]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/inode.c
320acb6c35bfc356243b30a3ff8f72e66d4b913d
[linux-2.6-omap-h63xx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include "ext4_jbd2.h"
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __func__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 /**
247  *      ext4_block_to_path - parse the block number into array of offsets
248  *      @inode: inode in question (we are only interested in its superblock)
249  *      @i_block: block number to be parsed
250  *      @offsets: array to store the offsets in
251  *      @boundary: set this non-zero if the referred-to block is likely to be
252  *             followed (on disk) by an indirect block.
253  *
254  *      To store the locations of file's data ext4 uses a data structure common
255  *      for UNIX filesystems - tree of pointers anchored in the inode, with
256  *      data blocks at leaves and indirect blocks in intermediate nodes.
257  *      This function translates the block number into path in that tree -
258  *      return value is the path length and @offsets[n] is the offset of
259  *      pointer to (n+1)th node in the nth one. If @block is out of range
260  *      (negative or too large) warning is printed and zero returned.
261  *
262  *      Note: function doesn't find node addresses, so no IO is needed. All
263  *      we need to know is the capacity of indirect blocks (taken from the
264  *      inode->i_sb).
265  */
266
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276
277 static int ext4_block_to_path(struct inode *inode,
278                         ext4_lblk_t i_block,
279                         ext4_lblk_t offsets[4], int *boundary)
280 {
281         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283         const long direct_blocks = EXT4_NDIR_BLOCKS,
284                 indirect_blocks = ptrs,
285                 double_blocks = (1 << (ptrs_bits * 2));
286         int n = 0;
287         int final = 0;
288
289         if (i_block < 0) {
290                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291         } else if (i_block < direct_blocks) {
292                 offsets[n++] = i_block;
293                 final = direct_blocks;
294         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295                 offsets[n++] = EXT4_IND_BLOCK;
296                 offsets[n++] = i_block;
297                 final = ptrs;
298         } else if ((i_block -= indirect_blocks) < double_blocks) {
299                 offsets[n++] = EXT4_DIND_BLOCK;
300                 offsets[n++] = i_block >> ptrs_bits;
301                 offsets[n++] = i_block & (ptrs - 1);
302                 final = ptrs;
303         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304                 offsets[n++] = EXT4_TIND_BLOCK;
305                 offsets[n++] = i_block >> (ptrs_bits * 2);
306                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307                 offsets[n++] = i_block & (ptrs - 1);
308                 final = ptrs;
309         } else {
310                 ext4_warning(inode->i_sb, "ext4_block_to_path",
311                                 "block %lu > max",
312                                 i_block + direct_blocks +
313                                 indirect_blocks + double_blocks);
314         }
315         if (boundary)
316                 *boundary = final - 1 - (i_block & (ptrs - 1));
317         return n;
318 }
319
320 /**
321  *      ext4_get_branch - read the chain of indirect blocks leading to data
322  *      @inode: inode in question
323  *      @depth: depth of the chain (1 - direct pointer, etc.)
324  *      @offsets: offsets of pointers in inode/indirect blocks
325  *      @chain: place to store the result
326  *      @err: here we store the error value
327  *
328  *      Function fills the array of triples <key, p, bh> and returns %NULL
329  *      if everything went OK or the pointer to the last filled triple
330  *      (incomplete one) otherwise. Upon the return chain[i].key contains
331  *      the number of (i+1)-th block in the chain (as it is stored in memory,
332  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *      number (it points into struct inode for i==0 and into the bh->b_data
334  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *      block for i>0 and NULL for i==0. In other words, it holds the block
336  *      numbers of the chain, addresses they were taken from (and where we can
337  *      verify that chain did not change) and buffer_heads hosting these
338  *      numbers.
339  *
340  *      Function stops when it stumbles upon zero pointer (absent block)
341  *              (pointer to last triple returned, *@err == 0)
342  *      or when it gets an IO error reading an indirect block
343  *              (ditto, *@err == -EIO)
344  *      or when it reads all @depth-1 indirect blocks successfully and finds
345  *      the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351                                  ext4_lblk_t  *offsets,
352                                  Indirect chain[4], int *err)
353 {
354         struct super_block *sb = inode->i_sb;
355         Indirect *p = chain;
356         struct buffer_head *bh;
357
358         *err = 0;
359         /* i_data is not going away, no lock needed */
360         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361         if (!p->key)
362                 goto no_block;
363         while (--depth) {
364                 bh = sb_bread(sb, le32_to_cpu(p->key));
365                 if (!bh)
366                         goto failure;
367                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368                 /* Reader: end */
369                 if (!p->key)
370                         goto no_block;
371         }
372         return NULL;
373
374 failure:
375         *err = -EIO;
376 no_block:
377         return p;
378 }
379
380 /**
381  *      ext4_find_near - find a place for allocation with sufficient locality
382  *      @inode: owner
383  *      @ind: descriptor of indirect block.
384  *
385  *      This function returns the preferred place for block allocation.
386  *      It is used when heuristic for sequential allocation fails.
387  *      Rules are:
388  *        + if there is a block to the left of our position - allocate near it.
389  *        + if pointer will live in indirect block - allocate near that block.
390  *        + if pointer will live in inode - allocate in the same
391  *          cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *      Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402         struct ext4_inode_info *ei = EXT4_I(inode);
403         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404         __le32 *p;
405         ext4_fsblk_t bg_start;
406         ext4_fsblk_t last_block;
407         ext4_grpblk_t colour;
408
409         /* Try to find previous block */
410         for (p = ind->p - 1; p >= start; p--) {
411                 if (*p)
412                         return le32_to_cpu(*p);
413         }
414
415         /* No such thing, so let's try location of indirect block */
416         if (ind->bh)
417                 return ind->bh->b_blocknr;
418
419         /*
420          * It is going to be referred to from the inode itself? OK, just put it
421          * into the same cylinder group then.
422          */
423         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
424         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
425
426         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
427                 colour = (current->pid % 16) *
428                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
429         else
430                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
431         return bg_start + colour;
432 }
433
434 /**
435  *      ext4_find_goal - find a preferred place for allocation.
436  *      @inode: owner
437  *      @block:  block we want
438  *      @partial: pointer to the last triple within a chain
439  *
440  *      Normally this function find the preferred place for block allocation,
441  *      returns it.
442  */
443 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
444                 Indirect *partial)
445 {
446         struct ext4_block_alloc_info *block_i;
447
448         block_i =  EXT4_I(inode)->i_block_alloc_info;
449
450         /*
451          * try the heuristic for sequential allocation,
452          * failing that at least try to get decent locality.
453          */
454         if (block_i && (block == block_i->last_alloc_logical_block + 1)
455                 && (block_i->last_alloc_physical_block != 0)) {
456                 return block_i->last_alloc_physical_block + 1;
457         }
458
459         return ext4_find_near(inode, partial);
460 }
461
462 /**
463  *      ext4_blks_to_allocate: Look up the block map and count the number
464  *      of direct blocks need to be allocated for the given branch.
465  *
466  *      @branch: chain of indirect blocks
467  *      @k: number of blocks need for indirect blocks
468  *      @blks: number of data blocks to be mapped.
469  *      @blocks_to_boundary:  the offset in the indirect block
470  *
471  *      return the total number of blocks to be allocate, including the
472  *      direct and indirect blocks.
473  */
474 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
475                 int blocks_to_boundary)
476 {
477         unsigned long count = 0;
478
479         /*
480          * Simple case, [t,d]Indirect block(s) has not allocated yet
481          * then it's clear blocks on that path have not allocated
482          */
483         if (k > 0) {
484                 /* right now we don't handle cross boundary allocation */
485                 if (blks < blocks_to_boundary + 1)
486                         count += blks;
487                 else
488                         count += blocks_to_boundary + 1;
489                 return count;
490         }
491
492         count++;
493         while (count < blks && count <= blocks_to_boundary &&
494                 le32_to_cpu(*(branch[0].p + count)) == 0) {
495                 count++;
496         }
497         return count;
498 }
499
500 /**
501  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
502  *      @indirect_blks: the number of blocks need to allocate for indirect
503  *                      blocks
504  *
505  *      @new_blocks: on return it will store the new block numbers for
506  *      the indirect blocks(if needed) and the first direct block,
507  *      @blks:  on return it will store the total number of allocated
508  *              direct blocks
509  */
510 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
511                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
512                                 int indirect_blks, int blks,
513                                 ext4_fsblk_t new_blocks[4], int *err)
514 {
515         int target, i;
516         unsigned long count = 0, blk_allocated = 0;
517         int index = 0;
518         ext4_fsblk_t current_block = 0;
519         int ret = 0;
520
521         /*
522          * Here we try to allocate the requested multiple blocks at once,
523          * on a best-effort basis.
524          * To build a branch, we should allocate blocks for
525          * the indirect blocks(if not allocated yet), and at least
526          * the first direct block of this branch.  That's the
527          * minimum number of blocks need to allocate(required)
528          */
529         /* first we try to allocate the indirect blocks */
530         target = indirect_blks;
531         while (target > 0) {
532                 count = target;
533                 /* allocating blocks for indirect blocks and direct blocks */
534                 current_block = ext4_new_meta_blocks(handle, inode,
535                                                         goal, &count, err);
536                 if (*err)
537                         goto failed_out;
538
539                 target -= count;
540                 /* allocate blocks for indirect blocks */
541                 while (index < indirect_blks && count) {
542                         new_blocks[index++] = current_block++;
543                         count--;
544                 }
545                 if (count > 0) {
546                         /*
547                          * save the new block number
548                          * for the first direct block
549                          */
550                         new_blocks[index] = current_block;
551                         printk(KERN_INFO "%s returned more blocks than "
552                                                 "requested\n", __func__);
553                         WARN_ON(1);
554                         break;
555                 }
556         }
557
558         target = blks - count ;
559         blk_allocated = count;
560         if (!target)
561                 goto allocated;
562         /* Now allocate data blocks */
563         count = target;
564         /* allocating blocks for data blocks */
565         current_block = ext4_new_blocks(handle, inode, iblock,
566                                                 goal, &count, err);
567         if (*err && (target == blks)) {
568                 /*
569                  * if the allocation failed and we didn't allocate
570                  * any blocks before
571                  */
572                 goto failed_out;
573         }
574         if (!*err) {
575                 if (target == blks) {
576                 /*
577                  * save the new block number
578                  * for the first direct block
579                  */
580                         new_blocks[index] = current_block;
581                 }
582                 blk_allocated += count;
583         }
584 allocated:
585         /* total number of blocks allocated for direct blocks */
586         ret = blk_allocated;
587         *err = 0;
588         return ret;
589 failed_out:
590         for (i = 0; i <index; i++)
591                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
592         return ret;
593 }
594
595 /**
596  *      ext4_alloc_branch - allocate and set up a chain of blocks.
597  *      @inode: owner
598  *      @indirect_blks: number of allocated indirect blocks
599  *      @blks: number of allocated direct blocks
600  *      @offsets: offsets (in the blocks) to store the pointers to next.
601  *      @branch: place to store the chain in.
602  *
603  *      This function allocates blocks, zeroes out all but the last one,
604  *      links them into chain and (if we are synchronous) writes them to disk.
605  *      In other words, it prepares a branch that can be spliced onto the
606  *      inode. It stores the information about that chain in the branch[], in
607  *      the same format as ext4_get_branch() would do. We are calling it after
608  *      we had read the existing part of chain and partial points to the last
609  *      triple of that (one with zero ->key). Upon the exit we have the same
610  *      picture as after the successful ext4_get_block(), except that in one
611  *      place chain is disconnected - *branch->p is still zero (we did not
612  *      set the last link), but branch->key contains the number that should
613  *      be placed into *branch->p to fill that gap.
614  *
615  *      If allocation fails we free all blocks we've allocated (and forget
616  *      their buffer_heads) and return the error value the from failed
617  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
618  *      as described above and return 0.
619  */
620 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
621                                 ext4_lblk_t iblock, int indirect_blks,
622                                 int *blks, ext4_fsblk_t goal,
623                                 ext4_lblk_t *offsets, Indirect *branch)
624 {
625         int blocksize = inode->i_sb->s_blocksize;
626         int i, n = 0;
627         int err = 0;
628         struct buffer_head *bh;
629         int num;
630         ext4_fsblk_t new_blocks[4];
631         ext4_fsblk_t current_block;
632
633         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
634                                 *blks, new_blocks, &err);
635         if (err)
636                 return err;
637
638         branch[0].key = cpu_to_le32(new_blocks[0]);
639         /*
640          * metadata blocks and data blocks are allocated.
641          */
642         for (n = 1; n <= indirect_blks;  n++) {
643                 /*
644                  * Get buffer_head for parent block, zero it out
645                  * and set the pointer to new one, then send
646                  * parent to disk.
647                  */
648                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
649                 branch[n].bh = bh;
650                 lock_buffer(bh);
651                 BUFFER_TRACE(bh, "call get_create_access");
652                 err = ext4_journal_get_create_access(handle, bh);
653                 if (err) {
654                         unlock_buffer(bh);
655                         brelse(bh);
656                         goto failed;
657                 }
658
659                 memset(bh->b_data, 0, blocksize);
660                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
661                 branch[n].key = cpu_to_le32(new_blocks[n]);
662                 *branch[n].p = branch[n].key;
663                 if ( n == indirect_blks) {
664                         current_block = new_blocks[n];
665                         /*
666                          * End of chain, update the last new metablock of
667                          * the chain to point to the new allocated
668                          * data blocks numbers
669                          */
670                         for (i=1; i < num; i++)
671                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
672                 }
673                 BUFFER_TRACE(bh, "marking uptodate");
674                 set_buffer_uptodate(bh);
675                 unlock_buffer(bh);
676
677                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
678                 err = ext4_journal_dirty_metadata(handle, bh);
679                 if (err)
680                         goto failed;
681         }
682         *blks = num;
683         return err;
684 failed:
685         /* Allocation failed, free what we already allocated */
686         for (i = 1; i <= n ; i++) {
687                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
688                 ext4_journal_forget(handle, branch[i].bh);
689         }
690         for (i = 0; i <indirect_blks; i++)
691                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
692
693         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
694
695         return err;
696 }
697
698 /**
699  * ext4_splice_branch - splice the allocated branch onto inode.
700  * @inode: owner
701  * @block: (logical) number of block we are adding
702  * @chain: chain of indirect blocks (with a missing link - see
703  *      ext4_alloc_branch)
704  * @where: location of missing link
705  * @num:   number of indirect blocks we are adding
706  * @blks:  number of direct blocks we are adding
707  *
708  * This function fills the missing link and does all housekeeping needed in
709  * inode (->i_blocks, etc.). In case of success we end up with the full
710  * chain to new block and return 0.
711  */
712 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
713                         ext4_lblk_t block, Indirect *where, int num, int blks)
714 {
715         int i;
716         int err = 0;
717         struct ext4_block_alloc_info *block_i;
718         ext4_fsblk_t current_block;
719
720         block_i = EXT4_I(inode)->i_block_alloc_info;
721         /*
722          * If we're splicing into a [td]indirect block (as opposed to the
723          * inode) then we need to get write access to the [td]indirect block
724          * before the splice.
725          */
726         if (where->bh) {
727                 BUFFER_TRACE(where->bh, "get_write_access");
728                 err = ext4_journal_get_write_access(handle, where->bh);
729                 if (err)
730                         goto err_out;
731         }
732         /* That's it */
733
734         *where->p = where->key;
735
736         /*
737          * Update the host buffer_head or inode to point to more just allocated
738          * direct blocks blocks
739          */
740         if (num == 0 && blks > 1) {
741                 current_block = le32_to_cpu(where->key) + 1;
742                 for (i = 1; i < blks; i++)
743                         *(where->p + i ) = cpu_to_le32(current_block++);
744         }
745
746         /*
747          * update the most recently allocated logical & physical block
748          * in i_block_alloc_info, to assist find the proper goal block for next
749          * allocation
750          */
751         if (block_i) {
752                 block_i->last_alloc_logical_block = block + blks - 1;
753                 block_i->last_alloc_physical_block =
754                                 le32_to_cpu(where[num].key) + blks - 1;
755         }
756
757         /* We are done with atomic stuff, now do the rest of housekeeping */
758
759         inode->i_ctime = ext4_current_time(inode);
760         ext4_mark_inode_dirty(handle, inode);
761
762         /* had we spliced it onto indirect block? */
763         if (where->bh) {
764                 /*
765                  * If we spliced it onto an indirect block, we haven't
766                  * altered the inode.  Note however that if it is being spliced
767                  * onto an indirect block at the very end of the file (the
768                  * file is growing) then we *will* alter the inode to reflect
769                  * the new i_size.  But that is not done here - it is done in
770                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
771                  */
772                 jbd_debug(5, "splicing indirect only\n");
773                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
774                 err = ext4_journal_dirty_metadata(handle, where->bh);
775                 if (err)
776                         goto err_out;
777         } else {
778                 /*
779                  * OK, we spliced it into the inode itself on a direct block.
780                  * Inode was dirtied above.
781                  */
782                 jbd_debug(5, "splicing direct\n");
783         }
784         return err;
785
786 err_out:
787         for (i = 1; i <= num; i++) {
788                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
789                 ext4_journal_forget(handle, where[i].bh);
790                 ext4_free_blocks(handle, inode,
791                                         le32_to_cpu(where[i-1].key), 1, 0);
792         }
793         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
794
795         return err;
796 }
797
798 /*
799  * Allocation strategy is simple: if we have to allocate something, we will
800  * have to go the whole way to leaf. So let's do it before attaching anything
801  * to tree, set linkage between the newborn blocks, write them if sync is
802  * required, recheck the path, free and repeat if check fails, otherwise
803  * set the last missing link (that will protect us from any truncate-generated
804  * removals - all blocks on the path are immune now) and possibly force the
805  * write on the parent block.
806  * That has a nice additional property: no special recovery from the failed
807  * allocations is needed - we simply release blocks and do not touch anything
808  * reachable from inode.
809  *
810  * `handle' can be NULL if create == 0.
811  *
812  * return > 0, # of blocks mapped or allocated.
813  * return = 0, if plain lookup failed.
814  * return < 0, error case.
815  *
816  *
817  * Need to be called with
818  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
819  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
820  */
821 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
822                 ext4_lblk_t iblock, unsigned long maxblocks,
823                 struct buffer_head *bh_result,
824                 int create, int extend_disksize)
825 {
826         int err = -EIO;
827         ext4_lblk_t offsets[4];
828         Indirect chain[4];
829         Indirect *partial;
830         ext4_fsblk_t goal;
831         int indirect_blks;
832         int blocks_to_boundary = 0;
833         int depth;
834         struct ext4_inode_info *ei = EXT4_I(inode);
835         int count = 0;
836         ext4_fsblk_t first_block = 0;
837
838
839         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
840         J_ASSERT(handle != NULL || create == 0);
841         depth = ext4_block_to_path(inode, iblock, offsets,
842                                         &blocks_to_boundary);
843
844         if (depth == 0)
845                 goto out;
846
847         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
848
849         /* Simplest case - block found, no allocation needed */
850         if (!partial) {
851                 first_block = le32_to_cpu(chain[depth - 1].key);
852                 clear_buffer_new(bh_result);
853                 count++;
854                 /*map more blocks*/
855                 while (count < maxblocks && count <= blocks_to_boundary) {
856                         ext4_fsblk_t blk;
857
858                         blk = le32_to_cpu(*(chain[depth-1].p + count));
859
860                         if (blk == first_block + count)
861                                 count++;
862                         else
863                                 break;
864                 }
865                 goto got_it;
866         }
867
868         /* Next simple case - plain lookup or failed read of indirect block */
869         if (!create || err == -EIO)
870                 goto cleanup;
871
872         /*
873          * Okay, we need to do block allocation.  Lazily initialize the block
874          * allocation info here if necessary
875         */
876         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
877                 ext4_init_block_alloc_info(inode);
878
879         goal = ext4_find_goal(inode, iblock, partial);
880
881         /* the number of blocks need to allocate for [d,t]indirect blocks */
882         indirect_blks = (chain + depth) - partial - 1;
883
884         /*
885          * Next look up the indirect map to count the totoal number of
886          * direct blocks to allocate for this branch.
887          */
888         count = ext4_blks_to_allocate(partial, indirect_blks,
889                                         maxblocks, blocks_to_boundary);
890         /*
891          * Block out ext4_truncate while we alter the tree
892          */
893         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
894                                         &count, goal,
895                                         offsets + (partial - chain), partial);
896
897         /*
898          * The ext4_splice_branch call will free and forget any buffers
899          * on the new chain if there is a failure, but that risks using
900          * up transaction credits, especially for bitmaps where the
901          * credits cannot be returned.  Can we handle this somehow?  We
902          * may need to return -EAGAIN upwards in the worst case.  --sct
903          */
904         if (!err)
905                 err = ext4_splice_branch(handle, inode, iblock,
906                                         partial, indirect_blks, count);
907         /*
908          * i_disksize growing is protected by i_data_sem.  Don't forget to
909          * protect it if you're about to implement concurrent
910          * ext4_get_block() -bzzz
911         */
912         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
913                 ei->i_disksize = inode->i_size;
914         if (err)
915                 goto cleanup;
916
917         set_buffer_new(bh_result);
918 got_it:
919         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
920         if (count > blocks_to_boundary)
921                 set_buffer_boundary(bh_result);
922         err = count;
923         /* Clean up and exit */
924         partial = chain + depth - 1;    /* the whole chain */
925 cleanup:
926         while (partial > chain) {
927                 BUFFER_TRACE(partial->bh, "call brelse");
928                 brelse(partial->bh);
929                 partial--;
930         }
931         BUFFER_TRACE(bh_result, "returned");
932 out:
933         return err;
934 }
935
936 /* Maximum number of blocks we map for direct IO at once. */
937 #define DIO_MAX_BLOCKS 4096
938 /*
939  * Number of credits we need for writing DIO_MAX_BLOCKS:
940  * We need sb + group descriptor + bitmap + inode -> 4
941  * For B blocks with A block pointers per block we need:
942  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
943  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
944  */
945 #define DIO_CREDITS 25
946
947
948 /*
949  *
950  *
951  * ext4_ext4 get_block() wrapper function
952  * It will do a look up first, and returns if the blocks already mapped.
953  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
954  * and store the allocated blocks in the result buffer head and mark it
955  * mapped.
956  *
957  * If file type is extents based, it will call ext4_ext_get_blocks(),
958  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
959  * based files
960  *
961  * On success, it returns the number of blocks being mapped or allocate.
962  * if create==0 and the blocks are pre-allocated and uninitialized block,
963  * the result buffer head is unmapped. If the create ==1, it will make sure
964  * the buffer head is mapped.
965  *
966  * It returns 0 if plain look up failed (blocks have not been allocated), in
967  * that casem, buffer head is unmapped
968  *
969  * It returns the error in case of allocation failure.
970  */
971 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
972                         unsigned long max_blocks, struct buffer_head *bh,
973                         int create, int extend_disksize)
974 {
975         int retval;
976
977         clear_buffer_mapped(bh);
978
979         /*
980          * Try to see if we can get  the block without requesting
981          * for new file system block.
982          */
983         down_read((&EXT4_I(inode)->i_data_sem));
984         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
985                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
986                                 bh, 0, 0);
987         } else {
988                 retval = ext4_get_blocks_handle(handle,
989                                 inode, block, max_blocks, bh, 0, 0);
990         }
991         up_read((&EXT4_I(inode)->i_data_sem));
992
993         /* If it is only a block(s) look up */
994         if (!create)
995                 return retval;
996
997         /*
998          * Returns if the blocks have already allocated
999          *
1000          * Note that if blocks have been preallocated
1001          * ext4_ext_get_block() returns th create = 0
1002          * with buffer head unmapped.
1003          */
1004         if (retval > 0 && buffer_mapped(bh))
1005                 return retval;
1006
1007         /*
1008          * New blocks allocate and/or writing to uninitialized extent
1009          * will possibly result in updating i_data, so we take
1010          * the write lock of i_data_sem, and call get_blocks()
1011          * with create == 1 flag.
1012          */
1013         down_write((&EXT4_I(inode)->i_data_sem));
1014         /*
1015          * We need to check for EXT4 here because migrate
1016          * could have changed the inode type in between
1017          */
1018         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1019                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1020                                 bh, create, extend_disksize);
1021         } else {
1022                 retval = ext4_get_blocks_handle(handle, inode, block,
1023                                 max_blocks, bh, create, extend_disksize);
1024
1025                 if (retval > 0 && buffer_new(bh)) {
1026                         /*
1027                          * We allocated new blocks which will result in
1028                          * i_data's format changing.  Force the migrate
1029                          * to fail by clearing migrate flags
1030                          */
1031                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1032                                                         ~EXT4_EXT_MIGRATE;
1033                 }
1034         }
1035         up_write((&EXT4_I(inode)->i_data_sem));
1036         return retval;
1037 }
1038
1039 static int ext4_get_block(struct inode *inode, sector_t iblock,
1040                         struct buffer_head *bh_result, int create)
1041 {
1042         handle_t *handle = ext4_journal_current_handle();
1043         int ret = 0, started = 0;
1044         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1045
1046         if (create && !handle) {
1047                 /* Direct IO write... */
1048                 if (max_blocks > DIO_MAX_BLOCKS)
1049                         max_blocks = DIO_MAX_BLOCKS;
1050                 handle = ext4_journal_start(inode, DIO_CREDITS +
1051                               2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1052                 if (IS_ERR(handle)) {
1053                         ret = PTR_ERR(handle);
1054                         goto out;
1055                 }
1056                 started = 1;
1057         }
1058
1059         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1060                                         max_blocks, bh_result, create, 0);
1061         if (ret > 0) {
1062                 bh_result->b_size = (ret << inode->i_blkbits);
1063                 ret = 0;
1064         }
1065         if (started)
1066                 ext4_journal_stop(handle);
1067 out:
1068         return ret;
1069 }
1070
1071 /*
1072  * `handle' can be NULL if create is zero
1073  */
1074 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1075                                 ext4_lblk_t block, int create, int *errp)
1076 {
1077         struct buffer_head dummy;
1078         int fatal = 0, err;
1079
1080         J_ASSERT(handle != NULL || create == 0);
1081
1082         dummy.b_state = 0;
1083         dummy.b_blocknr = -1000;
1084         buffer_trace_init(&dummy.b_history);
1085         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1086                                         &dummy, create, 1);
1087         /*
1088          * ext4_get_blocks_handle() returns number of blocks
1089          * mapped. 0 in case of a HOLE.
1090          */
1091         if (err > 0) {
1092                 if (err > 1)
1093                         WARN_ON(1);
1094                 err = 0;
1095         }
1096         *errp = err;
1097         if (!err && buffer_mapped(&dummy)) {
1098                 struct buffer_head *bh;
1099                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1100                 if (!bh) {
1101                         *errp = -EIO;
1102                         goto err;
1103                 }
1104                 if (buffer_new(&dummy)) {
1105                         J_ASSERT(create != 0);
1106                         J_ASSERT(handle != NULL);
1107
1108                         /*
1109                          * Now that we do not always journal data, we should
1110                          * keep in mind whether this should always journal the
1111                          * new buffer as metadata.  For now, regular file
1112                          * writes use ext4_get_block instead, so it's not a
1113                          * problem.
1114                          */
1115                         lock_buffer(bh);
1116                         BUFFER_TRACE(bh, "call get_create_access");
1117                         fatal = ext4_journal_get_create_access(handle, bh);
1118                         if (!fatal && !buffer_uptodate(bh)) {
1119                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1120                                 set_buffer_uptodate(bh);
1121                         }
1122                         unlock_buffer(bh);
1123                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1124                         err = ext4_journal_dirty_metadata(handle, bh);
1125                         if (!fatal)
1126                                 fatal = err;
1127                 } else {
1128                         BUFFER_TRACE(bh, "not a new buffer");
1129                 }
1130                 if (fatal) {
1131                         *errp = fatal;
1132                         brelse(bh);
1133                         bh = NULL;
1134                 }
1135                 return bh;
1136         }
1137 err:
1138         return NULL;
1139 }
1140
1141 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1142                                ext4_lblk_t block, int create, int *err)
1143 {
1144         struct buffer_head * bh;
1145
1146         bh = ext4_getblk(handle, inode, block, create, err);
1147         if (!bh)
1148                 return bh;
1149         if (buffer_uptodate(bh))
1150                 return bh;
1151         ll_rw_block(READ_META, 1, &bh);
1152         wait_on_buffer(bh);
1153         if (buffer_uptodate(bh))
1154                 return bh;
1155         put_bh(bh);
1156         *err = -EIO;
1157         return NULL;
1158 }
1159
1160 static int walk_page_buffers(   handle_t *handle,
1161                                 struct buffer_head *head,
1162                                 unsigned from,
1163                                 unsigned to,
1164                                 int *partial,
1165                                 int (*fn)(      handle_t *handle,
1166                                                 struct buffer_head *bh))
1167 {
1168         struct buffer_head *bh;
1169         unsigned block_start, block_end;
1170         unsigned blocksize = head->b_size;
1171         int err, ret = 0;
1172         struct buffer_head *next;
1173
1174         for (   bh = head, block_start = 0;
1175                 ret == 0 && (bh != head || !block_start);
1176                 block_start = block_end, bh = next)
1177         {
1178                 next = bh->b_this_page;
1179                 block_end = block_start + blocksize;
1180                 if (block_end <= from || block_start >= to) {
1181                         if (partial && !buffer_uptodate(bh))
1182                                 *partial = 1;
1183                         continue;
1184                 }
1185                 err = (*fn)(handle, bh);
1186                 if (!ret)
1187                         ret = err;
1188         }
1189         return ret;
1190 }
1191
1192 /*
1193  * To preserve ordering, it is essential that the hole instantiation and
1194  * the data write be encapsulated in a single transaction.  We cannot
1195  * close off a transaction and start a new one between the ext4_get_block()
1196  * and the commit_write().  So doing the jbd2_journal_start at the start of
1197  * prepare_write() is the right place.
1198  *
1199  * Also, this function can nest inside ext4_writepage() ->
1200  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1201  * has generated enough buffer credits to do the whole page.  So we won't
1202  * block on the journal in that case, which is good, because the caller may
1203  * be PF_MEMALLOC.
1204  *
1205  * By accident, ext4 can be reentered when a transaction is open via
1206  * quota file writes.  If we were to commit the transaction while thus
1207  * reentered, there can be a deadlock - we would be holding a quota
1208  * lock, and the commit would never complete if another thread had a
1209  * transaction open and was blocking on the quota lock - a ranking
1210  * violation.
1211  *
1212  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1213  * will _not_ run commit under these circumstances because handle->h_ref
1214  * is elevated.  We'll still have enough credits for the tiny quotafile
1215  * write.
1216  */
1217 static int do_journal_get_write_access(handle_t *handle,
1218                                         struct buffer_head *bh)
1219 {
1220         if (!buffer_mapped(bh) || buffer_freed(bh))
1221                 return 0;
1222         return ext4_journal_get_write_access(handle, bh);
1223 }
1224
1225 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1226                                 loff_t pos, unsigned len, unsigned flags,
1227                                 struct page **pagep, void **fsdata)
1228 {
1229         struct inode *inode = mapping->host;
1230         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1231         handle_t *handle;
1232         int retries = 0;
1233         struct page *page;
1234         pgoff_t index;
1235         unsigned from, to;
1236
1237         index = pos >> PAGE_CACHE_SHIFT;
1238         from = pos & (PAGE_CACHE_SIZE - 1);
1239         to = from + len;
1240
1241 retry:
1242         handle = ext4_journal_start(inode, needed_blocks);
1243         if (IS_ERR(handle)) {
1244                 ret = PTR_ERR(handle);
1245                 goto out;
1246         }
1247
1248         page = __grab_cache_page(mapping, index);
1249         if (!page) {
1250                 ext4_journal_stop(handle);
1251                 ret = -ENOMEM;
1252                 goto out;
1253         }
1254         *pagep = page;
1255
1256         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1257                                                         ext4_get_block);
1258
1259         if (!ret && ext4_should_journal_data(inode)) {
1260                 ret = walk_page_buffers(handle, page_buffers(page),
1261                                 from, to, NULL, do_journal_get_write_access);
1262         }
1263
1264         if (ret) {
1265                 unlock_page(page);
1266                 ext4_journal_stop(handle);
1267                 page_cache_release(page);
1268         }
1269
1270         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1271                 goto retry;
1272 out:
1273         return ret;
1274 }
1275
1276 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1277 {
1278         int err = jbd2_journal_dirty_data(handle, bh);
1279         if (err)
1280                 ext4_journal_abort_handle(__func__, __func__,
1281                                                 bh, handle, err);
1282         return err;
1283 }
1284
1285 /* For write_end() in data=journal mode */
1286 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1287 {
1288         if (!buffer_mapped(bh) || buffer_freed(bh))
1289                 return 0;
1290         set_buffer_uptodate(bh);
1291         return ext4_journal_dirty_metadata(handle, bh);
1292 }
1293
1294 /*
1295  * We need to pick up the new inode size which generic_commit_write gave us
1296  * `file' can be NULL - eg, when called from page_symlink().
1297  *
1298  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1299  * buffers are managed internally.
1300  */
1301 static int ext4_ordered_write_end(struct file *file,
1302                                 struct address_space *mapping,
1303                                 loff_t pos, unsigned len, unsigned copied,
1304                                 struct page *page, void *fsdata)
1305 {
1306         handle_t *handle = ext4_journal_current_handle();
1307         struct inode *inode = mapping->host;
1308         unsigned from, to;
1309         int ret = 0, ret2;
1310
1311         from = pos & (PAGE_CACHE_SIZE - 1);
1312         to = from + len;
1313
1314         ret = walk_page_buffers(handle, page_buffers(page),
1315                 from, to, NULL, ext4_journal_dirty_data);
1316
1317         if (ret == 0) {
1318                 /*
1319                  * generic_write_end() will run mark_inode_dirty() if i_size
1320                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1321                  * into that.
1322                  */
1323                 loff_t new_i_size;
1324
1325                 new_i_size = pos + copied;
1326                 if (new_i_size > EXT4_I(inode)->i_disksize)
1327                         EXT4_I(inode)->i_disksize = new_i_size;
1328                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1329                                                         page, fsdata);
1330                 copied = ret2;
1331                 if (ret2 < 0)
1332                         ret = ret2;
1333         }
1334         ret2 = ext4_journal_stop(handle);
1335         if (!ret)
1336                 ret = ret2;
1337
1338         return ret ? ret : copied;
1339 }
1340
1341 static int ext4_writeback_write_end(struct file *file,
1342                                 struct address_space *mapping,
1343                                 loff_t pos, unsigned len, unsigned copied,
1344                                 struct page *page, void *fsdata)
1345 {
1346         handle_t *handle = ext4_journal_current_handle();
1347         struct inode *inode = mapping->host;
1348         int ret = 0, ret2;
1349         loff_t new_i_size;
1350
1351         new_i_size = pos + copied;
1352         if (new_i_size > EXT4_I(inode)->i_disksize)
1353                 EXT4_I(inode)->i_disksize = new_i_size;
1354
1355         ret2 = generic_write_end(file, mapping, pos, len, copied,
1356                                                         page, fsdata);
1357         copied = ret2;
1358         if (ret2 < 0)
1359                 ret = ret2;
1360
1361         ret2 = ext4_journal_stop(handle);
1362         if (!ret)
1363                 ret = ret2;
1364
1365         return ret ? ret : copied;
1366 }
1367
1368 static int ext4_journalled_write_end(struct file *file,
1369                                 struct address_space *mapping,
1370                                 loff_t pos, unsigned len, unsigned copied,
1371                                 struct page *page, void *fsdata)
1372 {
1373         handle_t *handle = ext4_journal_current_handle();
1374         struct inode *inode = mapping->host;
1375         int ret = 0, ret2;
1376         int partial = 0;
1377         unsigned from, to;
1378
1379         from = pos & (PAGE_CACHE_SIZE - 1);
1380         to = from + len;
1381
1382         if (copied < len) {
1383                 if (!PageUptodate(page))
1384                         copied = 0;
1385                 page_zero_new_buffers(page, from+copied, to);
1386         }
1387
1388         ret = walk_page_buffers(handle, page_buffers(page), from,
1389                                 to, &partial, write_end_fn);
1390         if (!partial)
1391                 SetPageUptodate(page);
1392         if (pos+copied > inode->i_size)
1393                 i_size_write(inode, pos+copied);
1394         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1395         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1396                 EXT4_I(inode)->i_disksize = inode->i_size;
1397                 ret2 = ext4_mark_inode_dirty(handle, inode);
1398                 if (!ret)
1399                         ret = ret2;
1400         }
1401
1402         unlock_page(page);
1403         ret2 = ext4_journal_stop(handle);
1404         if (!ret)
1405                 ret = ret2;
1406         page_cache_release(page);
1407
1408         return ret ? ret : copied;
1409 }
1410
1411 /*
1412  * bmap() is special.  It gets used by applications such as lilo and by
1413  * the swapper to find the on-disk block of a specific piece of data.
1414  *
1415  * Naturally, this is dangerous if the block concerned is still in the
1416  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1417  * filesystem and enables swap, then they may get a nasty shock when the
1418  * data getting swapped to that swapfile suddenly gets overwritten by
1419  * the original zero's written out previously to the journal and
1420  * awaiting writeback in the kernel's buffer cache.
1421  *
1422  * So, if we see any bmap calls here on a modified, data-journaled file,
1423  * take extra steps to flush any blocks which might be in the cache.
1424  */
1425 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1426 {
1427         struct inode *inode = mapping->host;
1428         journal_t *journal;
1429         int err;
1430
1431         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1432                 /*
1433                  * This is a REALLY heavyweight approach, but the use of
1434                  * bmap on dirty files is expected to be extremely rare:
1435                  * only if we run lilo or swapon on a freshly made file
1436                  * do we expect this to happen.
1437                  *
1438                  * (bmap requires CAP_SYS_RAWIO so this does not
1439                  * represent an unprivileged user DOS attack --- we'd be
1440                  * in trouble if mortal users could trigger this path at
1441                  * will.)
1442                  *
1443                  * NB. EXT4_STATE_JDATA is not set on files other than
1444                  * regular files.  If somebody wants to bmap a directory
1445                  * or symlink and gets confused because the buffer
1446                  * hasn't yet been flushed to disk, they deserve
1447                  * everything they get.
1448                  */
1449
1450                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1451                 journal = EXT4_JOURNAL(inode);
1452                 jbd2_journal_lock_updates(journal);
1453                 err = jbd2_journal_flush(journal);
1454                 jbd2_journal_unlock_updates(journal);
1455
1456                 if (err)
1457                         return 0;
1458         }
1459
1460         return generic_block_bmap(mapping,block,ext4_get_block);
1461 }
1462
1463 static int bget_one(handle_t *handle, struct buffer_head *bh)
1464 {
1465         get_bh(bh);
1466         return 0;
1467 }
1468
1469 static int bput_one(handle_t *handle, struct buffer_head *bh)
1470 {
1471         put_bh(bh);
1472         return 0;
1473 }
1474
1475 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1476 {
1477         if (buffer_mapped(bh))
1478                 return ext4_journal_dirty_data(handle, bh);
1479         return 0;
1480 }
1481
1482 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
1483 {
1484         return !buffer_mapped(bh) || buffer_delay(bh);
1485 }
1486
1487 /*
1488  * Note that we don't need to start a transaction unless we're journaling
1489  * data because we should have holes filled from ext4_page_mkwrite(). If
1490  * we are journaling data, we cannot start transaction directly because
1491  * transaction start ranks above page lock so we have to do some magic...
1492  *
1493  * In all journalling modes block_write_full_page() will start the I/O.
1494  *
1495  * Problem:
1496  *
1497  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1498  *              ext4_writepage()
1499  *
1500  * Similar for:
1501  *
1502  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1503  *
1504  * Same applies to ext4_get_block().  We will deadlock on various things like
1505  * lock_journal and i_data_sem
1506  *
1507  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1508  * allocations fail.
1509  *
1510  * 16May01: If we're reentered then journal_current_handle() will be
1511  *          non-zero. We simply *return*.
1512  *
1513  * 1 July 2001: @@@ FIXME:
1514  *   In journalled data mode, a data buffer may be metadata against the
1515  *   current transaction.  But the same file is part of a shared mapping
1516  *   and someone does a writepage() on it.
1517  *
1518  *   We will move the buffer onto the async_data list, but *after* it has
1519  *   been dirtied. So there's a small window where we have dirty data on
1520  *   BJ_Metadata.
1521  *
1522  *   Note that this only applies to the last partial page in the file.  The
1523  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1524  *   broken code anyway: it's wrong for msync()).
1525  *
1526  *   It's a rare case: affects the final partial page, for journalled data
1527  *   where the file is subject to bith write() and writepage() in the same
1528  *   transction.  To fix it we'll need a custom block_write_full_page().
1529  *   We'll probably need that anyway for journalling writepage() output.
1530  *
1531  * We don't honour synchronous mounts for writepage().  That would be
1532  * disastrous.  Any write() or metadata operation will sync the fs for
1533  * us.
1534  *
1535  */
1536 static int __ext4_ordered_writepage(struct page *page,
1537                                 struct writeback_control *wbc)
1538 {
1539         struct inode *inode = page->mapping->host;
1540         struct buffer_head *page_bufs;
1541         handle_t *handle = NULL;
1542         int ret = 0;
1543         int err;
1544
1545         if (!page_has_buffers(page)) {
1546                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1547                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1548         }
1549         page_bufs = page_buffers(page);
1550         walk_page_buffers(handle, page_bufs, 0,
1551                         PAGE_CACHE_SIZE, NULL, bget_one);
1552
1553         ret = block_write_full_page(page, ext4_get_block, wbc);
1554
1555         /*
1556          * The page can become unlocked at any point now, and
1557          * truncate can then come in and change things.  So we
1558          * can't touch *page from now on.  But *page_bufs is
1559          * safe due to elevated refcount.
1560          */
1561
1562         /*
1563          * And attach them to the current transaction.  But only if
1564          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1565          * and generally junk.
1566          */
1567         if (ret == 0) {
1568                 handle = ext4_journal_start(inode,
1569                                         ext4_writepage_trans_blocks(inode));
1570                 if (IS_ERR(handle)) {
1571                         ret = PTR_ERR(handle);
1572                         goto out_put;
1573                 }
1574
1575                 ret = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1576                                         NULL, jbd2_journal_dirty_data_fn);
1577                 err = ext4_journal_stop(handle);
1578                 if (!ret)
1579                         ret = err;
1580         }
1581 out_put:
1582         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
1583                           bput_one);
1584         return ret;
1585 }
1586
1587 static int ext4_ordered_writepage(struct page *page,
1588                                 struct writeback_control *wbc)
1589 {
1590         struct inode *inode = page->mapping->host;
1591         loff_t size = i_size_read(inode);
1592         loff_t len;
1593
1594         J_ASSERT(PageLocked(page));
1595         J_ASSERT(page_has_buffers(page));
1596         if (page->index == size >> PAGE_CACHE_SHIFT)
1597                 len = size & ~PAGE_CACHE_MASK;
1598         else
1599                 len = PAGE_CACHE_SIZE;
1600         BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
1601                                  ext4_bh_unmapped_or_delay));
1602
1603         /*
1604          * We give up here if we're reentered, because it might be for a
1605          * different filesystem.
1606          */
1607         if (!ext4_journal_current_handle())
1608                 return __ext4_ordered_writepage(page, wbc);
1609
1610         redirty_page_for_writepage(wbc, page);
1611         unlock_page(page);
1612         return 0;
1613 }
1614
1615 static int __ext4_writeback_writepage(struct page *page,
1616                                 struct writeback_control *wbc)
1617 {
1618         struct inode *inode = page->mapping->host;
1619
1620         if (test_opt(inode->i_sb, NOBH))
1621                 return nobh_writepage(page, ext4_get_block, wbc);
1622         else
1623                 return block_write_full_page(page, ext4_get_block, wbc);
1624 }
1625
1626
1627 static int ext4_writeback_writepage(struct page *page,
1628                                 struct writeback_control *wbc)
1629 {
1630         struct inode *inode = page->mapping->host;
1631         loff_t size = i_size_read(inode);
1632         loff_t len;
1633
1634         J_ASSERT(PageLocked(page));
1635         J_ASSERT(page_has_buffers(page));
1636         if (page->index == size >> PAGE_CACHE_SHIFT)
1637                 len = size & ~PAGE_CACHE_MASK;
1638         else
1639                 len = PAGE_CACHE_SIZE;
1640         BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
1641                                  ext4_bh_unmapped_or_delay));
1642
1643         if (!ext4_journal_current_handle())
1644                 return __ext4_writeback_writepage(page, wbc);
1645
1646         redirty_page_for_writepage(wbc, page);
1647         unlock_page(page);
1648         return 0;
1649 }
1650
1651 static int __ext4_journalled_writepage(struct page *page,
1652                                 struct writeback_control *wbc)
1653 {
1654         struct address_space *mapping = page->mapping;
1655         struct inode *inode = mapping->host;
1656         struct buffer_head *page_bufs;
1657         handle_t *handle = NULL;
1658         int ret = 0;
1659         int err;
1660
1661         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, ext4_get_block);
1662         if (ret != 0)
1663                 goto out_unlock;
1664
1665         page_bufs = page_buffers(page);
1666         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
1667                                                                 bget_one);
1668         /* As soon as we unlock the page, it can go away, but we have
1669          * references to buffers so we are safe */
1670         unlock_page(page);
1671
1672         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1673         if (IS_ERR(handle)) {
1674                 ret = PTR_ERR(handle);
1675                 goto out;
1676         }
1677
1678         ret = walk_page_buffers(handle, page_bufs, 0,
1679                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1680
1681         err = walk_page_buffers(handle, page_bufs, 0,
1682                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1683         if (ret == 0)
1684                 ret = err;
1685         err = ext4_journal_stop(handle);
1686         if (!ret)
1687                 ret = err;
1688
1689         walk_page_buffers(handle, page_bufs, 0,
1690                                 PAGE_CACHE_SIZE, NULL, bput_one);
1691         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1692         goto out;
1693
1694 out_unlock:
1695         unlock_page(page);
1696 out:
1697         return ret;
1698 }
1699
1700 static int ext4_journalled_writepage(struct page *page,
1701                                 struct writeback_control *wbc)
1702 {
1703         struct inode *inode = page->mapping->host;
1704         loff_t size = i_size_read(inode);
1705         loff_t len;
1706
1707         J_ASSERT(PageLocked(page));
1708         J_ASSERT(page_has_buffers(page));
1709         if (page->index == size >> PAGE_CACHE_SHIFT)
1710                 len = size & ~PAGE_CACHE_MASK;
1711         else
1712                 len = PAGE_CACHE_SIZE;
1713         BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
1714                                  ext4_bh_unmapped_or_delay));
1715
1716         if (ext4_journal_current_handle())
1717                 goto no_write;
1718
1719         if (PageChecked(page)) {
1720                 /*
1721                  * It's mmapped pagecache.  Add buffers and journal it.  There
1722                  * doesn't seem much point in redirtying the page here.
1723                  */
1724                 ClearPageChecked(page);
1725                 return __ext4_journalled_writepage(page, wbc);
1726         } else {
1727                 /*
1728                  * It may be a page full of checkpoint-mode buffers.  We don't
1729                  * really know unless we go poke around in the buffer_heads.
1730                  * But block_write_full_page will do the right thing.
1731                  */
1732                 return block_write_full_page(page, ext4_get_block, wbc);
1733         }
1734 no_write:
1735         redirty_page_for_writepage(wbc, page);
1736         unlock_page(page);
1737         return 0;
1738 }
1739
1740 static int ext4_readpage(struct file *file, struct page *page)
1741 {
1742         return mpage_readpage(page, ext4_get_block);
1743 }
1744
1745 static int
1746 ext4_readpages(struct file *file, struct address_space *mapping,
1747                 struct list_head *pages, unsigned nr_pages)
1748 {
1749         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1750 }
1751
1752 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1753 {
1754         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1755
1756         /*
1757          * If it's a full truncate we just forget about the pending dirtying
1758          */
1759         if (offset == 0)
1760                 ClearPageChecked(page);
1761
1762         jbd2_journal_invalidatepage(journal, page, offset);
1763 }
1764
1765 static int ext4_releasepage(struct page *page, gfp_t wait)
1766 {
1767         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1768
1769         WARN_ON(PageChecked(page));
1770         if (!page_has_buffers(page))
1771                 return 0;
1772         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1773 }
1774
1775 /*
1776  * If the O_DIRECT write will extend the file then add this inode to the
1777  * orphan list.  So recovery will truncate it back to the original size
1778  * if the machine crashes during the write.
1779  *
1780  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1781  * crashes then stale disk data _may_ be exposed inside the file. But current
1782  * VFS code falls back into buffered path in that case so we are safe.
1783  */
1784 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1785                         const struct iovec *iov, loff_t offset,
1786                         unsigned long nr_segs)
1787 {
1788         struct file *file = iocb->ki_filp;
1789         struct inode *inode = file->f_mapping->host;
1790         struct ext4_inode_info *ei = EXT4_I(inode);
1791         handle_t *handle;
1792         ssize_t ret;
1793         int orphan = 0;
1794         size_t count = iov_length(iov, nr_segs);
1795
1796         if (rw == WRITE) {
1797                 loff_t final_size = offset + count;
1798
1799                 if (final_size > inode->i_size) {
1800                         /* Credits for sb + inode write */
1801                         handle = ext4_journal_start(inode, 2);
1802                         if (IS_ERR(handle)) {
1803                                 ret = PTR_ERR(handle);
1804                                 goto out;
1805                         }
1806                         ret = ext4_orphan_add(handle, inode);
1807                         if (ret) {
1808                                 ext4_journal_stop(handle);
1809                                 goto out;
1810                         }
1811                         orphan = 1;
1812                         ei->i_disksize = inode->i_size;
1813                         ext4_journal_stop(handle);
1814                 }
1815         }
1816
1817         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1818                                  offset, nr_segs,
1819                                  ext4_get_block, NULL);
1820
1821         if (orphan) {
1822                 int err;
1823
1824                 /* Credits for sb + inode write */
1825                 handle = ext4_journal_start(inode, 2);
1826                 if (IS_ERR(handle)) {
1827                         /* This is really bad luck. We've written the data
1828                          * but cannot extend i_size. Bail out and pretend
1829                          * the write failed... */
1830                         ret = PTR_ERR(handle);
1831                         goto out;
1832                 }
1833                 if (inode->i_nlink)
1834                         ext4_orphan_del(handle, inode);
1835                 if (ret > 0) {
1836                         loff_t end = offset + ret;
1837                         if (end > inode->i_size) {
1838                                 ei->i_disksize = end;
1839                                 i_size_write(inode, end);
1840                                 /*
1841                                  * We're going to return a positive `ret'
1842                                  * here due to non-zero-length I/O, so there's
1843                                  * no way of reporting error returns from
1844                                  * ext4_mark_inode_dirty() to userspace.  So
1845                                  * ignore it.
1846                                  */
1847                                 ext4_mark_inode_dirty(handle, inode);
1848                         }
1849                 }
1850                 err = ext4_journal_stop(handle);
1851                 if (ret == 0)
1852                         ret = err;
1853         }
1854 out:
1855         return ret;
1856 }
1857
1858 /*
1859  * Pages can be marked dirty completely asynchronously from ext4's journalling
1860  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1861  * much here because ->set_page_dirty is called under VFS locks.  The page is
1862  * not necessarily locked.
1863  *
1864  * We cannot just dirty the page and leave attached buffers clean, because the
1865  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1866  * or jbddirty because all the journalling code will explode.
1867  *
1868  * So what we do is to mark the page "pending dirty" and next time writepage
1869  * is called, propagate that into the buffers appropriately.
1870  */
1871 static int ext4_journalled_set_page_dirty(struct page *page)
1872 {
1873         SetPageChecked(page);
1874         return __set_page_dirty_nobuffers(page);
1875 }
1876
1877 static const struct address_space_operations ext4_ordered_aops = {
1878         .readpage       = ext4_readpage,
1879         .readpages      = ext4_readpages,
1880         .writepage      = ext4_ordered_writepage,
1881         .sync_page      = block_sync_page,
1882         .write_begin    = ext4_write_begin,
1883         .write_end      = ext4_ordered_write_end,
1884         .bmap           = ext4_bmap,
1885         .invalidatepage = ext4_invalidatepage,
1886         .releasepage    = ext4_releasepage,
1887         .direct_IO      = ext4_direct_IO,
1888         .migratepage    = buffer_migrate_page,
1889 };
1890
1891 static const struct address_space_operations ext4_writeback_aops = {
1892         .readpage       = ext4_readpage,
1893         .readpages      = ext4_readpages,
1894         .writepage      = ext4_writeback_writepage,
1895         .sync_page      = block_sync_page,
1896         .write_begin    = ext4_write_begin,
1897         .write_end      = ext4_writeback_write_end,
1898         .bmap           = ext4_bmap,
1899         .invalidatepage = ext4_invalidatepage,
1900         .releasepage    = ext4_releasepage,
1901         .direct_IO      = ext4_direct_IO,
1902         .migratepage    = buffer_migrate_page,
1903 };
1904
1905 static const struct address_space_operations ext4_journalled_aops = {
1906         .readpage       = ext4_readpage,
1907         .readpages      = ext4_readpages,
1908         .writepage      = ext4_journalled_writepage,
1909         .sync_page      = block_sync_page,
1910         .write_begin    = ext4_write_begin,
1911         .write_end      = ext4_journalled_write_end,
1912         .set_page_dirty = ext4_journalled_set_page_dirty,
1913         .bmap           = ext4_bmap,
1914         .invalidatepage = ext4_invalidatepage,
1915         .releasepage    = ext4_releasepage,
1916 };
1917
1918 void ext4_set_aops(struct inode *inode)
1919 {
1920         if (ext4_should_order_data(inode))
1921                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1922         else if (ext4_should_writeback_data(inode))
1923                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1924         else
1925                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1926 }
1927
1928 /*
1929  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1930  * up to the end of the block which corresponds to `from'.
1931  * This required during truncate. We need to physically zero the tail end
1932  * of that block so it doesn't yield old data if the file is later grown.
1933  */
1934 int ext4_block_truncate_page(handle_t *handle,
1935                 struct address_space *mapping, loff_t from)
1936 {
1937         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1938         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1939         unsigned blocksize, length, pos;
1940         ext4_lblk_t iblock;
1941         struct inode *inode = mapping->host;
1942         struct buffer_head *bh;
1943         struct page *page;
1944         int err = 0;
1945
1946         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
1947         if (!page)
1948                 return -EINVAL;
1949
1950         blocksize = inode->i_sb->s_blocksize;
1951         length = blocksize - (offset & (blocksize - 1));
1952         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1953
1954         /*
1955          * For "nobh" option,  we can only work if we don't need to
1956          * read-in the page - otherwise we create buffers to do the IO.
1957          */
1958         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1959              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1960                 zero_user(page, offset, length);
1961                 set_page_dirty(page);
1962                 goto unlock;
1963         }
1964
1965         if (!page_has_buffers(page))
1966                 create_empty_buffers(page, blocksize, 0);
1967
1968         /* Find the buffer that contains "offset" */
1969         bh = page_buffers(page);
1970         pos = blocksize;
1971         while (offset >= pos) {
1972                 bh = bh->b_this_page;
1973                 iblock++;
1974                 pos += blocksize;
1975         }
1976
1977         err = 0;
1978         if (buffer_freed(bh)) {
1979                 BUFFER_TRACE(bh, "freed: skip");
1980                 goto unlock;
1981         }
1982
1983         if (!buffer_mapped(bh)) {
1984                 BUFFER_TRACE(bh, "unmapped");
1985                 ext4_get_block(inode, iblock, bh, 0);
1986                 /* unmapped? It's a hole - nothing to do */
1987                 if (!buffer_mapped(bh)) {
1988                         BUFFER_TRACE(bh, "still unmapped");
1989                         goto unlock;
1990                 }
1991         }
1992
1993         /* Ok, it's mapped. Make sure it's up-to-date */
1994         if (PageUptodate(page))
1995                 set_buffer_uptodate(bh);
1996
1997         if (!buffer_uptodate(bh)) {
1998                 err = -EIO;
1999                 ll_rw_block(READ, 1, &bh);
2000                 wait_on_buffer(bh);
2001                 /* Uhhuh. Read error. Complain and punt. */
2002                 if (!buffer_uptodate(bh))
2003                         goto unlock;
2004         }
2005
2006         if (ext4_should_journal_data(inode)) {
2007                 BUFFER_TRACE(bh, "get write access");
2008                 err = ext4_journal_get_write_access(handle, bh);
2009                 if (err)
2010                         goto unlock;
2011         }
2012
2013         zero_user(page, offset, length);
2014
2015         BUFFER_TRACE(bh, "zeroed end of block");
2016
2017         err = 0;
2018         if (ext4_should_journal_data(inode)) {
2019                 err = ext4_journal_dirty_metadata(handle, bh);
2020         } else {
2021                 if (ext4_should_order_data(inode))
2022                         err = ext4_journal_dirty_data(handle, bh);
2023                 mark_buffer_dirty(bh);
2024         }
2025
2026 unlock:
2027         unlock_page(page);
2028         page_cache_release(page);
2029         return err;
2030 }
2031
2032 /*
2033  * Probably it should be a library function... search for first non-zero word
2034  * or memcmp with zero_page, whatever is better for particular architecture.
2035  * Linus?
2036  */
2037 static inline int all_zeroes(__le32 *p, __le32 *q)
2038 {
2039         while (p < q)
2040                 if (*p++)
2041                         return 0;
2042         return 1;
2043 }
2044
2045 /**
2046  *      ext4_find_shared - find the indirect blocks for partial truncation.
2047  *      @inode:   inode in question
2048  *      @depth:   depth of the affected branch
2049  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
2050  *      @chain:   place to store the pointers to partial indirect blocks
2051  *      @top:     place to the (detached) top of branch
2052  *
2053  *      This is a helper function used by ext4_truncate().
2054  *
2055  *      When we do truncate() we may have to clean the ends of several
2056  *      indirect blocks but leave the blocks themselves alive. Block is
2057  *      partially truncated if some data below the new i_size is refered
2058  *      from it (and it is on the path to the first completely truncated
2059  *      data block, indeed).  We have to free the top of that path along
2060  *      with everything to the right of the path. Since no allocation
2061  *      past the truncation point is possible until ext4_truncate()
2062  *      finishes, we may safely do the latter, but top of branch may
2063  *      require special attention - pageout below the truncation point
2064  *      might try to populate it.
2065  *
2066  *      We atomically detach the top of branch from the tree, store the
2067  *      block number of its root in *@top, pointers to buffer_heads of
2068  *      partially truncated blocks - in @chain[].bh and pointers to
2069  *      their last elements that should not be removed - in
2070  *      @chain[].p. Return value is the pointer to last filled element
2071  *      of @chain.
2072  *
2073  *      The work left to caller to do the actual freeing of subtrees:
2074  *              a) free the subtree starting from *@top
2075  *              b) free the subtrees whose roots are stored in
2076  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2077  *              c) free the subtrees growing from the inode past the @chain[0].
2078  *                      (no partially truncated stuff there).  */
2079
2080 static Indirect *ext4_find_shared(struct inode *inode, int depth,
2081                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2082 {
2083         Indirect *partial, *p;
2084         int k, err;
2085
2086         *top = 0;
2087         /* Make k index the deepest non-null offest + 1 */
2088         for (k = depth; k > 1 && !offsets[k-1]; k--)
2089                 ;
2090         partial = ext4_get_branch(inode, k, offsets, chain, &err);
2091         /* Writer: pointers */
2092         if (!partial)
2093                 partial = chain + k-1;
2094         /*
2095          * If the branch acquired continuation since we've looked at it -
2096          * fine, it should all survive and (new) top doesn't belong to us.
2097          */
2098         if (!partial->key && *partial->p)
2099                 /* Writer: end */
2100                 goto no_top;
2101         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2102                 ;
2103         /*
2104          * OK, we've found the last block that must survive. The rest of our
2105          * branch should be detached before unlocking. However, if that rest
2106          * of branch is all ours and does not grow immediately from the inode
2107          * it's easier to cheat and just decrement partial->p.
2108          */
2109         if (p == chain + k - 1 && p > chain) {
2110                 p->p--;
2111         } else {
2112                 *top = *p->p;
2113                 /* Nope, don't do this in ext4.  Must leave the tree intact */
2114 #if 0
2115                 *p->p = 0;
2116 #endif
2117         }
2118         /* Writer: end */
2119
2120         while(partial > p) {
2121                 brelse(partial->bh);
2122                 partial--;
2123         }
2124 no_top:
2125         return partial;
2126 }
2127
2128 /*
2129  * Zero a number of block pointers in either an inode or an indirect block.
2130  * If we restart the transaction we must again get write access to the
2131  * indirect block for further modification.
2132  *
2133  * We release `count' blocks on disk, but (last - first) may be greater
2134  * than `count' because there can be holes in there.
2135  */
2136 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2137                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2138                 unsigned long count, __le32 *first, __le32 *last)
2139 {
2140         __le32 *p;
2141         if (try_to_extend_transaction(handle, inode)) {
2142                 if (bh) {
2143                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2144                         ext4_journal_dirty_metadata(handle, bh);
2145                 }
2146                 ext4_mark_inode_dirty(handle, inode);
2147                 ext4_journal_test_restart(handle, inode);
2148                 if (bh) {
2149                         BUFFER_TRACE(bh, "retaking write access");
2150                         ext4_journal_get_write_access(handle, bh);
2151                 }
2152         }
2153
2154         /*
2155          * Any buffers which are on the journal will be in memory. We find
2156          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2157          * on them.  We've already detached each block from the file, so
2158          * bforget() in jbd2_journal_forget() should be safe.
2159          *
2160          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2161          */
2162         for (p = first; p < last; p++) {
2163                 u32 nr = le32_to_cpu(*p);
2164                 if (nr) {
2165                         struct buffer_head *tbh;
2166
2167                         *p = 0;
2168                         tbh = sb_find_get_block(inode->i_sb, nr);
2169                         ext4_forget(handle, 0, inode, tbh, nr);
2170                 }
2171         }
2172
2173         ext4_free_blocks(handle, inode, block_to_free, count, 0);
2174 }
2175
2176 /**
2177  * ext4_free_data - free a list of data blocks
2178  * @handle:     handle for this transaction
2179  * @inode:      inode we are dealing with
2180  * @this_bh:    indirect buffer_head which contains *@first and *@last
2181  * @first:      array of block numbers
2182  * @last:       points immediately past the end of array
2183  *
2184  * We are freeing all blocks refered from that array (numbers are stored as
2185  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2186  *
2187  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2188  * blocks are contiguous then releasing them at one time will only affect one
2189  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2190  * actually use a lot of journal space.
2191  *
2192  * @this_bh will be %NULL if @first and @last point into the inode's direct
2193  * block pointers.
2194  */
2195 static void ext4_free_data(handle_t *handle, struct inode *inode,
2196                            struct buffer_head *this_bh,
2197                            __le32 *first, __le32 *last)
2198 {
2199         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2200         unsigned long count = 0;            /* Number of blocks in the run */
2201         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2202                                                corresponding to
2203                                                block_to_free */
2204         ext4_fsblk_t nr;                    /* Current block # */
2205         __le32 *p;                          /* Pointer into inode/ind
2206                                                for current block */
2207         int err;
2208
2209         if (this_bh) {                          /* For indirect block */
2210                 BUFFER_TRACE(this_bh, "get_write_access");
2211                 err = ext4_journal_get_write_access(handle, this_bh);
2212                 /* Important: if we can't update the indirect pointers
2213                  * to the blocks, we can't free them. */
2214                 if (err)
2215                         return;
2216         }
2217
2218         for (p = first; p < last; p++) {
2219                 nr = le32_to_cpu(*p);
2220                 if (nr) {
2221                         /* accumulate blocks to free if they're contiguous */
2222                         if (count == 0) {
2223                                 block_to_free = nr;
2224                                 block_to_free_p = p;
2225                                 count = 1;
2226                         } else if (nr == block_to_free + count) {
2227                                 count++;
2228                         } else {
2229                                 ext4_clear_blocks(handle, inode, this_bh,
2230                                                   block_to_free,
2231                                                   count, block_to_free_p, p);
2232                                 block_to_free = nr;
2233                                 block_to_free_p = p;
2234                                 count = 1;
2235                         }
2236                 }
2237         }
2238
2239         if (count > 0)
2240                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2241                                   count, block_to_free_p, p);
2242
2243         if (this_bh) {
2244                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2245
2246                 /*
2247                  * The buffer head should have an attached journal head at this
2248                  * point. However, if the data is corrupted and an indirect
2249                  * block pointed to itself, it would have been detached when
2250                  * the block was cleared. Check for this instead of OOPSing.
2251                  */
2252                 if (bh2jh(this_bh))
2253                         ext4_journal_dirty_metadata(handle, this_bh);
2254                 else
2255                         ext4_error(inode->i_sb, __func__,
2256                                    "circular indirect block detected, "
2257                                    "inode=%lu, block=%llu",
2258                                    inode->i_ino,
2259                                    (unsigned long long) this_bh->b_blocknr);
2260         }
2261 }
2262
2263 /**
2264  *      ext4_free_branches - free an array of branches
2265  *      @handle: JBD handle for this transaction
2266  *      @inode: inode we are dealing with
2267  *      @parent_bh: the buffer_head which contains *@first and *@last
2268  *      @first: array of block numbers
2269  *      @last:  pointer immediately past the end of array
2270  *      @depth: depth of the branches to free
2271  *
2272  *      We are freeing all blocks refered from these branches (numbers are
2273  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2274  *      appropriately.
2275  */
2276 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2277                                struct buffer_head *parent_bh,
2278                                __le32 *first, __le32 *last, int depth)
2279 {
2280         ext4_fsblk_t nr;
2281         __le32 *p;
2282
2283         if (is_handle_aborted(handle))
2284                 return;
2285
2286         if (depth--) {
2287                 struct buffer_head *bh;
2288                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2289                 p = last;
2290                 while (--p >= first) {
2291                         nr = le32_to_cpu(*p);
2292                         if (!nr)
2293                                 continue;               /* A hole */
2294
2295                         /* Go read the buffer for the next level down */
2296                         bh = sb_bread(inode->i_sb, nr);
2297
2298                         /*
2299                          * A read failure? Report error and clear slot
2300                          * (should be rare).
2301                          */
2302                         if (!bh) {
2303                                 ext4_error(inode->i_sb, "ext4_free_branches",
2304                                            "Read failure, inode=%lu, block=%llu",
2305                                            inode->i_ino, nr);
2306                                 continue;
2307                         }
2308
2309                         /* This zaps the entire block.  Bottom up. */
2310                         BUFFER_TRACE(bh, "free child branches");
2311                         ext4_free_branches(handle, inode, bh,
2312                                            (__le32*)bh->b_data,
2313                                            (__le32*)bh->b_data + addr_per_block,
2314                                            depth);
2315
2316                         /*
2317                          * We've probably journalled the indirect block several
2318                          * times during the truncate.  But it's no longer
2319                          * needed and we now drop it from the transaction via
2320                          * jbd2_journal_revoke().
2321                          *
2322                          * That's easy if it's exclusively part of this
2323                          * transaction.  But if it's part of the committing
2324                          * transaction then jbd2_journal_forget() will simply
2325                          * brelse() it.  That means that if the underlying
2326                          * block is reallocated in ext4_get_block(),
2327                          * unmap_underlying_metadata() will find this block
2328                          * and will try to get rid of it.  damn, damn.
2329                          *
2330                          * If this block has already been committed to the
2331                          * journal, a revoke record will be written.  And
2332                          * revoke records must be emitted *before* clearing
2333                          * this block's bit in the bitmaps.
2334                          */
2335                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2336
2337                         /*
2338                          * Everything below this this pointer has been
2339                          * released.  Now let this top-of-subtree go.
2340                          *
2341                          * We want the freeing of this indirect block to be
2342                          * atomic in the journal with the updating of the
2343                          * bitmap block which owns it.  So make some room in
2344                          * the journal.
2345                          *
2346                          * We zero the parent pointer *after* freeing its
2347                          * pointee in the bitmaps, so if extend_transaction()
2348                          * for some reason fails to put the bitmap changes and
2349                          * the release into the same transaction, recovery
2350                          * will merely complain about releasing a free block,
2351                          * rather than leaking blocks.
2352                          */
2353                         if (is_handle_aborted(handle))
2354                                 return;
2355                         if (try_to_extend_transaction(handle, inode)) {
2356                                 ext4_mark_inode_dirty(handle, inode);
2357                                 ext4_journal_test_restart(handle, inode);
2358                         }
2359
2360                         ext4_free_blocks(handle, inode, nr, 1, 1);
2361
2362                         if (parent_bh) {
2363                                 /*
2364                                  * The block which we have just freed is
2365                                  * pointed to by an indirect block: journal it
2366                                  */
2367                                 BUFFER_TRACE(parent_bh, "get_write_access");
2368                                 if (!ext4_journal_get_write_access(handle,
2369                                                                    parent_bh)){
2370                                         *p = 0;
2371                                         BUFFER_TRACE(parent_bh,
2372                                         "call ext4_journal_dirty_metadata");
2373                                         ext4_journal_dirty_metadata(handle,
2374                                                                     parent_bh);
2375                                 }
2376                         }
2377                 }
2378         } else {
2379                 /* We have reached the bottom of the tree. */
2380                 BUFFER_TRACE(parent_bh, "free data blocks");
2381                 ext4_free_data(handle, inode, parent_bh, first, last);
2382         }
2383 }
2384
2385 int ext4_can_truncate(struct inode *inode)
2386 {
2387         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2388                 return 0;
2389         if (S_ISREG(inode->i_mode))
2390                 return 1;
2391         if (S_ISDIR(inode->i_mode))
2392                 return 1;
2393         if (S_ISLNK(inode->i_mode))
2394                 return !ext4_inode_is_fast_symlink(inode);
2395         return 0;
2396 }
2397
2398 /*
2399  * ext4_truncate()
2400  *
2401  * We block out ext4_get_block() block instantiations across the entire
2402  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2403  * simultaneously on behalf of the same inode.
2404  *
2405  * As we work through the truncate and commmit bits of it to the journal there
2406  * is one core, guiding principle: the file's tree must always be consistent on
2407  * disk.  We must be able to restart the truncate after a crash.
2408  *
2409  * The file's tree may be transiently inconsistent in memory (although it
2410  * probably isn't), but whenever we close off and commit a journal transaction,
2411  * the contents of (the filesystem + the journal) must be consistent and
2412  * restartable.  It's pretty simple, really: bottom up, right to left (although
2413  * left-to-right works OK too).
2414  *
2415  * Note that at recovery time, journal replay occurs *before* the restart of
2416  * truncate against the orphan inode list.
2417  *
2418  * The committed inode has the new, desired i_size (which is the same as
2419  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2420  * that this inode's truncate did not complete and it will again call
2421  * ext4_truncate() to have another go.  So there will be instantiated blocks
2422  * to the right of the truncation point in a crashed ext4 filesystem.  But
2423  * that's fine - as long as they are linked from the inode, the post-crash
2424  * ext4_truncate() run will find them and release them.
2425  */
2426 void ext4_truncate(struct inode *inode)
2427 {
2428         handle_t *handle;
2429         struct ext4_inode_info *ei = EXT4_I(inode);
2430         __le32 *i_data = ei->i_data;
2431         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2432         struct address_space *mapping = inode->i_mapping;
2433         ext4_lblk_t offsets[4];
2434         Indirect chain[4];
2435         Indirect *partial;
2436         __le32 nr = 0;
2437         int n;
2438         ext4_lblk_t last_block;
2439         unsigned blocksize = inode->i_sb->s_blocksize;
2440
2441         if (!ext4_can_truncate(inode))
2442                 return;
2443
2444         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2445                 ext4_ext_truncate(inode);
2446                 return;
2447         }
2448
2449         handle = start_transaction(inode);
2450         if (IS_ERR(handle))
2451                 return;         /* AKPM: return what? */
2452
2453         last_block = (inode->i_size + blocksize-1)
2454                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2455
2456         if (inode->i_size & (blocksize - 1))
2457                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
2458                         goto out_stop;
2459
2460         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2461         if (n == 0)
2462                 goto out_stop;  /* error */
2463
2464         /*
2465          * OK.  This truncate is going to happen.  We add the inode to the
2466          * orphan list, so that if this truncate spans multiple transactions,
2467          * and we crash, we will resume the truncate when the filesystem
2468          * recovers.  It also marks the inode dirty, to catch the new size.
2469          *
2470          * Implication: the file must always be in a sane, consistent
2471          * truncatable state while each transaction commits.
2472          */
2473         if (ext4_orphan_add(handle, inode))
2474                 goto out_stop;
2475
2476         /*
2477          * The orphan list entry will now protect us from any crash which
2478          * occurs before the truncate completes, so it is now safe to propagate
2479          * the new, shorter inode size (held for now in i_size) into the
2480          * on-disk inode. We do this via i_disksize, which is the value which
2481          * ext4 *really* writes onto the disk inode.
2482          */
2483         ei->i_disksize = inode->i_size;
2484
2485         /*
2486          * From here we block out all ext4_get_block() callers who want to
2487          * modify the block allocation tree.
2488          */
2489         down_write(&ei->i_data_sem);
2490
2491         if (n == 1) {           /* direct blocks */
2492                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2493                                i_data + EXT4_NDIR_BLOCKS);
2494                 goto do_indirects;
2495         }
2496
2497         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2498         /* Kill the top of shared branch (not detached) */
2499         if (nr) {
2500                 if (partial == chain) {
2501                         /* Shared branch grows from the inode */
2502                         ext4_free_branches(handle, inode, NULL,
2503                                            &nr, &nr+1, (chain+n-1) - partial);
2504                         *partial->p = 0;
2505                         /*
2506                          * We mark the inode dirty prior to restart,
2507                          * and prior to stop.  No need for it here.
2508                          */
2509                 } else {
2510                         /* Shared branch grows from an indirect block */
2511                         BUFFER_TRACE(partial->bh, "get_write_access");
2512                         ext4_free_branches(handle, inode, partial->bh,
2513                                         partial->p,
2514                                         partial->p+1, (chain+n-1) - partial);
2515                 }
2516         }
2517         /* Clear the ends of indirect blocks on the shared branch */
2518         while (partial > chain) {
2519                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2520                                    (__le32*)partial->bh->b_data+addr_per_block,
2521                                    (chain+n-1) - partial);
2522                 BUFFER_TRACE(partial->bh, "call brelse");
2523                 brelse (partial->bh);
2524                 partial--;
2525         }
2526 do_indirects:
2527         /* Kill the remaining (whole) subtrees */
2528         switch (offsets[0]) {
2529         default:
2530                 nr = i_data[EXT4_IND_BLOCK];
2531                 if (nr) {
2532                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2533                         i_data[EXT4_IND_BLOCK] = 0;
2534                 }
2535         case EXT4_IND_BLOCK:
2536                 nr = i_data[EXT4_DIND_BLOCK];
2537                 if (nr) {
2538                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2539                         i_data[EXT4_DIND_BLOCK] = 0;
2540                 }
2541         case EXT4_DIND_BLOCK:
2542                 nr = i_data[EXT4_TIND_BLOCK];
2543                 if (nr) {
2544                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2545                         i_data[EXT4_TIND_BLOCK] = 0;
2546                 }
2547         case EXT4_TIND_BLOCK:
2548                 ;
2549         }
2550
2551         ext4_discard_reservation(inode);
2552
2553         up_write(&ei->i_data_sem);
2554         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2555         ext4_mark_inode_dirty(handle, inode);
2556
2557         /*
2558          * In a multi-transaction truncate, we only make the final transaction
2559          * synchronous
2560          */
2561         if (IS_SYNC(inode))
2562                 handle->h_sync = 1;
2563 out_stop:
2564         /*
2565          * If this was a simple ftruncate(), and the file will remain alive
2566          * then we need to clear up the orphan record which we created above.
2567          * However, if this was a real unlink then we were called by
2568          * ext4_delete_inode(), and we allow that function to clean up the
2569          * orphan info for us.
2570          */
2571         if (inode->i_nlink)
2572                 ext4_orphan_del(handle, inode);
2573
2574         ext4_journal_stop(handle);
2575 }
2576
2577 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2578                 unsigned long ino, struct ext4_iloc *iloc)
2579 {
2580         ext4_group_t block_group;
2581         unsigned long offset;
2582         ext4_fsblk_t block;
2583         struct ext4_group_desc *gdp;
2584
2585         if (!ext4_valid_inum(sb, ino)) {
2586                 /*
2587                  * This error is already checked for in namei.c unless we are
2588                  * looking at an NFS filehandle, in which case no error
2589                  * report is needed
2590                  */
2591                 return 0;
2592         }
2593
2594         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2595         gdp = ext4_get_group_desc(sb, block_group, NULL);
2596         if (!gdp)
2597                 return 0;
2598
2599         /*
2600          * Figure out the offset within the block group inode table
2601          */
2602         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2603                 EXT4_INODE_SIZE(sb);
2604         block = ext4_inode_table(sb, gdp) +
2605                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2606
2607         iloc->block_group = block_group;
2608         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2609         return block;
2610 }
2611
2612 /*
2613  * ext4_get_inode_loc returns with an extra refcount against the inode's
2614  * underlying buffer_head on success. If 'in_mem' is true, we have all
2615  * data in memory that is needed to recreate the on-disk version of this
2616  * inode.
2617  */
2618 static int __ext4_get_inode_loc(struct inode *inode,
2619                                 struct ext4_iloc *iloc, int in_mem)
2620 {
2621         ext4_fsblk_t block;
2622         struct buffer_head *bh;
2623
2624         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2625         if (!block)
2626                 return -EIO;
2627
2628         bh = sb_getblk(inode->i_sb, block);
2629         if (!bh) {
2630                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2631                                 "unable to read inode block - "
2632                                 "inode=%lu, block=%llu",
2633                                  inode->i_ino, block);
2634                 return -EIO;
2635         }
2636         if (!buffer_uptodate(bh)) {
2637                 lock_buffer(bh);
2638                 if (buffer_uptodate(bh)) {
2639                         /* someone brought it uptodate while we waited */
2640                         unlock_buffer(bh);
2641                         goto has_buffer;
2642                 }
2643
2644                 /*
2645                  * If we have all information of the inode in memory and this
2646                  * is the only valid inode in the block, we need not read the
2647                  * block.
2648                  */
2649                 if (in_mem) {
2650                         struct buffer_head *bitmap_bh;
2651                         struct ext4_group_desc *desc;
2652                         int inodes_per_buffer;
2653                         int inode_offset, i;
2654                         ext4_group_t block_group;
2655                         int start;
2656
2657                         block_group = (inode->i_ino - 1) /
2658                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2659                         inodes_per_buffer = bh->b_size /
2660                                 EXT4_INODE_SIZE(inode->i_sb);
2661                         inode_offset = ((inode->i_ino - 1) %
2662                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2663                         start = inode_offset & ~(inodes_per_buffer - 1);
2664
2665                         /* Is the inode bitmap in cache? */
2666                         desc = ext4_get_group_desc(inode->i_sb,
2667                                                 block_group, NULL);
2668                         if (!desc)
2669                                 goto make_io;
2670
2671                         bitmap_bh = sb_getblk(inode->i_sb,
2672                                 ext4_inode_bitmap(inode->i_sb, desc));
2673                         if (!bitmap_bh)
2674                                 goto make_io;
2675
2676                         /*
2677                          * If the inode bitmap isn't in cache then the
2678                          * optimisation may end up performing two reads instead
2679                          * of one, so skip it.
2680                          */
2681                         if (!buffer_uptodate(bitmap_bh)) {
2682                                 brelse(bitmap_bh);
2683                                 goto make_io;
2684                         }
2685                         for (i = start; i < start + inodes_per_buffer; i++) {
2686                                 if (i == inode_offset)
2687                                         continue;
2688                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2689                                         break;
2690                         }
2691                         brelse(bitmap_bh);
2692                         if (i == start + inodes_per_buffer) {
2693                                 /* all other inodes are free, so skip I/O */
2694                                 memset(bh->b_data, 0, bh->b_size);
2695                                 set_buffer_uptodate(bh);
2696                                 unlock_buffer(bh);
2697                                 goto has_buffer;
2698                         }
2699                 }
2700
2701 make_io:
2702                 /*
2703                  * There are other valid inodes in the buffer, this inode
2704                  * has in-inode xattrs, or we don't have this inode in memory.
2705                  * Read the block from disk.
2706                  */
2707                 get_bh(bh);
2708                 bh->b_end_io = end_buffer_read_sync;
2709                 submit_bh(READ_META, bh);
2710                 wait_on_buffer(bh);
2711                 if (!buffer_uptodate(bh)) {
2712                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2713                                         "unable to read inode block - "
2714                                         "inode=%lu, block=%llu",
2715                                         inode->i_ino, block);
2716                         brelse(bh);
2717                         return -EIO;
2718                 }
2719         }
2720 has_buffer:
2721         iloc->bh = bh;
2722         return 0;
2723 }
2724
2725 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2726 {
2727         /* We have all inode data except xattrs in memory here. */
2728         return __ext4_get_inode_loc(inode, iloc,
2729                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2730 }
2731
2732 void ext4_set_inode_flags(struct inode *inode)
2733 {
2734         unsigned int flags = EXT4_I(inode)->i_flags;
2735
2736         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2737         if (flags & EXT4_SYNC_FL)
2738                 inode->i_flags |= S_SYNC;
2739         if (flags & EXT4_APPEND_FL)
2740                 inode->i_flags |= S_APPEND;
2741         if (flags & EXT4_IMMUTABLE_FL)
2742                 inode->i_flags |= S_IMMUTABLE;
2743         if (flags & EXT4_NOATIME_FL)
2744                 inode->i_flags |= S_NOATIME;
2745         if (flags & EXT4_DIRSYNC_FL)
2746                 inode->i_flags |= S_DIRSYNC;
2747 }
2748
2749 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2750 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2751 {
2752         unsigned int flags = ei->vfs_inode.i_flags;
2753
2754         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2755                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2756         if (flags & S_SYNC)
2757                 ei->i_flags |= EXT4_SYNC_FL;
2758         if (flags & S_APPEND)
2759                 ei->i_flags |= EXT4_APPEND_FL;
2760         if (flags & S_IMMUTABLE)
2761                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2762         if (flags & S_NOATIME)
2763                 ei->i_flags |= EXT4_NOATIME_FL;
2764         if (flags & S_DIRSYNC)
2765                 ei->i_flags |= EXT4_DIRSYNC_FL;
2766 }
2767 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2768                                         struct ext4_inode_info *ei)
2769 {
2770         blkcnt_t i_blocks ;
2771         struct inode *inode = &(ei->vfs_inode);
2772         struct super_block *sb = inode->i_sb;
2773
2774         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2775                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2776                 /* we are using combined 48 bit field */
2777                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2778                                         le32_to_cpu(raw_inode->i_blocks_lo);
2779                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2780                         /* i_blocks represent file system block size */
2781                         return i_blocks  << (inode->i_blkbits - 9);
2782                 } else {
2783                         return i_blocks;
2784                 }
2785         } else {
2786                 return le32_to_cpu(raw_inode->i_blocks_lo);
2787         }
2788 }
2789
2790 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2791 {
2792         struct ext4_iloc iloc;
2793         struct ext4_inode *raw_inode;
2794         struct ext4_inode_info *ei;
2795         struct buffer_head *bh;
2796         struct inode *inode;
2797         long ret;
2798         int block;
2799
2800         inode = iget_locked(sb, ino);
2801         if (!inode)
2802                 return ERR_PTR(-ENOMEM);
2803         if (!(inode->i_state & I_NEW))
2804                 return inode;
2805
2806         ei = EXT4_I(inode);
2807 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2808         ei->i_acl = EXT4_ACL_NOT_CACHED;
2809         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2810 #endif
2811         ei->i_block_alloc_info = NULL;
2812
2813         ret = __ext4_get_inode_loc(inode, &iloc, 0);
2814         if (ret < 0)
2815                 goto bad_inode;
2816         bh = iloc.bh;
2817         raw_inode = ext4_raw_inode(&iloc);
2818         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2819         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2820         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2821         if(!(test_opt (inode->i_sb, NO_UID32))) {
2822                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2823                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2824         }
2825         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2826
2827         ei->i_state = 0;
2828         ei->i_dir_start_lookup = 0;
2829         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2830         /* We now have enough fields to check if the inode was active or not.
2831          * This is needed because nfsd might try to access dead inodes
2832          * the test is that same one that e2fsck uses
2833          * NeilBrown 1999oct15
2834          */
2835         if (inode->i_nlink == 0) {
2836                 if (inode->i_mode == 0 ||
2837                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2838                         /* this inode is deleted */
2839                         brelse (bh);
2840                         ret = -ESTALE;
2841                         goto bad_inode;
2842                 }
2843                 /* The only unlinked inodes we let through here have
2844                  * valid i_mode and are being read by the orphan
2845                  * recovery code: that's fine, we're about to complete
2846                  * the process of deleting those. */
2847         }
2848         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2849         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2850         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2851         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2852             cpu_to_le32(EXT4_OS_HURD)) {
2853                 ei->i_file_acl |=
2854                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2855         }
2856         inode->i_size = ext4_isize(raw_inode);
2857         ei->i_disksize = inode->i_size;
2858         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2859         ei->i_block_group = iloc.block_group;
2860         /*
2861          * NOTE! The in-memory inode i_data array is in little-endian order
2862          * even on big-endian machines: we do NOT byteswap the block numbers!
2863          */
2864         for (block = 0; block < EXT4_N_BLOCKS; block++)
2865                 ei->i_data[block] = raw_inode->i_block[block];
2866         INIT_LIST_HEAD(&ei->i_orphan);
2867
2868         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2869                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2870                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2871                     EXT4_INODE_SIZE(inode->i_sb)) {
2872                         brelse (bh);
2873                         ret = -EIO;
2874                         goto bad_inode;
2875                 }
2876                 if (ei->i_extra_isize == 0) {
2877                         /* The extra space is currently unused. Use it. */
2878                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2879                                             EXT4_GOOD_OLD_INODE_SIZE;
2880                 } else {
2881                         __le32 *magic = (void *)raw_inode +
2882                                         EXT4_GOOD_OLD_INODE_SIZE +
2883                                         ei->i_extra_isize;
2884                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2885                                  ei->i_state |= EXT4_STATE_XATTR;
2886                 }
2887         } else
2888                 ei->i_extra_isize = 0;
2889
2890         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2891         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2892         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2893         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2894
2895         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2896         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2897                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2898                         inode->i_version |=
2899                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2900         }
2901
2902         if (S_ISREG(inode->i_mode)) {
2903                 inode->i_op = &ext4_file_inode_operations;
2904                 inode->i_fop = &ext4_file_operations;
2905                 ext4_set_aops(inode);
2906         } else if (S_ISDIR(inode->i_mode)) {
2907                 inode->i_op = &ext4_dir_inode_operations;
2908                 inode->i_fop = &ext4_dir_operations;
2909         } else if (S_ISLNK(inode->i_mode)) {
2910                 if (ext4_inode_is_fast_symlink(inode))
2911                         inode->i_op = &ext4_fast_symlink_inode_operations;
2912                 else {
2913                         inode->i_op = &ext4_symlink_inode_operations;
2914                         ext4_set_aops(inode);
2915                 }
2916         } else {
2917                 inode->i_op = &ext4_special_inode_operations;
2918                 if (raw_inode->i_block[0])
2919                         init_special_inode(inode, inode->i_mode,
2920                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2921                 else
2922                         init_special_inode(inode, inode->i_mode,
2923                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2924         }
2925         brelse (iloc.bh);
2926         ext4_set_inode_flags(inode);
2927         unlock_new_inode(inode);
2928         return inode;
2929
2930 bad_inode:
2931         iget_failed(inode);
2932         return ERR_PTR(ret);
2933 }
2934
2935 static int ext4_inode_blocks_set(handle_t *handle,
2936                                 struct ext4_inode *raw_inode,
2937                                 struct ext4_inode_info *ei)
2938 {
2939         struct inode *inode = &(ei->vfs_inode);
2940         u64 i_blocks = inode->i_blocks;
2941         struct super_block *sb = inode->i_sb;
2942         int err = 0;
2943
2944         if (i_blocks <= ~0U) {
2945                 /*
2946                  * i_blocks can be represnted in a 32 bit variable
2947                  * as multiple of 512 bytes
2948                  */
2949                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2950                 raw_inode->i_blocks_high = 0;
2951                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2952         } else if (i_blocks <= 0xffffffffffffULL) {
2953                 /*
2954                  * i_blocks can be represented in a 48 bit variable
2955                  * as multiple of 512 bytes
2956                  */
2957                 err = ext4_update_rocompat_feature(handle, sb,
2958                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2959                 if (err)
2960                         goto  err_out;
2961                 /* i_block is stored in the split  48 bit fields */
2962                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2963                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2964                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2965         } else {
2966                 /*
2967                  * i_blocks should be represented in a 48 bit variable
2968                  * as multiple of  file system block size
2969                  */
2970                 err = ext4_update_rocompat_feature(handle, sb,
2971                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2972                 if (err)
2973                         goto  err_out;
2974                 ei->i_flags |= EXT4_HUGE_FILE_FL;
2975                 /* i_block is stored in file system block size */
2976                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2977                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2978                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2979         }
2980 err_out:
2981         return err;
2982 }
2983
2984 /*
2985  * Post the struct inode info into an on-disk inode location in the
2986  * buffer-cache.  This gobbles the caller's reference to the
2987  * buffer_head in the inode location struct.
2988  *
2989  * The caller must have write access to iloc->bh.
2990  */
2991 static int ext4_do_update_inode(handle_t *handle,
2992                                 struct inode *inode,
2993                                 struct ext4_iloc *iloc)
2994 {
2995         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2996         struct ext4_inode_info *ei = EXT4_I(inode);
2997         struct buffer_head *bh = iloc->bh;
2998         int err = 0, rc, block;
2999
3000         /* For fields not not tracking in the in-memory inode,
3001          * initialise them to zero for new inodes. */
3002         if (ei->i_state & EXT4_STATE_NEW)
3003                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3004
3005         ext4_get_inode_flags(ei);
3006         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3007         if(!(test_opt(inode->i_sb, NO_UID32))) {
3008                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3009                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3010 /*
3011  * Fix up interoperability with old kernels. Otherwise, old inodes get
3012  * re-used with the upper 16 bits of the uid/gid intact
3013  */
3014                 if(!ei->i_dtime) {
3015                         raw_inode->i_uid_high =
3016                                 cpu_to_le16(high_16_bits(inode->i_uid));
3017                         raw_inode->i_gid_high =
3018                                 cpu_to_le16(high_16_bits(inode->i_gid));
3019                 } else {
3020                         raw_inode->i_uid_high = 0;
3021                         raw_inode->i_gid_high = 0;
3022                 }
3023         } else {
3024                 raw_inode->i_uid_low =
3025                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3026                 raw_inode->i_gid_low =
3027                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3028                 raw_inode->i_uid_high = 0;
3029                 raw_inode->i_gid_high = 0;
3030         }
3031         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3032
3033         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3034         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3035         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3036         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3037
3038         if (ext4_inode_blocks_set(handle, raw_inode, ei))
3039                 goto out_brelse;
3040         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3041         /* clear the migrate flag in the raw_inode */
3042         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
3043         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3044             cpu_to_le32(EXT4_OS_HURD))
3045                 raw_inode->i_file_acl_high =
3046                         cpu_to_le16(ei->i_file_acl >> 32);
3047         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3048         ext4_isize_set(raw_inode, ei->i_disksize);
3049         if (ei->i_disksize > 0x7fffffffULL) {
3050                 struct super_block *sb = inode->i_sb;
3051                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3052                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3053                                 EXT4_SB(sb)->s_es->s_rev_level ==
3054                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3055                         /* If this is the first large file
3056                          * created, add a flag to the superblock.
3057                          */
3058                         err = ext4_journal_get_write_access(handle,
3059                                         EXT4_SB(sb)->s_sbh);
3060                         if (err)
3061                                 goto out_brelse;
3062                         ext4_update_dynamic_rev(sb);
3063                         EXT4_SET_RO_COMPAT_FEATURE(sb,
3064                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3065                         sb->s_dirt = 1;
3066                         handle->h_sync = 1;
3067                         err = ext4_journal_dirty_metadata(handle,
3068                                         EXT4_SB(sb)->s_sbh);
3069                 }
3070         }
3071         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3072         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3073                 if (old_valid_dev(inode->i_rdev)) {
3074                         raw_inode->i_block[0] =
3075                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3076                         raw_inode->i_block[1] = 0;
3077                 } else {
3078                         raw_inode->i_block[0] = 0;
3079                         raw_inode->i_block[1] =
3080                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3081                         raw_inode->i_block[2] = 0;
3082                 }
3083         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
3084                 raw_inode->i_block[block] = ei->i_data[block];
3085
3086         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3087         if (ei->i_extra_isize) {
3088                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3089                         raw_inode->i_version_hi =
3090                         cpu_to_le32(inode->i_version >> 32);
3091                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3092         }
3093
3094
3095         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3096         rc = ext4_journal_dirty_metadata(handle, bh);
3097         if (!err)
3098                 err = rc;
3099         ei->i_state &= ~EXT4_STATE_NEW;
3100
3101 out_brelse:
3102         brelse (bh);
3103         ext4_std_error(inode->i_sb, err);
3104         return err;
3105 }
3106
3107 /*
3108  * ext4_write_inode()
3109  *
3110  * We are called from a few places:
3111  *
3112  * - Within generic_file_write() for O_SYNC files.
3113  *   Here, there will be no transaction running. We wait for any running
3114  *   trasnaction to commit.
3115  *
3116  * - Within sys_sync(), kupdate and such.
3117  *   We wait on commit, if tol to.
3118  *
3119  * - Within prune_icache() (PF_MEMALLOC == true)
3120  *   Here we simply return.  We can't afford to block kswapd on the
3121  *   journal commit.
3122  *
3123  * In all cases it is actually safe for us to return without doing anything,
3124  * because the inode has been copied into a raw inode buffer in
3125  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3126  * knfsd.
3127  *
3128  * Note that we are absolutely dependent upon all inode dirtiers doing the
3129  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3130  * which we are interested.
3131  *
3132  * It would be a bug for them to not do this.  The code:
3133  *
3134  *      mark_inode_dirty(inode)
3135  *      stuff();
3136  *      inode->i_size = expr;
3137  *
3138  * is in error because a kswapd-driven write_inode() could occur while
3139  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3140  * will no longer be on the superblock's dirty inode list.
3141  */
3142 int ext4_write_inode(struct inode *inode, int wait)
3143 {
3144         if (current->flags & PF_MEMALLOC)
3145                 return 0;
3146
3147         if (ext4_journal_current_handle()) {
3148                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3149                 dump_stack();
3150                 return -EIO;
3151         }
3152
3153         if (!wait)
3154                 return 0;
3155
3156         return ext4_force_commit(inode->i_sb);
3157 }
3158
3159 /*
3160  * ext4_setattr()
3161  *
3162  * Called from notify_change.
3163  *
3164  * We want to trap VFS attempts to truncate the file as soon as
3165  * possible.  In particular, we want to make sure that when the VFS
3166  * shrinks i_size, we put the inode on the orphan list and modify
3167  * i_disksize immediately, so that during the subsequent flushing of
3168  * dirty pages and freeing of disk blocks, we can guarantee that any
3169  * commit will leave the blocks being flushed in an unused state on
3170  * disk.  (On recovery, the inode will get truncated and the blocks will
3171  * be freed, so we have a strong guarantee that no future commit will
3172  * leave these blocks visible to the user.)
3173  *
3174  * Called with inode->sem down.
3175  */
3176 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3177 {
3178         struct inode *inode = dentry->d_inode;
3179         int error, rc = 0;
3180         const unsigned int ia_valid = attr->ia_valid;
3181
3182         error = inode_change_ok(inode, attr);
3183         if (error)
3184                 return error;
3185
3186         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3187                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3188                 handle_t *handle;
3189
3190                 /* (user+group)*(old+new) structure, inode write (sb,
3191                  * inode block, ? - but truncate inode update has it) */
3192                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3193                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3194                 if (IS_ERR(handle)) {
3195                         error = PTR_ERR(handle);
3196                         goto err_out;
3197                 }
3198                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3199                 if (error) {
3200                         ext4_journal_stop(handle);
3201                         return error;
3202                 }
3203                 /* Update corresponding info in inode so that everything is in
3204                  * one transaction */
3205                 if (attr->ia_valid & ATTR_UID)
3206                         inode->i_uid = attr->ia_uid;
3207                 if (attr->ia_valid & ATTR_GID)
3208                         inode->i_gid = attr->ia_gid;
3209                 error = ext4_mark_inode_dirty(handle, inode);
3210                 ext4_journal_stop(handle);
3211         }
3212
3213         if (attr->ia_valid & ATTR_SIZE) {
3214                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3215                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3216
3217                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3218                                 error = -EFBIG;
3219                                 goto err_out;
3220                         }
3221                 }
3222         }
3223
3224         if (S_ISREG(inode->i_mode) &&
3225             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3226                 handle_t *handle;
3227
3228                 handle = ext4_journal_start(inode, 3);
3229                 if (IS_ERR(handle)) {
3230                         error = PTR_ERR(handle);
3231                         goto err_out;
3232                 }
3233
3234                 error = ext4_orphan_add(handle, inode);
3235                 EXT4_I(inode)->i_disksize = attr->ia_size;
3236                 rc = ext4_mark_inode_dirty(handle, inode);
3237                 if (!error)
3238                         error = rc;
3239                 ext4_journal_stop(handle);
3240         }
3241
3242         rc = inode_setattr(inode, attr);
3243
3244         /* If inode_setattr's call to ext4_truncate failed to get a
3245          * transaction handle at all, we need to clean up the in-core
3246          * orphan list manually. */
3247         if (inode->i_nlink)
3248                 ext4_orphan_del(NULL, inode);
3249
3250         if (!rc && (ia_valid & ATTR_MODE))
3251                 rc = ext4_acl_chmod(inode);
3252
3253 err_out:
3254         ext4_std_error(inode->i_sb, error);
3255         if (!error)
3256                 error = rc;
3257         return error;
3258 }
3259
3260
3261 /*
3262  * How many blocks doth make a writepage()?
3263  *
3264  * With N blocks per page, it may be:
3265  * N data blocks
3266  * 2 indirect block
3267  * 2 dindirect
3268  * 1 tindirect
3269  * N+5 bitmap blocks (from the above)
3270  * N+5 group descriptor summary blocks
3271  * 1 inode block
3272  * 1 superblock.
3273  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3274  *
3275  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3276  *
3277  * With ordered or writeback data it's the same, less the N data blocks.
3278  *
3279  * If the inode's direct blocks can hold an integral number of pages then a
3280  * page cannot straddle two indirect blocks, and we can only touch one indirect
3281  * and dindirect block, and the "5" above becomes "3".
3282  *
3283  * This still overestimates under most circumstances.  If we were to pass the
3284  * start and end offsets in here as well we could do block_to_path() on each
3285  * block and work out the exact number of indirects which are touched.  Pah.
3286  */
3287
3288 int ext4_writepage_trans_blocks(struct inode *inode)
3289 {
3290         int bpp = ext4_journal_blocks_per_page(inode);
3291         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3292         int ret;
3293
3294         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3295                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3296
3297         if (ext4_should_journal_data(inode))
3298                 ret = 3 * (bpp + indirects) + 2;
3299         else
3300                 ret = 2 * (bpp + indirects) + 2;
3301
3302 #ifdef CONFIG_QUOTA
3303         /* We know that structure was already allocated during DQUOT_INIT so
3304          * we will be updating only the data blocks + inodes */
3305         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3306 #endif
3307
3308         return ret;
3309 }
3310
3311 /*
3312  * The caller must have previously called ext4_reserve_inode_write().
3313  * Give this, we know that the caller already has write access to iloc->bh.
3314  */
3315 int ext4_mark_iloc_dirty(handle_t *handle,
3316                 struct inode *inode, struct ext4_iloc *iloc)
3317 {
3318         int err = 0;
3319
3320         if (test_opt(inode->i_sb, I_VERSION))
3321                 inode_inc_iversion(inode);
3322
3323         /* the do_update_inode consumes one bh->b_count */
3324         get_bh(iloc->bh);
3325
3326         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3327         err = ext4_do_update_inode(handle, inode, iloc);
3328         put_bh(iloc->bh);
3329         return err;
3330 }
3331
3332 /*
3333  * On success, We end up with an outstanding reference count against
3334  * iloc->bh.  This _must_ be cleaned up later.
3335  */
3336
3337 int
3338 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3339                          struct ext4_iloc *iloc)
3340 {
3341         int err = 0;
3342         if (handle) {
3343                 err = ext4_get_inode_loc(inode, iloc);
3344                 if (!err) {
3345                         BUFFER_TRACE(iloc->bh, "get_write_access");
3346                         err = ext4_journal_get_write_access(handle, iloc->bh);
3347                         if (err) {
3348                                 brelse(iloc->bh);
3349                                 iloc->bh = NULL;
3350                         }
3351                 }
3352         }
3353         ext4_std_error(inode->i_sb, err);
3354         return err;
3355 }
3356
3357 /*
3358  * Expand an inode by new_extra_isize bytes.
3359  * Returns 0 on success or negative error number on failure.
3360  */
3361 static int ext4_expand_extra_isize(struct inode *inode,
3362                                    unsigned int new_extra_isize,
3363                                    struct ext4_iloc iloc,
3364                                    handle_t *handle)
3365 {
3366         struct ext4_inode *raw_inode;
3367         struct ext4_xattr_ibody_header *header;
3368         struct ext4_xattr_entry *entry;
3369
3370         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3371                 return 0;
3372
3373         raw_inode = ext4_raw_inode(&iloc);
3374
3375         header = IHDR(inode, raw_inode);
3376         entry = IFIRST(header);
3377
3378         /* No extended attributes present */
3379         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3380                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3381                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3382                         new_extra_isize);
3383                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3384                 return 0;
3385         }
3386
3387         /* try to expand with EAs present */
3388         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3389                                           raw_inode, handle);
3390 }
3391
3392 /*
3393  * What we do here is to mark the in-core inode as clean with respect to inode
3394  * dirtiness (it may still be data-dirty).
3395  * This means that the in-core inode may be reaped by prune_icache
3396  * without having to perform any I/O.  This is a very good thing,
3397  * because *any* task may call prune_icache - even ones which
3398  * have a transaction open against a different journal.
3399  *
3400  * Is this cheating?  Not really.  Sure, we haven't written the
3401  * inode out, but prune_icache isn't a user-visible syncing function.
3402  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3403  * we start and wait on commits.
3404  *
3405  * Is this efficient/effective?  Well, we're being nice to the system
3406  * by cleaning up our inodes proactively so they can be reaped
3407  * without I/O.  But we are potentially leaving up to five seconds'
3408  * worth of inodes floating about which prune_icache wants us to
3409  * write out.  One way to fix that would be to get prune_icache()
3410  * to do a write_super() to free up some memory.  It has the desired
3411  * effect.
3412  */
3413 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3414 {
3415         struct ext4_iloc iloc;
3416         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3417         static unsigned int mnt_count;
3418         int err, ret;
3419
3420         might_sleep();
3421         err = ext4_reserve_inode_write(handle, inode, &iloc);
3422         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3423             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3424                 /*
3425                  * We need extra buffer credits since we may write into EA block
3426                  * with this same handle. If journal_extend fails, then it will
3427                  * only result in a minor loss of functionality for that inode.
3428                  * If this is felt to be critical, then e2fsck should be run to
3429                  * force a large enough s_min_extra_isize.
3430                  */
3431                 if ((jbd2_journal_extend(handle,
3432                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3433                         ret = ext4_expand_extra_isize(inode,
3434                                                       sbi->s_want_extra_isize,
3435                                                       iloc, handle);
3436                         if (ret) {
3437                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3438                                 if (mnt_count !=
3439                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3440                                         ext4_warning(inode->i_sb, __func__,
3441                                         "Unable to expand inode %lu. Delete"
3442                                         " some EAs or run e2fsck.",
3443                                         inode->i_ino);
3444                                         mnt_count =
3445                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3446                                 }
3447                         }
3448                 }
3449         }
3450         if (!err)
3451                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3452         return err;
3453 }
3454
3455 /*
3456  * ext4_dirty_inode() is called from __mark_inode_dirty()
3457  *
3458  * We're really interested in the case where a file is being extended.
3459  * i_size has been changed by generic_commit_write() and we thus need
3460  * to include the updated inode in the current transaction.
3461  *
3462  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3463  * are allocated to the file.
3464  *
3465  * If the inode is marked synchronous, we don't honour that here - doing
3466  * so would cause a commit on atime updates, which we don't bother doing.
3467  * We handle synchronous inodes at the highest possible level.
3468  */
3469 void ext4_dirty_inode(struct inode *inode)
3470 {
3471         handle_t *current_handle = ext4_journal_current_handle();
3472         handle_t *handle;
3473
3474         handle = ext4_journal_start(inode, 2);
3475         if (IS_ERR(handle))
3476                 goto out;
3477         if (current_handle &&
3478                 current_handle->h_transaction != handle->h_transaction) {
3479                 /* This task has a transaction open against a different fs */
3480                 printk(KERN_EMERG "%s: transactions do not match!\n",
3481                        __func__);
3482         } else {
3483                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3484                                 current_handle);
3485                 ext4_mark_inode_dirty(handle, inode);
3486         }
3487         ext4_journal_stop(handle);
3488 out:
3489         return;
3490 }
3491
3492 #if 0
3493 /*
3494  * Bind an inode's backing buffer_head into this transaction, to prevent
3495  * it from being flushed to disk early.  Unlike
3496  * ext4_reserve_inode_write, this leaves behind no bh reference and
3497  * returns no iloc structure, so the caller needs to repeat the iloc
3498  * lookup to mark the inode dirty later.
3499  */
3500 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3501 {
3502         struct ext4_iloc iloc;
3503
3504         int err = 0;
3505         if (handle) {
3506                 err = ext4_get_inode_loc(inode, &iloc);
3507                 if (!err) {
3508                         BUFFER_TRACE(iloc.bh, "get_write_access");
3509                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3510                         if (!err)
3511                                 err = ext4_journal_dirty_metadata(handle,
3512                                                                   iloc.bh);
3513                         brelse(iloc.bh);
3514                 }
3515         }
3516         ext4_std_error(inode->i_sb, err);
3517         return err;
3518 }
3519 #endif
3520
3521 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3522 {
3523         journal_t *journal;
3524         handle_t *handle;
3525         int err;
3526
3527         /*
3528          * We have to be very careful here: changing a data block's
3529          * journaling status dynamically is dangerous.  If we write a
3530          * data block to the journal, change the status and then delete
3531          * that block, we risk forgetting to revoke the old log record
3532          * from the journal and so a subsequent replay can corrupt data.
3533          * So, first we make sure that the journal is empty and that
3534          * nobody is changing anything.
3535          */
3536
3537         journal = EXT4_JOURNAL(inode);
3538         if (is_journal_aborted(journal))
3539                 return -EROFS;
3540
3541         jbd2_journal_lock_updates(journal);
3542         jbd2_journal_flush(journal);
3543
3544         /*
3545          * OK, there are no updates running now, and all cached data is
3546          * synced to disk.  We are now in a completely consistent state
3547          * which doesn't have anything in the journal, and we know that
3548          * no filesystem updates are running, so it is safe to modify
3549          * the inode's in-core data-journaling state flag now.
3550          */
3551
3552         if (val)
3553                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3554         else
3555                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3556         ext4_set_aops(inode);
3557
3558         jbd2_journal_unlock_updates(journal);
3559
3560         /* Finally we can mark the inode as dirty. */
3561
3562         handle = ext4_journal_start(inode, 1);
3563         if (IS_ERR(handle))
3564                 return PTR_ERR(handle);
3565
3566         err = ext4_mark_inode_dirty(handle, inode);
3567         handle->h_sync = 1;
3568         ext4_journal_stop(handle);
3569         ext4_std_error(inode->i_sb, err);
3570
3571         return err;
3572 }
3573
3574 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
3575 {
3576         return !buffer_mapped(bh);
3577 }
3578
3579 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3580 {
3581         loff_t size;
3582         unsigned long len;
3583         int ret = -EINVAL;
3584         struct file *file = vma->vm_file;
3585         struct inode *inode = file->f_path.dentry->d_inode;
3586         struct address_space *mapping = inode->i_mapping;
3587
3588         /*
3589          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
3590          * get i_mutex because we are already holding mmap_sem.
3591          */
3592         down_read(&inode->i_alloc_sem);
3593         size = i_size_read(inode);
3594         if (page->mapping != mapping || size <= page_offset(page)
3595             || !PageUptodate(page)) {
3596                 /* page got truncated from under us? */
3597                 goto out_unlock;
3598         }
3599         ret = 0;
3600         if (PageMappedToDisk(page))
3601                 goto out_unlock;
3602
3603         if (page->index == size >> PAGE_CACHE_SHIFT)
3604                 len = size & ~PAGE_CACHE_MASK;
3605         else
3606                 len = PAGE_CACHE_SIZE;
3607
3608         if (page_has_buffers(page)) {
3609                 /* return if we have all the buffers mapped */
3610                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3611                                        ext4_bh_unmapped))
3612                         goto out_unlock;
3613         }
3614         /*
3615          * OK, we need to fill the hole... Do write_begin write_end
3616          * to do block allocation/reservation.We are not holding
3617          * inode.i__mutex here. That allow * parallel write_begin,
3618          * write_end call. lock_page prevent this from happening
3619          * on the same page though
3620          */
3621         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
3622                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
3623         if (ret < 0)
3624                 goto out_unlock;
3625         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
3626                         len, len, page, NULL);
3627         if (ret < 0)
3628                 goto out_unlock;
3629         ret = 0;
3630 out_unlock:
3631         up_read(&inode->i_alloc_sem);
3632         return ret;
3633 }