 "unable to read inode block - "
3797                                 "inode=%lu, block=%llu",
3798                                  inode->i_ino, block);
3799                 return -EIO;
3800         }
3801         if (!buffer_uptodate(bh)) {
3802                 lock_buffer(bh);
3803
3804                 /*
3805                  * If the buffer has the write error flag, we have failed
3806                  * to write out another inode in the same block.  In this
3807                  * case, we don't have to read the block because we may
3808                  * read the old inode data successfully.
3809                  */
3810                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3811                         set_buffer_uptodate(bh);
3812
3813                 if (buffer_uptodate(bh)) {
3814                         /* someone brought it uptodate while we waited */
3815                         unlock_buffer(bh);
3816                         goto has_buffer;
3817                 }
3818
3819                 /*
3820                  * If we have all information of the inode in memory and this
3821                  * is the only valid inode in the block, we need not read the
3822                  * block.
3823                  */
3824                 if (in_mem) {
3825                         struct buffer_head *bitmap_bh;
3826                         struct ext4_group_desc *desc;
3827                         int inodes_per_buffer;
3828                         int inode_offset, i;
3829                         ext4_group_t block_group;
3830                         int start;
3831
3832                         block_group = (inode->i_ino - 1) /
3833                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3834                         inodes_per_buffer = bh->b_size /
3835                                 EXT4_INODE_SIZE(inode->i_sb);
3836                         inode_offset = ((inode->i_ino - 1) %
3837                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3838                         start = inode_offset & ~(inodes_per_buffer - 1);
3839
3840                         /* Is the inode bitmap in cache? */
3841                         desc = ext4_get_group_desc(inode->i_sb,
3842                                                 block_group, NULL);
3843                         if (!desc)
3844                                 goto make_io;
3845
3846                         bitmap_bh = sb_getblk(inode->i_sb,
3847                                 ext4_inode_bitmap(inode->i_sb, desc));
3848                         if (!bitmap_bh)
3849                                 goto make_io;
3850
3851                         /*
3852                          * If the inode bitmap isn't in cache then the
3853                          * optimisation may end up performing two reads instead
3854                          * of one, so skip it.
3855                          */
3856                         if (!buffer_uptodate(bitmap_bh)) {
3857                                 brelse(bitmap_bh);
3858                                 goto make_io;
3859                         }
3860                         for (i = start; i < start + inodes_per_buffer; i++) {
3861                                 if (i == inode_offset)
3862                                         continue;
3863                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3864                                         break;
3865                         }
3866                         brelse(bitmap_bh);
3867                         if (i == start + inodes_per_buffer) {
3868                                 /* all other inodes are free, so skip I/O */
3869                                 memset(bh->b_data, 0, bh->b_size);
3870                                 set_buffer_uptodate(bh);
3871                                 unlock_buffer(bh);
3872                                 goto has_buffer;
3873                         }
3874                 }
3875
3876 make_io:
3877                 /*
3878                  * There are other valid inodes in the buffer, this inode
3879                  * has in-inode xattrs, or we don't have this inode in memory.
3880                  * Read the block from disk.
3881                  */
3882                 get_bh(bh);
3883                 bh->b_end_io = end_buffer_read_sync;
3884                 submit_bh(READ_META, bh);
3885                 wait_on_buffer(bh);
3886                 if (!buffer_uptodate(bh)) {
3887                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3888                                         "unable to read inode block - "
3889                                         "inode=%lu, block=%llu",
3890                                         inode->i_ino, block);
3891                         brelse(bh);
3892                         return -EIO;
3893                 }
3894         }
3895 has_buffer:
3896         iloc->bh = bh;
3897         return 0;
3898 }
3899
3900 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3901 {
3902         /* We have all inode data except xattrs in memory here. */
3903         return __ext4_get_inode_loc(inode, iloc,
3904                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3905 }
3906
3907 void ext4_set_inode_flags(struct inode *inode)
3908 {
3909         unsigned int flags = EXT4_I(inode)->i_flags;
3910
3911         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3912         if (flags & EXT4_SYNC_FL)
3913                 inode->i_flags |= S_SYNC;
3914         if (flags & EXT4_APPEND_FL)
3915                 inode->i_flags |= S_APPEND;
3916         if (flags & EXT4_IMMUTABLE_FL)
3917                 inode->i_flags |= S_IMMUTABLE;
3918         if (flags & EXT4_NOATIME_FL)
3919                 inode->i_flags |= S_NOATIME;
3920         if (flags & EXT4_DIRSYNC_FL)
3921                 inode->i_flags |= S_DIRSYNC;
3922 }
3923
3924 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3925 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3926 {
3927         unsigned int flags = ei->vfs_inode.i_flags;
3928
3929         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3930                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3931         if (flags & S_SYNC)
3932                 ei->i_flags |= EXT4_SYNC_FL;
3933         if (flags & S_APPEND)
3934                 ei->i_flags |= EXT4_APPEND_FL;
3935         if (flags & S_IMMUTABLE)
3936                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3937         if (flags & S_NOATIME)
3938                 ei->i_flags |= EXT4_NOATIME_FL;
3939         if (flags & S_DIRSYNC)
3940                 ei->i_flags |= EXT4_DIRSYNC_FL;
3941 }
3942 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3943                                         struct ext4_inode_info *ei)
3944 {
3945         blkcnt_t i_blocks ;
3946         struct inode *inode = &(ei->vfs_inode);
3947         struct super_block *sb = inode->i_sb;
3948
3949         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3950                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3951                 /* we are using combined 48 bit field */
3952                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3953                                         le32_to_cpu(raw_inode->i_blocks_lo);
3954                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3955                         /* i_blocks represent file system block size */
3956                         return i_blocks  << (inode->i_blkbits - 9);
3957                 } else {
3958                         return i_blocks;
3959                 }
3960         } else {
3961                 return le32_to_cpu(raw_inode->i_blocks_lo);
3962         }
3963 }
3964
3965 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3966 {
3967         struct ext4_iloc iloc;
3968         struct ext4_inode *raw_inode;
3969         struct ext4_inode_info *ei;
3970         struct buffer_head *bh;
3971         struct inode *inode;
3972         long ret;
3973         int block;
3974
3975         inode = iget_locked(sb, ino);
3976         if (!inode)
3977                 return ERR_PTR(-ENOMEM);
3978         if (!(inode->i_state & I_NEW))
3979                 return inode;
3980
3981         ei = EXT4_I(inode);
3982 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3983         ei->i_acl = EXT4_ACL_NOT_CACHED;
3984         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3985 #endif
3986         ei->i_block_alloc_info = NULL;
3987
3988         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3989         if (ret < 0)
3990                 goto bad_inode;
3991         bh = iloc.bh;
3992         raw_inode = ext4_raw_inode(&iloc);
3993         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3994         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3995         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3996         if (!(test_opt(inode->i_sb, NO_UID32))) {
3997                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3998                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3999         }
4000         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4001
4002         ei->i_state = 0;
4003         ei->i_dir_start_lookup = 0;
4004         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4005         /* We now have enough fields to check if the inode was active or not.
4006          * This is needed because nfsd might try to access dead inodes
4007          * the test is that same one that e2fsck uses
4008          * NeilBrown 1999oct15
4009          */
4010         if (inode->i_nlink == 0) {
4011                 if (inode->i_mode == 0 ||
4012                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4013                         /* this inode is deleted */
4014                         brelse(bh);
4015                         ret = -ESTALE;
4016                         goto bad_inode;
4017                 }
4018                 /* The only unlinked inodes we let through here have
4019                  * valid i_mode and are being read by the orphan
4020                  * recovery code: that's fine, we're about to complete
4021                  * the process of deleting those. */
4022         }
4023         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4024         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4025         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4026         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4027             cpu_to_le32(EXT4_OS_HURD)) {
4028                 ei->i_file_acl |=
4029                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4030         }
4031         inode->i_size = ext4_isize(raw_inode);
4032         ei->i_disksize = inode->i_size;
4033         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4034         ei->i_block_group = iloc.block_group;
4035         /*
4036          * NOTE! The in-memory inode i_data array is in little-endian order
4037          * even on big-endian machines: we do NOT byteswap the block numbers!
4038          */
4039         for (block = 0; block < EXT4_N_BLOCKS; block++)
4040                 ei->i_data[block] = raw_inode->i_block[block];
4041         INIT_LIST_HEAD(&ei->i_orphan);
4042
4043         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4044                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4045                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4046                     EXT4_INODE_SIZE(inode->i_sb)) {
4047                         brelse(bh);
4048                         ret = -EIO;
4049                         goto bad_inode;
4050                 }
4051                 if (ei->i_extra_isize == 0) {
4052                         /* The extra space is currently unused. Use it. */
4053                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4054                                             EXT4_GOOD_OLD_INODE_SIZE;
4055                 } else {
4056                         __le32 *magic = (void *)raw_inode +
4057                                         EXT4_GOOD_OLD_INODE_SIZE +
4058                                         ei->i_extra_isize;
4059                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4060                                  ei->i_state |= EXT4_STATE_XATTR;
4061                 }
4062         } else
4063                 ei->i_extra_isize = 0;
4064
4065         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4066         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4067         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4068         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4069
4070         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4071         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4072                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4073                         inode->i_version |=
4074                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4075         }
4076
4077         if (S_ISREG(inode->i_mode)) {
4078                 inode->i_op = &ext4_file_inode_operations;
4079                 inode->i_fop = &ext4_file_operations;
4080                 ext4_set_aops(inode);
4081         } else if (S_ISDIR(inode->i_mode)) {
4082                 inode->i_op = &ext4_dir_inode_operations;
4083                 inode->i_fop = &ext4_dir_operations;
4084         } else if (S_ISLNK(inode->i_mode)) {
4085                 if (ext4_inode_is_fast_symlink(inode))
4086                         inode->i_op = &ext4_fast_symlink_inode_operations;
4087                 else {
4088                         inode->i_op = &ext4_symlink_inode_operations;
4089                         ext4_set_aops(inode);
4090                 }
4091         } else {
4092                 inode->i_op = &ext4_special_inode_operations;
4093                 if (raw_inode->i_block[0])
4094                         init_special_inode(inode, inode->i_mode,
4095                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4096                 else
4097                         init_special_inode(inode, inode->i_mode,
4098                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4099         }
4100         brelse(iloc.bh);
4101         ext4_set_inode_flags(inode);
4102         unlock_new_inode(inode);
4103         return inode;
4104
4105 bad_inode:
4106         iget_failed(inode);
4107         return ERR_PTR(ret);
4108 }
4109
4110 static int ext4_inode_blocks_set(handle_t *handle,
4111                                 struct ext4_inode *raw_inode,
4112                                 struct ext4_inode_info *ei)
4113 {
4114         struct inode *inode = &(ei->vfs_inode);
4115         u64 i_blocks = inode->i_blocks;
4116         struct super_block *sb = inode->i_sb;
4117         int err = 0;
4118
4119         if (i_blocks <= ~0U) {
4120                 /*
4121                  * i_blocks can be represnted in a 32 bit variable
4122                  * as multiple of 512 bytes
4123                  */
4124                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4125                 raw_inode->i_blocks_high = 0;
4126                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4127         } else if (i_blocks <= 0xffffffffffffULL) {
4128                 /*
4129                  * i_blocks can be represented in a 48 bit variable
4130                  * as multiple of 512 bytes
4131                  */
4132                 err = ext4_update_rocompat_feature(handle, sb,
4133                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4134                 if (err)
4135                         goto  err_out;
4136                 /* i_block is stored in the split  48 bit fields */
4137                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4138                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4139                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4140         } else {
4141                 /*
4142                  * i_blocks should be represented in a 48 bit variable
4143                  * as multiple of  file system block size
4144                  */
4145                 err = ext4_update_rocompat_feature(handle, sb,
4146                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4147                 if (err)
4148                         goto  err_out;
4149                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4150                 /* i_block is stored in file system block size */
4151                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4152                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4153                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4154         }
4155 err_out:
4156         return err;
4157 }
4158
4159 /*
4160  * Post the struct inode info into an on-disk inode location in the
4161  * buffer-cache.  This gobbles the caller's reference to the
4162  * buffer_head in the inode location struct.
4163  *
4164  * The caller must have write access to iloc->bh.
4165  */
4166 static int ext4_do_update_inode(handle_t *handle,
4167                                 struct inode *inode,
4168                                 struct ext4_iloc *iloc)
4169 {
4170         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4171         struct ext4_inode_info *ei = EXT4_I(inode);
4172         struct buffer_head *bh = iloc->bh;
4173         int err = 0, rc, block;
4174
4175         /* For fields not not tracking in the in-memory inode,
4176          * initialise them to zero for new inodes. */
4177         if (ei->i_state & EXT4_STATE_NEW)
4178                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4179
4180         ext4_get_inode_flags(ei);
4181         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4182         if (!(test_opt(inode->i_sb, NO_UID32))) {
4183                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4184                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4185 /*
4186  * Fix up interoperability with old kernels. Otherwise, old inodes get
4187  * re-used with the upper 16 bits of the uid/gid intact
4188  */
4189                 if (!ei->i_dtime) {
4190                         raw_inode->i_uid_high =
4191                                 cpu_to_le16(high_16_bits(inode->i_uid));
4192                         raw_inode->i_gid_high =
4193                                 cpu_to_le16(high_16_bits(inode->i_gid));
4194                 } else {
4195                         raw_inode->i_uid_high = 0;
4196                         raw_inode->i_gid_high = 0;
4197                 }
4198         } else {
4199                 raw_inode->i_uid_low =
4200                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4201                 raw_inode->i_gid_low =
4202                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4203                 raw_inode->i_uid_high = 0;
4204                 raw_inode->i_gid_high = 0;
4205         }
4206         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4207
4208         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4209         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4210         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4211         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4212
4213         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4214                 goto out_brelse;
4215         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4216         /* clear the migrate flag in the raw_inode */
4217         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4218         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4219             cpu_to_le32(EXT4_OS_HURD))
4220                 raw_inode->i_file_acl_high =
4221                         cpu_to_le16(ei->i_file_acl >> 32);
4222         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4223         ext4_isize_set(raw_inode, ei->i_disksize);
4224         if (ei->i_disksize > 0x7fffffffULL) {
4225                 struct super_block *sb = inode->i_sb;
4226                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4227                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4228                                 EXT4_SB(sb)->s_es->s_rev_level ==
4229                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4230                         /* If this is the first large file
4231                          * created, add a flag to the superblock.
4232                          */
4233                         err = ext4_journal_get_write_access(handle,
4234                                         EXT4_SB(sb)->s_sbh);
4235                         if (err)
4236                                 goto out_brelse;
4237                         ext4_update_dynamic_rev(sb);
4238                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4239                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4240                         sb->s_dirt = 1;
4241                         handle->h_sync = 1;
4242                         err = ext4_journal_dirty_metadata(handle,
4243                                         EXT4_SB(sb)->s_sbh);
4244                 }
4245         }
4246         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4247         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4248                 if (old_valid_dev(inode->i_rdev)) {
4249                         raw_inode->i_block[0] =
4250                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4251                         raw_inode->i_block[1] = 0;
4252                 } else {
4253                         raw_inode->i_block[0] = 0;
4254                         raw_inode->i_block[1] =
4255                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4256                         raw_inode->i_block[2] = 0;
4257                 }
4258         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4259                 raw_inode->i_block[block] = ei->i_data[block];
4260
4261         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4262         if (ei->i_extra_isize) {
4263                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4264                         raw_inode->i_version_hi =
4265                         cpu_to_le32(inode->i_version >> 32);
4266                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4267         }
4268
4269
4270         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4271         rc = ext4_journal_dirty_metadata(handle, bh);
4272         if (!err)
4273                 err = rc;
4274         ei->i_state &= ~EXT4_STATE_NEW;
4275
4276 out_brelse:
4277         brelse(bh);
4278         ext4_std_error(inode->i_sb, err);
4279         return err;
4280 }
4281
4282 /*
4283  * ext4_write_inode()
4284  *
4285  * We are called from a few places:
4286  *
4287  * - Within generic_file_write() for O_SYNC files.
4288  *   Here, there will be no transaction running. We wait for any running
4289  *   trasnaction to commit.
4290  *
4291  * - Within sys_sync(), kupdate and such.
4292  *   We wait on commit, if tol to.
4293  *
4294  * - Within prune_icache() (PF_MEMALLOC == true)
4295  *   Here we simply return.  We can't afford to block kswapd on the
4296  *   journal commit.
4297  *
4298  * In all cases it is actually safe for us to return without doing anything,
4299  * because the inode has been copied into a raw inode buffer in
4300  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4301  * knfsd.
4302  *
4303  * Note that we are absolutely dependent upon all inode dirtiers doing the
4304  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4305  * which we are interested.
4306  *
4307  * It would be a bug for them to not do this.  The code:
4308  *
4309  *      mark_inode_dirty(inode)
4310  *      stuff();
4311  *      inode->i_size = expr;
4312  *
4313  * is in error because a kswapd-driven write_inode() could occur while
4314  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4315  * will no longer be on the superblock's dirty inode list.
4316  */
4317 int ext4_write_inode(struct inode *inode, int wait)
4318 {
4319         if (current->flags & PF_MEMALLOC)
4320                 return 0;
4321
4322         if (ext4_journal_current_handle()) {
4323                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4324                 dump_stack();
4325                 return -EIO;
4326         }
4327
4328         if (!wait)
4329                 return 0;
4330
4331         return ext4_force_commit(inode->i_sb);
4332 }
4333
4334 /*
4335  * ext4_setattr()
4336  *
4337  * Called from notify_change.
4338  *
4339  * We want to trap VFS attempts to truncate the file as soon as
4340  * possible.  In particular, we want to make sure that when the VFS
4341  * shrinks i_size, we put the inode on the orphan list and modify
4342  * i_disksize immediately, so that during the subsequent flushing of
4343  * dirty pages and freeing of disk blocks, we can guarantee that any
4344  * commit will leave the blocks being flushed in an unused state on
4345  * disk.  (On recovery, the inode will get truncated and the blocks will
4346  * be freed, so we have a strong guarantee that no future commit will
4347  * leave these blocks visible to the user.)
4348  *
4349  * Another thing we have to assure is that if we are in ordered mode
4350  * and inode is still attached to the committing transaction, we must
4351  * we start writeout of all the dirty pages which are being truncated.
4352  * This way we are sure that all the data written in the previous
4353  * transaction are already on disk (truncate waits for pages under
4354  * writeback).
4355  *
4356  * Called with inode->i_mutex down.
4357  */
4358 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4359 {
4360         struct inode *inode = dentry->d_inode;
4361         int error, rc = 0;
4362         const unsigned int ia_valid = attr->ia_valid;
4363
4364         error = inode_change_ok(inode, attr);
4365         if (error)
4366                 return error;
4367
4368         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4369                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4370                 handle_t *handle;
4371
4372                 /* (user+group)*(old+new) structure, inode write (sb,
4373                  * inode block, ? - but truncate inode update has it) */
4374                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4375                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4376                 if (IS_ERR(handle)) {
4377                         error = PTR_ERR(handle);
4378                         goto err_out;
4379                 }
4380                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4381                 if (error) {
4382                         ext4_journal_stop(handle);
4383                         return error;
4384                 }
4385                 /* Update corresponding info in inode so that everything is in
4386                  * one transaction */
4387                 if (attr->ia_valid & ATTR_UID)
4388                         inode->i_uid = attr->ia_uid;
4389                 if (attr->ia_valid & ATTR_GID)
4390                         inode->i_gid = attr->ia_gid;
4391                 error = ext4_mark_inode_dirty(handle, inode);
4392                 ext4_journal_stop(handle);
4393         }
4394
4395         if (attr->ia_valid & ATTR_SIZE) {
4396                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4397                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4398
4399                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4400                                 error = -EFBIG;
4401                                 goto err_out;
4402                         }
4403                 }
4404         }
4405
4406         if (S_ISREG(inode->i_mode) &&
4407             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4408                 handle_t *handle;
4409
4410                 handle = ext4_journal_start(inode, 3);
4411                 if (IS_ERR(handle)) {
4412                         error = PTR_ERR(handle);
4413                         goto err_out;
4414                 }
4415
4416                 error = ext4_orphan_add(handle, inode);
4417                 EXT4_I(inode)->i_disksize = attr->ia_size;
4418                 rc = ext4_mark_inode_dirty(handle, inode);
4419                 if (!error)
4420                         error = rc;
4421                 ext4_journal_stop(handle);
4422
4423                 if (ext4_should_order_data(inode)) {
4424                         error = ext4_begin_ordered_truncate(inode,
4425                                                             attr->ia_size);
4426                         if (error) {
4427                                 /* Do as much error cleanup as possible */
4428                                 handle = ext4_journal_start(inode, 3);
4429                                 if (IS_ERR(handle)) {
4430                                         ext4_orphan_del(NULL, inode);
4431                                         goto err_out;
4432                                 }
4433                                 ext4_orphan_del(handle, inode);
4434                                 ext4_journal_stop(handle);
4435                                 goto err_out;
4436                         }
4437                 }
4438         }
4439
4440         rc = inode_setattr(inode, attr);
4441
4442         /* If inode_setattr's call to ext4_truncate failed to get a
4443          * transaction handle at all, we need to clean up the in-core
4444          * orphan list manually. */
4445         if (inode->i_nlink)
4446                 ext4_orphan_del(NULL, inode);
4447
4448         if (!rc && (ia_valid & ATTR_MODE))
4449                 rc = ext4_acl_chmod(inode);
4450
4451 err_out:
4452         ext4_std_error(inode->i_sb, error);
4453         if (!error)
4454                 error = rc;
4455         return error;
4456 }
4457
4458 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4459                  struct kstat *stat)
4460 {
4461         struct inode *inode;
4462         unsigned long delalloc_blocks;
4463
4464         inode = dentry->d_inode;
4465         generic_fillattr(inode, stat);
4466
4467         /*
4468          * We can't update i_blocks if the block allocation is delayed
4469          * otherwise in the case of system crash before the real block
4470          * allocation is done, we will have i_blocks inconsistent with
4471          * on-disk file blocks.
4472          * We always keep i_blocks updated together with real
4473          * allocation. But to not confuse with user, stat
4474          * will return the blocks that include the delayed allocation
4475          * blocks for this file.
4476          */
4477         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4478         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4479         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4480
4481         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4482         return 0;
4483 }
4484
4485 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4486                                       int chunk)
4487 {
4488         int indirects;
4489
4490         /* if nrblocks are contiguous */
4491         if (chunk) {
4492                 /*
4493                  * With N contiguous data blocks, it need at most
4494                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4495                  * 2 dindirect blocks
4496                  * 1 tindirect block
4497                  */
4498                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4499                 return indirects + 3;
4500         }
4501         /*
4502          * if nrblocks are not contiguous, worse case, each block touch
4503          * a indirect block, and each indirect block touch a double indirect
4504          * block, plus a triple indirect block
4505          */
4506         indirects = nrblocks * 2 + 1;
4507         return indirects;
4508 }
4509
4510 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4511 {
4512         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4513                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4514         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4515 }
4516 /*
4517  * Account for index blocks, block groups bitmaps and block group
4518  * descriptor blocks if modify datablocks and index blocks
4519  * worse case, the indexs blocks spread over different block groups
4520  *
4521  * If datablocks are discontiguous, they are possible to spread over
4522  * different block groups too. If they are contiugous, with flexbg,
4523  * they could still across block group boundary.
4524  *
4525  * Also account for superblock, inode, quota and xattr blocks
4526  */
4527 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4528 {
4529         int groups, gdpblocks;
4530         int idxblocks;
4531         int ret = 0;
4532
4533         /*
4534          * How many index blocks need to touch to modify nrblocks?
4535          * The "Chunk" flag indicating whether the nrblocks is
4536          * physically contiguous on disk
4537          *
4538          * For Direct IO and fallocate, they calls get_block to allocate
4539          * one single extent at a time, so they could set the "Chunk" flag
4540          */
4541         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4542
4543         ret = idxblocks;
4544
4545         /*
4546          * Now let's see how many group bitmaps and group descriptors need
4547          * to account
4548          */
4549         groups = idxblocks;
4550         if (chunk)
4551                 groups += 1;
4552         else
4553                 groups += nrblocks;
4554
4555         gdpblocks = groups;
4556         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4557                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4558         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4559                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4560
4561         /* bitmaps and block group descriptor blocks */
4562         ret += groups + gdpblocks;
4563
4564         /* Blocks for super block, inode, quota and xattr blocks */
4565         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4566
4567         return ret;
4568 }
4569
4570 /*
4571  * Calulate the total number of credits to reserve to fit
4572  * the modification of a single pages into a single transaction,
4573  * which may include multiple chunks of block allocations.
4574  *
4575  * This could be called via ext4_write_begin()
4576  *
4577  * We need to consider the worse case, when
4578  * one new block per extent.
4579  */
4580 int ext4_writepage_trans_blocks(struct inode *inode)
4581 {
4582         int bpp = ext4_journal_blocks_per_page(inode);
4583         int ret;
4584
4585         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4586
4587         /* Account for data blocks for journalled mode */
4588         if (ext4_should_journal_data(inode))
4589                 ret += bpp;
4590         return ret;
4591 }
4592
4593 /*
4594  * Calculate the journal credits for a chunk of data modification.
4595  *
4596  * This is called from DIO, fallocate or whoever calling
4597  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4598  *
4599  * journal buffers for data blocks are not included here, as DIO
4600  * and fallocate do no need to journal data buffers.
4601  */
4602 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4603 {
4604         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4605 }
4606
4607 /*
4608  * The caller must have previously called ext4_reserve_inode_write().
4609  * Give this, we know that the caller already has write access to iloc->bh.
4610  */
4611 int ext4_mark_iloc_dirty(handle_t *handle,
4612                 struct inode *inode, struct ext4_iloc *iloc)
4613 {
4614         int err = 0;
4615
4616         if (test_opt(inode->i_sb, I_VERSION))
4617                 inode_inc_iversion(inode);
4618
4619         /* the do_update_inode consumes one bh->b_count */
4620         get_bh(iloc->bh);
4621
4622         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4623         err = ext4_do_update_inode(handle, inode, iloc);
4624         put_bh(iloc->bh);
4625         return err;
4626 }
4627
4628 /*
4629  * On success, We end up with an outstanding reference count against
4630  * iloc->bh.  This _must_ be cleaned up later.
4631  */
4632
4633 int
4634 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4635                          struct ext4_iloc *iloc)
4636 {
4637         int err = 0;
4638         if (handle) {
4639                 err = ext4_get_inode_loc(inode, iloc);
4640                 if (!err) {
4641                         BUFFER_TRACE(iloc->bh, "get_write_access");
4642                         err = ext4_journal_get_write_access(handle, iloc->bh);
4643                         if (err) {
4644                                 brelse(iloc->bh);
4645                                 iloc->bh = NULL;
4646                         }
4647                 }
4648         }
4649         ext4_std_error(inode->i_sb, err);
4650         return err;
4651 }
4652
4653 /*
4654  * Expand an inode by new_extra_isize bytes.
4655  * Returns 0 on success or negative error number on failure.
4656  */
4657 static int ext4_expand_extra_isize(struct inode *inode,
4658                                    unsigned int new_extra_isize,
4659                                    struct ext4_iloc iloc,
4660                                    handle_t *handle)
4661 {
4662         struct ext4_inode *raw_inode;
4663         struct ext4_xattr_ibody_header *header;
4664         struct ext4_xattr_entry *entry;
4665
4666         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4667                 return 0;
4668
4669         raw_inode = ext4_raw_inode(&iloc);
4670
4671         header = IHDR(inode, raw_inode);
4672         entry = IFIRST(header);
4673
4674         /* No extended attributes present */
4675         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4676                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4677                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4678                         new_extra_isize);
4679                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4680                 return 0;
4681         }
4682
4683         /* try to expand with EAs present */
4684         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4685                                           raw_inode, handle);
4686 }
4687
4688 /*
4689  * What we do here is to mark the in-core inode as clean with respect to inode
4690  * dirtiness (it may still be data-dirty).
4691  * This means that the in-core inode may be reaped by prune_icache
4692  * without having to perform any I/O.  This is a very good thing,
4693  * because *any* task may call prune_icache - even ones which
4694  * have a transaction open against a different journal.
4695  *
4696  * Is this cheating?  Not really.  Sure, we haven't written the
4697  * inode out, but prune_icache isn't a user-visible syncing function.
4698  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4699  * we start and wait on commits.
4700  *
4701  * Is this efficient/effective?  Well, we're being nice to the system
4702  * by cleaning up our inodes proactively so they can be reaped
4703  * without I/O.  But we are potentially leaving up to five seconds'
4704  * worth of inodes floating about which prune_icache wants us to
4705  * write out.  One way to fix that would be to get prune_icache()
4706  * to do a write_super() to free up some memory.  It has the desired
4707  * effect.
4708  */
4709 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4710 {
4711         struct ext4_iloc iloc;
4712         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713         static unsigned int mnt_count;
4714         int err, ret;
4715
4716         might_sleep();
4717         err = ext4_reserve_inode_write(handle, inode, &iloc);
4718         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4719             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4720                 /*
4721                  * We need extra buffer credits since we may write into EA block
4722                  * with this same handle. If journal_extend fails, then it will
4723                  * only result in a minor loss of functionality for that inode.
4724                  * If this is felt to be critical, then e2fsck should be run to
4725                  * force a large enough s_min_extra_isize.
4726                  */
4727                 if ((jbd2_journal_extend(handle,
4728                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4729                         ret = ext4_expand_extra_isize(inode,
4730                                                       sbi->s_want_extra_isize,
4731                                                       iloc, handle);
4732                         if (ret) {
4733                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4734                                 if (mnt_count !=
4735                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4736                                         ext4_warning(inode->i_sb, __func__,
4737                                         "Unable to expand inode %lu. Delete"
4738                                         " some EAs or run e2fsck.",
4739                                         inode->i_ino);
4740                                         mnt_count =
4741                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4742                                 }
4743                         }
4744                 }
4745         }
4746         if (!err)
4747                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4748         return err;
4749 }
4750
4751 /*
4752  * ext4_dirty_inode() is called from __mark_inode_dirty()
4753  *
4754  * We're really interested in the case where a file is being extended.
4755  * i_size has been changed by generic_commit_write() and we thus need
4756  * to include the updated inode in the current transaction.
4757  *
4758  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4759  * are allocated to the file.
4760  *
4761  * If the inode is marked synchronous, we don't honour that here - doing
4762  * so would cause a commit on atime updates, which we don't bother doing.
4763  * We handle synchronous inodes at the highest possible level.
4764  */
4765 void ext4_dirty_inode(struct inode *inode)
4766 {
4767         handle_t *current_handle = ext4_journal_current_handle();
4768         handle_t *handle;
4769
4770         handle = ext4_journal_start(inode, 2);
4771         if (IS_ERR(handle))
4772                 goto out;
4773         if (current_handle &&
4774                 current_handle->h_transaction != handle->h_transaction) {
4775                 /* This task has a transaction open against a different fs */
4776                 printk(KERN_EMERG "%s: transactions do not match!\n",
4777                        __func__);
4778         } else {
4779                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4780                                 current_handle);
4781                 ext4_mark_inode_dirty(handle, inode);
4782         }
4783         ext4_journal_stop(handle);
4784 out:
4785         return;
4786 }
4787
4788 #if 0
4789 /*
4790  * Bind an inode's backing buffer_head into this transaction, to prevent
4791  * it from being flushed to disk early.  Unlike
4792  * ext4_reserve_inode_write, this leaves behind no bh reference and
4793  * returns no iloc structure, so the caller needs to repeat the iloc
4794  * lookup to mark the inode dirty later.
4795  */
4796 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4797 {
4798         struct ext4_iloc iloc;
4799
4800         int err = 0;
4801         if (handle) {
4802                 err = ext4_get_inode_loc(inode, &iloc);
4803                 if (!err) {
4804                         BUFFER_TRACE(iloc.bh, "get_write_access");
4805                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4806                         if (!err)
4807                                 err = ext4_journal_dirty_metadata(handle,
4808                                                                   iloc.bh);
4809                         brelse(iloc.bh);
4810                 }
4811         }
4812         ext4_std_error(inode->i_sb, err);
4813         return err;
4814 }
4815 #endif
4816
4817 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4818 {
4819         journal_t *journal;
4820         handle_t *handle;
4821         int err;
4822
4823         /*
4824          * We have to be very careful here: changing a data block's
4825          * journaling status dynamically is dangerous.  If we write a
4826          * data block to the journal, change the status and then delete
4827          * that block, we risk forgetting to revoke the old log record
4828          * from the journal and so a subsequent replay can corrupt data.
4829          * So, first we make sure that the journal is empty and that
4830          * nobody is changing anything.
4831          */
4832
4833         journal = EXT4_JOURNAL(inode);
4834         if (is_journal_aborted(journal))
4835                 return -EROFS;
4836
4837         jbd2_journal_lock_updates(journal);
4838         jbd2_journal_flush(journal);
4839
4840         /*
4841          * OK, there are no updates running now, and all cached data is
4842          * synced to disk.  We are now in a completely consistent state
4843          * which doesn't have anything in the journal, and we know that
4844          * no filesystem updates are running, so it is safe to modify
4845          * the inode's in-core data-journaling state flag now.
4846          */
4847
4848         if (val)
4849                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4850         else
4851                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4852         ext4_set_aops(inode);
4853
4854         jbd2_journal_unlock_updates(journal);
4855
4856         /* Finally we can mark the inode as dirty. */
4857
4858         handle = ext4_journal_start(inode, 1);
4859         if (IS_ERR(handle))
4860                 return PTR_ERR(handle);
4861
4862         err = ext4_mark_inode_dirty(handle, inode);
4863         handle->h_sync = 1;
4864         ext4_journal_stop(handle);
4865         ext4_std_error(inode->i_sb, err);
4866
4867         return err;
4868 }
4869
4870 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4871 {
4872         return !buffer_mapped(bh);
4873 }
4874
4875 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4876 {
4877         loff_t size;
4878         unsigned long len;
4879         int ret = -EINVAL;
4880         struct file *file = vma->vm_file;
4881         struct inode *inode = file->f_path.dentry->d_inode;
4882         struct address_space *mapping = inode->i_mapping;
4883
4884         /*
4885          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4886          * get i_mutex because we are already holding mmap_sem.
4887          */
4888         down_read(&inode->i_alloc_sem);
4889         size = i_size_read(inode);
4890         if (page->mapping != mapping || size <= page_offset(page)
4891             || !PageUptodate(page)) {
4892                 /* page got truncated from under us? */
4893                 goto out_unlock;
4894         }
4895         ret = 0;
4896         if (PageMappedToDisk(page))
4897                 goto out_unlock;
4898
4899         if (page->index == size >> PAGE_CACHE_SHIFT)
4900                 len = size & ~PAGE_CACHE_MASK;
4901         else
4902                 len = PAGE_CACHE_SIZE;
4903
4904         if (page_has_buffers(page)) {
4905                 /* return if we have all the buffers mapped */
4906                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4907                                        ext4_bh_unmapped))
4908                         goto out_unlock;
4909         }
4910         /*
4911          * OK, we need to fill the hole... Do write_begin write_end
4912          * to do block allocation/reservation.We are not holding
4913          * inode.i__mutex here. That allow * parallel write_begin,
4914          * write_end call. lock_page prevent this from happening
4915          * on the same page though
4916          */
4917         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4918                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4919         if (ret < 0)
4920                 goto out_unlock;
4921         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4922                         len, len, page, NULL);
4923         if (ret < 0)
4924                 goto out_unlock;
4925         ret = 0;
4926 out_unlock:
4927         up_read(&inode->i_alloc_sem);
4928         return ret;
4929 }