]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/balloc.c
7aac2025ba9ce9446752fc0e72ef036d4289ae41
[linux-2.6-omap-h63xx.git] / fs / ext4 / balloc.c
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
20 #include "ext4.h"
21 #include "ext4_jbd2.h"
22 #include "group.h"
23
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32                 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35         ext4_grpblk_t offset;
36
37         blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38         offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39         if (offsetp)
40                 *offsetp = offset;
41         if (blockgrpp)
42                 *blockgrpp = blocknr;
43
44 }
45
46 static int ext4_block_in_group(struct super_block *sb, ext4_fsblk_t block,
47                         ext4_group_t block_group)
48 {
49         ext4_group_t actual_group;
50         ext4_get_group_no_and_offset(sb, block, &actual_group, NULL);
51         if (actual_group == block_group)
52                 return 1;
53         return 0;
54 }
55
56 static int ext4_group_used_meta_blocks(struct super_block *sb,
57                                 ext4_group_t block_group)
58 {
59         ext4_fsblk_t tmp;
60         struct ext4_sb_info *sbi = EXT4_SB(sb);
61         /* block bitmap, inode bitmap, and inode table blocks */
62         int used_blocks = sbi->s_itb_per_group + 2;
63
64         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
65                 struct ext4_group_desc *gdp;
66                 struct buffer_head *bh;
67
68                 gdp = ext4_get_group_desc(sb, block_group, &bh);
69                 if (!ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp),
70                                         block_group))
71                         used_blocks--;
72
73                 if (!ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp),
74                                         block_group))
75                         used_blocks--;
76
77                 tmp = ext4_inode_table(sb, gdp);
78                 for (; tmp < ext4_inode_table(sb, gdp) +
79                                 sbi->s_itb_per_group; tmp++) {
80                         if (!ext4_block_in_group(sb, tmp, block_group))
81                                 used_blocks -= 1;
82                 }
83         }
84         return used_blocks;
85 }
86 /* Initializes an uninitialized block bitmap if given, and returns the
87  * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
89                  ext4_group_t block_group, struct ext4_group_desc *gdp)
90 {
91         int bit, bit_max;
92         unsigned free_blocks, group_blocks;
93         struct ext4_sb_info *sbi = EXT4_SB(sb);
94
95         if (bh) {
96                 J_ASSERT_BH(bh, buffer_locked(bh));
97
98                 /* If checksum is bad mark all blocks used to prevent allocation
99                  * essentially implementing a per-group read-only flag. */
100                 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
101                         ext4_error(sb, __func__,
102                                   "Checksum bad for group %lu\n", block_group);
103                         gdp->bg_free_blocks_count = 0;
104                         gdp->bg_free_inodes_count = 0;
105                         gdp->bg_itable_unused = 0;
106                         memset(bh->b_data, 0xff, sb->s_blocksize);
107                         return 0;
108                 }
109                 memset(bh->b_data, 0, sb->s_blocksize);
110         }
111
112         /* Check for superblock and gdt backups in this group */
113         bit_max = ext4_bg_has_super(sb, block_group);
114
115         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
116             block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
117                           sbi->s_desc_per_block) {
118                 if (bit_max) {
119                         bit_max += ext4_bg_num_gdb(sb, block_group);
120                         bit_max +=
121                                 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
122                 }
123         } else { /* For META_BG_BLOCK_GROUPS */
124                 bit_max += ext4_bg_num_gdb(sb, block_group);
125         }
126
127         if (block_group == sbi->s_groups_count - 1) {
128                 /*
129                  * Even though mke2fs always initialize first and last group
130                  * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
131                  * to make sure we calculate the right free blocks
132                  */
133                 group_blocks = ext4_blocks_count(sbi->s_es) -
134                         le32_to_cpu(sbi->s_es->s_first_data_block) -
135                         (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
136         } else {
137                 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
138         }
139
140         free_blocks = group_blocks - bit_max;
141
142         if (bh) {
143                 ext4_fsblk_t start, tmp;
144                 int flex_bg = 0;
145
146                 for (bit = 0; bit < bit_max; bit++)
147                         ext4_set_bit(bit, bh->b_data);
148
149                 start = ext4_group_first_block_no(sb, block_group);
150
151                 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
152                                               EXT4_FEATURE_INCOMPAT_FLEX_BG))
153                         flex_bg = 1;
154
155                 /* Set bits for block and inode bitmaps, and inode table */
156                 tmp = ext4_block_bitmap(sb, gdp);
157                 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
158                         ext4_set_bit(tmp - start, bh->b_data);
159
160                 tmp = ext4_inode_bitmap(sb, gdp);
161                 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
162                         ext4_set_bit(tmp - start, bh->b_data);
163
164                 tmp = ext4_inode_table(sb, gdp);
165                 for (; tmp < ext4_inode_table(sb, gdp) +
166                                 sbi->s_itb_per_group; tmp++) {
167                         if (!flex_bg ||
168                                 ext4_block_in_group(sb, tmp, block_group))
169                                 ext4_set_bit(tmp - start, bh->b_data);
170                 }
171                 /*
172                  * Also if the number of blocks within the group is
173                  * less than the blocksize * 8 ( which is the size
174                  * of bitmap ), set rest of the block bitmap to 1
175                  */
176                 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
177         }
178         return free_blocks - ext4_group_used_meta_blocks(sb, block_group);
179 }
180
181
182 /*
183  * The free blocks are managed by bitmaps.  A file system contains several
184  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
185  * block for inodes, N blocks for the inode table and data blocks.
186  *
187  * The file system contains group descriptors which are located after the
188  * super block.  Each descriptor contains the number of the bitmap block and
189  * the free blocks count in the block.  The descriptors are loaded in memory
190  * when a file system is mounted (see ext4_fill_super).
191  */
192
193
194 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
195
196 /**
197  * ext4_get_group_desc() -- load group descriptor from disk
198  * @sb:                 super block
199  * @block_group:        given block group
200  * @bh:                 pointer to the buffer head to store the block
201  *                      group descriptor
202  */
203 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
204                                              ext4_group_t block_group,
205                                              struct buffer_head ** bh)
206 {
207         unsigned long group_desc;
208         unsigned long offset;
209         struct ext4_group_desc * desc;
210         struct ext4_sb_info *sbi = EXT4_SB(sb);
211
212         if (block_group >= sbi->s_groups_count) {
213                 ext4_error (sb, "ext4_get_group_desc",
214                             "block_group >= groups_count - "
215                             "block_group = %lu, groups_count = %lu",
216                             block_group, sbi->s_groups_count);
217
218                 return NULL;
219         }
220         smp_rmb();
221
222         group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
223         offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
224         if (!sbi->s_group_desc[group_desc]) {
225                 ext4_error (sb, "ext4_get_group_desc",
226                             "Group descriptor not loaded - "
227                             "block_group = %lu, group_desc = %lu, desc = %lu",
228                              block_group, group_desc, offset);
229                 return NULL;
230         }
231
232         desc = (struct ext4_group_desc *)(
233                 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
234                 offset * EXT4_DESC_SIZE(sb));
235         if (bh)
236                 *bh = sbi->s_group_desc[group_desc];
237         return desc;
238 }
239
240 static int ext4_valid_block_bitmap(struct super_block *sb,
241                                         struct ext4_group_desc *desc,
242                                         unsigned int block_group,
243                                         struct buffer_head *bh)
244 {
245         ext4_grpblk_t offset;
246         ext4_grpblk_t next_zero_bit;
247         ext4_fsblk_t bitmap_blk;
248         ext4_fsblk_t group_first_block;
249
250         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
251                 /* with FLEX_BG, the inode/block bitmaps and itable
252                  * blocks may not be in the group at all
253                  * so the bitmap validation will be skipped for those groups
254                  * or it has to also read the block group where the bitmaps
255                  * are located to verify they are set.
256                  */
257                 return 1;
258         }
259         group_first_block = ext4_group_first_block_no(sb, block_group);
260
261         /* check whether block bitmap block number is set */
262         bitmap_blk = ext4_block_bitmap(sb, desc);
263         offset = bitmap_blk - group_first_block;
264         if (!ext4_test_bit(offset, bh->b_data))
265                 /* bad block bitmap */
266                 goto err_out;
267
268         /* check whether the inode bitmap block number is set */
269         bitmap_blk = ext4_inode_bitmap(sb, desc);
270         offset = bitmap_blk - group_first_block;
271         if (!ext4_test_bit(offset, bh->b_data))
272                 /* bad block bitmap */
273                 goto err_out;
274
275         /* check whether the inode table block number is set */
276         bitmap_blk = ext4_inode_table(sb, desc);
277         offset = bitmap_blk - group_first_block;
278         next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
279                                 offset + EXT4_SB(sb)->s_itb_per_group,
280                                 offset);
281         if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
282                 /* good bitmap for inode tables */
283                 return 1;
284
285 err_out:
286         ext4_error(sb, __func__,
287                         "Invalid block bitmap - "
288                         "block_group = %d, block = %llu",
289                         block_group, bitmap_blk);
290         return 0;
291 }
292 /**
293  * ext4_read_block_bitmap()
294  * @sb:                 super block
295  * @block_group:        given block group
296  *
297  * Read the bitmap for a given block_group,and validate the
298  * bits for block/inode/inode tables are set in the bitmaps
299  *
300  * Return buffer_head on success or NULL in case of failure.
301  */
302 struct buffer_head *
303 ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
304 {
305         struct ext4_group_desc * desc;
306         struct buffer_head * bh = NULL;
307         ext4_fsblk_t bitmap_blk;
308
309         desc = ext4_get_group_desc(sb, block_group, NULL);
310         if (!desc)
311                 return NULL;
312         bitmap_blk = ext4_block_bitmap(sb, desc);
313         bh = sb_getblk(sb, bitmap_blk);
314         if (unlikely(!bh)) {
315                 ext4_error(sb, __func__,
316                             "Cannot read block bitmap - "
317                             "block_group = %lu, block_bitmap = %llu",
318                             block_group, bitmap_blk);
319                 return NULL;
320         }
321         if (bh_uptodate_or_lock(bh))
322                 return bh;
323
324         spin_lock(sb_bgl_lock(EXT4_SB(sb), block_group));
325         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
326                 ext4_init_block_bitmap(sb, bh, block_group, desc);
327                 set_buffer_uptodate(bh);
328                 unlock_buffer(bh);
329                 spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group));
330                 return bh;
331         }
332         spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group));
333         if (bh_submit_read(bh) < 0) {
334                 put_bh(bh);
335                 ext4_error(sb, __func__,
336                             "Cannot read block bitmap - "
337                             "block_group = %lu, block_bitmap = %llu",
338                             block_group, bitmap_blk);
339                 return NULL;
340         }
341         ext4_valid_block_bitmap(sb, desc, block_group, bh);
342         /*
343          * file system mounted not to panic on error,
344          * continue with corrupt bitmap
345          */
346         return bh;
347 }
348 /*
349  * The reservation window structure operations
350  * --------------------------------------------
351  * Operations include:
352  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
353  *
354  * We use a red-black tree to represent per-filesystem reservation
355  * windows.
356  *
357  */
358
359 /**
360  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
361  * @rb_root:            root of per-filesystem reservation rb tree
362  * @verbose:            verbose mode
363  * @fn:                 function which wishes to dump the reservation map
364  *
365  * If verbose is turned on, it will print the whole block reservation
366  * windows(start, end). Otherwise, it will only print out the "bad" windows,
367  * those windows that overlap with their immediate neighbors.
368  */
369 #if 1
370 static void __rsv_window_dump(struct rb_root *root, int verbose,
371                               const char *fn)
372 {
373         struct rb_node *n;
374         struct ext4_reserve_window_node *rsv, *prev;
375         int bad;
376
377 restart:
378         n = rb_first(root);
379         bad = 0;
380         prev = NULL;
381
382         printk(KERN_DEBUG "Block Allocation Reservation "
383                "Windows Map (%s):\n", fn);
384         while (n) {
385                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
386                 if (verbose)
387                         printk(KERN_DEBUG "reservation window 0x%p "
388                                "start:  %llu, end:  %llu\n",
389                                rsv, rsv->rsv_start, rsv->rsv_end);
390                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
391                         printk(KERN_DEBUG "Bad reservation %p (start >= end)\n",
392                                rsv);
393                         bad = 1;
394                 }
395                 if (prev && prev->rsv_end >= rsv->rsv_start) {
396                         printk(KERN_DEBUG "Bad reservation %p "
397                                "(prev->end >= start)\n", rsv);
398                         bad = 1;
399                 }
400                 if (bad) {
401                         if (!verbose) {
402                                 printk(KERN_DEBUG "Restarting reservation "
403                                        "walk in verbose mode\n");
404                                 verbose = 1;
405                                 goto restart;
406                         }
407                 }
408                 n = rb_next(n);
409                 prev = rsv;
410         }
411         printk(KERN_DEBUG "Window map complete.\n");
412         BUG_ON(bad);
413 }
414 #define rsv_window_dump(root, verbose) \
415         __rsv_window_dump((root), (verbose), __func__)
416 #else
417 #define rsv_window_dump(root, verbose) do {} while (0)
418 #endif
419
420 /**
421  * goal_in_my_reservation()
422  * @rsv:                inode's reservation window
423  * @grp_goal:           given goal block relative to the allocation block group
424  * @group:              the current allocation block group
425  * @sb:                 filesystem super block
426  *
427  * Test if the given goal block (group relative) is within the file's
428  * own block reservation window range.
429  *
430  * If the reservation window is outside the goal allocation group, return 0;
431  * grp_goal (given goal block) could be -1, which means no specific
432  * goal block. In this case, always return 1.
433  * If the goal block is within the reservation window, return 1;
434  * otherwise, return 0;
435  */
436 static int
437 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
438                         ext4_group_t group, struct super_block *sb)
439 {
440         ext4_fsblk_t group_first_block, group_last_block;
441
442         group_first_block = ext4_group_first_block_no(sb, group);
443         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
444
445         if ((rsv->_rsv_start > group_last_block) ||
446             (rsv->_rsv_end < group_first_block))
447                 return 0;
448         if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
449                 || (grp_goal + group_first_block > rsv->_rsv_end)))
450                 return 0;
451         return 1;
452 }
453
454 /**
455  * search_reserve_window()
456  * @rb_root:            root of reservation tree
457  * @goal:               target allocation block
458  *
459  * Find the reserved window which includes the goal, or the previous one
460  * if the goal is not in any window.
461  * Returns NULL if there are no windows or if all windows start after the goal.
462  */
463 static struct ext4_reserve_window_node *
464 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
465 {
466         struct rb_node *n = root->rb_node;
467         struct ext4_reserve_window_node *rsv;
468
469         if (!n)
470                 return NULL;
471
472         do {
473                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
474
475                 if (goal < rsv->rsv_start)
476                         n = n->rb_left;
477                 else if (goal > rsv->rsv_end)
478                         n = n->rb_right;
479                 else
480                         return rsv;
481         } while (n);
482         /*
483          * We've fallen off the end of the tree: the goal wasn't inside
484          * any particular node.  OK, the previous node must be to one
485          * side of the interval containing the goal.  If it's the RHS,
486          * we need to back up one.
487          */
488         if (rsv->rsv_start > goal) {
489                 n = rb_prev(&rsv->rsv_node);
490                 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
491         }
492         return rsv;
493 }
494
495 /**
496  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
497  * @sb:                 super block
498  * @rsv:                reservation window to add
499  *
500  * Must be called with rsv_lock hold.
501  */
502 void ext4_rsv_window_add(struct super_block *sb,
503                     struct ext4_reserve_window_node *rsv)
504 {
505         struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
506         struct rb_node *node = &rsv->rsv_node;
507         ext4_fsblk_t start = rsv->rsv_start;
508
509         struct rb_node ** p = &root->rb_node;
510         struct rb_node * parent = NULL;
511         struct ext4_reserve_window_node *this;
512
513         while (*p)
514         {
515                 parent = *p;
516                 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
517
518                 if (start < this->rsv_start)
519                         p = &(*p)->rb_left;
520                 else if (start > this->rsv_end)
521                         p = &(*p)->rb_right;
522                 else {
523                         rsv_window_dump(root, 1);
524                         BUG();
525                 }
526         }
527
528         rb_link_node(node, parent, p);
529         rb_insert_color(node, root);
530 }
531
532 /**
533  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
534  * @sb:                 super block
535  * @rsv:                reservation window to remove
536  *
537  * Mark the block reservation window as not allocated, and unlink it
538  * from the filesystem reservation window rb tree. Must be called with
539  * rsv_lock hold.
540  */
541 static void rsv_window_remove(struct super_block *sb,
542                               struct ext4_reserve_window_node *rsv)
543 {
544         rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
545         rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
546         rsv->rsv_alloc_hit = 0;
547         rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
548 }
549
550 /*
551  * rsv_is_empty() -- Check if the reservation window is allocated.
552  * @rsv:                given reservation window to check
553  *
554  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
555  */
556 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
557 {
558         /* a valid reservation end block could not be 0 */
559         return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
560 }
561
562 /**
563  * ext4_init_block_alloc_info()
564  * @inode:              file inode structure
565  *
566  * Allocate and initialize the  reservation window structure, and
567  * link the window to the ext4 inode structure at last
568  *
569  * The reservation window structure is only dynamically allocated
570  * and linked to ext4 inode the first time the open file
571  * needs a new block. So, before every ext4_new_block(s) call, for
572  * regular files, we should check whether the reservation window
573  * structure exists or not. In the latter case, this function is called.
574  * Fail to do so will result in block reservation being turned off for that
575  * open file.
576  *
577  * This function is called from ext4_get_blocks_handle(), also called
578  * when setting the reservation window size through ioctl before the file
579  * is open for write (needs block allocation).
580  *
581  * Needs down_write(i_data_sem) protection prior to call this function.
582  */
583 void ext4_init_block_alloc_info(struct inode *inode)
584 {
585         struct ext4_inode_info *ei = EXT4_I(inode);
586         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
587         struct super_block *sb = inode->i_sb;
588
589         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
590         if (block_i) {
591                 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
592
593                 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
594                 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
595
596                 /*
597                  * if filesystem is mounted with NORESERVATION, the goal
598                  * reservation window size is set to zero to indicate
599                  * block reservation is off
600                  */
601                 if (!test_opt(sb, RESERVATION))
602                         rsv->rsv_goal_size = 0;
603                 else
604                         rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
605                 rsv->rsv_alloc_hit = 0;
606                 block_i->last_alloc_logical_block = 0;
607                 block_i->last_alloc_physical_block = 0;
608         }
609         ei->i_block_alloc_info = block_i;
610 }
611
612 /**
613  * ext4_discard_reservation()
614  * @inode:              inode
615  *
616  * Discard(free) block reservation window on last file close, or truncate
617  * or at last iput().
618  *
619  * It is being called in three cases:
620  *      ext4_release_file(): last writer close the file
621  *      ext4_clear_inode(): last iput(), when nobody link to this file.
622  *      ext4_truncate(): when the block indirect map is about to change.
623  *
624  */
625 void ext4_discard_reservation(struct inode *inode)
626 {
627         struct ext4_inode_info *ei = EXT4_I(inode);
628         struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
629         struct ext4_reserve_window_node *rsv;
630         spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
631
632         ext4_mb_discard_inode_preallocations(inode);
633
634         if (!block_i)
635                 return;
636
637         rsv = &block_i->rsv_window_node;
638         if (!rsv_is_empty(&rsv->rsv_window)) {
639                 spin_lock(rsv_lock);
640                 if (!rsv_is_empty(&rsv->rsv_window))
641                         rsv_window_remove(inode->i_sb, rsv);
642                 spin_unlock(rsv_lock);
643         }
644 }
645
646 /**
647  * ext4_free_blocks_sb() -- Free given blocks and update quota
648  * @handle:                     handle to this transaction
649  * @sb:                         super block
650  * @block:                      start physcial block to free
651  * @count:                      number of blocks to free
652  * @pdquot_freed_blocks:        pointer to quota
653  */
654 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
655                          ext4_fsblk_t block, unsigned long count,
656                          unsigned long *pdquot_freed_blocks)
657 {
658         struct buffer_head *bitmap_bh = NULL;
659         struct buffer_head *gd_bh;
660         ext4_group_t block_group;
661         ext4_grpblk_t bit;
662         unsigned long i;
663         unsigned long overflow;
664         struct ext4_group_desc * desc;
665         struct ext4_super_block * es;
666         struct ext4_sb_info *sbi;
667         int err = 0, ret;
668         ext4_grpblk_t group_freed;
669
670         *pdquot_freed_blocks = 0;
671         sbi = EXT4_SB(sb);
672         es = sbi->s_es;
673         if (block < le32_to_cpu(es->s_first_data_block) ||
674             block + count < block ||
675             block + count > ext4_blocks_count(es)) {
676                 ext4_error (sb, "ext4_free_blocks",
677                             "Freeing blocks not in datazone - "
678                             "block = %llu, count = %lu", block, count);
679                 goto error_return;
680         }
681
682         ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
683
684 do_more:
685         overflow = 0;
686         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
687         /*
688          * Check to see if we are freeing blocks across a group
689          * boundary.
690          */
691         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
692                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
693                 count -= overflow;
694         }
695         brelse(bitmap_bh);
696         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
697         if (!bitmap_bh)
698                 goto error_return;
699         desc = ext4_get_group_desc (sb, block_group, &gd_bh);
700         if (!desc)
701                 goto error_return;
702
703         if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
704             in_range(ext4_inode_bitmap(sb, desc), block, count) ||
705             in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
706             in_range(block + count - 1, ext4_inode_table(sb, desc),
707                      sbi->s_itb_per_group)) {
708                 ext4_error (sb, "ext4_free_blocks",
709                             "Freeing blocks in system zones - "
710                             "Block = %llu, count = %lu",
711                             block, count);
712                 goto error_return;
713         }
714
715         /*
716          * We are about to start releasing blocks in the bitmap,
717          * so we need undo access.
718          */
719         /* @@@ check errors */
720         BUFFER_TRACE(bitmap_bh, "getting undo access");
721         err = ext4_journal_get_undo_access(handle, bitmap_bh);
722         if (err)
723                 goto error_return;
724
725         /*
726          * We are about to modify some metadata.  Call the journal APIs
727          * to unshare ->b_data if a currently-committing transaction is
728          * using it
729          */
730         BUFFER_TRACE(gd_bh, "get_write_access");
731         err = ext4_journal_get_write_access(handle, gd_bh);
732         if (err)
733                 goto error_return;
734
735         jbd_lock_bh_state(bitmap_bh);
736
737         for (i = 0, group_freed = 0; i < count; i++) {
738                 /*
739                  * An HJ special.  This is expensive...
740                  */
741 #ifdef CONFIG_JBD2_DEBUG
742                 jbd_unlock_bh_state(bitmap_bh);
743                 {
744                         struct buffer_head *debug_bh;
745                         debug_bh = sb_find_get_block(sb, block + i);
746                         if (debug_bh) {
747                                 BUFFER_TRACE(debug_bh, "Deleted!");
748                                 if (!bh2jh(bitmap_bh)->b_committed_data)
749                                         BUFFER_TRACE(debug_bh,
750                                                 "No commited data in bitmap");
751                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
752                                 __brelse(debug_bh);
753                         }
754                 }
755                 jbd_lock_bh_state(bitmap_bh);
756 #endif
757                 if (need_resched()) {
758                         jbd_unlock_bh_state(bitmap_bh);
759                         cond_resched();
760                         jbd_lock_bh_state(bitmap_bh);
761                 }
762                 /* @@@ This prevents newly-allocated data from being
763                  * freed and then reallocated within the same
764                  * transaction.
765                  *
766                  * Ideally we would want to allow that to happen, but to
767                  * do so requires making jbd2_journal_forget() capable of
768                  * revoking the queued write of a data block, which
769                  * implies blocking on the journal lock.  *forget()
770                  * cannot block due to truncate races.
771                  *
772                  * Eventually we can fix this by making jbd2_journal_forget()
773                  * return a status indicating whether or not it was able
774                  * to revoke the buffer.  On successful revoke, it is
775                  * safe not to set the allocation bit in the committed
776                  * bitmap, because we know that there is no outstanding
777                  * activity on the buffer any more and so it is safe to
778                  * reallocate it.
779                  */
780                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
781                 J_ASSERT_BH(bitmap_bh,
782                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
783                 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
784                                 bh2jh(bitmap_bh)->b_committed_data);
785
786                 /*
787                  * We clear the bit in the bitmap after setting the committed
788                  * data bit, because this is the reverse order to that which
789                  * the allocator uses.
790                  */
791                 BUFFER_TRACE(bitmap_bh, "clear bit");
792                 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
793                                                 bit + i, bitmap_bh->b_data)) {
794                         jbd_unlock_bh_state(bitmap_bh);
795                         ext4_error(sb, __func__,
796                                    "bit already cleared for block %llu",
797                                    (ext4_fsblk_t)(block + i));
798                         jbd_lock_bh_state(bitmap_bh);
799                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
800                 } else {
801                         group_freed++;
802                 }
803         }
804         jbd_unlock_bh_state(bitmap_bh);
805
806         spin_lock(sb_bgl_lock(sbi, block_group));
807         le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
808         desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
809         spin_unlock(sb_bgl_lock(sbi, block_group));
810         percpu_counter_add(&sbi->s_freeblocks_counter, count);
811
812         if (sbi->s_log_groups_per_flex) {
813                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
814                 spin_lock(sb_bgl_lock(sbi, flex_group));
815                 sbi->s_flex_groups[flex_group].free_blocks += count;
816                 spin_unlock(sb_bgl_lock(sbi, flex_group));
817         }
818
819         /* We dirtied the bitmap block */
820         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
821         err = ext4_journal_dirty_metadata(handle, bitmap_bh);
822
823         /* And the group descriptor block */
824         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
825         ret = ext4_journal_dirty_metadata(handle, gd_bh);
826         if (!err) err = ret;
827         *pdquot_freed_blocks += group_freed;
828
829         if (overflow && !err) {
830                 block += count;
831                 count = overflow;
832                 goto do_more;
833         }
834         sb->s_dirt = 1;
835 error_return:
836         brelse(bitmap_bh);
837         ext4_std_error(sb, err);
838         return;
839 }
840
841 /**
842  * ext4_free_blocks() -- Free given blocks and update quota
843  * @handle:             handle for this transaction
844  * @inode:              inode
845  * @block:              start physical block to free
846  * @count:              number of blocks to count
847  * @metadata:           Are these metadata blocks
848  */
849 void ext4_free_blocks(handle_t *handle, struct inode *inode,
850                         ext4_fsblk_t block, unsigned long count,
851                         int metadata)
852 {
853         struct super_block * sb;
854         unsigned long dquot_freed_blocks;
855
856         /* this isn't the right place to decide whether block is metadata
857          * inode.c/extents.c knows better, but for safety ... */
858         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
859                         ext4_should_journal_data(inode))
860                 metadata = 1;
861
862         sb = inode->i_sb;
863
864         if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
865                 ext4_free_blocks_sb(handle, sb, block, count,
866                                                 &dquot_freed_blocks);
867         else
868                 ext4_mb_free_blocks(handle, inode, block, count,
869                                                 metadata, &dquot_freed_blocks);
870         if (dquot_freed_blocks)
871                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
872         return;
873 }
874
875 /**
876  * ext4_test_allocatable()
877  * @nr:                 given allocation block group
878  * @bh:                 bufferhead contains the bitmap of the given block group
879  *
880  * For ext4 allocations, we must not reuse any blocks which are
881  * allocated in the bitmap buffer's "last committed data" copy.  This
882  * prevents deletes from freeing up the page for reuse until we have
883  * committed the delete transaction.
884  *
885  * If we didn't do this, then deleting something and reallocating it as
886  * data would allow the old block to be overwritten before the
887  * transaction committed (because we force data to disk before commit).
888  * This would lead to corruption if we crashed between overwriting the
889  * data and committing the delete.
890  *
891  * @@@ We may want to make this allocation behaviour conditional on
892  * data-writes at some point, and disable it for metadata allocations or
893  * sync-data inodes.
894  */
895 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
896 {
897         int ret;
898         struct journal_head *jh = bh2jh(bh);
899
900         if (ext4_test_bit(nr, bh->b_data))
901                 return 0;
902
903         jbd_lock_bh_state(bh);
904         if (!jh->b_committed_data)
905                 ret = 1;
906         else
907                 ret = !ext4_test_bit(nr, jh->b_committed_data);
908         jbd_unlock_bh_state(bh);
909         return ret;
910 }
911
912 /**
913  * bitmap_search_next_usable_block()
914  * @start:              the starting block (group relative) of the search
915  * @bh:                 bufferhead contains the block group bitmap
916  * @maxblocks:          the ending block (group relative) of the reservation
917  *
918  * The bitmap search --- search forward alternately through the actual
919  * bitmap on disk and the last-committed copy in journal, until we find a
920  * bit free in both bitmaps.
921  */
922 static ext4_grpblk_t
923 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
924                                         ext4_grpblk_t maxblocks)
925 {
926         ext4_grpblk_t next;
927         struct journal_head *jh = bh2jh(bh);
928
929         while (start < maxblocks) {
930                 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
931                 if (next >= maxblocks)
932                         return -1;
933                 if (ext4_test_allocatable(next, bh))
934                         return next;
935                 jbd_lock_bh_state(bh);
936                 if (jh->b_committed_data)
937                         start = ext4_find_next_zero_bit(jh->b_committed_data,
938                                                         maxblocks, next);
939                 jbd_unlock_bh_state(bh);
940         }
941         return -1;
942 }
943
944 /**
945  * find_next_usable_block()
946  * @start:              the starting block (group relative) to find next
947  *                      allocatable block in bitmap.
948  * @bh:                 bufferhead contains the block group bitmap
949  * @maxblocks:          the ending block (group relative) for the search
950  *
951  * Find an allocatable block in a bitmap.  We honor both the bitmap and
952  * its last-committed copy (if that exists), and perform the "most
953  * appropriate allocation" algorithm of looking for a free block near
954  * the initial goal; then for a free byte somewhere in the bitmap; then
955  * for any free bit in the bitmap.
956  */
957 static ext4_grpblk_t
958 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
959                         ext4_grpblk_t maxblocks)
960 {
961         ext4_grpblk_t here, next;
962         char *p, *r;
963
964         if (start > 0) {
965                 /*
966                  * The goal was occupied; search forward for a free
967                  * block within the next XX blocks.
968                  *
969                  * end_goal is more or less random, but it has to be
970                  * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
971                  * next 64-bit boundary is simple..
972                  */
973                 ext4_grpblk_t end_goal = (start + 63) & ~63;
974                 if (end_goal > maxblocks)
975                         end_goal = maxblocks;
976                 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
977                 if (here < end_goal && ext4_test_allocatable(here, bh))
978                         return here;
979                 ext4_debug("Bit not found near goal\n");
980         }
981
982         here = start;
983         if (here < 0)
984                 here = 0;
985
986         p = ((char *)bh->b_data) + (here >> 3);
987         r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
988         next = (r - ((char *)bh->b_data)) << 3;
989
990         if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
991                 return next;
992
993         /*
994          * The bitmap search --- search forward alternately through the actual
995          * bitmap and the last-committed copy until we find a bit free in
996          * both
997          */
998         here = bitmap_search_next_usable_block(here, bh, maxblocks);
999         return here;
1000 }
1001
1002 /**
1003  * claim_block()
1004  * @block:              the free block (group relative) to allocate
1005  * @bh:                 the bufferhead containts the block group bitmap
1006  *
1007  * We think we can allocate this block in this bitmap.  Try to set the bit.
1008  * If that succeeds then check that nobody has allocated and then freed the
1009  * block since we saw that is was not marked in b_committed_data.  If it _was_
1010  * allocated and freed then clear the bit in the bitmap again and return
1011  * zero (failure).
1012  */
1013 static inline int
1014 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
1015 {
1016         struct journal_head *jh = bh2jh(bh);
1017         int ret;
1018
1019         if (ext4_set_bit_atomic(lock, block, bh->b_data))
1020                 return 0;
1021         jbd_lock_bh_state(bh);
1022         if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
1023                 ext4_clear_bit_atomic(lock, block, bh->b_data);
1024                 ret = 0;
1025         } else {
1026                 ret = 1;
1027         }
1028         jbd_unlock_bh_state(bh);
1029         return ret;
1030 }
1031
1032 /**
1033  * ext4_try_to_allocate()
1034  * @sb:                 superblock
1035  * @handle:             handle to this transaction
1036  * @group:              given allocation block group
1037  * @bitmap_bh:          bufferhead holds the block bitmap
1038  * @grp_goal:           given target block within the group
1039  * @count:              target number of blocks to allocate
1040  * @my_rsv:             reservation window
1041  *
1042  * Attempt to allocate blocks within a give range. Set the range of allocation
1043  * first, then find the first free bit(s) from the bitmap (within the range),
1044  * and at last, allocate the blocks by claiming the found free bit as allocated.
1045  *
1046  * To set the range of this allocation:
1047  *      if there is a reservation window, only try to allocate block(s) from the
1048  *      file's own reservation window;
1049  *      Otherwise, the allocation range starts from the give goal block, ends at
1050  *      the block group's last block.
1051  *
1052  * If we failed to allocate the desired block then we may end up crossing to a
1053  * new bitmap.  In that case we must release write access to the old one via
1054  * ext4_journal_release_buffer(), else we'll run out of credits.
1055  */
1056 static ext4_grpblk_t
1057 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1058                         ext4_group_t group, struct buffer_head *bitmap_bh,
1059                         ext4_grpblk_t grp_goal, unsigned long *count,
1060                         struct ext4_reserve_window *my_rsv)
1061 {
1062         ext4_fsblk_t group_first_block;
1063         ext4_grpblk_t start, end;
1064         unsigned long num = 0;
1065
1066         /* we do allocation within the reservation window if we have a window */
1067         if (my_rsv) {
1068                 group_first_block = ext4_group_first_block_no(sb, group);
1069                 if (my_rsv->_rsv_start >= group_first_block)
1070                         start = my_rsv->_rsv_start - group_first_block;
1071                 else
1072                         /* reservation window cross group boundary */
1073                         start = 0;
1074                 end = my_rsv->_rsv_end - group_first_block + 1;
1075                 if (end > EXT4_BLOCKS_PER_GROUP(sb))
1076                         /* reservation window crosses group boundary */
1077                         end = EXT4_BLOCKS_PER_GROUP(sb);
1078                 if ((start <= grp_goal) && (grp_goal < end))
1079                         start = grp_goal;
1080                 else
1081                         grp_goal = -1;
1082         } else {
1083                 if (grp_goal > 0)
1084                         start = grp_goal;
1085                 else
1086                         start = 0;
1087                 end = EXT4_BLOCKS_PER_GROUP(sb);
1088         }
1089
1090         BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1091
1092 repeat:
1093         if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1094                 grp_goal = find_next_usable_block(start, bitmap_bh, end);
1095                 if (grp_goal < 0)
1096                         goto fail_access;
1097                 if (!my_rsv) {
1098                         int i;
1099
1100                         for (i = 0; i < 7 && grp_goal > start &&
1101                                         ext4_test_allocatable(grp_goal - 1,
1102                                                                 bitmap_bh);
1103                                         i++, grp_goal--)
1104                                 ;
1105                 }
1106         }
1107         start = grp_goal;
1108
1109         if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1110                 grp_goal, bitmap_bh)) {
1111                 /*
1112                  * The block was allocated by another thread, or it was
1113                  * allocated and then freed by another thread
1114                  */
1115                 start++;
1116                 grp_goal++;
1117                 if (start >= end)
1118                         goto fail_access;
1119                 goto repeat;
1120         }
1121         num++;
1122         grp_goal++;
1123         while (num < *count && grp_goal < end
1124                 && ext4_test_allocatable(grp_goal, bitmap_bh)
1125                 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1126                                 grp_goal, bitmap_bh)) {
1127                 num++;
1128                 grp_goal++;
1129         }
1130         *count = num;
1131         return grp_goal - num;
1132 fail_access:
1133         *count = num;
1134         return -1;
1135 }
1136
1137 /**
1138  *      find_next_reservable_window():
1139  *              find a reservable space within the given range.
1140  *              It does not allocate the reservation window for now:
1141  *              alloc_new_reservation() will do the work later.
1142  *
1143  *      @search_head: the head of the searching list;
1144  *              This is not necessarily the list head of the whole filesystem
1145  *
1146  *              We have both head and start_block to assist the search
1147  *              for the reservable space. The list starts from head,
1148  *              but we will shift to the place where start_block is,
1149  *              then start from there, when looking for a reservable space.
1150  *
1151  *      @size: the target new reservation window size
1152  *
1153  *      @group_first_block: the first block we consider to start
1154  *                      the real search from
1155  *
1156  *      @last_block:
1157  *              the maximum block number that our goal reservable space
1158  *              could start from. This is normally the last block in this
1159  *              group. The search will end when we found the start of next
1160  *              possible reservable space is out of this boundary.
1161  *              This could handle the cross boundary reservation window
1162  *              request.
1163  *
1164  *      basically we search from the given range, rather than the whole
1165  *      reservation double linked list, (start_block, last_block)
1166  *      to find a free region that is of my size and has not
1167  *      been reserved.
1168  *
1169  */
1170 static int find_next_reservable_window(
1171                                 struct ext4_reserve_window_node *search_head,
1172                                 struct ext4_reserve_window_node *my_rsv,
1173                                 struct super_block * sb,
1174                                 ext4_fsblk_t start_block,
1175                                 ext4_fsblk_t last_block)
1176 {
1177         struct rb_node *next;
1178         struct ext4_reserve_window_node *rsv, *prev;
1179         ext4_fsblk_t cur;
1180         int size = my_rsv->rsv_goal_size;
1181
1182         /* TODO: make the start of the reservation window byte-aligned */
1183         /* cur = *start_block & ~7;*/
1184         cur = start_block;
1185         rsv = search_head;
1186         if (!rsv)
1187                 return -1;
1188
1189         while (1) {
1190                 if (cur <= rsv->rsv_end)
1191                         cur = rsv->rsv_end + 1;
1192
1193                 /* TODO?
1194                  * in the case we could not find a reservable space
1195                  * that is what is expected, during the re-search, we could
1196                  * remember what's the largest reservable space we could have
1197                  * and return that one.
1198                  *
1199                  * For now it will fail if we could not find the reservable
1200                  * space with expected-size (or more)...
1201                  */
1202                 if (cur > last_block)
1203                         return -1;              /* fail */
1204
1205                 prev = rsv;
1206                 next = rb_next(&rsv->rsv_node);
1207                 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1208
1209                 /*
1210                  * Reached the last reservation, we can just append to the
1211                  * previous one.
1212                  */
1213                 if (!next)
1214                         break;
1215
1216                 if (cur + size <= rsv->rsv_start) {
1217                         /*
1218                          * Found a reserveable space big enough.  We could
1219                          * have a reservation across the group boundary here
1220                          */
1221                         break;
1222                 }
1223         }
1224         /*
1225          * we come here either :
1226          * when we reach the end of the whole list,
1227          * and there is empty reservable space after last entry in the list.
1228          * append it to the end of the list.
1229          *
1230          * or we found one reservable space in the middle of the list,
1231          * return the reservation window that we could append to.
1232          * succeed.
1233          */
1234
1235         if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1236                 rsv_window_remove(sb, my_rsv);
1237
1238         /*
1239          * Let's book the whole avaliable window for now.  We will check the
1240          * disk bitmap later and then, if there are free blocks then we adjust
1241          * the window size if it's larger than requested.
1242          * Otherwise, we will remove this node from the tree next time
1243          * call find_next_reservable_window.
1244          */
1245         my_rsv->rsv_start = cur;
1246         my_rsv->rsv_end = cur + size - 1;
1247         my_rsv->rsv_alloc_hit = 0;
1248
1249         if (prev != my_rsv)
1250                 ext4_rsv_window_add(sb, my_rsv);
1251
1252         return 0;
1253 }
1254
1255 /**
1256  *      alloc_new_reservation()--allocate a new reservation window
1257  *
1258  *              To make a new reservation, we search part of the filesystem
1259  *              reservation list (the list that inside the group). We try to
1260  *              allocate a new reservation window near the allocation goal,
1261  *              or the beginning of the group, if there is no goal.
1262  *
1263  *              We first find a reservable space after the goal, then from
1264  *              there, we check the bitmap for the first free block after
1265  *              it. If there is no free block until the end of group, then the
1266  *              whole group is full, we failed. Otherwise, check if the free
1267  *              block is inside the expected reservable space, if so, we
1268  *              succeed.
1269  *              If the first free block is outside the reservable space, then
1270  *              start from the first free block, we search for next available
1271  *              space, and go on.
1272  *
1273  *      on succeed, a new reservation will be found and inserted into the list
1274  *      It contains at least one free block, and it does not overlap with other
1275  *      reservation windows.
1276  *
1277  *      failed: we failed to find a reservation window in this group
1278  *
1279  *      @rsv: the reservation
1280  *
1281  *      @grp_goal: The goal (group-relative).  It is where the search for a
1282  *              free reservable space should start from.
1283  *              if we have a grp_goal(grp_goal >0 ), then start from there,
1284  *              no grp_goal(grp_goal = -1), we start from the first block
1285  *              of the group.
1286  *
1287  *      @sb: the super block
1288  *      @group: the group we are trying to allocate in
1289  *      @bitmap_bh: the block group block bitmap
1290  *
1291  */
1292 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1293                 ext4_grpblk_t grp_goal, struct super_block *sb,
1294                 ext4_group_t group, struct buffer_head *bitmap_bh)
1295 {
1296         struct ext4_reserve_window_node *search_head;
1297         ext4_fsblk_t group_first_block, group_end_block, start_block;
1298         ext4_grpblk_t first_free_block;
1299         struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1300         unsigned long size;
1301         int ret;
1302         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1303
1304         group_first_block = ext4_group_first_block_no(sb, group);
1305         group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1306
1307         if (grp_goal < 0)
1308                 start_block = group_first_block;
1309         else
1310                 start_block = grp_goal + group_first_block;
1311
1312         size = my_rsv->rsv_goal_size;
1313
1314         if (!rsv_is_empty(&my_rsv->rsv_window)) {
1315                 /*
1316                  * if the old reservation is cross group boundary
1317                  * and if the goal is inside the old reservation window,
1318                  * we will come here when we just failed to allocate from
1319                  * the first part of the window. We still have another part
1320                  * that belongs to the next group. In this case, there is no
1321                  * point to discard our window and try to allocate a new one
1322                  * in this group(which will fail). we should
1323                  * keep the reservation window, just simply move on.
1324                  *
1325                  * Maybe we could shift the start block of the reservation
1326                  * window to the first block of next group.
1327                  */
1328
1329                 if ((my_rsv->rsv_start <= group_end_block) &&
1330                                 (my_rsv->rsv_end > group_end_block) &&
1331                                 (start_block >= my_rsv->rsv_start))
1332                         return -1;
1333
1334                 if ((my_rsv->rsv_alloc_hit >
1335                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1336                         /*
1337                          * if the previously allocation hit ratio is
1338                          * greater than 1/2, then we double the size of
1339                          * the reservation window the next time,
1340                          * otherwise we keep the same size window
1341                          */
1342                         size = size * 2;
1343                         if (size > EXT4_MAX_RESERVE_BLOCKS)
1344                                 size = EXT4_MAX_RESERVE_BLOCKS;
1345                         my_rsv->rsv_goal_size= size;
1346                 }
1347         }
1348
1349         spin_lock(rsv_lock);
1350         /*
1351          * shift the search start to the window near the goal block
1352          */
1353         search_head = search_reserve_window(fs_rsv_root, start_block);
1354
1355         /*
1356          * find_next_reservable_window() simply finds a reservable window
1357          * inside the given range(start_block, group_end_block).
1358          *
1359          * To make sure the reservation window has a free bit inside it, we
1360          * need to check the bitmap after we found a reservable window.
1361          */
1362 retry:
1363         ret = find_next_reservable_window(search_head, my_rsv, sb,
1364                                                 start_block, group_end_block);
1365
1366         if (ret == -1) {
1367                 if (!rsv_is_empty(&my_rsv->rsv_window))
1368                         rsv_window_remove(sb, my_rsv);
1369                 spin_unlock(rsv_lock);
1370                 return -1;
1371         }
1372
1373         /*
1374          * On success, find_next_reservable_window() returns the
1375          * reservation window where there is a reservable space after it.
1376          * Before we reserve this reservable space, we need
1377          * to make sure there is at least a free block inside this region.
1378          *
1379          * searching the first free bit on the block bitmap and copy of
1380          * last committed bitmap alternatively, until we found a allocatable
1381          * block. Search start from the start block of the reservable space
1382          * we just found.
1383          */
1384         spin_unlock(rsv_lock);
1385         first_free_block = bitmap_search_next_usable_block(
1386                         my_rsv->rsv_start - group_first_block,
1387                         bitmap_bh, group_end_block - group_first_block + 1);
1388
1389         if (first_free_block < 0) {
1390                 /*
1391                  * no free block left on the bitmap, no point
1392                  * to reserve the space. return failed.
1393                  */
1394                 spin_lock(rsv_lock);
1395                 if (!rsv_is_empty(&my_rsv->rsv_window))
1396                         rsv_window_remove(sb, my_rsv);
1397                 spin_unlock(rsv_lock);
1398                 return -1;              /* failed */
1399         }
1400
1401         start_block = first_free_block + group_first_block;
1402         /*
1403          * check if the first free block is within the
1404          * free space we just reserved
1405          */
1406         if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1407                 return 0;               /* success */
1408         /*
1409          * if the first free bit we found is out of the reservable space
1410          * continue search for next reservable space,
1411          * start from where the free block is,
1412          * we also shift the list head to where we stopped last time
1413          */
1414         search_head = my_rsv;
1415         spin_lock(rsv_lock);
1416         goto retry;
1417 }
1418
1419 /**
1420  * try_to_extend_reservation()
1421  * @my_rsv:             given reservation window
1422  * @sb:                 super block
1423  * @size:               the delta to extend
1424  *
1425  * Attempt to expand the reservation window large enough to have
1426  * required number of free blocks
1427  *
1428  * Since ext4_try_to_allocate() will always allocate blocks within
1429  * the reservation window range, if the window size is too small,
1430  * multiple blocks allocation has to stop at the end of the reservation
1431  * window. To make this more efficient, given the total number of
1432  * blocks needed and the current size of the window, we try to
1433  * expand the reservation window size if necessary on a best-effort
1434  * basis before ext4_new_blocks() tries to allocate blocks,
1435  */
1436 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1437                         struct super_block *sb, int size)
1438 {
1439         struct ext4_reserve_window_node *next_rsv;
1440         struct rb_node *next;
1441         spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1442
1443         if (!spin_trylock(rsv_lock))
1444                 return;
1445
1446         next = rb_next(&my_rsv->rsv_node);
1447
1448         if (!next)
1449                 my_rsv->rsv_end += size;
1450         else {
1451                 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1452
1453                 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1454                         my_rsv->rsv_end += size;
1455                 else
1456                         my_rsv->rsv_end = next_rsv->rsv_start - 1;
1457         }
1458         spin_unlock(rsv_lock);
1459 }
1460
1461 /**
1462  * ext4_try_to_allocate_with_rsv()
1463  * @sb:                 superblock
1464  * @handle:             handle to this transaction
1465  * @group:              given allocation block group
1466  * @bitmap_bh:          bufferhead holds the block bitmap
1467  * @grp_goal:           given target block within the group
1468  * @count:              target number of blocks to allocate
1469  * @my_rsv:             reservation window
1470  * @errp:               pointer to store the error code
1471  *
1472  * This is the main function used to allocate a new block and its reservation
1473  * window.
1474  *
1475  * Each time when a new block allocation is need, first try to allocate from
1476  * its own reservation.  If it does not have a reservation window, instead of
1477  * looking for a free bit on bitmap first, then look up the reservation list to
1478  * see if it is inside somebody else's reservation window, we try to allocate a
1479  * reservation window for it starting from the goal first. Then do the block
1480  * allocation within the reservation window.
1481  *
1482  * This will avoid keeping on searching the reservation list again and
1483  * again when somebody is looking for a free block (without
1484  * reservation), and there are lots of free blocks, but they are all
1485  * being reserved.
1486  *
1487  * We use a red-black tree for the per-filesystem reservation list.
1488  *
1489  */
1490 static ext4_grpblk_t
1491 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1492                         ext4_group_t group, struct buffer_head *bitmap_bh,
1493                         ext4_grpblk_t grp_goal,
1494                         struct ext4_reserve_window_node * my_rsv,
1495                         unsigned long *count, int *errp)
1496 {
1497         ext4_fsblk_t group_first_block, group_last_block;
1498         ext4_grpblk_t ret = 0;
1499         int fatal;
1500         unsigned long num = *count;
1501
1502         *errp = 0;
1503
1504         /*
1505          * Make sure we use undo access for the bitmap, because it is critical
1506          * that we do the frozen_data COW on bitmap buffers in all cases even
1507          * if the buffer is in BJ_Forget state in the committing transaction.
1508          */
1509         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1510         fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1511         if (fatal) {
1512                 *errp = fatal;
1513                 return -1;
1514         }
1515
1516         /*
1517          * we don't deal with reservation when
1518          * filesystem is mounted without reservation
1519          * or the file is not a regular file
1520          * or last attempt to allocate a block with reservation turned on failed
1521          */
1522         if (my_rsv == NULL ) {
1523                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1524                                                 grp_goal, count, NULL);
1525                 goto out;
1526         }
1527         /*
1528          * grp_goal is a group relative block number (if there is a goal)
1529          * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1530          * first block is a filesystem wide block number
1531          * first block is the block number of the first block in this group
1532          */
1533         group_first_block = ext4_group_first_block_no(sb, group);
1534         group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1535
1536         /*
1537          * Basically we will allocate a new block from inode's reservation
1538          * window.
1539          *
1540          * We need to allocate a new reservation window, if:
1541          * a) inode does not have a reservation window; or
1542          * b) last attempt to allocate a block from existing reservation
1543          *    failed; or
1544          * c) we come here with a goal and with a reservation window
1545          *
1546          * We do not need to allocate a new reservation window if we come here
1547          * at the beginning with a goal and the goal is inside the window, or
1548          * we don't have a goal but already have a reservation window.
1549          * then we could go to allocate from the reservation window directly.
1550          */
1551         while (1) {
1552                 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1553                         !goal_in_my_reservation(&my_rsv->rsv_window,
1554                                                 grp_goal, group, sb)) {
1555                         if (my_rsv->rsv_goal_size < *count)
1556                                 my_rsv->rsv_goal_size = *count;
1557                         ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1558                                                         group, bitmap_bh);
1559                         if (ret < 0)
1560                                 break;                  /* failed */
1561
1562                         if (!goal_in_my_reservation(&my_rsv->rsv_window,
1563                                                         grp_goal, group, sb))
1564                                 grp_goal = -1;
1565                 } else if (grp_goal >= 0) {
1566                         int curr = my_rsv->rsv_end -
1567                                         (grp_goal + group_first_block) + 1;
1568
1569                         if (curr < *count)
1570                                 try_to_extend_reservation(my_rsv, sb,
1571                                                         *count - curr);
1572                 }
1573
1574                 if ((my_rsv->rsv_start > group_last_block) ||
1575                                 (my_rsv->rsv_end < group_first_block)) {
1576                         rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1577                         BUG();
1578                 }
1579                 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1580                                            grp_goal, &num, &my_rsv->rsv_window);
1581                 if (ret >= 0) {
1582                         my_rsv->rsv_alloc_hit += num;
1583                         *count = num;
1584                         break;                          /* succeed */
1585                 }
1586                 num = *count;
1587         }
1588 out:
1589         if (ret >= 0) {
1590                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1591                                         "bitmap block");
1592                 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1593                 if (fatal) {
1594                         *errp = fatal;
1595                         return -1;
1596                 }
1597                 return ret;
1598         }
1599
1600         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1601         ext4_journal_release_buffer(handle, bitmap_bh);
1602         return ret;
1603 }
1604
1605 /**
1606  * ext4_has_free_blocks()
1607  * @sbi:        in-core super block structure.
1608  * @nblocks:    number of neeed blocks
1609  *
1610  * Check if filesystem has free blocks available for allocation.
1611  * Return the number of blocks avaible for allocation for this request
1612  * On success, return nblocks
1613  */
1614 ext4_fsblk_t ext4_has_free_blocks(struct ext4_sb_info *sbi,
1615                                                 ext4_fsblk_t nblocks)
1616 {
1617         ext4_fsblk_t free_blocks;
1618         ext4_fsblk_t root_blocks = 0;
1619
1620         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1621
1622         if (!capable(CAP_SYS_RESOURCE) &&
1623                 sbi->s_resuid != current->fsuid &&
1624                 (sbi->s_resgid == 0 || !in_group_p(sbi->s_resgid)))
1625                 root_blocks = ext4_r_blocks_count(sbi->s_es);
1626 #ifdef CONFIG_SMP
1627         if (free_blocks - root_blocks < FBC_BATCH)
1628                 free_blocks =
1629                         percpu_counter_sum(&sbi->s_freeblocks_counter);
1630 #endif
1631         if (free_blocks <= root_blocks)
1632                 /* we don't have free space */
1633                 return 0;
1634         if (free_blocks - root_blocks < nblocks)
1635                 return free_blocks - root_blocks;
1636         return nblocks;
1637  }
1638
1639
1640 /**
1641  * ext4_should_retry_alloc()
1642  * @sb:                 super block
1643  * @retries             number of attemps has been made
1644  *
1645  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1646  * it is profitable to retry the operation, this function will wait
1647  * for the current or commiting transaction to complete, and then
1648  * return TRUE.
1649  *
1650  * if the total number of retries exceed three times, return FALSE.
1651  */
1652 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1653 {
1654         if (!ext4_has_free_blocks(EXT4_SB(sb), 1) || (*retries)++ > 3)
1655                 return 0;
1656
1657         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1658
1659         return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1660 }
1661
1662 /**
1663  * ext4_old_new_blocks() -- core block bitmap based block allocation function
1664  *
1665  * @handle:             handle to this transaction
1666  * @inode:              file inode
1667  * @goal:               given target block(filesystem wide)
1668  * @count:              target number of blocks to allocate
1669  * @errp:               error code
1670  *
1671  * ext4_old_new_blocks uses a goal block to assist allocation and look up
1672  * the block bitmap directly to do block allocation.  It tries to
1673  * allocate block(s) from the block group contains the goal block first. If
1674  * that fails, it will try to allocate block(s) from other block groups
1675  * without any specific goal block.
1676  *
1677  * This function is called when -o nomballoc mount option is enabled
1678  *
1679  */
1680 ext4_fsblk_t ext4_old_new_blocks(handle_t *handle, struct inode *inode,
1681                         ext4_fsblk_t goal, unsigned long *count, int *errp)
1682 {
1683         struct buffer_head *bitmap_bh = NULL;
1684         struct buffer_head *gdp_bh;
1685         ext4_group_t group_no;
1686         ext4_group_t goal_group;
1687         ext4_grpblk_t grp_target_blk;   /* blockgroup relative goal block */
1688         ext4_grpblk_t grp_alloc_blk;    /* blockgroup-relative allocated block*/
1689         ext4_fsblk_t ret_block;         /* filesyetem-wide allocated block */
1690         ext4_group_t bgi;                       /* blockgroup iteration index */
1691         int fatal = 0, err;
1692         int performed_allocation = 0;
1693         ext4_grpblk_t free_blocks;      /* number of free blocks in a group */
1694         struct super_block *sb;
1695         struct ext4_group_desc *gdp;
1696         struct ext4_super_block *es;
1697         struct ext4_sb_info *sbi;
1698         struct ext4_reserve_window_node *my_rsv = NULL;
1699         struct ext4_block_alloc_info *block_i;
1700         unsigned short windowsz = 0;
1701         ext4_group_t ngroups;
1702         unsigned long num = *count;
1703
1704         sb = inode->i_sb;
1705         if (!sb) {
1706                 *errp = -ENODEV;
1707                 printk(KERN_ERR "ext4_new_block: nonexistent superblock");
1708                 return 0;
1709         }
1710
1711         sbi = EXT4_SB(sb);
1712         if (!EXT4_I(inode)->i_delalloc_reserved_flag) {
1713                 /*
1714                  * With delalloc we already reserved the blocks
1715                  */
1716                 *count = ext4_has_free_blocks(sbi, *count);
1717         }
1718         if (*count == 0) {
1719                 *errp = -ENOSPC;
1720                 return 0;       /*return with ENOSPC error */
1721         }
1722         num = *count;
1723
1724         /*
1725          * Check quota for allocation of this block.
1726          */
1727         if (DQUOT_ALLOC_BLOCK(inode, num)) {
1728                 *errp = -EDQUOT;
1729                 return 0;
1730         }
1731
1732         sbi = EXT4_SB(sb);
1733         es = EXT4_SB(sb)->s_es;
1734         ext4_debug("goal=%llu.\n", goal);
1735         /*
1736          * Allocate a block from reservation only when
1737          * filesystem is mounted with reservation(default,-o reservation), and
1738          * it's a regular file, and
1739          * the desired window size is greater than 0 (One could use ioctl
1740          * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1741          * reservation on that particular file)
1742          */
1743         block_i = EXT4_I(inode)->i_block_alloc_info;
1744         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1745                 my_rsv = &block_i->rsv_window_node;
1746
1747         /*
1748          * First, test whether the goal block is free.
1749          */
1750         if (goal < le32_to_cpu(es->s_first_data_block) ||
1751             goal >= ext4_blocks_count(es))
1752                 goal = le32_to_cpu(es->s_first_data_block);
1753         ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1754         goal_group = group_no;
1755 retry_alloc:
1756         gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1757         if (!gdp)
1758                 goto io_error;
1759
1760         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1761         /*
1762          * if there is not enough free blocks to make a new resevation
1763          * turn off reservation for this allocation
1764          */
1765         if (my_rsv && (free_blocks < windowsz)
1766                 && (rsv_is_empty(&my_rsv->rsv_window)))
1767                 my_rsv = NULL;
1768
1769         if (free_blocks > 0) {
1770                 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1771                 if (!bitmap_bh)
1772                         goto io_error;
1773                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1774                                         group_no, bitmap_bh, grp_target_blk,
1775                                         my_rsv, &num, &fatal);
1776                 if (fatal)
1777                         goto out;
1778                 if (grp_alloc_blk >= 0)
1779                         goto allocated;
1780         }
1781
1782         ngroups = EXT4_SB(sb)->s_groups_count;
1783         smp_rmb();
1784
1785         /*
1786          * Now search the rest of the groups.  We assume that
1787          * group_no and gdp correctly point to the last group visited.
1788          */
1789         for (bgi = 0; bgi < ngroups; bgi++) {
1790                 group_no++;
1791                 if (group_no >= ngroups)
1792                         group_no = 0;
1793                 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1794                 if (!gdp)
1795                         goto io_error;
1796                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1797                 /*
1798                  * skip this group if the number of
1799                  * free blocks is less than half of the reservation
1800                  * window size.
1801                  */
1802                 if (free_blocks <= (windowsz/2))
1803                         continue;
1804
1805                 brelse(bitmap_bh);
1806                 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1807                 if (!bitmap_bh)
1808                         goto io_error;
1809                 /*
1810                  * try to allocate block(s) from this group, without a goal(-1).
1811                  */
1812                 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1813                                         group_no, bitmap_bh, -1, my_rsv,
1814                                         &num, &fatal);
1815                 if (fatal)
1816                         goto out;
1817                 if (grp_alloc_blk >= 0)
1818                         goto allocated;
1819         }
1820         /*
1821          * We may end up a bogus ealier ENOSPC error due to
1822          * filesystem is "full" of reservations, but
1823          * there maybe indeed free blocks avaliable on disk
1824          * In this case, we just forget about the reservations
1825          * just do block allocation as without reservations.
1826          */
1827         if (my_rsv) {
1828                 my_rsv = NULL;
1829                 windowsz = 0;
1830                 group_no = goal_group;
1831                 goto retry_alloc;
1832         }
1833         /* No space left on the device */
1834         *errp = -ENOSPC;
1835         goto out;
1836
1837 allocated:
1838
1839         ext4_debug("using block group %lu(%d)\n",
1840                         group_no, gdp->bg_free_blocks_count);
1841
1842         BUFFER_TRACE(gdp_bh, "get_write_access");
1843         fatal = ext4_journal_get_write_access(handle, gdp_bh);
1844         if (fatal)
1845                 goto out;
1846
1847         ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1848
1849         if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1850             in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1851             in_range(ret_block, ext4_inode_table(sb, gdp),
1852                      EXT4_SB(sb)->s_itb_per_group) ||
1853             in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1854                      EXT4_SB(sb)->s_itb_per_group)) {
1855                 ext4_error(sb, "ext4_new_block",
1856                             "Allocating block in system zone - "
1857                             "blocks from %llu, length %lu",
1858                              ret_block, num);
1859                 /*
1860                  * claim_block marked the blocks we allocated
1861                  * as in use. So we may want to selectively
1862                  * mark some of the blocks as free
1863                  */
1864                 goto retry_alloc;
1865         }
1866
1867         performed_allocation = 1;
1868
1869 #ifdef CONFIG_JBD2_DEBUG
1870         {
1871                 struct buffer_head *debug_bh;
1872
1873                 /* Record bitmap buffer state in the newly allocated block */
1874                 debug_bh = sb_find_get_block(sb, ret_block);
1875                 if (debug_bh) {
1876                         BUFFER_TRACE(debug_bh, "state when allocated");
1877                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1878                         brelse(debug_bh);
1879                 }
1880         }
1881         jbd_lock_bh_state(bitmap_bh);
1882         spin_lock(sb_bgl_lock(sbi, group_no));
1883         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1884                 int i;
1885
1886                 for (i = 0; i < num; i++) {
1887                         if (ext4_test_bit(grp_alloc_blk+i,
1888                                         bh2jh(bitmap_bh)->b_committed_data)) {
1889                                 printk(KERN_ERR "%s: block was unexpectedly "
1890                                        "set in b_committed_data\n", __func__);
1891                         }
1892                 }
1893         }
1894         ext4_debug("found bit %d\n", grp_alloc_blk);
1895         spin_unlock(sb_bgl_lock(sbi, group_no));
1896         jbd_unlock_bh_state(bitmap_bh);
1897 #endif
1898
1899         if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1900                 ext4_error(sb, "ext4_new_block",
1901                             "block(%llu) >= blocks count(%llu) - "
1902                             "block_group = %lu, es == %p ", ret_block,
1903                         ext4_blocks_count(es), group_no, es);
1904                 goto out;
1905         }
1906
1907         /*
1908          * It is up to the caller to add the new buffer to a journal
1909          * list of some description.  We don't know in advance whether
1910          * the caller wants to use it as metadata or data.
1911          */
1912         spin_lock(sb_bgl_lock(sbi, group_no));
1913         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1914                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1915         le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1916         gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1917         spin_unlock(sb_bgl_lock(sbi, group_no));
1918         if (!EXT4_I(inode)->i_delalloc_reserved_flag)
1919                 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1920
1921         if (sbi->s_log_groups_per_flex) {
1922                 ext4_group_t flex_group = ext4_flex_group(sbi, group_no);
1923                 spin_lock(sb_bgl_lock(sbi, flex_group));
1924                 sbi->s_flex_groups[flex_group].free_blocks -= num;
1925                 spin_unlock(sb_bgl_lock(sbi, flex_group));
1926         }
1927
1928         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1929         err = ext4_journal_dirty_metadata(handle, gdp_bh);
1930         if (!fatal)
1931                 fatal = err;
1932
1933         sb->s_dirt = 1;
1934         if (fatal)
1935                 goto out;
1936
1937         *errp = 0;
1938         brelse(bitmap_bh);
1939         DQUOT_FREE_BLOCK(inode, *count-num);
1940         *count = num;
1941         return ret_block;
1942
1943 io_error:
1944         *errp = -EIO;
1945 out:
1946         if (fatal) {
1947                 *errp = fatal;
1948                 ext4_std_error(sb, fatal);
1949         }
1950         /*
1951          * Undo the block allocation
1952          */
1953         if (!performed_allocation)
1954                 DQUOT_FREE_BLOCK(inode, *count);
1955         brelse(bitmap_bh);
1956         return 0;
1957 }
1958
1959 #define EXT4_META_BLOCK 0x1
1960
1961 static ext4_fsblk_t do_blk_alloc(handle_t *handle, struct inode *inode,
1962                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
1963                                 unsigned long *count, int *errp, int flags)
1964 {
1965         struct ext4_allocation_request ar;
1966         ext4_fsblk_t ret;
1967
1968         if (!test_opt(inode->i_sb, MBALLOC)) {
1969                 return ext4_old_new_blocks(handle, inode, goal, count, errp);
1970         }
1971
1972         memset(&ar, 0, sizeof(ar));
1973         /* Fill with neighbour allocated blocks */
1974
1975         ar.inode = inode;
1976         ar.goal = goal;
1977         ar.len = *count;
1978         ar.logical = iblock;
1979
1980         if (S_ISREG(inode->i_mode) && !(flags & EXT4_META_BLOCK))
1981                 /* enable in-core preallocation for data block allocation */
1982                 ar.flags = EXT4_MB_HINT_DATA;
1983         else
1984                 /* disable in-core preallocation for non-regular files */
1985                 ar.flags = 0;
1986
1987         ret = ext4_mb_new_blocks(handle, &ar, errp);
1988         *count = ar.len;
1989         return ret;
1990 }
1991
1992 /*
1993  * ext4_new_meta_blocks() -- allocate block for meta data (indexing) blocks
1994  *
1995  * @handle:             handle to this transaction
1996  * @inode:              file inode
1997  * @goal:               given target block(filesystem wide)
1998  * @count:              total number of blocks need
1999  * @errp:               error code
2000  *
2001  * Return 1st allocated block numberon success, *count stores total account
2002  * error stores in errp pointer
2003  */
2004 ext4_fsblk_t ext4_new_meta_blocks(handle_t *handle, struct inode *inode,
2005                 ext4_fsblk_t goal, unsigned long *count, int *errp)
2006 {
2007         ext4_fsblk_t ret;
2008         ret = do_blk_alloc(handle, inode, 0, goal,
2009                                 count, errp, EXT4_META_BLOCK);
2010         /*
2011          * Account for the allocated meta blocks
2012          */
2013         if (!(*errp)) {
2014                 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2015                 EXT4_I(inode)->i_allocated_meta_blocks += *count;
2016                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2017         }
2018         return ret;
2019 }
2020
2021 /*
2022  * ext4_new_meta_block() -- allocate block for meta data (indexing) blocks
2023  *
2024  * @handle:             handle to this transaction
2025  * @inode:              file inode
2026  * @goal:               given target block(filesystem wide)
2027  * @errp:               error code
2028  *
2029  * Return allocated block number on success
2030  */
2031 ext4_fsblk_t ext4_new_meta_block(handle_t *handle, struct inode *inode,
2032                 ext4_fsblk_t goal, int *errp)
2033 {
2034         unsigned long count = 1;
2035         return ext4_new_meta_blocks(handle, inode, goal, &count, errp);
2036 }
2037
2038 /*
2039  * ext4_new_blocks() -- allocate data blocks
2040  *
2041  * @handle:             handle to this transaction
2042  * @inode:              file inode
2043  * @goal:               given target block(filesystem wide)
2044  * @count:              total number of blocks need
2045  * @errp:               error code
2046  *
2047  * Return 1st allocated block numberon success, *count stores total account
2048  * error stores in errp pointer
2049  */
2050
2051 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
2052                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
2053                                 unsigned long *count, int *errp)
2054 {
2055         return do_blk_alloc(handle, inode, iblock, goal, count, errp, 0);
2056 }
2057
2058 /**
2059  * ext4_count_free_blocks() -- count filesystem free blocks
2060  * @sb:         superblock
2061  *
2062  * Adds up the number of free blocks from each block group.
2063  */
2064 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
2065 {
2066         ext4_fsblk_t desc_count;
2067         struct ext4_group_desc *gdp;
2068         ext4_group_t i;
2069         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2070 #ifdef EXT4FS_DEBUG
2071         struct ext4_super_block *es;
2072         ext4_fsblk_t bitmap_count;
2073         unsigned long x;
2074         struct buffer_head *bitmap_bh = NULL;
2075
2076         es = EXT4_SB(sb)->s_es;
2077         desc_count = 0;
2078         bitmap_count = 0;
2079         gdp = NULL;
2080
2081         smp_rmb();
2082         for (i = 0; i < ngroups; i++) {
2083                 gdp = ext4_get_group_desc(sb, i, NULL);
2084                 if (!gdp)
2085                         continue;
2086                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2087                 brelse(bitmap_bh);
2088                 bitmap_bh = ext4_read_block_bitmap(sb, i);
2089                 if (bitmap_bh == NULL)
2090                         continue;
2091
2092                 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
2093                 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
2094                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
2095                 bitmap_count += x;
2096         }
2097         brelse(bitmap_bh);
2098         printk(KERN_DEBUG "ext4_count_free_blocks: stored = %llu"
2099                 ", computed = %llu, %llu\n", ext4_free_blocks_count(es),
2100                desc_count, bitmap_count);
2101         return bitmap_count;
2102 #else
2103         desc_count = 0;
2104         smp_rmb();
2105         for (i = 0; i < ngroups; i++) {
2106                 gdp = ext4_get_group_desc(sb, i, NULL);
2107                 if (!gdp)
2108                         continue;
2109                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2110         }
2111
2112         return desc_count;
2113 #endif
2114 }
2115
2116 static inline int test_root(ext4_group_t a, int b)
2117 {
2118         int num = b;
2119
2120         while (a > num)
2121                 num *= b;
2122         return num == a;
2123 }
2124
2125 static int ext4_group_sparse(ext4_group_t group)
2126 {
2127         if (group <= 1)
2128                 return 1;
2129         if (!(group & 1))
2130                 return 0;
2131         return (test_root(group, 7) || test_root(group, 5) ||
2132                 test_root(group, 3));
2133 }
2134
2135 /**
2136  *      ext4_bg_has_super - number of blocks used by the superblock in group
2137  *      @sb: superblock for filesystem
2138  *      @group: group number to check
2139  *
2140  *      Return the number of blocks used by the superblock (primary or backup)
2141  *      in this group.  Currently this will be only 0 or 1.
2142  */
2143 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
2144 {
2145         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2146                                 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
2147                         !ext4_group_sparse(group))
2148                 return 0;
2149         return 1;
2150 }
2151
2152 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2153                                         ext4_group_t group)
2154 {
2155         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2156         ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2157         ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2158
2159         if (group == first || group == first + 1 || group == last)
2160                 return 1;
2161         return 0;
2162 }
2163
2164 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2165                                         ext4_group_t group)
2166 {
2167         return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2168 }
2169
2170 /**
2171  *      ext4_bg_num_gdb - number of blocks used by the group table in group
2172  *      @sb: superblock for filesystem
2173  *      @group: group number to check
2174  *
2175  *      Return the number of blocks used by the group descriptor table
2176  *      (primary or backup) in this group.  In the future there may be a
2177  *      different number of descriptor blocks in each group.
2178  */
2179 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2180 {
2181         unsigned long first_meta_bg =
2182                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2183         unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2184
2185         if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2186                         metagroup < first_meta_bg)
2187                 return ext4_bg_num_gdb_nometa(sb,group);
2188
2189         return ext4_bg_num_gdb_meta(sb,group);
2190
2191 }