]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/inode.c
ext4: Properly update i_disksize.
[linux-2.6-omap-h63xx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         struct ext4_block_alloc_info *block_i;
490
491         block_i =  EXT4_I(inode)->i_block_alloc_info;
492
493         /*
494          * try the heuristic for sequential allocation,
495          * failing that at least try to get decent locality.
496          */
497         if (block_i && (block == block_i->last_alloc_logical_block + 1)
498                 && (block_i->last_alloc_physical_block != 0)) {
499                 return block_i->last_alloc_physical_block + 1;
500         }
501
502         return ext4_find_near(inode, partial);
503 }
504
505 /**
506  *      ext4_blks_to_allocate: Look up the block map and count the number
507  *      of direct blocks need to be allocated for the given branch.
508  *
509  *      @branch: chain of indirect blocks
510  *      @k: number of blocks need for indirect blocks
511  *      @blks: number of data blocks to be mapped.
512  *      @blocks_to_boundary:  the offset in the indirect block
513  *
514  *      return the total number of blocks to be allocate, including the
515  *      direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518                 int blocks_to_boundary)
519 {
520         unsigned long count = 0;
521
522         /*
523          * Simple case, [t,d]Indirect block(s) has not allocated yet
524          * then it's clear blocks on that path have not allocated
525          */
526         if (k > 0) {
527                 /* right now we don't handle cross boundary allocation */
528                 if (blks < blocks_to_boundary + 1)
529                         count += blks;
530                 else
531                         count += blocks_to_boundary + 1;
532                 return count;
533         }
534
535         count++;
536         while (count < blks && count <= blocks_to_boundary &&
537                 le32_to_cpu(*(branch[0].p + count)) == 0) {
538                 count++;
539         }
540         return count;
541 }
542
543 /**
544  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *      @indirect_blks: the number of blocks need to allocate for indirect
546  *                      blocks
547  *
548  *      @new_blocks: on return it will store the new block numbers for
549  *      the indirect blocks(if needed) and the first direct block,
550  *      @blks:  on return it will store the total number of allocated
551  *              direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
555                                 int indirect_blks, int blks,
556                                 ext4_fsblk_t new_blocks[4], int *err)
557 {
558         int target, i;
559         unsigned long count = 0, blk_allocated = 0;
560         int index = 0;
561         ext4_fsblk_t current_block = 0;
562         int ret = 0;
563
564         /*
565          * Here we try to allocate the requested multiple blocks at once,
566          * on a best-effort basis.
567          * To build a branch, we should allocate blocks for
568          * the indirect blocks(if not allocated yet), and at least
569          * the first direct block of this branch.  That's the
570          * minimum number of blocks need to allocate(required)
571          */
572         /* first we try to allocate the indirect blocks */
573         target = indirect_blks;
574         while (target > 0) {
575                 count = target;
576                 /* allocating blocks for indirect blocks and direct blocks */
577                 current_block = ext4_new_meta_blocks(handle, inode,
578                                                         goal, &count, err);
579                 if (*err)
580                         goto failed_out;
581
582                 target -= count;
583                 /* allocate blocks for indirect blocks */
584                 while (index < indirect_blks && count) {
585                         new_blocks[index++] = current_block++;
586                         count--;
587                 }
588                 if (count > 0) {
589                         /*
590                          * save the new block number
591                          * for the first direct block
592                          */
593                         new_blocks[index] = current_block;
594                         printk(KERN_INFO "%s returned more blocks than "
595                                                 "requested\n", __func__);
596                         WARN_ON(1);
597                         break;
598                 }
599         }
600
601         target = blks - count ;
602         blk_allocated = count;
603         if (!target)
604                 goto allocated;
605         /* Now allocate data blocks */
606         count = target;
607         /* allocating blocks for data blocks */
608         current_block = ext4_new_blocks(handle, inode, iblock,
609                                                 goal, &count, err);
610         if (*err && (target == blks)) {
611                 /*
612                  * if the allocation failed and we didn't allocate
613                  * any blocks before
614                  */
615                 goto failed_out;
616         }
617         if (!*err) {
618                 if (target == blks) {
619                 /*
620                  * save the new block number
621                  * for the first direct block
622                  */
623                         new_blocks[index] = current_block;
624                 }
625                 blk_allocated += count;
626         }
627 allocated:
628         /* total number of blocks allocated for direct blocks */
629         ret = blk_allocated;
630         *err = 0;
631         return ret;
632 failed_out:
633         for (i = 0; i < index; i++)
634                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635         return ret;
636 }
637
638 /**
639  *      ext4_alloc_branch - allocate and set up a chain of blocks.
640  *      @inode: owner
641  *      @indirect_blks: number of allocated indirect blocks
642  *      @blks: number of allocated direct blocks
643  *      @offsets: offsets (in the blocks) to store the pointers to next.
644  *      @branch: place to store the chain in.
645  *
646  *      This function allocates blocks, zeroes out all but the last one,
647  *      links them into chain and (if we are synchronous) writes them to disk.
648  *      In other words, it prepares a branch that can be spliced onto the
649  *      inode. It stores the information about that chain in the branch[], in
650  *      the same format as ext4_get_branch() would do. We are calling it after
651  *      we had read the existing part of chain and partial points to the last
652  *      triple of that (one with zero ->key). Upon the exit we have the same
653  *      picture as after the successful ext4_get_block(), except that in one
654  *      place chain is disconnected - *branch->p is still zero (we did not
655  *      set the last link), but branch->key contains the number that should
656  *      be placed into *branch->p to fill that gap.
657  *
658  *      If allocation fails we free all blocks we've allocated (and forget
659  *      their buffer_heads) and return the error value the from failed
660  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *      as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664                                 ext4_lblk_t iblock, int indirect_blks,
665                                 int *blks, ext4_fsblk_t goal,
666                                 ext4_lblk_t *offsets, Indirect *branch)
667 {
668         int blocksize = inode->i_sb->s_blocksize;
669         int i, n = 0;
670         int err = 0;
671         struct buffer_head *bh;
672         int num;
673         ext4_fsblk_t new_blocks[4];
674         ext4_fsblk_t current_block;
675
676         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677                                 *blks, new_blocks, &err);
678         if (err)
679                 return err;
680
681         branch[0].key = cpu_to_le32(new_blocks[0]);
682         /*
683          * metadata blocks and data blocks are allocated.
684          */
685         for (n = 1; n <= indirect_blks;  n++) {
686                 /*
687                  * Get buffer_head for parent block, zero it out
688                  * and set the pointer to new one, then send
689                  * parent to disk.
690                  */
691                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692                 branch[n].bh = bh;
693                 lock_buffer(bh);
694                 BUFFER_TRACE(bh, "call get_create_access");
695                 err = ext4_journal_get_create_access(handle, bh);
696                 if (err) {
697                         unlock_buffer(bh);
698                         brelse(bh);
699                         goto failed;
700                 }
701
702                 memset(bh->b_data, 0, blocksize);
703                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704                 branch[n].key = cpu_to_le32(new_blocks[n]);
705                 *branch[n].p = branch[n].key;
706                 if (n == indirect_blks) {
707                         current_block = new_blocks[n];
708                         /*
709                          * End of chain, update the last new metablock of
710                          * the chain to point to the new allocated
711                          * data blocks numbers
712                          */
713                         for (i=1; i < num; i++)
714                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
715                 }
716                 BUFFER_TRACE(bh, "marking uptodate");
717                 set_buffer_uptodate(bh);
718                 unlock_buffer(bh);
719
720                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721                 err = ext4_journal_dirty_metadata(handle, bh);
722                 if (err)
723                         goto failed;
724         }
725         *blks = num;
726         return err;
727 failed:
728         /* Allocation failed, free what we already allocated */
729         for (i = 1; i <= n ; i++) {
730                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731                 ext4_journal_forget(handle, branch[i].bh);
732         }
733         for (i = 0; i < indirect_blks; i++)
734                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738         return err;
739 }
740
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *      ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756                         ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758         int i;
759         int err = 0;
760         struct ext4_block_alloc_info *block_i;
761         ext4_fsblk_t current_block;
762
763         block_i = EXT4_I(inode)->i_block_alloc_info;
764         /*
765          * If we're splicing into a [td]indirect block (as opposed to the
766          * inode) then we need to get write access to the [td]indirect block
767          * before the splice.
768          */
769         if (where->bh) {
770                 BUFFER_TRACE(where->bh, "get_write_access");
771                 err = ext4_journal_get_write_access(handle, where->bh);
772                 if (err)
773                         goto err_out;
774         }
775         /* That's it */
776
777         *where->p = where->key;
778
779         /*
780          * Update the host buffer_head or inode to point to more just allocated
781          * direct blocks blocks
782          */
783         if (num == 0 && blks > 1) {
784                 current_block = le32_to_cpu(where->key) + 1;
785                 for (i = 1; i < blks; i++)
786                         *(where->p + i) = cpu_to_le32(current_block++);
787         }
788
789         /*
790          * update the most recently allocated logical & physical block
791          * in i_block_alloc_info, to assist find the proper goal block for next
792          * allocation
793          */
794         if (block_i) {
795                 block_i->last_alloc_logical_block = block + blks - 1;
796                 block_i->last_alloc_physical_block =
797                                 le32_to_cpu(where[num].key) + blks - 1;
798         }
799
800         /* We are done with atomic stuff, now do the rest of housekeeping */
801
802         inode->i_ctime = ext4_current_time(inode);
803         ext4_mark_inode_dirty(handle, inode);
804
805         /* had we spliced it onto indirect block? */
806         if (where->bh) {
807                 /*
808                  * If we spliced it onto an indirect block, we haven't
809                  * altered the inode.  Note however that if it is being spliced
810                  * onto an indirect block at the very end of the file (the
811                  * file is growing) then we *will* alter the inode to reflect
812                  * the new i_size.  But that is not done here - it is done in
813                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814                  */
815                 jbd_debug(5, "splicing indirect only\n");
816                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817                 err = ext4_journal_dirty_metadata(handle, where->bh);
818                 if (err)
819                         goto err_out;
820         } else {
821                 /*
822                  * OK, we spliced it into the inode itself on a direct block.
823                  * Inode was dirtied above.
824                  */
825                 jbd_debug(5, "splicing direct\n");
826         }
827         return err;
828
829 err_out:
830         for (i = 1; i <= num; i++) {
831                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832                 ext4_journal_forget(handle, where[i].bh);
833                 ext4_free_blocks(handle, inode,
834                                         le32_to_cpu(where[i-1].key), 1, 0);
835         }
836         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837
838         return err;
839 }
840
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865                 ext4_lblk_t iblock, unsigned long maxblocks,
866                 struct buffer_head *bh_result,
867                 int create, int extend_disksize)
868 {
869         int err = -EIO;
870         ext4_lblk_t offsets[4];
871         Indirect chain[4];
872         Indirect *partial;
873         ext4_fsblk_t goal;
874         int indirect_blks;
875         int blocks_to_boundary = 0;
876         int depth;
877         struct ext4_inode_info *ei = EXT4_I(inode);
878         int count = 0;
879         ext4_fsblk_t first_block = 0;
880         loff_t disksize;
881
882
883         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884         J_ASSERT(handle != NULL || create == 0);
885         depth = ext4_block_to_path(inode, iblock, offsets,
886                                         &blocks_to_boundary);
887
888         if (depth == 0)
889                 goto out;
890
891         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892
893         /* Simplest case - block found, no allocation needed */
894         if (!partial) {
895                 first_block = le32_to_cpu(chain[depth - 1].key);
896                 clear_buffer_new(bh_result);
897                 count++;
898                 /*map more blocks*/
899                 while (count < maxblocks && count <= blocks_to_boundary) {
900                         ext4_fsblk_t blk;
901
902                         blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904                         if (blk == first_block + count)
905                                 count++;
906                         else
907                                 break;
908                 }
909                 goto got_it;
910         }
911
912         /* Next simple case - plain lookup or failed read of indirect block */
913         if (!create || err == -EIO)
914                 goto cleanup;
915
916         /*
917          * Okay, we need to do block allocation.  Lazily initialize the block
918          * allocation info here if necessary
919         */
920         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921                 ext4_init_block_alloc_info(inode);
922
923         goal = ext4_find_goal(inode, iblock, partial);
924
925         /* the number of blocks need to allocate for [d,t]indirect blocks */
926         indirect_blks = (chain + depth) - partial - 1;
927
928         /*
929          * Next look up the indirect map to count the totoal number of
930          * direct blocks to allocate for this branch.
931          */
932         count = ext4_blks_to_allocate(partial, indirect_blks,
933                                         maxblocks, blocks_to_boundary);
934         /*
935          * Block out ext4_truncate while we alter the tree
936          */
937         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938                                         &count, goal,
939                                         offsets + (partial - chain), partial);
940
941         /*
942          * The ext4_splice_branch call will free and forget any buffers
943          * on the new chain if there is a failure, but that risks using
944          * up transaction credits, especially for bitmaps where the
945          * credits cannot be returned.  Can we handle this somehow?  We
946          * may need to return -EAGAIN upwards in the worst case.  --sct
947          */
948         if (!err)
949                 err = ext4_splice_branch(handle, inode, iblock,
950                                         partial, indirect_blks, count);
951         /*
952          * i_disksize growing is protected by i_data_sem.  Don't forget to
953          * protect it if you're about to implement concurrent
954          * ext4_get_block() -bzzz
955         */
956         if (!err && extend_disksize) {
957                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958                 if (disksize > i_size_read(inode))
959                         disksize = i_size_read(inode);
960                 if (disksize > ei->i_disksize)
961                         ei->i_disksize = disksize;
962         }
963         if (err)
964                 goto cleanup;
965
966         set_buffer_new(bh_result);
967 got_it:
968         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969         if (count > blocks_to_boundary)
970                 set_buffer_boundary(bh_result);
971         err = count;
972         /* Clean up and exit */
973         partial = chain + depth - 1;    /* the whole chain */
974 cleanup:
975         while (partial > chain) {
976                 BUFFER_TRACE(partial->bh, "call brelse");
977                 brelse(partial->bh);
978                 partial--;
979         }
980         BUFFER_TRACE(bh_result, "returned");
981 out:
982         return err;
983 }
984
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992         int ind_blks, dind_blks, tind_blks;
993
994         /* number of new indirect blocks needed */
995         ind_blks = (blocks + icap - 1) / icap;
996
997         dind_blks = (ind_blks + icap - 1) / icap;
998
999         tind_blks = 1;
1000
1001         return ind_blks + dind_blks + tind_blks;
1002 }
1003
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010         if (!blocks)
1011                 return 0;
1012
1013         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014                 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016         return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022         int total, mdb, mdb_free;
1023
1024         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025         /* recalculate the number of metablocks still need to be reserved */
1026         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027         mdb = ext4_calc_metadata_amount(inode, total);
1028
1029         /* figure out how many metablocks to release */
1030         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033         if (mdb_free) {
1034                 /* Account for allocated meta_blocks */
1035                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036
1037                 /* update fs dirty blocks counter */
1038                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041         }
1042
1043         /* update per-inode reservations */
1044         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1045         EXT4_I(inode)->i_reserved_data_blocks -= used;
1046
1047         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048 }
1049
1050 /*
1051  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052  * and returns if the blocks are already mapped.
1053  *
1054  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055  * and store the allocated blocks in the result buffer head and mark it
1056  * mapped.
1057  *
1058  * If file type is extents based, it will call ext4_ext_get_blocks(),
1059  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060  * based files
1061  *
1062  * On success, it returns the number of blocks being mapped or allocate.
1063  * if create==0 and the blocks are pre-allocated and uninitialized block,
1064  * the result buffer head is unmapped. If the create ==1, it will make sure
1065  * the buffer head is mapped.
1066  *
1067  * It returns 0 if plain look up failed (blocks have not been allocated), in
1068  * that casem, buffer head is unmapped
1069  *
1070  * It returns the error in case of allocation failure.
1071  */
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073                         unsigned long max_blocks, struct buffer_head *bh,
1074                         int create, int extend_disksize, int flag)
1075 {
1076         int retval;
1077
1078         clear_buffer_mapped(bh);
1079
1080         /*
1081          * Try to see if we can get  the block without requesting
1082          * for new file system block.
1083          */
1084         down_read((&EXT4_I(inode)->i_data_sem));
1085         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087                                 bh, 0, 0);
1088         } else {
1089                 retval = ext4_get_blocks_handle(handle,
1090                                 inode, block, max_blocks, bh, 0, 0);
1091         }
1092         up_read((&EXT4_I(inode)->i_data_sem));
1093
1094         /* If it is only a block(s) look up */
1095         if (!create)
1096                 return retval;
1097
1098         /*
1099          * Returns if the blocks have already allocated
1100          *
1101          * Note that if blocks have been preallocated
1102          * ext4_ext_get_block() returns th create = 0
1103          * with buffer head unmapped.
1104          */
1105         if (retval > 0 && buffer_mapped(bh))
1106                 return retval;
1107
1108         /*
1109          * New blocks allocate and/or writing to uninitialized extent
1110          * will possibly result in updating i_data, so we take
1111          * the write lock of i_data_sem, and call get_blocks()
1112          * with create == 1 flag.
1113          */
1114         down_write((&EXT4_I(inode)->i_data_sem));
1115
1116         /*
1117          * if the caller is from delayed allocation writeout path
1118          * we have already reserved fs blocks for allocation
1119          * let the underlying get_block() function know to
1120          * avoid double accounting
1121          */
1122         if (flag)
1123                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1124         /*
1125          * We need to check for EXT4 here because migrate
1126          * could have changed the inode type in between
1127          */
1128         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130                                 bh, create, extend_disksize);
1131         } else {
1132                 retval = ext4_get_blocks_handle(handle, inode, block,
1133                                 max_blocks, bh, create, extend_disksize);
1134
1135                 if (retval > 0 && buffer_new(bh)) {
1136                         /*
1137                          * We allocated new blocks which will result in
1138                          * i_data's format changing.  Force the migrate
1139                          * to fail by clearing migrate flags
1140                          */
1141                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142                                                         ~EXT4_EXT_MIGRATE;
1143                 }
1144         }
1145
1146         if (flag) {
1147                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148                 /*
1149                  * Update reserved blocks/metadata blocks
1150                  * after successful block allocation
1151                  * which were deferred till now
1152                  */
1153                 if ((retval > 0) && buffer_delay(bh))
1154                         ext4_da_update_reserve_space(inode, retval);
1155         }
1156
1157         up_write((&EXT4_I(inode)->i_data_sem));
1158         return retval;
1159 }
1160
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1163
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165                         struct buffer_head *bh_result, int create)
1166 {
1167         handle_t *handle = ext4_journal_current_handle();
1168         int ret = 0, started = 0;
1169         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170         int dio_credits;
1171
1172         if (create && !handle) {
1173                 /* Direct IO write... */
1174                 if (max_blocks > DIO_MAX_BLOCKS)
1175                         max_blocks = DIO_MAX_BLOCKS;
1176                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177                 handle = ext4_journal_start(inode, dio_credits);
1178                 if (IS_ERR(handle)) {
1179                         ret = PTR_ERR(handle);
1180                         goto out;
1181                 }
1182                 started = 1;
1183         }
1184
1185         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186                                         max_blocks, bh_result, create, 0, 0);
1187         if (ret > 0) {
1188                 bh_result->b_size = (ret << inode->i_blkbits);
1189                 ret = 0;
1190         }
1191         if (started)
1192                 ext4_journal_stop(handle);
1193 out:
1194         return ret;
1195 }
1196
1197 /*
1198  * `handle' can be NULL if create is zero
1199  */
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201                                 ext4_lblk_t block, int create, int *errp)
1202 {
1203         struct buffer_head dummy;
1204         int fatal = 0, err;
1205
1206         J_ASSERT(handle != NULL || create == 0);
1207
1208         dummy.b_state = 0;
1209         dummy.b_blocknr = -1000;
1210         buffer_trace_init(&dummy.b_history);
1211         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212                                         &dummy, create, 1, 0);
1213         /*
1214          * ext4_get_blocks_handle() returns number of blocks
1215          * mapped. 0 in case of a HOLE.
1216          */
1217         if (err > 0) {
1218                 if (err > 1)
1219                         WARN_ON(1);
1220                 err = 0;
1221         }
1222         *errp = err;
1223         if (!err && buffer_mapped(&dummy)) {
1224                 struct buffer_head *bh;
1225                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226                 if (!bh) {
1227                         *errp = -EIO;
1228                         goto err;
1229                 }
1230                 if (buffer_new(&dummy)) {
1231                         J_ASSERT(create != 0);
1232                         J_ASSERT(handle != NULL);
1233
1234                         /*
1235                          * Now that we do not always journal data, we should
1236                          * keep in mind whether this should always journal the
1237                          * new buffer as metadata.  For now, regular file
1238                          * writes use ext4_get_block instead, so it's not a
1239                          * problem.
1240                          */
1241                         lock_buffer(bh);
1242                         BUFFER_TRACE(bh, "call get_create_access");
1243                         fatal = ext4_journal_get_create_access(handle, bh);
1244                         if (!fatal && !buffer_uptodate(bh)) {
1245                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246                                 set_buffer_uptodate(bh);
1247                         }
1248                         unlock_buffer(bh);
1249                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250                         err = ext4_journal_dirty_metadata(handle, bh);
1251                         if (!fatal)
1252                                 fatal = err;
1253                 } else {
1254                         BUFFER_TRACE(bh, "not a new buffer");
1255                 }
1256                 if (fatal) {
1257                         *errp = fatal;
1258                         brelse(bh);
1259                         bh = NULL;
1260                 }
1261                 return bh;
1262         }
1263 err:
1264         return NULL;
1265 }
1266
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268                                ext4_lblk_t block, int create, int *err)
1269 {
1270         struct buffer_head *bh;
1271
1272         bh = ext4_getblk(handle, inode, block, create, err);
1273         if (!bh)
1274                 return bh;
1275         if (buffer_uptodate(bh))
1276                 return bh;
1277         ll_rw_block(READ_META, 1, &bh);
1278         wait_on_buffer(bh);
1279         if (buffer_uptodate(bh))
1280                 return bh;
1281         put_bh(bh);
1282         *err = -EIO;
1283         return NULL;
1284 }
1285
1286 static int walk_page_buffers(handle_t *handle,
1287                              struct buffer_head *head,
1288                              unsigned from,
1289                              unsigned to,
1290                              int *partial,
1291                              int (*fn)(handle_t *handle,
1292                                        struct buffer_head *bh))
1293 {
1294         struct buffer_head *bh;
1295         unsigned block_start, block_end;
1296         unsigned blocksize = head->b_size;
1297         int err, ret = 0;
1298         struct buffer_head *next;
1299
1300         for (bh = head, block_start = 0;
1301              ret == 0 && (bh != head || !block_start);
1302              block_start = block_end, bh = next)
1303         {
1304                 next = bh->b_this_page;
1305                 block_end = block_start + blocksize;
1306                 if (block_end <= from || block_start >= to) {
1307                         if (partial && !buffer_uptodate(bh))
1308                                 *partial = 1;
1309                         continue;
1310                 }
1311                 err = (*fn)(handle, bh);
1312                 if (!ret)
1313                         ret = err;
1314         }
1315         return ret;
1316 }
1317
1318 /*
1319  * To preserve ordering, it is essential that the hole instantiation and
1320  * the data write be encapsulated in a single transaction.  We cannot
1321  * close off a transaction and start a new one between the ext4_get_block()
1322  * and the commit_write().  So doing the jbd2_journal_start at the start of
1323  * prepare_write() is the right place.
1324  *
1325  * Also, this function can nest inside ext4_writepage() ->
1326  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327  * has generated enough buffer credits to do the whole page.  So we won't
1328  * block on the journal in that case, which is good, because the caller may
1329  * be PF_MEMALLOC.
1330  *
1331  * By accident, ext4 can be reentered when a transaction is open via
1332  * quota file writes.  If we were to commit the transaction while thus
1333  * reentered, there can be a deadlock - we would be holding a quota
1334  * lock, and the commit would never complete if another thread had a
1335  * transaction open and was blocking on the quota lock - a ranking
1336  * violation.
1337  *
1338  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339  * will _not_ run commit under these circumstances because handle->h_ref
1340  * is elevated.  We'll still have enough credits for the tiny quotafile
1341  * write.
1342  */
1343 static int do_journal_get_write_access(handle_t *handle,
1344                                         struct buffer_head *bh)
1345 {
1346         if (!buffer_mapped(bh) || buffer_freed(bh))
1347                 return 0;
1348         return ext4_journal_get_write_access(handle, bh);
1349 }
1350
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352                                 loff_t pos, unsigned len, unsigned flags,
1353                                 struct page **pagep, void **fsdata)
1354 {
1355         struct inode *inode = mapping->host;
1356         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357         handle_t *handle;
1358         int retries = 0;
1359         struct page *page;
1360         pgoff_t index;
1361         unsigned from, to;
1362
1363         index = pos >> PAGE_CACHE_SHIFT;
1364         from = pos & (PAGE_CACHE_SIZE - 1);
1365         to = from + len;
1366
1367 retry:
1368         handle = ext4_journal_start(inode, needed_blocks);
1369         if (IS_ERR(handle)) {
1370                 ret = PTR_ERR(handle);
1371                 goto out;
1372         }
1373
1374         page = __grab_cache_page(mapping, index);
1375         if (!page) {
1376                 ext4_journal_stop(handle);
1377                 ret = -ENOMEM;
1378                 goto out;
1379         }
1380         *pagep = page;
1381
1382         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383                                                         ext4_get_block);
1384
1385         if (!ret && ext4_should_journal_data(inode)) {
1386                 ret = walk_page_buffers(handle, page_buffers(page),
1387                                 from, to, NULL, do_journal_get_write_access);
1388         }
1389
1390         if (ret) {
1391                 unlock_page(page);
1392                 ext4_journal_stop(handle);
1393                 page_cache_release(page);
1394                 /*
1395                  * block_write_begin may have instantiated a few blocks
1396                  * outside i_size.  Trim these off again. Don't need
1397                  * i_size_read because we hold i_mutex.
1398                  */
1399                 if (pos + len > inode->i_size)
1400                         vmtruncate(inode, inode->i_size);
1401         }
1402
1403         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1404                 goto retry;
1405 out:
1406         return ret;
1407 }
1408
1409 /* For write_end() in data=journal mode */
1410 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1411 {
1412         if (!buffer_mapped(bh) || buffer_freed(bh))
1413                 return 0;
1414         set_buffer_uptodate(bh);
1415         return ext4_journal_dirty_metadata(handle, bh);
1416 }
1417
1418 /*
1419  * We need to pick up the new inode size which generic_commit_write gave us
1420  * `file' can be NULL - eg, when called from page_symlink().
1421  *
1422  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1423  * buffers are managed internally.
1424  */
1425 static int ext4_ordered_write_end(struct file *file,
1426                                 struct address_space *mapping,
1427                                 loff_t pos, unsigned len, unsigned copied,
1428                                 struct page *page, void *fsdata)
1429 {
1430         handle_t *handle = ext4_journal_current_handle();
1431         struct inode *inode = mapping->host;
1432         int ret = 0, ret2;
1433
1434         ret = ext4_jbd2_file_inode(handle, inode);
1435
1436         if (ret == 0) {
1437                 loff_t new_i_size;
1438
1439                 new_i_size = pos + copied;
1440                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1441                         ext4_update_i_disksize(inode, new_i_size);
1442                         /* We need to mark inode dirty even if
1443                          * new_i_size is less that inode->i_size
1444                          * bu greater than i_disksize.(hint delalloc)
1445                          */
1446                         ext4_mark_inode_dirty(handle, inode);
1447                 }
1448
1449                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1450                                                         page, fsdata);
1451                 copied = ret2;
1452                 if (ret2 < 0)
1453                         ret = ret2;
1454         }
1455         ret2 = ext4_journal_stop(handle);
1456         if (!ret)
1457                 ret = ret2;
1458
1459         return ret ? ret : copied;
1460 }
1461
1462 static int ext4_writeback_write_end(struct file *file,
1463                                 struct address_space *mapping,
1464                                 loff_t pos, unsigned len, unsigned copied,
1465                                 struct page *page, void *fsdata)
1466 {
1467         handle_t *handle = ext4_journal_current_handle();
1468         struct inode *inode = mapping->host;
1469         int ret = 0, ret2;
1470         loff_t new_i_size;
1471
1472         new_i_size = pos + copied;
1473         if (new_i_size > EXT4_I(inode)->i_disksize) {
1474                 ext4_update_i_disksize(inode, new_i_size);
1475                 /* We need to mark inode dirty even if
1476                  * new_i_size is less that inode->i_size
1477                  * bu greater than i_disksize.(hint delalloc)
1478                  */
1479                 ext4_mark_inode_dirty(handle, inode);
1480         }
1481
1482         ret2 = generic_write_end(file, mapping, pos, len, copied,
1483                                                         page, fsdata);
1484         copied = ret2;
1485         if (ret2 < 0)
1486                 ret = ret2;
1487
1488         ret2 = ext4_journal_stop(handle);
1489         if (!ret)
1490                 ret = ret2;
1491
1492         return ret ? ret : copied;
1493 }
1494
1495 static int ext4_journalled_write_end(struct file *file,
1496                                 struct address_space *mapping,
1497                                 loff_t pos, unsigned len, unsigned copied,
1498                                 struct page *page, void *fsdata)
1499 {
1500         handle_t *handle = ext4_journal_current_handle();
1501         struct inode *inode = mapping->host;
1502         int ret = 0, ret2;
1503         int partial = 0;
1504         unsigned from, to;
1505         loff_t new_i_size;
1506
1507         from = pos & (PAGE_CACHE_SIZE - 1);
1508         to = from + len;
1509
1510         if (copied < len) {
1511                 if (!PageUptodate(page))
1512                         copied = 0;
1513                 page_zero_new_buffers(page, from+copied, to);
1514         }
1515
1516         ret = walk_page_buffers(handle, page_buffers(page), from,
1517                                 to, &partial, write_end_fn);
1518         if (!partial)
1519                 SetPageUptodate(page);
1520         new_i_size = pos + copied;
1521         if (new_i_size > inode->i_size)
1522                 i_size_write(inode, pos+copied);
1523         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1524         if (new_i_size > EXT4_I(inode)->i_disksize) {
1525                 ext4_update_i_disksize(inode, new_i_size);
1526                 ret2 = ext4_mark_inode_dirty(handle, inode);
1527                 if (!ret)
1528                         ret = ret2;
1529         }
1530
1531         unlock_page(page);
1532         ret2 = ext4_journal_stop(handle);
1533         if (!ret)
1534                 ret = ret2;
1535         page_cache_release(page);
1536
1537         return ret ? ret : copied;
1538 }
1539
1540 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1541 {
1542         int retries = 0;
1543        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1544        unsigned long md_needed, mdblocks, total = 0;
1545
1546         /*
1547          * recalculate the amount of metadata blocks to reserve
1548          * in order to allocate nrblocks
1549          * worse case is one extent per block
1550          */
1551 repeat:
1552         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1553         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1554         mdblocks = ext4_calc_metadata_amount(inode, total);
1555         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1556
1557         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1558         total = md_needed + nrblocks;
1559
1560         if (ext4_claim_free_blocks(sbi, total)) {
1561                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1562                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1563                         yield();
1564                         goto repeat;
1565                 }
1566                 return -ENOSPC;
1567         }
1568         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1569         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1570
1571         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1572         return 0;       /* success */
1573 }
1574
1575 static void ext4_da_release_space(struct inode *inode, int to_free)
1576 {
1577         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1578         int total, mdb, mdb_free, release;
1579
1580         if (!to_free)
1581                 return;         /* Nothing to release, exit */
1582
1583         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1584
1585         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1586                 /*
1587                  * if there is no reserved blocks, but we try to free some
1588                  * then the counter is messed up somewhere.
1589                  * but since this function is called from invalidate
1590                  * page, it's harmless to return without any action
1591                  */
1592                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1593                             "blocks for inode %lu, but there is no reserved "
1594                             "data blocks\n", to_free, inode->i_ino);
1595                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1596                 return;
1597         }
1598
1599         /* recalculate the number of metablocks still need to be reserved */
1600         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1601         mdb = ext4_calc_metadata_amount(inode, total);
1602
1603         /* figure out how many metablocks to release */
1604         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1605         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1606
1607         release = to_free + mdb_free;
1608
1609         /* update fs dirty blocks counter for truncate case */
1610         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1611
1612         /* update per-inode reservations */
1613         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1614         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1615
1616         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1617         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1618         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1619 }
1620
1621 static void ext4_da_page_release_reservation(struct page *page,
1622                                                 unsigned long offset)
1623 {
1624         int to_release = 0;
1625         struct buffer_head *head, *bh;
1626         unsigned int curr_off = 0;
1627
1628         head = page_buffers(page);
1629         bh = head;
1630         do {
1631                 unsigned int next_off = curr_off + bh->b_size;
1632
1633                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1634                         to_release++;
1635                         clear_buffer_delay(bh);
1636                 }
1637                 curr_off = next_off;
1638         } while ((bh = bh->b_this_page) != head);
1639         ext4_da_release_space(page->mapping->host, to_release);
1640 }
1641
1642 /*
1643  * Delayed allocation stuff
1644  */
1645
1646 struct mpage_da_data {
1647         struct inode *inode;
1648         struct buffer_head lbh;                 /* extent of blocks */
1649         unsigned long first_page, next_page;    /* extent of pages */
1650         get_block_t *get_block;
1651         struct writeback_control *wbc;
1652         int io_done;
1653         long pages_written;
1654         int retval;
1655 };
1656
1657 /*
1658  * mpage_da_submit_io - walks through extent of pages and try to write
1659  * them with writepage() call back
1660  *
1661  * @mpd->inode: inode
1662  * @mpd->first_page: first page of the extent
1663  * @mpd->next_page: page after the last page of the extent
1664  * @mpd->get_block: the filesystem's block mapper function
1665  *
1666  * By the time mpage_da_submit_io() is called we expect all blocks
1667  * to be allocated. this may be wrong if allocation failed.
1668  *
1669  * As pages are already locked by write_cache_pages(), we can't use it
1670  */
1671 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1672 {
1673         struct address_space *mapping = mpd->inode->i_mapping;
1674         int ret = 0, err, nr_pages, i;
1675         unsigned long index, end;
1676         struct pagevec pvec;
1677
1678         BUG_ON(mpd->next_page <= mpd->first_page);
1679         pagevec_init(&pvec, 0);
1680         index = mpd->first_page;
1681         end = mpd->next_page - 1;
1682
1683         while (index <= end) {
1684                 /* XXX: optimize tail */
1685                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1686                 if (nr_pages == 0)
1687                         break;
1688                 for (i = 0; i < nr_pages; i++) {
1689                         struct page *page = pvec.pages[i];
1690
1691                         index = page->index;
1692                         if (index > end)
1693                                 break;
1694                         index++;
1695
1696                         err = mapping->a_ops->writepage(page, mpd->wbc);
1697                         if (!err)
1698                                 mpd->pages_written++;
1699                         /*
1700                          * In error case, we have to continue because
1701                          * remaining pages are still locked
1702                          * XXX: unlock and re-dirty them?
1703                          */
1704                         if (ret == 0)
1705                                 ret = err;
1706                 }
1707                 pagevec_release(&pvec);
1708         }
1709         return ret;
1710 }
1711
1712 /*
1713  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1714  *
1715  * @mpd->inode - inode to walk through
1716  * @exbh->b_blocknr - first block on a disk
1717  * @exbh->b_size - amount of space in bytes
1718  * @logical - first logical block to start assignment with
1719  *
1720  * the function goes through all passed space and put actual disk
1721  * block numbers into buffer heads, dropping BH_Delay
1722  */
1723 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1724                                  struct buffer_head *exbh)
1725 {
1726         struct inode *inode = mpd->inode;
1727         struct address_space *mapping = inode->i_mapping;
1728         int blocks = exbh->b_size >> inode->i_blkbits;
1729         sector_t pblock = exbh->b_blocknr, cur_logical;
1730         struct buffer_head *head, *bh;
1731         pgoff_t index, end;
1732         struct pagevec pvec;
1733         int nr_pages, i;
1734
1735         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1736         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1737         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1738
1739         pagevec_init(&pvec, 0);
1740
1741         while (index <= end) {
1742                 /* XXX: optimize tail */
1743                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1744                 if (nr_pages == 0)
1745                         break;
1746                 for (i = 0; i < nr_pages; i++) {
1747                         struct page *page = pvec.pages[i];
1748
1749                         index = page->index;
1750                         if (index > end)
1751                                 break;
1752                         index++;
1753
1754                         BUG_ON(!PageLocked(page));
1755                         BUG_ON(PageWriteback(page));
1756                         BUG_ON(!page_has_buffers(page));
1757
1758                         bh = page_buffers(page);
1759                         head = bh;
1760
1761                         /* skip blocks out of the range */
1762                         do {
1763                                 if (cur_logical >= logical)
1764                                         break;
1765                                 cur_logical++;
1766                         } while ((bh = bh->b_this_page) != head);
1767
1768                         do {
1769                                 if (cur_logical >= logical + blocks)
1770                                         break;
1771                                 if (buffer_delay(bh)) {
1772                                         bh->b_blocknr = pblock;
1773                                         clear_buffer_delay(bh);
1774                                         bh->b_bdev = inode->i_sb->s_bdev;
1775                                 } else if (buffer_unwritten(bh)) {
1776                                         bh->b_blocknr = pblock;
1777                                         clear_buffer_unwritten(bh);
1778                                         set_buffer_mapped(bh);
1779                                         set_buffer_new(bh);
1780                                         bh->b_bdev = inode->i_sb->s_bdev;
1781                                 } else if (buffer_mapped(bh))
1782                                         BUG_ON(bh->b_blocknr != pblock);
1783
1784                                 cur_logical++;
1785                                 pblock++;
1786                         } while ((bh = bh->b_this_page) != head);
1787                 }
1788                 pagevec_release(&pvec);
1789         }
1790 }
1791
1792
1793 /*
1794  * __unmap_underlying_blocks - just a helper function to unmap
1795  * set of blocks described by @bh
1796  */
1797 static inline void __unmap_underlying_blocks(struct inode *inode,
1798                                              struct buffer_head *bh)
1799 {
1800         struct block_device *bdev = inode->i_sb->s_bdev;
1801         int blocks, i;
1802
1803         blocks = bh->b_size >> inode->i_blkbits;
1804         for (i = 0; i < blocks; i++)
1805                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1806 }
1807
1808 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1809                                         sector_t logical, long blk_cnt)
1810 {
1811         int nr_pages, i;
1812         pgoff_t index, end;
1813         struct pagevec pvec;
1814         struct inode *inode = mpd->inode;
1815         struct address_space *mapping = inode->i_mapping;
1816
1817         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1818         end   = (logical + blk_cnt - 1) >>
1819                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1820         while (index <= end) {
1821                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1822                 if (nr_pages == 0)
1823                         break;
1824                 for (i = 0; i < nr_pages; i++) {
1825                         struct page *page = pvec.pages[i];
1826                         index = page->index;
1827                         if (index > end)
1828                                 break;
1829                         index++;
1830
1831                         BUG_ON(!PageLocked(page));
1832                         BUG_ON(PageWriteback(page));
1833                         block_invalidatepage(page, 0);
1834                         ClearPageUptodate(page);
1835                         unlock_page(page);
1836                 }
1837         }
1838         return;
1839 }
1840
1841 static void ext4_print_free_blocks(struct inode *inode)
1842 {
1843         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1844         printk(KERN_EMERG "Total free blocks count %lld\n",
1845                         ext4_count_free_blocks(inode->i_sb));
1846         printk(KERN_EMERG "Free/Dirty block details\n");
1847         printk(KERN_EMERG "free_blocks=%lld\n",
1848                         percpu_counter_sum(&sbi->s_freeblocks_counter));
1849         printk(KERN_EMERG "dirty_blocks=%lld\n",
1850                         percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1851         printk(KERN_EMERG "Block reservation details\n");
1852         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1853                         EXT4_I(inode)->i_reserved_data_blocks);
1854         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1855                         EXT4_I(inode)->i_reserved_meta_blocks);
1856         return;
1857 }
1858
1859 /*
1860  * mpage_da_map_blocks - go through given space
1861  *
1862  * @mpd->lbh - bh describing space
1863  * @mpd->get_block - the filesystem's block mapper function
1864  *
1865  * The function skips space we know is already mapped to disk blocks.
1866  *
1867  */
1868 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1869 {
1870         int err = 0;
1871         struct buffer_head new;
1872         struct buffer_head *lbh = &mpd->lbh;
1873         sector_t next;
1874
1875         /*
1876          * We consider only non-mapped and non-allocated blocks
1877          */
1878         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1879                 return 0;
1880         new.b_state = lbh->b_state;
1881         new.b_blocknr = 0;
1882         new.b_size = lbh->b_size;
1883         next = lbh->b_blocknr;
1884         /*
1885          * If we didn't accumulate anything
1886          * to write simply return
1887          */
1888         if (!new.b_size)
1889                 return 0;
1890         err = mpd->get_block(mpd->inode, next, &new, 1);
1891         if (err) {
1892
1893                 /* If get block returns with error
1894                  * we simply return. Later writepage
1895                  * will redirty the page and writepages
1896                  * will find the dirty page again
1897                  */
1898                 if (err == -EAGAIN)
1899                         return 0;
1900
1901                 if (err == -ENOSPC &&
1902                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1903                         mpd->retval = err;
1904                         return 0;
1905                 }
1906
1907                 /*
1908                  * get block failure will cause us
1909                  * to loop in writepages. Because
1910                  * a_ops->writepage won't be able to
1911                  * make progress. The page will be redirtied
1912                  * by writepage and writepages will again
1913                  * try to write the same.
1914                  */
1915                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1916                                   "at logical offset %llu with max blocks "
1917                                   "%zd with error %d\n",
1918                                   __func__, mpd->inode->i_ino,
1919                                   (unsigned long long)next,
1920                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1921                 printk(KERN_EMERG "This should not happen.!! "
1922                                         "Data will be lost\n");
1923                 if (err == -ENOSPC) {
1924                         ext4_print_free_blocks(mpd->inode);
1925                 }
1926                 /* invlaidate all the pages */
1927                 ext4_da_block_invalidatepages(mpd, next,
1928                                 lbh->b_size >> mpd->inode->i_blkbits);
1929                 return err;
1930         }
1931         BUG_ON(new.b_size == 0);
1932
1933         if (buffer_new(&new))
1934                 __unmap_underlying_blocks(mpd->inode, &new);
1935
1936         /*
1937          * If blocks are delayed marked, we need to
1938          * put actual blocknr and drop delayed bit
1939          */
1940         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1941                 mpage_put_bnr_to_bhs(mpd, next, &new);
1942
1943         return 0;
1944 }
1945
1946 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1947                 (1 << BH_Delay) | (1 << BH_Unwritten))
1948
1949 /*
1950  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1951  *
1952  * @mpd->lbh - extent of blocks
1953  * @logical - logical number of the block in the file
1954  * @bh - bh of the block (used to access block's state)
1955  *
1956  * the function is used to collect contig. blocks in same state
1957  */
1958 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1959                                    sector_t logical, struct buffer_head *bh)
1960 {
1961         sector_t next;
1962         size_t b_size = bh->b_size;
1963         struct buffer_head *lbh = &mpd->lbh;
1964         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1965
1966         /* check if thereserved journal credits might overflow */
1967         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1968                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1969                         /*
1970                          * With non-extent format we are limited by the journal
1971                          * credit available.  Total credit needed to insert
1972                          * nrblocks contiguous blocks is dependent on the
1973                          * nrblocks.  So limit nrblocks.
1974                          */
1975                         goto flush_it;
1976                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1977                                 EXT4_MAX_TRANS_DATA) {
1978                         /*
1979                          * Adding the new buffer_head would make it cross the
1980                          * allowed limit for which we have journal credit
1981                          * reserved. So limit the new bh->b_size
1982                          */
1983                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1984                                                 mpd->inode->i_blkbits;
1985                         /* we will do mpage_da_submit_io in the next loop */
1986                 }
1987         }
1988         /*
1989          * First block in the extent
1990          */
1991         if (lbh->b_size == 0) {
1992                 lbh->b_blocknr = logical;
1993                 lbh->b_size = b_size;
1994                 lbh->b_state = bh->b_state & BH_FLAGS;
1995                 return;
1996         }
1997
1998         next = lbh->b_blocknr + nrblocks;
1999         /*
2000          * Can we merge the block to our big extent?
2001          */
2002         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2003                 lbh->b_size += b_size;
2004                 return;
2005         }
2006
2007 flush_it:
2008         /*
2009          * We couldn't merge the block to our extent, so we
2010          * need to flush current  extent and start new one
2011          */
2012         if (mpage_da_map_blocks(mpd) == 0)
2013                 mpage_da_submit_io(mpd);
2014         mpd->io_done = 1;
2015         return;
2016 }
2017
2018 /*
2019  * __mpage_da_writepage - finds extent of pages and blocks
2020  *
2021  * @page: page to consider
2022  * @wbc: not used, we just follow rules
2023  * @data: context
2024  *
2025  * The function finds extents of pages and scan them for all blocks.
2026  */
2027 static int __mpage_da_writepage(struct page *page,
2028                                 struct writeback_control *wbc, void *data)
2029 {
2030         struct mpage_da_data *mpd = data;
2031         struct inode *inode = mpd->inode;
2032         struct buffer_head *bh, *head, fake;
2033         sector_t logical;
2034
2035         if (mpd->io_done) {
2036                 /*
2037                  * Rest of the page in the page_vec
2038                  * redirty then and skip then. We will
2039                  * try to to write them again after
2040                  * starting a new transaction
2041                  */
2042                 redirty_page_for_writepage(wbc, page);
2043                 unlock_page(page);
2044                 return MPAGE_DA_EXTENT_TAIL;
2045         }
2046         /*
2047          * Can we merge this page to current extent?
2048          */
2049         if (mpd->next_page != page->index) {
2050                 /*
2051                  * Nope, we can't. So, we map non-allocated blocks
2052                  * and start IO on them using writepage()
2053                  */
2054                 if (mpd->next_page != mpd->first_page) {
2055                         if (mpage_da_map_blocks(mpd) == 0)
2056                                 mpage_da_submit_io(mpd);
2057                         /*
2058                          * skip rest of the page in the page_vec
2059                          */
2060                         mpd->io_done = 1;
2061                         redirty_page_for_writepage(wbc, page);
2062                         unlock_page(page);
2063                         return MPAGE_DA_EXTENT_TAIL;
2064                 }
2065
2066                 /*
2067                  * Start next extent of pages ...
2068                  */
2069                 mpd->first_page = page->index;
2070
2071                 /*
2072                  * ... and blocks
2073                  */
2074                 mpd->lbh.b_size = 0;
2075                 mpd->lbh.b_state = 0;
2076                 mpd->lbh.b_blocknr = 0;
2077         }
2078
2079         mpd->next_page = page->index + 1;
2080         logical = (sector_t) page->index <<
2081                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082
2083         if (!page_has_buffers(page)) {
2084                 /*
2085                  * There is no attached buffer heads yet (mmap?)
2086                  * we treat the page asfull of dirty blocks
2087                  */
2088                 bh = &fake;
2089                 bh->b_size = PAGE_CACHE_SIZE;
2090                 bh->b_state = 0;
2091                 set_buffer_dirty(bh);
2092                 set_buffer_uptodate(bh);
2093                 mpage_add_bh_to_extent(mpd, logical, bh);
2094                 if (mpd->io_done)
2095                         return MPAGE_DA_EXTENT_TAIL;
2096         } else {
2097                 /*
2098                  * Page with regular buffer heads, just add all dirty ones
2099                  */
2100                 head = page_buffers(page);
2101                 bh = head;
2102                 do {
2103                         BUG_ON(buffer_locked(bh));
2104                         if (buffer_dirty(bh) &&
2105                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2106                                 mpage_add_bh_to_extent(mpd, logical, bh);
2107                                 if (mpd->io_done)
2108                                         return MPAGE_DA_EXTENT_TAIL;
2109                         }
2110                         logical++;
2111                 } while ((bh = bh->b_this_page) != head);
2112         }
2113
2114         return 0;
2115 }
2116
2117 /*
2118  * mpage_da_writepages - walk the list of dirty pages of the given
2119  * address space, allocates non-allocated blocks, maps newly-allocated
2120  * blocks to existing bhs and issue IO them
2121  *
2122  * @mapping: address space structure to write
2123  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2124  * @get_block: the filesystem's block mapper function.
2125  *
2126  * This is a library function, which implements the writepages()
2127  * address_space_operation.
2128  */
2129 static int mpage_da_writepages(struct address_space *mapping,
2130                                struct writeback_control *wbc,
2131                                struct mpage_da_data *mpd)
2132 {
2133         long to_write;
2134         int ret;
2135
2136         if (!mpd->get_block)
2137                 return generic_writepages(mapping, wbc);
2138
2139         mpd->lbh.b_size = 0;
2140         mpd->lbh.b_state = 0;
2141         mpd->lbh.b_blocknr = 0;
2142         mpd->first_page = 0;
2143         mpd->next_page = 0;
2144         mpd->io_done = 0;
2145         mpd->pages_written = 0;
2146         mpd->retval = 0;
2147
2148         to_write = wbc->nr_to_write;
2149
2150         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2151
2152         /*
2153          * Handle last extent of pages
2154          */
2155         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2156                 if (mpage_da_map_blocks(mpd) == 0)
2157                         mpage_da_submit_io(mpd);
2158         }
2159
2160         wbc->nr_to_write = to_write - mpd->pages_written;
2161         return ret;
2162 }
2163
2164 /*
2165  * this is a special callback for ->write_begin() only
2166  * it's intention is to return mapped block or reserve space
2167  */
2168 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2169                                   struct buffer_head *bh_result, int create)
2170 {
2171         int ret = 0;
2172
2173         BUG_ON(create == 0);
2174         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2175
2176         /*
2177          * first, we need to know whether the block is allocated already
2178          * preallocated blocks are unmapped but should treated
2179          * the same as allocated blocks.
2180          */
2181         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2182         if ((ret == 0) && !buffer_delay(bh_result)) {
2183                 /* the block isn't (pre)allocated yet, let's reserve space */
2184                 /*
2185                  * XXX: __block_prepare_write() unmaps passed block,
2186                  * is it OK?
2187                  */
2188                 ret = ext4_da_reserve_space(inode, 1);
2189                 if (ret)
2190                         /* not enough space to reserve */
2191                         return ret;
2192
2193                 map_bh(bh_result, inode->i_sb, 0);
2194                 set_buffer_new(bh_result);
2195                 set_buffer_delay(bh_result);
2196         } else if (ret > 0) {
2197                 bh_result->b_size = (ret << inode->i_blkbits);
2198                 ret = 0;
2199         }
2200
2201         return ret;
2202 }
2203 #define         EXT4_DELALLOC_RSVED     1
2204 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2205                                    struct buffer_head *bh_result, int create)
2206 {
2207         int ret;
2208         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2209         loff_t disksize = EXT4_I(inode)->i_disksize;
2210         handle_t *handle = NULL;
2211
2212         handle = ext4_journal_current_handle();
2213         BUG_ON(!handle);
2214         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2215                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2216         if (ret > 0) {
2217
2218                 bh_result->b_size = (ret << inode->i_blkbits);
2219
2220                 if (ext4_should_order_data(inode)) {
2221                         int retval;
2222                         retval = ext4_jbd2_file_inode(handle, inode);
2223                         if (retval)
2224                                 /*
2225                                  * Failed to add inode for ordered
2226                                  * mode. Don't update file size
2227                                  */
2228                                 return retval;
2229                 }
2230
2231                 /*
2232                  * Update on-disk size along with block allocation
2233                  * we don't use 'extend_disksize' as size may change
2234                  * within already allocated block -bzzz
2235                  */
2236                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2237                 if (disksize > i_size_read(inode))
2238                         disksize = i_size_read(inode);
2239                 if (disksize > EXT4_I(inode)->i_disksize) {
2240                         ext4_update_i_disksize(inode, disksize);
2241                         ret = ext4_mark_inode_dirty(handle, inode);
2242                         return ret;
2243                 }
2244                 ret = 0;
2245         }
2246         return ret;
2247 }
2248
2249 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2250 {
2251         /*
2252          * unmapped buffer is possible for holes.
2253          * delay buffer is possible with delayed allocation
2254          */
2255         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2256 }
2257
2258 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2259                                    struct buffer_head *bh_result, int create)
2260 {
2261         int ret = 0;
2262         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2263
2264         /*
2265          * we don't want to do block allocation in writepage
2266          * so call get_block_wrap with create = 0
2267          */
2268         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2269                                    bh_result, 0, 0, 0);
2270         if (ret > 0) {
2271                 bh_result->b_size = (ret << inode->i_blkbits);
2272                 ret = 0;
2273         }
2274         return ret;
2275 }
2276
2277 /*
2278  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2279  * get called via journal_submit_inode_data_buffers (no journal handle)
2280  * get called via shrink_page_list via pdflush (no journal handle)
2281  * or grab_page_cache when doing write_begin (have journal handle)
2282  */
2283 static int ext4_da_writepage(struct page *page,
2284                                 struct writeback_control *wbc)
2285 {
2286         int ret = 0;
2287         loff_t size;
2288         unsigned long len;
2289         struct buffer_head *page_bufs;
2290         struct inode *inode = page->mapping->host;
2291
2292         size = i_size_read(inode);
2293         if (page->index == size >> PAGE_CACHE_SHIFT)
2294                 len = size & ~PAGE_CACHE_MASK;
2295         else
2296                 len = PAGE_CACHE_SIZE;
2297
2298         if (page_has_buffers(page)) {
2299                 page_bufs = page_buffers(page);
2300                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2301                                         ext4_bh_unmapped_or_delay)) {
2302                         /*
2303                          * We don't want to do  block allocation
2304                          * So redirty the page and return
2305                          * We may reach here when we do a journal commit
2306                          * via journal_submit_inode_data_buffers.
2307                          * If we don't have mapping block we just ignore
2308                          * them. We can also reach here via shrink_page_list
2309                          */
2310                         redirty_page_for_writepage(wbc, page);
2311                         unlock_page(page);
2312                         return 0;
2313                 }
2314         } else {
2315                 /*
2316                  * The test for page_has_buffers() is subtle:
2317                  * We know the page is dirty but it lost buffers. That means
2318                  * that at some moment in time after write_begin()/write_end()
2319                  * has been called all buffers have been clean and thus they
2320                  * must have been written at least once. So they are all
2321                  * mapped and we can happily proceed with mapping them
2322                  * and writing the page.
2323                  *
2324                  * Try to initialize the buffer_heads and check whether
2325                  * all are mapped and non delay. We don't want to
2326                  * do block allocation here.
2327                  */
2328                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2329                                                 ext4_normal_get_block_write);
2330                 if (!ret) {
2331                         page_bufs = page_buffers(page);
2332                         /* check whether all are mapped and non delay */
2333                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2334                                                 ext4_bh_unmapped_or_delay)) {
2335                                 redirty_page_for_writepage(wbc, page);
2336                                 unlock_page(page);
2337                                 return 0;
2338                         }
2339                 } else {
2340                         /*
2341                          * We can't do block allocation here
2342                          * so just redity the page and unlock
2343                          * and return
2344                          */
2345                         redirty_page_for_writepage(wbc, page);
2346                         unlock_page(page);
2347                         return 0;
2348                 }
2349         }
2350
2351         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2352                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2353         else
2354                 ret = block_write_full_page(page,
2355                                                 ext4_normal_get_block_write,
2356                                                 wbc);
2357
2358         return ret;
2359 }
2360
2361 /*
2362  * This is called via ext4_da_writepages() to
2363  * calulate the total number of credits to reserve to fit
2364  * a single extent allocation into a single transaction,
2365  * ext4_da_writpeages() will loop calling this before
2366  * the block allocation.
2367  */
2368
2369 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2370 {
2371         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2372
2373         /*
2374          * With non-extent format the journal credit needed to
2375          * insert nrblocks contiguous block is dependent on
2376          * number of contiguous block. So we will limit
2377          * number of contiguous block to a sane value
2378          */
2379         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2380             (max_blocks > EXT4_MAX_TRANS_DATA))
2381                 max_blocks = EXT4_MAX_TRANS_DATA;
2382
2383         return ext4_chunk_trans_blocks(inode, max_blocks);
2384 }
2385
2386 static int ext4_da_writepages(struct address_space *mapping,
2387                               struct writeback_control *wbc)
2388 {
2389         handle_t *handle = NULL;
2390         loff_t range_start = 0;
2391         struct mpage_da_data mpd;
2392         struct inode *inode = mapping->host;
2393         int needed_blocks, ret = 0, nr_to_writebump = 0;
2394         long to_write, pages_skipped = 0;
2395         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2396
2397         /*
2398          * No pages to write? This is mainly a kludge to avoid starting
2399          * a transaction for special inodes like journal inode on last iput()
2400          * because that could violate lock ordering on umount
2401          */
2402         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2403                 return 0;
2404         /*
2405          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2406          * This make sure small files blocks are allocated in
2407          * single attempt. This ensure that small files
2408          * get less fragmented.
2409          */
2410         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2411                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2412                 wbc->nr_to_write = sbi->s_mb_stream_request;
2413         }
2414
2415         if (!wbc->range_cyclic)
2416                 /*
2417                  * If range_cyclic is not set force range_cont
2418                  * and save the old writeback_index
2419                  */
2420                 wbc->range_cont = 1;
2421
2422         range_start =  wbc->range_start;
2423         pages_skipped = wbc->pages_skipped;
2424
2425         mpd.wbc = wbc;
2426         mpd.inode = mapping->host;
2427
2428 restart_loop:
2429         to_write = wbc->nr_to_write;
2430         while (!ret && to_write > 0) {
2431
2432                 /*
2433                  * we  insert one extent at a time. So we need
2434                  * credit needed for single extent allocation.
2435                  * journalled mode is currently not supported
2436                  * by delalloc
2437                  */
2438                 BUG_ON(ext4_should_journal_data(inode));
2439                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2440
2441                 /* start a new transaction*/
2442                 handle = ext4_journal_start(inode, needed_blocks);
2443                 if (IS_ERR(handle)) {
2444                         ret = PTR_ERR(handle);
2445                         printk(KERN_EMERG "%s: jbd2_start: "
2446                                "%ld pages, ino %lu; err %d\n", __func__,
2447                                 wbc->nr_to_write, inode->i_ino, ret);
2448                         dump_stack();
2449                         goto out_writepages;
2450                 }
2451                 to_write -= wbc->nr_to_write;
2452
2453                 mpd.get_block = ext4_da_get_block_write;
2454                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2455
2456                 ext4_journal_stop(handle);
2457
2458                 if (mpd.retval == -ENOSPC)
2459                         jbd2_journal_force_commit_nested(sbi->s_journal);
2460
2461                 /* reset the retry count */
2462                 if (ret == MPAGE_DA_EXTENT_TAIL) {
2463                         /*
2464                          * got one extent now try with
2465                          * rest of the pages
2466                          */
2467                         to_write += wbc->nr_to_write;
2468                         ret = 0;
2469                 } else if (wbc->nr_to_write) {
2470                         /*
2471                          * There is no more writeout needed
2472                          * or we requested for a noblocking writeout
2473                          * and we found the device congested
2474                          */
2475                         to_write += wbc->nr_to_write;
2476                         break;
2477                 }
2478                 wbc->nr_to_write = to_write;
2479         }
2480
2481         if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2482                 /* We skipped pages in this loop */
2483                 wbc->range_start = range_start;
2484                 wbc->nr_to_write = to_write +
2485                                 wbc->pages_skipped - pages_skipped;
2486                 wbc->pages_skipped = pages_skipped;
2487                 goto restart_loop;
2488         }
2489
2490 out_writepages:
2491         wbc->nr_to_write = to_write - nr_to_writebump;
2492         wbc->range_start = range_start;
2493         return ret;
2494 }
2495
2496 #define FALL_BACK_TO_NONDELALLOC 1
2497 static int ext4_nonda_switch(struct super_block *sb)
2498 {
2499         s64 free_blocks, dirty_blocks;
2500         struct ext4_sb_info *sbi = EXT4_SB(sb);
2501
2502         /*
2503          * switch to non delalloc mode if we are running low
2504          * on free block. The free block accounting via percpu
2505          * counters can get slightly wrong with FBC_BATCH getting
2506          * accumulated on each CPU without updating global counters
2507          * Delalloc need an accurate free block accounting. So switch
2508          * to non delalloc when we are near to error range.
2509          */
2510         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2511         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2512         if (2 * free_blocks < 3 * dirty_blocks ||
2513                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2514                 /*
2515                  * free block count is less that 150% of dirty blocks
2516                  * or free blocks is less that watermark
2517                  */
2518                 return 1;
2519         }
2520         return 0;
2521 }
2522
2523 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2524                                 loff_t pos, unsigned len, unsigned flags,
2525                                 struct page **pagep, void **fsdata)
2526 {
2527         int ret, retries = 0;
2528         struct page *page;
2529         pgoff_t index;
2530         unsigned from, to;
2531         struct inode *inode = mapping->host;
2532         handle_t *handle;
2533
2534         index = pos >> PAGE_CACHE_SHIFT;
2535         from = pos & (PAGE_CACHE_SIZE - 1);
2536         to = from + len;
2537
2538         if (ext4_nonda_switch(inode->i_sb)) {
2539                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2540                 return ext4_write_begin(file, mapping, pos,
2541                                         len, flags, pagep, fsdata);
2542         }
2543         *fsdata = (void *)0;
2544 retry:
2545         /*
2546          * With delayed allocation, we don't log the i_disksize update
2547          * if there is delayed block allocation. But we still need
2548          * to journalling the i_disksize update if writes to the end
2549          * of file which has an already mapped buffer.
2550          */
2551         handle = ext4_journal_start(inode, 1);
2552         if (IS_ERR(handle)) {
2553                 ret = PTR_ERR(handle);
2554                 goto out;
2555         }
2556
2557         page = __grab_cache_page(mapping, index);
2558         if (!page) {
2559                 ext4_journal_stop(handle);
2560                 ret = -ENOMEM;
2561                 goto out;
2562         }
2563         *pagep = page;
2564
2565         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2566                                                         ext4_da_get_block_prep);
2567         if (ret < 0) {
2568                 unlock_page(page);
2569                 ext4_journal_stop(handle);
2570                 page_cache_release(page);
2571                 /*
2572                  * block_write_begin may have instantiated a few blocks
2573                  * outside i_size.  Trim these off again. Don't need
2574                  * i_size_read because we hold i_mutex.
2575                  */
2576                 if (pos + len > inode->i_size)
2577                         vmtruncate(inode, inode->i_size);
2578         }
2579
2580         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2581                 goto retry;
2582 out:
2583         return ret;
2584 }
2585
2586 /*
2587  * Check if we should update i_disksize
2588  * when write to the end of file but not require block allocation
2589  */
2590 static int ext4_da_should_update_i_disksize(struct page *page,
2591                                          unsigned long offset)
2592 {
2593         struct buffer_head *bh;
2594         struct inode *inode = page->mapping->host;
2595         unsigned int idx;
2596         int i;
2597
2598         bh = page_buffers(page);
2599         idx = offset >> inode->i_blkbits;
2600
2601         for (i = 0; i < idx; i++)
2602                 bh = bh->b_this_page;
2603
2604         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2605                 return 0;
2606         return 1;
2607 }
2608
2609 static int ext4_da_write_end(struct file *file,
2610                                 struct address_space *mapping,
2611                                 loff_t pos, unsigned len, unsigned copied,
2612                                 struct page *page, void *fsdata)
2613 {
2614         struct inode *inode = mapping->host;
2615         int ret = 0, ret2;
2616         handle_t *handle = ext4_journal_current_handle();
2617         loff_t new_i_size;
2618         unsigned long start, end;
2619         int write_mode = (int)(unsigned long)fsdata;
2620
2621         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2622                 if (ext4_should_order_data(inode)) {
2623                         return ext4_ordered_write_end(file, mapping, pos,
2624                                         len, copied, page, fsdata);
2625                 } else if (ext4_should_writeback_data(inode)) {
2626                         return ext4_writeback_write_end(file, mapping, pos,
2627                                         len, copied, page, fsdata);
2628                 } else {
2629                         BUG();
2630                 }
2631         }
2632
2633         start = pos & (PAGE_CACHE_SIZE - 1);
2634         end = start + copied - 1;
2635
2636         /*
2637          * generic_write_end() will run mark_inode_dirty() if i_size
2638          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2639          * into that.
2640          */
2641
2642         new_i_size = pos + copied;
2643         if (new_i_size > EXT4_I(inode)->i_disksize) {
2644                 if (ext4_da_should_update_i_disksize(page, end)) {
2645                         down_write(&EXT4_I(inode)->i_data_sem);
2646                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2647                                 /*
2648                                  * Updating i_disksize when extending file
2649                                  * without needing block allocation
2650                                  */
2651                                 if (ext4_should_order_data(inode))
2652                                         ret = ext4_jbd2_file_inode(handle,
2653                                                                    inode);
2654
2655                                 EXT4_I(inode)->i_disksize = new_i_size;
2656                         }
2657                         up_write(&EXT4_I(inode)->i_data_sem);
2658                         /* We need to mark inode dirty even if
2659                          * new_i_size is less that inode->i_size
2660                          * bu greater than i_disksize.(hint delalloc)
2661                          */
2662                         ext4_mark_inode_dirty(handle, inode);
2663                 }
2664         }
2665         ret2 = generic_write_end(file, mapping, pos, len, copied,
2666                                                         page, fsdata);
2667         copied = ret2;
2668         if (ret2 < 0)
2669                 ret = ret2;
2670         ret2 = ext4_journal_stop(handle);
2671         if (!ret)
2672                 ret = ret2;
2673
2674         return ret ? ret : copied;
2675 }
2676
2677 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2678 {
2679         /*
2680          * Drop reserved blocks
2681          */
2682         BUG_ON(!PageLocked(page));
2683         if (!page_has_buffers(page))
2684                 goto out;
2685
2686         ext4_da_page_release_reservation(page, offset);
2687
2688 out:
2689         ext4_invalidatepage(page, offset);
2690
2691         return;
2692 }
2693
2694
2695 /*
2696  * bmap() is special.  It gets used by applications such as lilo and by
2697  * the swapper to find the on-disk block of a specific piece of data.
2698  *
2699  * Naturally, this is dangerous if the block concerned is still in the
2700  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2701  * filesystem and enables swap, then they may get a nasty shock when the
2702  * data getting swapped to that swapfile suddenly gets overwritten by
2703  * the original zero's written out previously to the journal and
2704  * awaiting writeback in the kernel's buffer cache.
2705  *
2706  * So, if we see any bmap calls here on a modified, data-journaled file,
2707  * take extra steps to flush any blocks which might be in the cache.
2708  */
2709 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2710 {
2711         struct inode *inode = mapping->host;
2712         journal_t *journal;
2713         int err;
2714
2715         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2716                         test_opt(inode->i_sb, DELALLOC)) {
2717                 /*
2718                  * With delalloc we want to sync the file
2719                  * so that we can make sure we allocate
2720                  * blocks for file
2721                  */
2722                 filemap_write_and_wait(mapping);
2723         }
2724
2725         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2726                 /*
2727                  * This is a REALLY heavyweight approach, but the use of
2728                  * bmap on dirty files is expected to be extremely rare:
2729                  * only if we run lilo or swapon on a freshly made file
2730                  * do we expect this to happen.
2731                  *
2732                  * (bmap requires CAP_SYS_RAWIO so this does not
2733                  * represent an unprivileged user DOS attack --- we'd be
2734                  * in trouble if mortal users could trigger this path at
2735                  * will.)
2736                  *
2737                  * NB. EXT4_STATE_JDATA is not set on files other than
2738                  * regular files.  If somebody wants to bmap a directory
2739                  * or symlink and gets confused because the buffer
2740                  * hasn't yet been flushed to disk, they deserve
2741                  * everything they get.
2742                  */
2743
2744                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2745                 journal = EXT4_JOURNAL(inode);
2746                 jbd2_journal_lock_updates(journal);
2747                 err = jbd2_journal_flush(journal);
2748                 jbd2_journal_unlock_updates(journal);
2749
2750                 if (err)
2751                         return 0;
2752         }
2753
2754         return generic_block_bmap(mapping, block, ext4_get_block);
2755 }
2756
2757 static int bget_one(handle_t *handle, struct buffer_head *bh)
2758 {
2759         get_bh(bh);
2760         return 0;
2761 }
2762
2763 static int bput_one(handle_t *handle, struct buffer_head *bh)
2764 {
2765         put_bh(bh);
2766         return 0;
2767 }
2768
2769 /*
2770  * Note that we don't need to start a transaction unless we're journaling data
2771  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2772  * need to file the inode to the transaction's list in ordered mode because if
2773  * we are writing back data added by write(), the inode is already there and if
2774  * we are writing back data modified via mmap(), noone guarantees in which
2775  * transaction the data will hit the disk. In case we are journaling data, we
2776  * cannot start transaction directly because transaction start ranks above page
2777  * lock so we have to do some magic.
2778  *
2779  * In all journaling modes block_write_full_page() will start the I/O.
2780  *
2781  * Problem:
2782  *
2783  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2784  *              ext4_writepage()
2785  *
2786  * Similar for:
2787  *
2788  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2789  *
2790  * Same applies to ext4_get_block().  We will deadlock on various things like
2791  * lock_journal and i_data_sem
2792  *
2793  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2794  * allocations fail.
2795  *
2796  * 16May01: If we're reentered then journal_current_handle() will be
2797  *          non-zero. We simply *return*.
2798  *
2799  * 1 July 2001: @@@ FIXME:
2800  *   In journalled data mode, a data buffer may be metadata against the
2801  *   current transaction.  But the same file is part of a shared mapping
2802  *   and someone does a writepage() on it.
2803  *
2804  *   We will move the buffer onto the async_data list, but *after* it has
2805  *   been dirtied. So there's a small window where we have dirty data on
2806  *   BJ_Metadata.
2807  *
2808  *   Note that this only applies to the last partial page in the file.  The
2809  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2810  *   broken code anyway: it's wrong for msync()).
2811  *
2812  *   It's a rare case: affects the final partial page, for journalled data
2813  *   where the file is subject to bith write() and writepage() in the same
2814  *   transction.  To fix it we'll need a custom block_write_full_page().
2815  *   We'll probably need that anyway for journalling writepage() output.
2816  *
2817  * We don't honour synchronous mounts for writepage().  That would be
2818  * disastrous.  Any write() or metadata operation will sync the fs for
2819  * us.
2820  *
2821  */
2822 static int __ext4_normal_writepage(struct page *page,
2823                                 struct writeback_control *wbc)
2824 {
2825         struct inode *inode = page->mapping->host;
2826
2827         if (test_opt(inode->i_sb, NOBH))
2828                 return nobh_writepage(page,
2829                                         ext4_normal_get_block_write, wbc);
2830         else
2831                 return block_write_full_page(page,
2832                                                 ext4_normal_get_block_write,
2833                                                 wbc);
2834 }
2835
2836 static int ext4_normal_writepage(struct page *page,
2837                                 struct writeback_control *wbc)
2838 {
2839         struct inode *inode = page->mapping->host;
2840         loff_t size = i_size_read(inode);
2841         loff_t len;
2842
2843         J_ASSERT(PageLocked(page));
2844         if (page->index == size >> PAGE_CACHE_SHIFT)
2845                 len = size & ~PAGE_CACHE_MASK;
2846         else
2847                 len = PAGE_CACHE_SIZE;
2848
2849         if (page_has_buffers(page)) {
2850                 /* if page has buffers it should all be mapped
2851                  * and allocated. If there are not buffers attached
2852                  * to the page we know the page is dirty but it lost
2853                  * buffers. That means that at some moment in time
2854                  * after write_begin() / write_end() has been called
2855                  * all buffers have been clean and thus they must have been
2856                  * written at least once. So they are all mapped and we can
2857                  * happily proceed with mapping them and writing the page.
2858                  */
2859                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2860                                         ext4_bh_unmapped_or_delay));
2861         }
2862
2863         if (!ext4_journal_current_handle())
2864                 return __ext4_normal_writepage(page, wbc);
2865
2866         redirty_page_for_writepage(wbc, page);
2867         unlock_page(page);
2868         return 0;
2869 }
2870
2871 static int __ext4_journalled_writepage(struct page *page,
2872                                 struct writeback_control *wbc)
2873 {
2874         struct address_space *mapping = page->mapping;
2875         struct inode *inode = mapping->host;
2876         struct buffer_head *page_bufs;
2877         handle_t *handle = NULL;
2878         int ret = 0;
2879         int err;
2880
2881         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2882                                         ext4_normal_get_block_write);
2883         if (ret != 0)
2884                 goto out_unlock;
2885
2886         page_bufs = page_buffers(page);
2887         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2888                                                                 bget_one);
2889         /* As soon as we unlock the page, it can go away, but we have
2890          * references to buffers so we are safe */
2891         unlock_page(page);
2892
2893         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2894         if (IS_ERR(handle)) {
2895                 ret = PTR_ERR(handle);
2896                 goto out;
2897         }
2898
2899         ret = walk_page_buffers(handle, page_bufs, 0,
2900                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2901
2902         err = walk_page_buffers(handle, page_bufs, 0,
2903                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2904         if (ret == 0)
2905                 ret = err;
2906         err = ext4_journal_stop(handle);
2907         if (!ret)
2908                 ret = err;
2909
2910         walk_page_buffers(handle, page_bufs, 0,
2911                                 PAGE_CACHE_SIZE, NULL, bput_one);
2912         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2913         goto out;
2914
2915 out_unlock:
2916         unlock_page(page);
2917 out:
2918         return ret;
2919 }
2920
2921 static int ext4_journalled_writepage(struct page *page,
2922                                 struct writeback_control *wbc)
2923 {
2924         struct inode *inode = page->mapping->host;
2925         loff_t size = i_size_read(inode);
2926         loff_t len;
2927
2928         J_ASSERT(PageLocked(page));
2929         if (page->index == size >> PAGE_CACHE_SHIFT)
2930                 len = size & ~PAGE_CACHE_MASK;
2931         else
2932                 len = PAGE_CACHE_SIZE;
2933
2934         if (page_has_buffers(page)) {
2935                 /* if page has buffers it should all be mapped
2936                  * and allocated. If there are not buffers attached
2937                  * to the page we know the page is dirty but it lost
2938                  * buffers. That means that at some moment in time
2939                  * after write_begin() / write_end() has been called
2940                  * all buffers have been clean and thus they must have been
2941                  * written at least once. So they are all mapped and we can
2942                  * happily proceed with mapping them and writing the page.
2943                  */
2944                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2945                                         ext4_bh_unmapped_or_delay));
2946         }
2947
2948         if (ext4_journal_current_handle())
2949                 goto no_write;
2950
2951         if (PageChecked(page)) {
2952                 /*
2953                  * It's mmapped pagecache.  Add buffers and journal it.  There
2954                  * doesn't seem much point in redirtying the page here.
2955                  */
2956                 ClearPageChecked(page);
2957                 return __ext4_journalled_writepage(page, wbc);
2958         } else {
2959                 /*
2960                  * It may be a page full of checkpoint-mode buffers.  We don't
2961                  * really know unless we go poke around in the buffer_heads.
2962                  * But block_write_full_page will do the right thing.
2963                  */
2964                 return block_write_full_page(page,
2965                                                 ext4_normal_get_block_write,
2966                                                 wbc);
2967         }
2968 no_write:
2969         redirty_page_for_writepage(wbc, page);
2970         unlock_page(page);
2971         return 0;
2972 }
2973
2974 static int ext4_readpage(struct file *file, struct page *page)
2975 {
2976         return mpage_readpage(page, ext4_get_block);
2977 }
2978
2979 static int
2980 ext4_readpages(struct file *file, struct address_space *mapping,
2981                 struct list_head *pages, unsigned nr_pages)
2982 {
2983         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2984 }
2985
2986 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2987 {
2988         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2989
2990         /*
2991          * If it's a full truncate we just forget about the pending dirtying
2992          */
2993         if (offset == 0)
2994                 ClearPageChecked(page);
2995
2996         jbd2_journal_invalidatepage(journal, page, offset);
2997 }
2998
2999 static int ext4_releasepage(struct page *page, gfp_t wait)
3000 {
3001         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3002
3003         WARN_ON(PageChecked(page));
3004         if (!page_has_buffers(page))
3005                 return 0;
3006         return jbd2_journal_try_to_free_buffers(journal, page, wait);
3007 }
3008
3009 /*
3010  * If the O_DIRECT write will extend the file then add this inode to the
3011  * orphan list.  So recovery will truncate it back to the original size
3012  * if the machine crashes during the write.
3013  *
3014  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3015  * crashes then stale disk data _may_ be exposed inside the file. But current
3016  * VFS code falls back into buffered path in that case so we are safe.
3017  */
3018 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3019                         const struct iovec *iov, loff_t offset,
3020                         unsigned long nr_segs)
3021 {
3022         struct file *file = iocb->ki_filp;
3023         struct inode *inode = file->f_mapping->host;
3024         struct ext4_inode_info *ei = EXT4_I(inode);
3025         handle_t *handle;
3026         ssize_t ret;
3027         int orphan = 0;
3028         size_t count = iov_length(iov, nr_segs);
3029
3030         if (rw == WRITE) {
3031                 loff_t final_size = offset + count;
3032
3033                 if (final_size > inode->i_size) {
3034                         /* Credits for sb + inode write */
3035                         handle = ext4_journal_start(inode, 2);
3036                         if (IS_ERR(handle)) {
3037                                 ret = PTR_ERR(handle);
3038                                 goto out;
3039                         }
3040                         ret = ext4_orphan_add(handle, inode);
3041                         if (ret) {
3042                                 ext4_journal_stop(handle);
3043                                 goto out;
3044                         }
3045                         orphan = 1;
3046                         ei->i_disksize = inode->i_size;
3047                         ext4_journal_stop(handle);
3048                 }
3049         }
3050
3051         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3052                                  offset, nr_segs,
3053                                  ext4_get_block, NULL);
3054
3055         if (orphan) {
3056                 int err;
3057
3058                 /* Credits for sb + inode write */
3059                 handle = ext4_journal_start(inode, 2);
3060                 if (IS_ERR(handle)) {
3061                         /* This is really bad luck. We've written the data
3062                          * but cannot extend i_size. Bail out and pretend
3063                          * the write failed... */
3064                         ret = PTR_ERR(handle);
3065                         goto out;
3066                 }
3067                 if (inode->i_nlink)
3068                         ext4_orphan_del(handle, inode);
3069                 if (ret > 0) {
3070                         loff_t end = offset + ret;
3071                         if (end > inode->i_size) {
3072                                 ei->i_disksize = end;
3073                                 i_size_write(inode, end);
3074                                 /*
3075                                  * We're going to return a positive `ret'
3076                                  * here due to non-zero-length I/O, so there's
3077                                  * no way of reporting error returns from
3078                                  * ext4_mark_inode_dirty() to userspace.  So
3079                                  * ignore it.
3080                                  */
3081                                 ext4_mark_inode_dirty(handle, inode);
3082                         }
3083                 }
3084                 err = ext4_journal_stop(handle);
3085                 if (ret == 0)
3086                         ret = err;
3087         }
3088 out:
3089         return ret;
3090 }
3091
3092 /*
3093  * Pages can be marked dirty completely asynchronously from ext4's journalling
3094  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3095  * much here because ->set_page_dirty is called under VFS locks.  The page is
3096  * not necessarily locked.
3097  *
3098  * We cannot just dirty the page and leave attached buffers clean, because the
3099  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3100  * or jbddirty because all the journalling code will explode.
3101  *
3102  * So what we do is to mark the page "pending dirty" and next time writepage
3103  * is called, propagate that into the buffers appropriately.
3104  */
3105 static int ext4_journalled_set_page_dirty(struct page *page)
3106 {
3107         SetPageChecked(page);
3108         return __set_page_dirty_nobuffers(page);
3109 }
3110
3111 static const struct address_space_operations ext4_ordered_aops = {
3112         .readpage               = ext4_readpage,
3113         .readpages              = ext4_readpages,
3114         .writepage              = ext4_normal_writepage,
3115         .sync_page              = block_sync_page,
3116         .write_begin            = ext4_write_begin,
3117         .write_end              = ext4_ordered_write_end,
3118         .bmap                   = ext4_bmap,
3119         .invalidatepage         = ext4_invalidatepage,
3120         .releasepage            = ext4_releasepage,
3121         .direct_IO              = ext4_direct_IO,
3122         .migratepage            = buffer_migrate_page,
3123         .is_partially_uptodate  = block_is_partially_uptodate,
3124 };
3125
3126 static const struct address_space_operations ext4_writeback_aops = {
3127         .readpage               = ext4_readpage,
3128         .readpages              = ext4_readpages,
3129         .writepage              = ext4_normal_writepage,
3130         .sync_page              = block_sync_page,
3131         .write_begin            = ext4_write_begin,
3132         .write_end              = ext4_writeback_write_end,
3133         .bmap                   = ext4_bmap,
3134         .invalidatepage         = ext4_invalidatepage,
3135         .releasepage            = ext4_releasepage,
3136         .direct_IO              = ext4_direct_IO,
3137         .migratepage            = buffer_migrate_page,
3138         .is_partially_uptodate  = block_is_partially_uptodate,
3139 };
3140
3141 static const struct address_space_operations ext4_journalled_aops = {
3142         .readpage               = ext4_readpage,
3143         .readpages              = ext4_readpages,
3144         .writepage              = ext4_journalled_writepage,
3145         .sync_page              = block_sync_page,
3146         .write_begin            = ext4_write_begin,
3147         .write_end              = ext4_journalled_write_end,
3148         .set_page_dirty         = ext4_journalled_set_page_dirty,
3149         .bmap                   = ext4_bmap,
3150         .invalidatepage         = ext4_invalidatepage,
3151         .releasepage            = ext4_releasepage,
3152         .is_partially_uptodate  = block_is_partially_uptodate,
3153 };
3154
3155 static const struct address_space_operations ext4_da_aops = {
3156         .readpage               = ext4_readpage,
3157         .readpages              = ext4_readpages,
3158         .writepage              = ext4_da_writepage,
3159         .writepages             = ext4_da_writepages,
3160         .sync_page              = block_sync_page,
3161         .write_begin            = ext4_da_write_begin,
3162         .write_end              = ext4_da_write_end,
3163         .bmap                   = ext4_bmap,
3164         .invalidatepage         = ext4_da_invalidatepage,
3165         .releasepage            = ext4_releasepage,
3166         .direct_IO              = ext4_direct_IO,
3167         .migratepage            = buffer_migrate_page,
3168         .is_partially_uptodate  = block_is_partially_uptodate,
3169 };
3170
3171 void ext4_set_aops(struct inode *inode)
3172 {
3173         if (ext4_should_order_data(inode) &&
3174                 test_opt(inode->i_sb, DELALLOC))
3175                 inode->i_mapping->a_ops = &ext4_da_aops;
3176         else if (ext4_should_order_data(inode))
3177                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3178         else if (ext4_should_writeback_data(inode) &&
3179                  test_opt(inode->i_sb, DELALLOC))
3180                 inode->i_mapping->a_ops = &ext4_da_aops;
3181         else if (ext4_should_writeback_data(inode))
3182                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3183         else
3184                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3185 }
3186
3187 /*
3188  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3189  * up to the end of the block which corresponds to `from'.
3190  * This required during truncate. We need to physically zero the tail end
3191  * of that block so it doesn't yield old data if the file is later grown.
3192  */
3193 int ext4_block_truncate_page(handle_t *handle,
3194                 struct address_space *mapping, loff_t from)
3195 {
3196         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3197         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3198         unsigned blocksize, length, pos;
3199         ext4_lblk_t iblock;
3200         struct inode *inode = mapping->host;
3201         struct buffer_head *bh;
3202         struct page *page;
3203         int err = 0;
3204
3205         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3206         if (!page)
3207                 return -EINVAL;
3208
3209         blocksize = inode->i_sb->s_blocksize;
3210         length = blocksize - (offset & (blocksize - 1));
3211         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3212
3213         /*
3214          * For "nobh" option,  we can only work if we don't need to
3215          * read-in the page - otherwise we create buffers to do the IO.
3216          */
3217         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3218              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3219                 zero_user(page, offset, length);
3220                 set_page_dirty(page);
3221                 goto unlock;
3222         }
3223
3224         if (!page_has_buffers(page))
3225                 create_empty_buffers(page, blocksize, 0);
3226
3227         /* Find the buffer that contains "offset" */
3228         bh = page_buffers(page);
3229         pos = blocksize;
3230         while (offset >= pos) {
3231                 bh = bh->b_this_page;
3232                 iblock++;
3233                 pos += blocksize;
3234         }
3235
3236         err = 0;
3237         if (buffer_freed(bh)) {
3238                 BUFFER_TRACE(bh, "freed: skip");
3239                 goto unlock;
3240         }
3241
3242         if (!buffer_mapped(bh)) {
3243                 BUFFER_TRACE(bh, "unmapped");
3244                 ext4_get_block(inode, iblock, bh, 0);
3245                 /* unmapped? It's a hole - nothing to do */
3246                 if (!buffer_mapped(bh)) {
3247                         BUFFER_TRACE(bh, "still unmapped");
3248                         goto unlock;
3249                 }
3250         }
3251
3252         /* Ok, it's mapped. Make sure it's up-to-date */
3253         if (PageUptodate(page))
3254                 set_buffer_uptodate(bh);
3255
3256         if (!buffer_uptodate(bh)) {
3257                 err = -EIO;
3258                 ll_rw_block(READ, 1, &bh);
3259                 wait_on_buffer(bh);
3260                 /* Uhhuh. Read error. Complain and punt. */
3261                 if (!buffer_uptodate(bh))
3262                         goto unlock;
3263         }
3264
3265         if (ext4_should_journal_data(inode)) {
3266                 BUFFER_TRACE(bh, "get write access");
3267                 err = ext4_journal_get_write_access(handle, bh);
3268                 if (err)
3269                         goto unlock;
3270         }
3271
3272         zero_user(page, offset, length);
3273
3274         BUFFER_TRACE(bh, "zeroed end of block");
3275
3276         err = 0;
3277         if (ext4_should_journal_data(inode)) {
3278                 err = ext4_journal_dirty_metadata(handle, bh);
3279         } else {
3280                 if (ext4_should_order_data(inode))
3281                         err = ext4_jbd2_file_inode(handle, inode);
3282                 mark_buffer_dirty(bh);
3283         }
3284
3285 unlock:
3286         unlock_page(page);
3287         page_cache_release(page);
3288         return err;
3289 }
3290
3291 /*
3292  * Probably it should be a library function... search for first non-zero word
3293  * or memcmp with zero_page, whatever is better for particular architecture.
3294  * Linus?
3295  */
3296 static inline int all_zeroes(__le32 *p, __le32 *q)
3297 {
3298         while (p < q)
3299                 if (*p++)
3300                         return 0;
3301         return 1;
3302 }
3303
3304 /**
3305  *      ext4_find_shared - find the indirect blocks for partial truncation.
3306  *      @inode:   inode in question
3307  *      @depth:   depth of the affected branch
3308  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3309  *      @chain:   place to store the pointers to partial indirect blocks
3310  *      @top:     place to the (detached) top of branch
3311  *
3312  *      This is a helper function used by ext4_truncate().
3313  *
3314  *      When we do truncate() we may have to clean the ends of several
3315  *      indirect blocks but leave the blocks themselves alive. Block is
3316  *      partially truncated if some data below the new i_size is refered
3317  *      from it (and it is on the path to the first completely truncated
3318  *      data block, indeed).  We have to free the top of that path along
3319  *      with everything to the right of the path. Since no allocation
3320  *      past the truncation point is possible until ext4_truncate()
3321  *      finishes, we may safely do the latter, but top of branch may
3322  *      require special attention - pageout below the truncation point
3323  *      might try to populate it.
3324  *
3325  *      We atomically detach the top of branch from the tree, store the
3326  *      block number of its root in *@top, pointers to buffer_heads of
3327  *      partially truncated blocks - in @chain[].bh and pointers to
3328  *      their last elements that should not be removed - in
3329  *      @chain[].p. Return value is the pointer to last filled element
3330  *      of @chain.
3331  *
3332  *      The work left to caller to do the actual freeing of subtrees:
3333  *              a) free the subtree starting from *@top
3334  *              b) free the subtrees whose roots are stored in
3335  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3336  *              c) free the subtrees growing from the inode past the @chain[0].
3337  *                      (no partially truncated stuff there).  */
3338
3339 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3340                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3341 {
3342         Indirect *partial, *p;
3343         int k, err;
3344
3345         *top = 0;
3346         /* Make k index the deepest non-null offest + 1 */
3347         for (k = depth; k > 1 && !offsets[k-1]; k--)
3348                 ;
3349         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3350         /* Writer: pointers */
3351         if (!partial)
3352                 partial = chain + k-1;
3353         /*
3354          * If the branch acquired continuation since we've looked at it -
3355          * fine, it should all survive and (new) top doesn't belong to us.
3356          */
3357         if (!partial->key && *partial->p)
3358                 /* Writer: end */
3359                 goto no_top;
3360         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3361                 ;
3362         /*
3363          * OK, we've found the last block that must survive. The rest of our
3364          * branch should be detached before unlocking. However, if that rest
3365          * of branch is all ours and does not grow immediately from the inode
3366          * it's easier to cheat and just decrement partial->p.
3367          */
3368         if (p == chain + k - 1 && p > chain) {
3369                 p->p--;
3370         } else {
3371                 *top = *p->p;
3372                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3373 #if 0
3374                 *p->p = 0;
3375 #endif
3376         }
3377         /* Writer: end */
3378
3379         while (partial > p) {
3380                 brelse(partial->bh);
3381                 partial--;
3382         }
3383 no_top:
3384         return partial;
3385 }
3386
3387 /*
3388  * Zero a number of block pointers in either an inode or an indirect block.
3389  * If we restart the transaction we must again get write access to the
3390  * indirect block for further modification.
3391  *
3392  * We release `count' blocks on disk, but (last - first) may be greater
3393  * than `count' because there can be holes in there.
3394  */
3395 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3396                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3397                 unsigned long count, __le32 *first, __le32 *last)
3398 {
3399         __le32 *p;
3400         if (try_to_extend_transaction(handle, inode)) {
3401                 if (bh) {
3402                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3403                         ext4_journal_dirty_metadata(handle, bh);
3404                 }
3405                 ext4_mark_inode_dirty(handle, inode);
3406                 ext4_journal_test_restart(handle, inode);
3407                 if (bh) {
3408                         BUFFER_TRACE(bh, "retaking write access");
3409                         ext4_journal_get_write_access(handle, bh);
3410                 }
3411         }
3412
3413         /*
3414          * Any buffers which are on the journal will be in memory. We find
3415          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3416          * on them.  We've already detached each block from the file, so
3417          * bforget() in jbd2_journal_forget() should be safe.
3418          *
3419          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3420          */
3421         for (p = first; p < last; p++) {
3422                 u32 nr = le32_to_cpu(*p);
3423                 if (nr) {
3424                         struct buffer_head *tbh;
3425
3426                         *p = 0;
3427                         tbh = sb_find_get_block(inode->i_sb, nr);
3428                         ext4_forget(handle, 0, inode, tbh, nr);
3429                 }
3430         }
3431
3432         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3433 }
3434
3435 /**
3436  * ext4_free_data - free a list of data blocks
3437  * @handle:     handle for this transaction
3438  * @inode:      inode we are dealing with
3439  * @this_bh:    indirect buffer_head which contains *@first and *@last
3440  * @first:      array of block numbers
3441  * @last:       points immediately past the end of array
3442  *
3443  * We are freeing all blocks refered from that array (numbers are stored as
3444  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3445  *
3446  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3447  * blocks are contiguous then releasing them at one time will only affect one
3448  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3449  * actually use a lot of journal space.
3450  *
3451  * @this_bh will be %NULL if @first and @last point into the inode's direct
3452  * block pointers.
3453  */
3454 static void ext4_free_data(handle_t *handle, struct inode *inode,
3455                            struct buffer_head *this_bh,
3456                            __le32 *first, __le32 *last)
3457 {
3458         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3459         unsigned long count = 0;            /* Number of blocks in the run */
3460         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3461                                                corresponding to
3462                                                block_to_free */
3463         ext4_fsblk_t nr;                    /* Current block # */
3464         __le32 *p;                          /* Pointer into inode/ind
3465                                                for current block */
3466         int err;
3467
3468         if (this_bh) {                          /* For indirect block */
3469                 BUFFER_TRACE(this_bh, "get_write_access");
3470                 err = ext4_journal_get_write_access(handle, this_bh);
3471                 /* Important: if we can't update the indirect pointers
3472                  * to the blocks, we can't free them. */
3473                 if (err)
3474                         return;
3475         }
3476
3477         for (p = first; p < last; p++) {
3478                 nr = le32_to_cpu(*p);
3479                 if (nr) {
3480                         /* accumulate blocks to free if they're contiguous */
3481                         if (count == 0) {
3482                                 block_to_free = nr;
3483                                 block_to_free_p = p;
3484                                 count = 1;
3485                         } else if (nr == block_to_free + count) {
3486                                 count++;
3487                         } else {
3488                                 ext4_clear_blocks(handle, inode, this_bh,
3489                                                   block_to_free,
3490                                                   count, block_to_free_p, p);
3491                                 block_to_free = nr;
3492                                 block_to_free_p = p;
3493                                 count = 1;
3494                         }
3495                 }
3496         }
3497
3498         if (count > 0)
3499                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3500                                   count, block_to_free_p, p);
3501
3502         if (this_bh) {
3503                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3504
3505                 /*
3506                  * The buffer head should have an attached journal head at this
3507                  * point. However, if the data is corrupted and an indirect
3508                  * block pointed to itself, it would have been detached when
3509                  * the block was cleared. Check for this instead of OOPSing.
3510                  */
3511                 if (bh2jh(this_bh))
3512                         ext4_journal_dirty_metadata(handle, this_bh);
3513                 else
3514                         ext4_error(inode->i_sb, __func__,
3515                                    "circular indirect block detected, "
3516                                    "inode=%lu, block=%llu",
3517                                    inode->i_ino,
3518                                    (unsigned long long) this_bh->b_blocknr);
3519         }
3520 }
3521
3522 /**
3523  *      ext4_free_branches - free an array of branches
3524  *      @handle: JBD handle for this transaction
3525  *      @inode: inode we are dealing with
3526  *      @parent_bh: the buffer_head which contains *@first and *@last
3527  *      @first: array of block numbers
3528  *      @last:  pointer immediately past the end of array
3529  *      @depth: depth of the branches to free
3530  *
3531  *      We are freeing all blocks refered from these branches (numbers are
3532  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3533  *      appropriately.
3534  */
3535 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3536                                struct buffer_head *parent_bh,
3537                                __le32 *first, __le32 *last, int depth)
3538 {
3539         ext4_fsblk_t nr;
3540         __le32 *p;
3541
3542         if (is_handle_aborted(handle))
3543                 return;
3544
3545         if (depth--) {
3546                 struct buffer_head *bh;
3547                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3548                 p = last;
3549                 while (--p >= first) {
3550                         nr = le32_to_cpu(*p);
3551                         if (!nr)
3552                                 continue;               /* A hole */
3553
3554                         /* Go read the buffer for the next level down */
3555                         bh = sb_bread(inode->i_sb, nr);
3556
3557                         /*
3558                          * A read failure? Report error and clear slot
3559                          * (should be rare).
3560                          */
3561                         if (!bh) {
3562                                 ext4_error(inode->i_sb, "ext4_free_branches",
3563                                            "Read failure, inode=%lu, block=%llu",
3564                                            inode->i_ino, nr);
3565                                 continue;
3566                         }
3567
3568                         /* This zaps the entire block.  Bottom up. */
3569                         BUFFER_TRACE(bh, "free child branches");
3570                         ext4_free_branches(handle, inode, bh,
3571                                         (__le32 *) bh->b_data,
3572                                         (__le32 *) bh->b_data + addr_per_block,
3573                                         depth);
3574
3575                         /*
3576                          * We've probably journalled the indirect block several
3577                          * times during the truncate.  But it's no longer
3578                          * needed and we now drop it from the transaction via
3579                          * jbd2_journal_revoke().
3580                          *
3581                          * That's easy if it's exclusively part of this
3582                          * transaction.  But if it's part of the committing
3583                          * transaction then jbd2_journal_forget() will simply
3584                          * brelse() it.  That means that if the underlying
3585                          * block is reallocated in ext4_get_block(),
3586                          * unmap_underlying_metadata() will find this block
3587                          * and will try to get rid of it.  damn, damn.
3588                          *
3589                          * If this block has already been committed to the
3590                          * journal, a revoke record will be written.  And
3591                          * revoke records must be emitted *before* clearing
3592                          * this block's bit in the bitmaps.
3593                          */
3594                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3595
3596                         /*
3597                          * Everything below this this pointer has been
3598                          * released.  Now let this top-of-subtree go.
3599                          *
3600                          * We want the freeing of this indirect block to be
3601                          * atomic in the journal with the updating of the
3602                          * bitmap block which owns it.  So make some room in
3603                          * the journal.
3604                          *
3605                          * We zero the parent pointer *after* freeing its
3606                          * pointee in the bitmaps, so if extend_transaction()
3607                          * for some reason fails to put the bitmap changes and
3608                          * the release into the same transaction, recovery
3609                          * will merely complain about releasing a free block,
3610                          * rather than leaking blocks.
3611                          */
3612                         if (is_handle_aborted(handle))
3613                                 return;
3614                         if (try_to_extend_transaction(handle, inode)) {
3615                                 ext4_mark_inode_dirty(handle, inode);
3616                                 ext4_journal_test_restart(handle, inode);
3617                         }
3618
3619                         ext4_free_blocks(handle, inode, nr, 1, 1);
3620
3621                         if (parent_bh) {
3622                                 /*
3623                                  * The block which we have just freed is
3624                                  * pointed to by an indirect block: journal it
3625                                  */
3626                                 BUFFER_TRACE(parent_bh, "get_write_access");
3627                                 if (!ext4_journal_get_write_access(handle,
3628                                                                    parent_bh)){
3629                                         *p = 0;
3630                                         BUFFER_TRACE(parent_bh,
3631                                         "call ext4_journal_dirty_metadata");
3632                                         ext4_journal_dirty_metadata(handle,
3633                                                                     parent_bh);
3634                                 }
3635                         }
3636                 }
3637         } else {
3638                 /* We have reached the bottom of the tree. */
3639                 BUFFER_TRACE(parent_bh, "free data blocks");
3640                 ext4_free_data(handle, inode, parent_bh, first, last);
3641         }
3642 }
3643
3644 int ext4_can_truncate(struct inode *inode)
3645 {
3646         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3647                 return 0;
3648         if (S_ISREG(inode->i_mode))
3649                 return 1;
3650         if (S_ISDIR(inode->i_mode))
3651                 return 1;
3652         if (S_ISLNK(inode->i_mode))
3653                 return !ext4_inode_is_fast_symlink(inode);
3654         return 0;
3655 }
3656
3657 /*
3658  * ext4_truncate()
3659  *
3660  * We block out ext4_get_block() block instantiations across the entire
3661  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3662  * simultaneously on behalf of the same inode.
3663  *
3664  * As we work through the truncate and commmit bits of it to the journal there
3665  * is one core, guiding principle: the file's tree must always be consistent on
3666  * disk.  We must be able to restart the truncate after a crash.
3667  *
3668  * The file's tree may be transiently inconsistent in memory (although it
3669  * probably isn't), but whenever we close off and commit a journal transaction,
3670  * the contents of (the filesystem + the journal) must be consistent and
3671  * restartable.  It's pretty simple, really: bottom up, right to left (although
3672  * left-to-right works OK too).
3673  *
3674  * Note that at recovery time, journal replay occurs *before* the restart of
3675  * truncate against the orphan inode list.
3676  *
3677  * The committed inode has the new, desired i_size (which is the same as
3678  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3679  * that this inode's truncate did not complete and it will again call
3680  * ext4_truncate() to have another go.  So there will be instantiated blocks
3681  * to the right of the truncation point in a crashed ext4 filesystem.  But
3682  * that's fine - as long as they are linked from the inode, the post-crash
3683  * ext4_truncate() run will find them and release them.
3684  */
3685 void ext4_truncate(struct inode *inode)
3686 {
3687         handle_t *handle;
3688         struct ext4_inode_info *ei = EXT4_I(inode);
3689         __le32 *i_data = ei->i_data;
3690         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3691         struct address_space *mapping = inode->i_mapping;
3692         ext4_lblk_t offsets[4];
3693         Indirect chain[4];
3694         Indirect *partial;
3695         __le32 nr = 0;
3696         int n;
3697         ext4_lblk_t last_block;
3698         unsigned blocksize = inode->i_sb->s_blocksize;
3699
3700         if (!ext4_can_truncate(inode))
3701                 return;
3702
3703         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3704                 ext4_ext_truncate(inode);
3705                 return;
3706         }
3707
3708         handle = start_transaction(inode);
3709         if (IS_ERR(handle))
3710                 return;         /* AKPM: return what? */
3711
3712         last_block = (inode->i_size + blocksize-1)
3713                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3714
3715         if (inode->i_size & (blocksize - 1))
3716                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3717                         goto out_stop;
3718
3719         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3720         if (n == 0)
3721                 goto out_stop;  /* error */
3722
3723         /*
3724          * OK.  This truncate is going to happen.  We add the inode to the
3725          * orphan list, so that if this truncate spans multiple transactions,
3726          * and we crash, we will resume the truncate when the filesystem
3727          * recovers.  It also marks the inode dirty, to catch the new size.
3728          *
3729          * Implication: the file must always be in a sane, consistent
3730          * truncatable state while each transaction commits.
3731          */
3732         if (ext4_orphan_add(handle, inode))
3733                 goto out_stop;
3734
3735         /*
3736          * From here we block out all ext4_get_block() callers who want to
3737          * modify the block allocation tree.
3738          */
3739         down_write(&ei->i_data_sem);
3740
3741         ext4_discard_reservation(inode);
3742
3743         /*
3744          * The orphan list entry will now protect us from any crash which
3745          * occurs before the truncate completes, so it is now safe to propagate
3746          * the new, shorter inode size (held for now in i_size) into the
3747          * on-disk inode. We do this via i_disksize, which is the value which
3748          * ext4 *really* writes onto the disk inode.
3749          */
3750         ei->i_disksize = inode->i_size;
3751
3752         if (n == 1) {           /* direct blocks */
3753                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3754                                i_data + EXT4_NDIR_BLOCKS);
3755                 goto do_indirects;
3756         }
3757
3758         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3759         /* Kill the top of shared branch (not detached) */
3760         if (nr) {
3761                 if (partial == chain) {
3762                         /* Shared branch grows from the inode */
3763                         ext4_free_branches(handle, inode, NULL,
3764                                            &nr, &nr+1, (chain+n-1) - partial);
3765                         *partial->p = 0;
3766                         /*
3767                          * We mark the inode dirty prior to restart,
3768                          * and prior to stop.  No need for it here.
3769                          */
3770                 } else {
3771                         /* Shared branch grows from an indirect block */
3772                         BUFFER_TRACE(partial->bh, "get_write_access");
3773                         ext4_free_branches(handle, inode, partial->bh,
3774                                         partial->p,
3775                                         partial->p+1, (chain+n-1) - partial);
3776                 }
3777         }
3778         /* Clear the ends of indirect blocks on the shared branch */
3779         while (partial > chain) {
3780                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3781                                    (__le32*)partial->bh->b_data+addr_per_block,
3782                                    (chain+n-1) - partial);
3783                 BUFFER_TRACE(partial->bh, "call brelse");
3784                 brelse (partial->bh);
3785                 partial--;
3786         }
3787 do_indirects:
3788         /* Kill the remaining (whole) subtrees */
3789         switch (offsets[0]) {
3790         default:
3791                 nr = i_data[EXT4_IND_BLOCK];
3792                 if (nr) {
3793                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3794                         i_data[EXT4_IND_BLOCK] = 0;
3795                 }
3796         case EXT4_IND_BLOCK:
3797                 nr = i_data[EXT4_DIND_BLOCK];
3798                 if (nr) {
3799                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3800                         i_data[EXT4_DIND_BLOCK] = 0;
3801                 }
3802         case EXT4_DIND_BLOCK:
3803                 nr = i_data[EXT4_TIND_BLOCK];
3804                 if (nr) {
3805                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3806                         i_data[EXT4_TIND_BLOCK] = 0;
3807                 }
3808         case EXT4_TIND_BLOCK:
3809                 ;
3810         }
3811
3812         up_write(&ei->i_data_sem);
3813         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3814         ext4_mark_inode_dirty(handle, inode);
3815
3816         /*
3817          * In a multi-transaction truncate, we only make the final transaction
3818          * synchronous
3819          */
3820         if (IS_SYNC(inode))
3821                 handle->h_sync = 1;
3822 out_stop:
3823         /*
3824          * If this was a simple ftruncate(), and the file will remain alive
3825          * then we need to clear up the orphan record which we created above.
3826          * However, if this was a real unlink then we were called by
3827          * ext4_delete_inode(), and we allow that function to clean up the
3828          * orphan info for us.
3829          */
3830         if (inode->i_nlink)
3831                 ext4_orphan_del(handle, inode);
3832
3833         ext4_journal_stop(handle);
3834 }
3835
3836 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3837                 unsigned long ino, struct ext4_iloc *iloc)
3838 {
3839         ext4_group_t block_group;
3840         unsigned long offset;
3841         ext4_fsblk_t block;
3842         struct ext4_group_desc *gdp;
3843
3844         if (!ext4_valid_inum(sb, ino)) {
3845                 /*
3846                  * This error is already checked for in namei.c unless we are
3847                  * looking at an NFS filehandle, in which case no error
3848                  * report is needed
3849                  */
3850                 return 0;
3851         }
3852
3853         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3854         gdp = ext4_get_group_desc(sb, block_group, NULL);
3855         if (!gdp)
3856                 return 0;
3857
3858         /*
3859          * Figure out the offset within the block group inode table
3860          */
3861         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3862                 EXT4_INODE_SIZE(sb);
3863         block = ext4_inode_table(sb, gdp) +
3864                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3865
3866         iloc->block_group = block_group;
3867         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3868         return block;
3869 }
3870
3871 /*
3872  * ext4_get_inode_loc returns with an extra refcount against the inode's
3873  * underlying buffer_head on success. If 'in_mem' is true, we have all
3874  * data in memory that is needed to recreate the on-disk version of this
3875  * inode.
3876  */
3877 static int __ext4_get_inode_loc(struct inode *inode,
3878                                 struct ext4_iloc *iloc, int in_mem)
3879 {
3880         ext4_fsblk_t block;
3881         struct buffer_head *bh;
3882
3883         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3884         if (!block)
3885                 return -EIO;
3886
3887         bh = sb_getblk(inode->i_sb, block);
3888         if (!bh) {
3889                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3890                                 "unable to read inode block - "
3891                                 "inode=%lu, block=%llu",
3892                                  inode->i_ino, block);
3893                 return -EIO;
3894         }
3895         if (!buffer_uptodate(bh)) {
3896                 lock_buffer(bh);
3897
3898                 /*
3899                  * If the buffer has the write error flag, we have failed
3900                  * to write out another inode in the same block.  In this
3901                  * case, we don't have to read the block because we may
3902                  * read the old inode data successfully.
3903                  */
3904                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3905                         set_buffer_uptodate(bh);
3906
3907                 if (buffer_uptodate(bh)) {
3908                         /* someone brought it uptodate while we waited */
3909                         unlock_buffer(bh);
3910                         goto has_buffer;
3911                 }
3912
3913                 /*
3914                  * If we have all information of the inode in memory and this
3915                  * is the only valid inode in the block, we need not read the
3916                  * block.
3917                  */
3918                 if (in_mem) {
3919                         struct buffer_head *bitmap_bh;
3920                         struct ext4_group_desc *desc;
3921                         int inodes_per_buffer;
3922                         int inode_offset, i;
3923                         ext4_group_t block_group;
3924                         int start;
3925
3926                         block_group = (inode->i_ino - 1) /
3927                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3928                         inodes_per_buffer = bh->b_size /
3929                                 EXT4_INODE_SIZE(inode->i_sb);
3930                         inode_offset = ((inode->i_ino - 1) %
3931                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3932                         start = inode_offset & ~(inodes_per_buffer - 1);
3933
3934                         /* Is the inode bitmap in cache? */
3935                         desc = ext4_get_group_desc(inode->i_sb,
3936                                                 block_group, NULL);
3937                         if (!desc)
3938                                 goto make_io;
3939
3940                         bitmap_bh = sb_getblk(inode->i_sb,
3941                                 ext4_inode_bitmap(inode->i_sb, desc));
3942                         if (!bitmap_bh)
3943                                 goto make_io;
3944
3945                         /*
3946                          * If the inode bitmap isn't in cache then the
3947                          * optimisation may end up performing two reads instead
3948                          * of one, so skip it.
3949                          */
3950                         if (!buffer_uptodate(bitmap_bh)) {
3951                                 brelse(bitmap_bh);
3952                                 goto make_io;
3953                         }
3954                         for (i = start; i < start + inodes_per_buffer; i++) {
3955                                 if (i == inode_offset)
3956                                         continue;
3957                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3958                                         break;
3959                         }
3960                         brelse(bitmap_bh);
3961                         if (i == start + inodes_per_buffer) {
3962                                 /* all other inodes are free, so skip I/O */
3963                                 memset(bh->b_data, 0, bh->b_size);
3964                                 set_buffer_uptodate(bh);
3965                                 unlock_buffer(bh);
3966                                 goto has_buffer;
3967                         }
3968                 }
3969
3970 make_io:
3971                 /*
3972                  * There are other valid inodes in the buffer, this inode
3973                  * has in-inode xattrs, or we don't have this inode in memory.
3974                  * Read the block from disk.
3975                  */
3976                 get_bh(bh);
3977                 bh->b_end_io = end_buffer_read_sync;
3978                 submit_bh(READ_META, bh);
3979                 wait_on_buffer(bh);
3980                 if (!buffer_uptodate(bh)) {
3981                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3982                                         "unable to read inode block - "
3983                                         "inode=%lu, block=%llu",
3984                                         inode->i_ino, block);
3985                         brelse(bh);
3986                         return -EIO;
3987                 }
3988         }
3989 has_buffer:
3990         iloc->bh = bh;
3991         return 0;
3992 }
3993
3994 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3995 {
3996         /* We have all inode data except xattrs in memory here. */
3997         return __ext4_get_inode_loc(inode, iloc,
3998                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3999 }
4000
4001 void ext4_set_inode_flags(struct inode *inode)
4002 {
4003         unsigned int flags = EXT4_I(inode)->i_flags;
4004
4005         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4006         if (flags & EXT4_SYNC_FL)
4007                 inode->i_flags |= S_SYNC;
4008         if (flags & EXT4_APPEND_FL)
4009                 inode->i_flags |= S_APPEND;
4010         if (flags & EXT4_IMMUTABLE_FL)
4011                 inode->i_flags |= S_IMMUTABLE;
4012         if (flags & EXT4_NOATIME_FL)
4013                 inode->i_flags |= S_NOATIME;
4014         if (flags & EXT4_DIRSYNC_FL)
4015                 inode->i_flags |= S_DIRSYNC;
4016 }
4017
4018 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4019 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4020 {
4021         unsigned int flags = ei->vfs_inode.i_flags;
4022
4023         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4024                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4025         if (flags & S_SYNC)
4026                 ei->i_flags |= EXT4_SYNC_FL;
4027         if (flags & S_APPEND)
4028                 ei->i_flags |= EXT4_APPEND_FL;
4029         if (flags & S_IMMUTABLE)
4030                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4031         if (flags & S_NOATIME)
4032                 ei->i_flags |= EXT4_NOATIME_FL;
4033         if (flags & S_DIRSYNC)
4034                 ei->i_flags |= EXT4_DIRSYNC_FL;
4035 }
4036 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4037                                         struct ext4_inode_info *ei)
4038 {
4039         blkcnt_t i_blocks ;
4040         struct inode *inode = &(ei->vfs_inode);
4041         struct super_block *sb = inode->i_sb;
4042
4043         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4044                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4045                 /* we are using combined 48 bit field */
4046                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4047                                         le32_to_cpu(raw_inode->i_blocks_lo);
4048                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4049                         /* i_blocks represent file system block size */
4050                         return i_blocks  << (inode->i_blkbits - 9);
4051                 } else {
4052                         return i_blocks;
4053                 }
4054         } else {
4055                 return le32_to_cpu(raw_inode->i_blocks_lo);
4056         }
4057 }
4058
4059 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4060 {
4061         struct ext4_iloc iloc;
4062         struct ext4_inode *raw_inode;
4063         struct ext4_inode_info *ei;
4064         struct buffer_head *bh;
4065         struct inode *inode;
4066         long ret;
4067         int block;
4068
4069         inode = iget_locked(sb, ino);
4070         if (!inode)
4071                 return ERR_PTR(-ENOMEM);
4072         if (!(inode->i_state & I_NEW))
4073                 return inode;
4074
4075         ei = EXT4_I(inode);
4076 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4077         ei->i_acl = EXT4_ACL_NOT_CACHED;
4078         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4079 #endif
4080         ei->i_block_alloc_info = NULL;
4081
4082         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4083         if (ret < 0)
4084                 goto bad_inode;
4085         bh = iloc.bh;
4086         raw_inode = ext4_raw_inode(&iloc);
4087         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4088         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4089         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4090         if (!(test_opt(inode->i_sb, NO_UID32))) {
4091                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4092                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4093         }
4094         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4095
4096         ei->i_state = 0;
4097         ei->i_dir_start_lookup = 0;
4098         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4099         /* We now have enough fields to check if the inode was active or not.
4100          * This is needed because nfsd might try to access dead inodes
4101          * the test is that same one that e2fsck uses
4102          * NeilBrown 1999oct15
4103          */
4104         if (inode->i_nlink == 0) {
4105                 if (inode->i_mode == 0 ||
4106                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4107                         /* this inode is deleted */
4108                         brelse(bh);
4109                         ret = -ESTALE;
4110                         goto bad_inode;
4111                 }
4112                 /* The only unlinked inodes we let through here have
4113                  * valid i_mode and are being read by the orphan
4114                  * recovery code: that's fine, we're about to complete
4115                  * the process of deleting those. */
4116         }
4117         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4118         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4119         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4120         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4121             cpu_to_le32(EXT4_OS_HURD)) {
4122                 ei->i_file_acl |=
4123                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4124         }
4125         inode->i_size = ext4_isize(raw_inode);
4126         ei->i_disksize = inode->i_size;
4127         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4128         ei->i_block_group = iloc.block_group;
4129         /*
4130          * NOTE! The in-memory inode i_data array is in little-endian order
4131          * even on big-endian machines: we do NOT byteswap the block numbers!
4132          */
4133         for (block = 0; block < EXT4_N_BLOCKS; block++)
4134                 ei->i_data[block] = raw_inode->i_block[block];
4135         INIT_LIST_HEAD(&ei->i_orphan);
4136
4137         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4138                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4139                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4140                     EXT4_INODE_SIZE(inode->i_sb)) {
4141                         brelse(bh);
4142                         ret = -EIO;
4143                         goto bad_inode;
4144                 }
4145                 if (ei->i_extra_isize == 0) {
4146                         /* The extra space is currently unused. Use it. */
4147                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4148                                             EXT4_GOOD_OLD_INODE_SIZE;
4149                 } else {
4150                         __le32 *magic = (void *)raw_inode +
4151                                         EXT4_GOOD_OLD_INODE_SIZE +
4152                                         ei->i_extra_isize;
4153                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4154                                  ei->i_state |= EXT4_STATE_XATTR;
4155                 }
4156         } else
4157                 ei->i_extra_isize = 0;
4158
4159         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4160         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4161         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4162         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4163
4164         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4165         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4166                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4167                         inode->i_version |=
4168                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4169         }
4170
4171         if (S_ISREG(inode->i_mode)) {
4172                 inode->i_op = &ext4_file_inode_operations;
4173                 inode->i_fop = &ext4_file_operations;
4174                 ext4_set_aops(inode);
4175         } else if (S_ISDIR(inode->i_mode)) {
4176                 inode->i_op = &ext4_dir_inode_operations;
4177                 inode->i_fop = &ext4_dir_operations;
4178         } else if (S_ISLNK(inode->i_mode)) {
4179                 if (ext4_inode_is_fast_symlink(inode))
4180                         inode->i_op = &ext4_fast_symlink_inode_operations;
4181                 else {
4182                         inode->i_op = &ext4_symlink_inode_operations;
4183                         ext4_set_aops(inode);
4184                 }
4185         } else {
4186                 inode->i_op = &ext4_special_inode_operations;
4187                 if (raw_inode->i_block[0])
4188                         init_special_inode(inode, inode->i_mode,
4189                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4190                 else
4191                         init_special_inode(inode, inode->i_mode,
4192                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4193         }
4194         brelse(iloc.bh);
4195         ext4_set_inode_flags(inode);
4196         unlock_new_inode(inode);
4197         return inode;
4198
4199 bad_inode:
4200         iget_failed(inode);
4201         return ERR_PTR(ret);
4202 }
4203
4204 static int ext4_inode_blocks_set(handle_t *handle,
4205                                 struct ext4_inode *raw_inode,
4206                                 struct ext4_inode_info *ei)
4207 {
4208         struct inode *inode = &(ei->vfs_inode);
4209         u64 i_blocks = inode->i_blocks;
4210         struct super_block *sb = inode->i_sb;
4211         int err = 0;
4212
4213         if (i_blocks <= ~0U) {
4214                 /*
4215                  * i_blocks can be represnted in a 32 bit variable
4216                  * as multiple of 512 bytes
4217                  */
4218                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4219                 raw_inode->i_blocks_high = 0;
4220                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4221         } else if (i_blocks <= 0xffffffffffffULL) {
4222                 /*
4223                  * i_blocks can be represented in a 48 bit variable
4224                  * as multiple of 512 bytes
4225                  */
4226                 err = ext4_update_rocompat_feature(handle, sb,
4227                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4228                 if (err)
4229                         goto  err_out;
4230                 /* i_block is stored in the split  48 bit fields */
4231                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4232                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4233                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4234         } else {
4235                 /*
4236                  * i_blocks should be represented in a 48 bit variable
4237                  * as multiple of  file system block size
4238                  */
4239                 err = ext4_update_rocompat_feature(handle, sb,
4240                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4241                 if (err)
4242                         goto  err_out;
4243                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4244                 /* i_block is stored in file system block size */
4245                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4246                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4247                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4248         }
4249 err_out:
4250         return err;
4251 }
4252
4253 /*
4254  * Post the struct inode info into an on-disk inode location in the
4255  * buffer-cache.  This gobbles the caller's reference to the
4256  * buffer_head in the inode location struct.
4257  *
4258  * The caller must have write access to iloc->bh.
4259  */
4260 static int ext4_do_update_inode(handle_t *handle,
4261                                 struct inode *inode,
4262                                 struct ext4_iloc *iloc)
4263 {
4264         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4265         struct ext4_inode_info *ei = EXT4_I(inode);
4266         struct buffer_head *bh = iloc->bh;
4267         int err = 0, rc, block;
4268
4269         /* For fields not not tracking in the in-memory inode,
4270          * initialise them to zero for new inodes. */
4271         if (ei->i_state & EXT4_STATE_NEW)
4272                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4273
4274         ext4_get_inode_flags(ei);
4275         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4276         if (!(test_opt(inode->i_sb, NO_UID32))) {
4277                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4278                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4279 /*
4280  * Fix up interoperability with old kernels. Otherwise, old inodes get
4281  * re-used with the upper 16 bits of the uid/gid intact
4282  */
4283                 if (!ei->i_dtime) {
4284                         raw_inode->i_uid_high =
4285                                 cpu_to_le16(high_16_bits(inode->i_uid));
4286                         raw_inode->i_gid_high =
4287                                 cpu_to_le16(high_16_bits(inode->i_gid));
4288                 } else {
4289                         raw_inode->i_uid_high = 0;
4290                         raw_inode->i_gid_high = 0;
4291                 }
4292         } else {
4293                 raw_inode->i_uid_low =
4294                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4295                 raw_inode->i_gid_low =
4296                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4297                 raw_inode->i_uid_high = 0;
4298                 raw_inode->i_gid_high = 0;
4299         }
4300         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4301
4302         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4303         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4304         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4305         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4306
4307         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4308                 goto out_brelse;
4309         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4310         /* clear the migrate flag in the raw_inode */
4311         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4312         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4313             cpu_to_le32(EXT4_OS_HURD))
4314                 raw_inode->i_file_acl_high =
4315                         cpu_to_le16(ei->i_file_acl >> 32);
4316         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4317         ext4_isize_set(raw_inode, ei->i_disksize);
4318         if (ei->i_disksize > 0x7fffffffULL) {
4319                 struct super_block *sb = inode->i_sb;
4320                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4321                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4322                                 EXT4_SB(sb)->s_es->s_rev_level ==
4323                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4324                         /* If this is the first large file
4325                          * created, add a flag to the superblock.
4326                          */
4327                         err = ext4_journal_get_write_access(handle,
4328                                         EXT4_SB(sb)->s_sbh);
4329                         if (err)
4330                                 goto out_brelse;
4331                         ext4_update_dynamic_rev(sb);
4332                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4333                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4334                         sb->s_dirt = 1;
4335                         handle->h_sync = 1;
4336                         err = ext4_journal_dirty_metadata(handle,
4337                                         EXT4_SB(sb)->s_sbh);
4338                 }
4339         }
4340         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4341         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4342                 if (old_valid_dev(inode->i_rdev)) {
4343                         raw_inode->i_block[0] =
4344                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4345                         raw_inode->i_block[1] = 0;
4346                 } else {
4347                         raw_inode->i_block[0] = 0;
4348                         raw_inode->i_block[1] =
4349                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4350                         raw_inode->i_block[2] = 0;
4351                 }
4352         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4353                 raw_inode->i_block[block] = ei->i_data[block];
4354
4355         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4356         if (ei->i_extra_isize) {
4357                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4358                         raw_inode->i_version_hi =
4359                         cpu_to_le32(inode->i_version >> 32);
4360                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4361         }
4362
4363
4364         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4365         rc = ext4_journal_dirty_metadata(handle, bh);
4366         if (!err)
4367                 err = rc;
4368         ei->i_state &= ~EXT4_STATE_NEW;
4369
4370 out_brelse:
4371         brelse(bh);
4372         ext4_std_error(inode->i_sb, err);
4373         return err;
4374 }
4375
4376 /*
4377  * ext4_write_inode()
4378  *
4379  * We are called from a few places:
4380  *
4381  * - Within generic_file_write() for O_SYNC files.
4382  *   Here, there will be no transaction running. We wait for any running
4383  *   trasnaction to commit.
4384  *
4385  * - Within sys_sync(), kupdate and such.
4386  *   We wait on commit, if tol to.
4387  *
4388  * - Within prune_icache() (PF_MEMALLOC == true)
4389  *   Here we simply return.  We can't afford to block kswapd on the
4390  *   journal commit.
4391  *
4392  * In all cases it is actually safe for us to return without doing anything,
4393  * because the inode has been copied into a raw inode buffer in
4394  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4395  * knfsd.
4396  *
4397  * Note that we are absolutely dependent upon all inode dirtiers doing the
4398  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4399  * which we are interested.
4400  *
4401  * It would be a bug for them to not do this.  The code:
4402  *
4403  *      mark_inode_dirty(inode)
4404  *      stuff();
4405  *      inode->i_size = expr;
4406  *
4407  * is in error because a kswapd-driven write_inode() could occur while
4408  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4409  * will no longer be on the superblock's dirty inode list.
4410  */
4411 int ext4_write_inode(struct inode *inode, int wait)
4412 {
4413         if (current->flags & PF_MEMALLOC)
4414                 return 0;
4415
4416         if (ext4_journal_current_handle()) {
4417                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4418                 dump_stack();
4419                 return -EIO;
4420         }
4421
4422         if (!wait)
4423                 return 0;
4424
4425         return ext4_force_commit(inode->i_sb);
4426 }
4427
4428 /*
4429  * ext4_setattr()
4430  *
4431  * Called from notify_change.
4432  *
4433  * We want to trap VFS attempts to truncate the file as soon as
4434  * possible.  In particular, we want to make sure that when the VFS
4435  * shrinks i_size, we put the inode on the orphan list and modify
4436  * i_disksize immediately, so that during the subsequent flushing of
4437  * dirty pages and freeing of disk blocks, we can guarantee that any
4438  * commit will leave the blocks being flushed in an unused state on
4439  * disk.  (On recovery, the inode will get truncated and the blocks will
4440  * be freed, so we have a strong guarantee that no future commit will
4441  * leave these blocks visible to the user.)
4442  *
4443  * Another thing we have to assure is that if we are in ordered mode
4444  * and inode is still attached to the committing transaction, we must
4445  * we start writeout of all the dirty pages which are being truncated.
4446  * This way we are sure that all the data written in the previous
4447  * transaction are already on disk (truncate waits for pages under
4448  * writeback).
4449  *
4450  * Called with inode->i_mutex down.
4451  */
4452 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4453 {
4454         struct inode *inode = dentry->d_inode;
4455         int error, rc = 0;
4456         const unsigned int ia_valid = attr->ia_valid;
4457
4458         error = inode_change_ok(inode, attr);
4459         if (error)
4460                 return error;
4461
4462         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4463                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4464                 handle_t *handle;
4465
4466                 /* (user+group)*(old+new) structure, inode write (sb,
4467                  * inode block, ? - but truncate inode update has it) */
4468                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4469                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4470                 if (IS_ERR(handle)) {
4471                         error = PTR_ERR(handle);
4472                         goto err_out;
4473                 }
4474                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4475                 if (error) {
4476                         ext4_journal_stop(handle);
4477                         return error;
4478                 }
4479                 /* Update corresponding info in inode so that everything is in
4480                  * one transaction */
4481                 if (attr->ia_valid & ATTR_UID)
4482                         inode->i_uid = attr->ia_uid;
4483                 if (attr->ia_valid & ATTR_GID)
4484                         inode->i_gid = attr->ia_gid;
4485                 error = ext4_mark_inode_dirty(handle, inode);
4486                 ext4_journal_stop(handle);
4487         }
4488
4489         if (attr->ia_valid & ATTR_SIZE) {
4490                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4491                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4492
4493                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4494                                 error = -EFBIG;
4495                                 goto err_out;
4496                         }
4497                 }
4498         }
4499
4500         if (S_ISREG(inode->i_mode) &&
4501             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4502                 handle_t *handle;
4503
4504                 handle = ext4_journal_start(inode, 3);
4505                 if (IS_ERR(handle)) {
4506                         error = PTR_ERR(handle);
4507                         goto err_out;
4508                 }
4509
4510                 error = ext4_orphan_add(handle, inode);
4511                 EXT4_I(inode)->i_disksize = attr->ia_size;
4512                 rc = ext4_mark_inode_dirty(handle, inode);
4513                 if (!error)
4514                         error = rc;
4515                 ext4_journal_stop(handle);
4516
4517                 if (ext4_should_order_data(inode)) {
4518                         error = ext4_begin_ordered_truncate(inode,
4519                                                             attr->ia_size);
4520                         if (error) {
4521                                 /* Do as much error cleanup as possible */
4522                                 handle = ext4_journal_start(inode, 3);
4523                                 if (IS_ERR(handle)) {
4524                                         ext4_orphan_del(NULL, inode);
4525                                         goto err_out;
4526                                 }
4527                                 ext4_orphan_del(handle, inode);
4528                                 ext4_journal_stop(handle);
4529                                 goto err_out;
4530                         }
4531                 }
4532         }
4533
4534         rc = inode_setattr(inode, attr);
4535
4536         /* If inode_setattr's call to ext4_truncate failed to get a
4537          * transaction handle at all, we need to clean up the in-core
4538          * orphan list manually. */
4539         if (inode->i_nlink)
4540                 ext4_orphan_del(NULL, inode);
4541
4542         if (!rc && (ia_valid & ATTR_MODE))
4543                 rc = ext4_acl_chmod(inode);
4544
4545 err_out:
4546         ext4_std_error(inode->i_sb, error);
4547         if (!error)
4548                 error = rc;
4549         return error;
4550 }
4551
4552 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4553                  struct kstat *stat)
4554 {
4555         struct inode *inode;
4556         unsigned long delalloc_blocks;
4557
4558         inode = dentry->d_inode;
4559         generic_fillattr(inode, stat);
4560
4561         /*
4562          * We can't update i_blocks if the block allocation is delayed
4563          * otherwise in the case of system crash before the real block
4564          * allocation is done, we will have i_blocks inconsistent with
4565          * on-disk file blocks.
4566          * We always keep i_blocks updated together with real
4567          * allocation. But to not confuse with user, stat
4568          * will return the blocks that include the delayed allocation
4569          * blocks for this file.
4570          */
4571         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4572         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4573         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4574
4575         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4576         return 0;
4577 }
4578
4579 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4580                                       int chunk)
4581 {
4582         int indirects;
4583
4584         /* if nrblocks are contiguous */
4585         if (chunk) {
4586                 /*
4587                  * With N contiguous data blocks, it need at most
4588                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4589                  * 2 dindirect blocks
4590                  * 1 tindirect block
4591                  */
4592                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4593                 return indirects + 3;
4594         }
4595         /*
4596          * if nrblocks are not contiguous, worse case, each block touch
4597          * a indirect block, and each indirect block touch a double indirect
4598          * block, plus a triple indirect block
4599          */
4600         indirects = nrblocks * 2 + 1;
4601         return indirects;
4602 }
4603
4604 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4605 {
4606         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4607                 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4608         return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4609 }
4610 /*
4611  * Account for index blocks, block groups bitmaps and block group
4612  * descriptor blocks if modify datablocks and index blocks
4613  * worse case, the indexs blocks spread over different block groups
4614  *
4615  * If datablocks are discontiguous, they are possible to spread over
4616  * different block groups too. If they are contiugous, with flexbg,
4617  * they could still across block group boundary.
4618  *
4619  * Also account for superblock, inode, quota and xattr blocks
4620  */
4621 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4622 {
4623         int groups, gdpblocks;
4624         int idxblocks;
4625         int ret = 0;
4626
4627         /*
4628          * How many index blocks need to touch to modify nrblocks?
4629          * The "Chunk" flag indicating whether the nrblocks is
4630          * physically contiguous on disk
4631          *
4632          * For Direct IO and fallocate, they calls get_block to allocate
4633          * one single extent at a time, so they could set the "Chunk" flag
4634          */
4635         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4636
4637         ret = idxblocks;
4638
4639         /*
4640          * Now let's see how many group bitmaps and group descriptors need
4641          * to account
4642          */
4643         groups = idxblocks;
4644         if (chunk)
4645                 groups += 1;
4646         else
4647                 groups += nrblocks;
4648
4649         gdpblocks = groups;
4650         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4651                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4652         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4653                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4654
4655         /* bitmaps and block group descriptor blocks */
4656         ret += groups + gdpblocks;
4657
4658         /* Blocks for super block, inode, quota and xattr blocks */
4659         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4660
4661         return ret;
4662 }
4663
4664 /*
4665  * Calulate the total number of credits to reserve to fit
4666  * the modification of a single pages into a single transaction,
4667  * which may include multiple chunks of block allocations.
4668  *
4669  * This could be called via ext4_write_begin()
4670  *
4671  * We need to consider the worse case, when
4672  * one new block per extent.
4673  */
4674 int ext4_writepage_trans_blocks(struct inode *inode)
4675 {
4676         int bpp = ext4_journal_blocks_per_page(inode);
4677         int ret;
4678
4679         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4680
4681         /* Account for data blocks for journalled mode */
4682         if (ext4_should_journal_data(inode))
4683                 ret += bpp;
4684         return ret;
4685 }
4686
4687 /*
4688  * Calculate the journal credits for a chunk of data modification.
4689  *
4690  * This is called from DIO, fallocate or whoever calling
4691  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4692  *
4693  * journal buffers for data blocks are not included here, as DIO
4694  * and fallocate do no need to journal data buffers.
4695  */
4696 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4697 {
4698         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4699 }
4700
4701 /*
4702  * The caller must have previously called ext4_reserve_inode_write().
4703  * Give this, we know that the caller already has write access to iloc->bh.
4704  */
4705 int ext4_mark_iloc_dirty(handle_t *handle,
4706                 struct inode *inode, struct ext4_iloc *iloc)
4707 {
4708         int err = 0;
4709
4710         if (test_opt(inode->i_sb, I_VERSION))
4711                 inode_inc_iversion(inode);
4712
4713         /* the do_update_inode consumes one bh->b_count */
4714         get_bh(iloc->bh);
4715
4716         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4717         err = ext4_do_update_inode(handle, inode, iloc);
4718         put_bh(iloc->bh);
4719         return err;
4720 }
4721
4722 /*
4723  * On success, We end up with an outstanding reference count against
4724  * iloc->bh.  This _must_ be cleaned up later.
4725  */
4726
4727 int
4728 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4729                          struct ext4_iloc *iloc)
4730 {
4731         int err = 0;
4732         if (handle) {
4733                 err = ext4_get_inode_loc(inode, iloc);
4734                 if (!err) {
4735                         BUFFER_TRACE(iloc->bh, "get_write_access");
4736                         err = ext4_journal_get_write_access(handle, iloc->bh);
4737                         if (err) {
4738                                 brelse(iloc->bh);
4739                                 iloc->bh = NULL;
4740                         }
4741                 }
4742         }
4743         ext4_std_error(inode->i_sb, err);
4744         return err;
4745 }
4746
4747 /*
4748  * Expand an inode by new_extra_isize bytes.
4749  * Returns 0 on success or negative error number on failure.
4750  */
4751 static int ext4_expand_extra_isize(struct inode *inode,
4752                                    unsigned int new_extra_isize,
4753                                    struct ext4_iloc iloc,
4754                                    handle_t *handle)
4755 {
4756         struct ext4_inode *raw_inode;
4757         struct ext4_xattr_ibody_header *header;
4758         struct ext4_xattr_entry *entry;
4759
4760         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4761                 return 0;
4762
4763         raw_inode = ext4_raw_inode(&iloc);
4764
4765         header = IHDR(inode, raw_inode);
4766         entry = IFIRST(header);
4767
4768         /* No extended attributes present */
4769         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4770                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4771                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4772                         new_extra_isize);
4773                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4774                 return 0;
4775         }
4776
4777         /* try to expand with EAs present */
4778         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4779                                           raw_inode, handle);
4780 }
4781
4782 /*
4783  * What we do here is to mark the in-core inode as clean with respect to inode
4784  * dirtiness (it may still be data-dirty).
4785  * This means that the in-core inode may be reaped by prune_icache
4786  * without having to perform any I/O.  This is a very good thing,
4787  * because *any* task may call prune_icache - even ones which
4788  * have a transaction open against a different journal.
4789  *
4790  * Is this cheating?  Not really.  Sure, we haven't written the
4791  * inode out, but prune_icache isn't a user-visible syncing function.
4792  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4793  * we start and wait on commits.
4794  *
4795  * Is this efficient/effective?  Well, we're being nice to the system
4796  * by cleaning up our inodes proactively so they can be reaped
4797  * without I/O.  But we are potentially leaving up to five seconds'
4798  * worth of inodes floating about which prune_icache wants us to
4799  * write out.  One way to fix that would be to get prune_icache()
4800  * to do a write_super() to free up some memory.  It has the desired
4801  * effect.
4802  */
4803 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4804 {
4805         struct ext4_iloc iloc;
4806         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4807         static unsigned int mnt_count;
4808         int err, ret;
4809
4810         might_sleep();
4811         err = ext4_reserve_inode_write(handle, inode, &iloc);
4812         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4813             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4814                 /*
4815                  * We need extra buffer credits since we may write into EA block
4816                  * with this same handle. If journal_extend fails, then it will
4817                  * only result in a minor loss of functionality for that inode.
4818                  * If this is felt to be critical, then e2fsck should be run to
4819                  * force a large enough s_min_extra_isize.
4820                  */
4821                 if ((jbd2_journal_extend(handle,
4822                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4823                         ret = ext4_expand_extra_isize(inode,
4824                                                       sbi->s_want_extra_isize,
4825                                                       iloc, handle);
4826                         if (ret) {
4827                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4828                                 if (mnt_count !=
4829                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4830                                         ext4_warning(inode->i_sb, __func__,
4831                                         "Unable to expand inode %lu. Delete"
4832                                         " some EAs or run e2fsck.",
4833                                         inode->i_ino);
4834                                         mnt_count =
4835                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4836                                 }
4837                         }
4838                 }
4839         }
4840         if (!err)
4841                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4842         return err;
4843 }
4844
4845 /*
4846  * ext4_dirty_inode() is called from __mark_inode_dirty()
4847  *
4848  * We're really interested in the case where a file is being extended.
4849  * i_size has been changed by generic_commit_write() and we thus need
4850  * to include the updated inode in the current transaction.
4851  *
4852  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4853  * are allocated to the file.
4854  *
4855  * If the inode is marked synchronous, we don't honour that here - doing
4856  * so would cause a commit on atime updates, which we don't bother doing.
4857  * We handle synchronous inodes at the highest possible level.
4858  */
4859 void ext4_dirty_inode(struct inode *inode)
4860 {
4861         handle_t *current_handle = ext4_journal_current_handle();
4862         handle_t *handle;
4863
4864         handle = ext4_journal_start(inode, 2);
4865         if (IS_ERR(handle))
4866                 goto out;
4867         if (current_handle &&
4868                 current_handle->h_transaction != handle->h_transaction) {
4869                 /* This task has a transaction open against a different fs */
4870                 printk(KERN_EMERG "%s: transactions do not match!\n",
4871                        __func__);
4872         } else {
4873                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4874                                 current_handle);
4875                 ext4_mark_inode_dirty(handle, inode);
4876         }
4877         ext4_journal_stop(handle);
4878 out:
4879         return;
4880 }
4881
4882 #if 0
4883 /*
4884  * Bind an inode's backing buffer_head into this transaction, to prevent
4885  * it from being flushed to disk early.  Unlike
4886  * ext4_reserve_inode_write, this leaves behind no bh reference and
4887  * returns no iloc structure, so the caller needs to repeat the iloc
4888  * lookup to mark the inode dirty later.
4889  */
4890 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4891 {
4892         struct ext4_iloc iloc;
4893
4894         int err = 0;
4895         if (handle) {
4896                 err = ext4_get_inode_loc(inode, &iloc);
4897                 if (!err) {
4898                         BUFFER_TRACE(iloc.bh, "get_write_access");
4899                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4900                         if (!err)
4901                                 err = ext4_journal_dirty_metadata(handle,
4902                                                                   iloc.bh);
4903                         brelse(iloc.bh);
4904                 }
4905         }
4906         ext4_std_error(inode->i_sb, err);
4907         return err;
4908 }
4909 #endif
4910
4911 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4912 {
4913         journal_t *journal;
4914         handle_t *handle;
4915         int err;
4916
4917         /*
4918          * We have to be very careful here: changing a data block's
4919          * journaling status dynamically is dangerous.  If we write a
4920          * data block to the journal, change the status and then delete
4921          * that block, we risk forgetting to revoke the old log record
4922          * from the journal and so a subsequent replay can corrupt data.
4923          * So, first we make sure that the journal is empty and that
4924          * nobody is changing anything.
4925          */
4926
4927         journal = EXT4_JOURNAL(inode);
4928         if (is_journal_aborted(journal))
4929                 return -EROFS;
4930
4931         jbd2_journal_lock_updates(journal);
4932         jbd2_journal_flush(journal);
4933
4934         /*
4935          * OK, there are no updates running now, and all cached data is
4936          * synced to disk.  We are now in a completely consistent state
4937          * which doesn't have anything in the journal, and we know that
4938          * no filesystem updates are running, so it is safe to modify
4939          * the inode's in-core data-journaling state flag now.
4940          */
4941
4942         if (val)
4943                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4944         else
4945                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4946         ext4_set_aops(inode);
4947
4948         jbd2_journal_unlock_updates(journal);
4949
4950         /* Finally we can mark the inode as dirty. */
4951
4952         handle = ext4_journal_start(inode, 1);
4953         if (IS_ERR(handle))
4954                 return PTR_ERR(handle);
4955
4956         err = ext4_mark_inode_dirty(handle, inode);
4957         handle->h_sync = 1;
4958         ext4_journal_stop(handle);
4959         ext4_std_error(inode->i_sb, err);
4960
4961         return err;
4962 }
4963
4964 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4965 {
4966         return !buffer_mapped(bh);
4967 }
4968
4969 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4970 {
4971         loff_t size;
4972         unsigned long len;
4973         int ret = -EINVAL;
4974         void *fsdata;
4975         struct file *file = vma->vm_file;
4976         struct inode *inode = file->f_path.dentry->d_inode;
4977         struct address_space *mapping = inode->i_mapping;
4978
4979         /*
4980          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4981          * get i_mutex because we are already holding mmap_sem.
4982          */
4983         down_read(&inode->i_alloc_sem);
4984         size = i_size_read(inode);
4985         if (page->mapping != mapping || size <= page_offset(page)
4986             || !PageUptodate(page)) {
4987                 /* page got truncated from under us? */
4988                 goto out_unlock;
4989         }
4990         ret = 0;
4991         if (PageMappedToDisk(page))
4992                 goto out_unlock;
4993
4994         if (page->index == size >> PAGE_CACHE_SHIFT)
4995                 len = size & ~PAGE_CACHE_MASK;
4996         else
4997                 len = PAGE_CACHE_SIZE;
4998
4999         if (page_has_buffers(page)) {
5000                 /* return if we have all the buffers mapped */
5001                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5002                                        ext4_bh_unmapped))
5003                         goto out_unlock;
5004         }
5005         /*
5006          * OK, we need to fill the hole... Do write_begin write_end
5007          * to do block allocation/reservation.We are not holding
5008          * inode.i__mutex here. That allow * parallel write_begin,
5009          * write_end call. lock_page prevent this from happening
5010          * on the same page though
5011          */
5012         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5013                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5014         if (ret < 0)
5015                 goto out_unlock;
5016         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5017                         len, len, page, fsdata);
5018         if (ret < 0)
5019                 goto out_unlock;
5020         ret = 0;
5021 out_unlock:
5022         up_read(&inode->i_alloc_sem);
5023         return ret;
5024 }