]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/btrfs/tree-log.c
Btrfs: properly check free space for tree balancing
[linux-2.6-omap-h63xx.git] / fs / btrfs / tree-log.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
27
28 /* magic values for the inode_only field in btrfs_log_inode:
29  *
30  * LOG_INODE_ALL means to log everything
31  * LOG_INODE_EXISTS means to log just enough to recreate the inode
32  * during log replay
33  */
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
36
37 /*
38  * stages for the tree walking.  The first
39  * stage (0) is to only pin down the blocks we find
40  * the second stage (1) is to make sure that all the inodes
41  * we find in the log are created in the subvolume.
42  *
43  * The last stage is to deal with directories and links and extents
44  * and all the other fun semantics
45  */
46 #define LOG_WALK_PIN_ONLY 0
47 #define LOG_WALK_REPLAY_INODES 1
48 #define LOG_WALK_REPLAY_ALL 2
49
50 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51                              struct btrfs_root *root, struct inode *inode,
52                              int inode_only);
53
54 /*
55  * tree logging is a special write ahead log used to make sure that
56  * fsyncs and O_SYNCs can happen without doing full tree commits.
57  *
58  * Full tree commits are expensive because they require commonly
59  * modified blocks to be recowed, creating many dirty pages in the
60  * extent tree an 4x-6x higher write load than ext3.
61  *
62  * Instead of doing a tree commit on every fsync, we use the
63  * key ranges and transaction ids to find items for a given file or directory
64  * that have changed in this transaction.  Those items are copied into
65  * a special tree (one per subvolume root), that tree is written to disk
66  * and then the fsync is considered complete.
67  *
68  * After a crash, items are copied out of the log-tree back into the
69  * subvolume tree.  Any file data extents found are recorded in the extent
70  * allocation tree, and the log-tree freed.
71  *
72  * The log tree is read three times, once to pin down all the extents it is
73  * using in ram and once, once to create all the inodes logged in the tree
74  * and once to do all the other items.
75  */
76
77 /*
78  * btrfs_add_log_tree adds a new per-subvolume log tree into the
79  * tree of log tree roots.  This must be called with a tree log transaction
80  * running (see start_log_trans).
81  */
82 static int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
83                       struct btrfs_root *root)
84 {
85         struct btrfs_key key;
86         struct btrfs_root_item root_item;
87         struct btrfs_inode_item *inode_item;
88         struct extent_buffer *leaf;
89         struct btrfs_root *new_root = root;
90         int ret;
91         u64 objectid = root->root_key.objectid;
92
93         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
94                                       BTRFS_TREE_LOG_OBJECTID,
95                                       trans->transid, 0, 0, 0);
96         if (IS_ERR(leaf)) {
97                 ret = PTR_ERR(leaf);
98                 return ret;
99         }
100
101         btrfs_set_header_nritems(leaf, 0);
102         btrfs_set_header_level(leaf, 0);
103         btrfs_set_header_bytenr(leaf, leaf->start);
104         btrfs_set_header_generation(leaf, trans->transid);
105         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
106
107         write_extent_buffer(leaf, root->fs_info->fsid,
108                             (unsigned long)btrfs_header_fsid(leaf),
109                             BTRFS_FSID_SIZE);
110         btrfs_mark_buffer_dirty(leaf);
111
112         inode_item = &root_item.inode;
113         memset(inode_item, 0, sizeof(*inode_item));
114         inode_item->generation = cpu_to_le64(1);
115         inode_item->size = cpu_to_le64(3);
116         inode_item->nlink = cpu_to_le32(1);
117         inode_item->nbytes = cpu_to_le64(root->leafsize);
118         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
119
120         btrfs_set_root_bytenr(&root_item, leaf->start);
121         btrfs_set_root_generation(&root_item, trans->transid);
122         btrfs_set_root_level(&root_item, 0);
123         btrfs_set_root_refs(&root_item, 0);
124         btrfs_set_root_used(&root_item, 0);
125
126         memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
127         root_item.drop_level = 0;
128
129         btrfs_tree_unlock(leaf);
130         free_extent_buffer(leaf);
131         leaf = NULL;
132
133         btrfs_set_root_dirid(&root_item, 0);
134
135         key.objectid = BTRFS_TREE_LOG_OBJECTID;
136         key.offset = objectid;
137         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
138         ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
139                                 &root_item);
140         if (ret)
141                 goto fail;
142
143         new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
144                                                &key);
145         BUG_ON(!new_root);
146
147         WARN_ON(root->log_root);
148         root->log_root = new_root;
149
150         /*
151          * log trees do not get reference counted because they go away
152          * before a real commit is actually done.  They do store pointers
153          * to file data extents, and those reference counts still get
154          * updated (along with back refs to the log tree).
155          */
156         new_root->ref_cows = 0;
157         new_root->last_trans = trans->transid;
158 fail:
159         return ret;
160 }
161
162 /*
163  * start a sub transaction and setup the log tree
164  * this increments the log tree writer count to make the people
165  * syncing the tree wait for us to finish
166  */
167 static int start_log_trans(struct btrfs_trans_handle *trans,
168                            struct btrfs_root *root)
169 {
170         int ret;
171         mutex_lock(&root->fs_info->tree_log_mutex);
172         if (!root->fs_info->log_root_tree) {
173                 ret = btrfs_init_log_root_tree(trans, root->fs_info);
174                 BUG_ON(ret);
175         }
176         if (!root->log_root) {
177                 ret = btrfs_add_log_tree(trans, root);
178                 BUG_ON(ret);
179         }
180         atomic_inc(&root->fs_info->tree_log_writers);
181         root->fs_info->tree_log_batch++;
182         mutex_unlock(&root->fs_info->tree_log_mutex);
183         return 0;
184 }
185
186 /*
187  * returns 0 if there was a log transaction running and we were able
188  * to join, or returns -ENOENT if there were not transactions
189  * in progress
190  */
191 static int join_running_log_trans(struct btrfs_root *root)
192 {
193         int ret = -ENOENT;
194
195         smp_mb();
196         if (!root->log_root)
197                 return -ENOENT;
198
199         mutex_lock(&root->fs_info->tree_log_mutex);
200         if (root->log_root) {
201                 ret = 0;
202                 atomic_inc(&root->fs_info->tree_log_writers);
203                 root->fs_info->tree_log_batch++;
204         }
205         mutex_unlock(&root->fs_info->tree_log_mutex);
206         return ret;
207 }
208
209 /*
210  * indicate we're done making changes to the log tree
211  * and wake up anyone waiting to do a sync
212  */
213 static int end_log_trans(struct btrfs_root *root)
214 {
215         atomic_dec(&root->fs_info->tree_log_writers);
216         smp_mb();
217         if (waitqueue_active(&root->fs_info->tree_log_wait))
218                 wake_up(&root->fs_info->tree_log_wait);
219         return 0;
220 }
221
222
223 /*
224  * the walk control struct is used to pass state down the chain when
225  * processing the log tree.  The stage field tells us which part
226  * of the log tree processing we are currently doing.  The others
227  * are state fields used for that specific part
228  */
229 struct walk_control {
230         /* should we free the extent on disk when done?  This is used
231          * at transaction commit time while freeing a log tree
232          */
233         int free;
234
235         /* should we write out the extent buffer?  This is used
236          * while flushing the log tree to disk during a sync
237          */
238         int write;
239
240         /* should we wait for the extent buffer io to finish?  Also used
241          * while flushing the log tree to disk for a sync
242          */
243         int wait;
244
245         /* pin only walk, we record which extents on disk belong to the
246          * log trees
247          */
248         int pin;
249
250         /* what stage of the replay code we're currently in */
251         int stage;
252
253         /* the root we are currently replaying */
254         struct btrfs_root *replay_dest;
255
256         /* the trans handle for the current replay */
257         struct btrfs_trans_handle *trans;
258
259         /* the function that gets used to process blocks we find in the
260          * tree.  Note the extent_buffer might not be up to date when it is
261          * passed in, and it must be checked or read if you need the data
262          * inside it
263          */
264         int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
265                             struct walk_control *wc, u64 gen);
266 };
267
268 /*
269  * process_func used to pin down extents, write them or wait on them
270  */
271 static int process_one_buffer(struct btrfs_root *log,
272                               struct extent_buffer *eb,
273                               struct walk_control *wc, u64 gen)
274 {
275         if (wc->pin) {
276                 mutex_lock(&log->fs_info->pinned_mutex);
277                 btrfs_update_pinned_extents(log->fs_info->extent_root,
278                                             eb->start, eb->len, 1);
279                 mutex_unlock(&log->fs_info->pinned_mutex);
280         }
281
282         if (btrfs_buffer_uptodate(eb, gen)) {
283                 if (wc->write)
284                         btrfs_write_tree_block(eb);
285                 if (wc->wait)
286                         btrfs_wait_tree_block_writeback(eb);
287         }
288         return 0;
289 }
290
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306                                    struct btrfs_root *root,
307                                    struct btrfs_path *path,
308                                    struct extent_buffer *eb, int slot,
309                                    struct btrfs_key *key)
310 {
311         int ret;
312         u32 item_size;
313         u64 saved_i_size = 0;
314         int save_old_i_size = 0;
315         unsigned long src_ptr;
316         unsigned long dst_ptr;
317         int overwrite_root = 0;
318
319         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320                 overwrite_root = 1;
321
322         item_size = btrfs_item_size_nr(eb, slot);
323         src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325         /* look for the key in the destination tree */
326         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327         if (ret == 0) {
328                 char *src_copy;
329                 char *dst_copy;
330                 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331                                                   path->slots[0]);
332                 if (dst_size != item_size)
333                         goto insert;
334
335                 if (item_size == 0) {
336                         btrfs_release_path(root, path);
337                         return 0;
338                 }
339                 dst_copy = kmalloc(item_size, GFP_NOFS);
340                 src_copy = kmalloc(item_size, GFP_NOFS);
341
342                 read_extent_buffer(eb, src_copy, src_ptr, item_size);
343
344                 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
345                 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
346                                    item_size);
347                 ret = memcmp(dst_copy, src_copy, item_size);
348
349                 kfree(dst_copy);
350                 kfree(src_copy);
351                 /*
352                  * they have the same contents, just return, this saves
353                  * us from cowing blocks in the destination tree and doing
354                  * extra writes that may not have been done by a previous
355                  * sync
356                  */
357                 if (ret == 0) {
358                         btrfs_release_path(root, path);
359                         return 0;
360                 }
361
362         }
363 insert:
364         btrfs_release_path(root, path);
365         /* try to insert the key into the destination tree */
366         ret = btrfs_insert_empty_item(trans, root, path,
367                                       key, item_size);
368
369         /* make sure any existing item is the correct size */
370         if (ret == -EEXIST) {
371                 u32 found_size;
372                 found_size = btrfs_item_size_nr(path->nodes[0],
373                                                 path->slots[0]);
374                 if (found_size > item_size) {
375                         btrfs_truncate_item(trans, root, path, item_size, 1);
376                 } else if (found_size < item_size) {
377                         ret = btrfs_extend_item(trans, root, path,
378                                                 item_size - found_size);
379                         BUG_ON(ret);
380                 }
381         } else if (ret) {
382                 BUG();
383         }
384         dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
385                                         path->slots[0]);
386
387         /* don't overwrite an existing inode if the generation number
388          * was logged as zero.  This is done when the tree logging code
389          * is just logging an inode to make sure it exists after recovery.
390          *
391          * Also, don't overwrite i_size on directories during replay.
392          * log replay inserts and removes directory items based on the
393          * state of the tree found in the subvolume, and i_size is modified
394          * as it goes
395          */
396         if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
397                 struct btrfs_inode_item *src_item;
398                 struct btrfs_inode_item *dst_item;
399
400                 src_item = (struct btrfs_inode_item *)src_ptr;
401                 dst_item = (struct btrfs_inode_item *)dst_ptr;
402
403                 if (btrfs_inode_generation(eb, src_item) == 0)
404                         goto no_copy;
405
406                 if (overwrite_root &&
407                     S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
408                     S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
409                         save_old_i_size = 1;
410                         saved_i_size = btrfs_inode_size(path->nodes[0],
411                                                         dst_item);
412                 }
413         }
414
415         copy_extent_buffer(path->nodes[0], eb, dst_ptr,
416                            src_ptr, item_size);
417
418         if (save_old_i_size) {
419                 struct btrfs_inode_item *dst_item;
420                 dst_item = (struct btrfs_inode_item *)dst_ptr;
421                 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
422         }
423
424         /* make sure the generation is filled in */
425         if (key->type == BTRFS_INODE_ITEM_KEY) {
426                 struct btrfs_inode_item *dst_item;
427                 dst_item = (struct btrfs_inode_item *)dst_ptr;
428                 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
429                         btrfs_set_inode_generation(path->nodes[0], dst_item,
430                                                    trans->transid);
431                 }
432         }
433
434         if (overwrite_root &&
435             key->type == BTRFS_EXTENT_DATA_KEY) {
436                 int extent_type;
437                 struct btrfs_file_extent_item *fi;
438
439                 fi = (struct btrfs_file_extent_item *)dst_ptr;
440                 extent_type = btrfs_file_extent_type(path->nodes[0], fi);
441                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
442                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
443                         struct btrfs_key ins;
444                         ins.objectid = btrfs_file_extent_disk_bytenr(
445                                                         path->nodes[0], fi);
446                         ins.offset = btrfs_file_extent_disk_num_bytes(
447                                                         path->nodes[0], fi);
448                         ins.type = BTRFS_EXTENT_ITEM_KEY;
449
450                         /*
451                          * is this extent already allocated in the extent
452                          * allocation tree?  If so, just add a reference
453                          */
454                         ret = btrfs_lookup_extent(root, ins.objectid,
455                                                   ins.offset);
456                         if (ret == 0) {
457                                 ret = btrfs_inc_extent_ref(trans, root,
458                                                 ins.objectid, ins.offset,
459                                                 path->nodes[0]->start,
460                                                 root->root_key.objectid,
461                                                 trans->transid, key->objectid);
462                         } else {
463                                 /*
464                                  * insert the extent pointer in the extent
465                                  * allocation tree
466                                  */
467                                 ret = btrfs_alloc_logged_extent(trans, root,
468                                                 path->nodes[0]->start,
469                                                 root->root_key.objectid,
470                                                 trans->transid, key->objectid,
471                                                 &ins);
472                                 BUG_ON(ret);
473                         }
474                 }
475         }
476 no_copy:
477         btrfs_mark_buffer_dirty(path->nodes[0]);
478         btrfs_release_path(root, path);
479         return 0;
480 }
481
482 /*
483  * simple helper to read an inode off the disk from a given root
484  * This can only be called for subvolume roots and not for the log
485  */
486 static noinline struct inode *read_one_inode(struct btrfs_root *root,
487                                              u64 objectid)
488 {
489         struct inode *inode;
490         inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
491         if (inode->i_state & I_NEW) {
492                 BTRFS_I(inode)->root = root;
493                 BTRFS_I(inode)->location.objectid = objectid;
494                 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
495                 BTRFS_I(inode)->location.offset = 0;
496                 btrfs_read_locked_inode(inode);
497                 unlock_new_inode(inode);
498
499         }
500         if (is_bad_inode(inode)) {
501                 iput(inode);
502                 inode = NULL;
503         }
504         return inode;
505 }
506
507 /* replays a single extent in 'eb' at 'slot' with 'key' into the
508  * subvolume 'root'.  path is released on entry and should be released
509  * on exit.
510  *
511  * extents in the log tree have not been allocated out of the extent
512  * tree yet.  So, this completes the allocation, taking a reference
513  * as required if the extent already exists or creating a new extent
514  * if it isn't in the extent allocation tree yet.
515  *
516  * The extent is inserted into the file, dropping any existing extents
517  * from the file that overlap the new one.
518  */
519 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
520                                       struct btrfs_root *root,
521                                       struct btrfs_path *path,
522                                       struct extent_buffer *eb, int slot,
523                                       struct btrfs_key *key)
524 {
525         int found_type;
526         u64 mask = root->sectorsize - 1;
527         u64 extent_end;
528         u64 alloc_hint;
529         u64 start = key->offset;
530         struct btrfs_file_extent_item *item;
531         struct inode *inode = NULL;
532         unsigned long size;
533         int ret = 0;
534
535         item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
536         found_type = btrfs_file_extent_type(eb, item);
537
538         if (found_type == BTRFS_FILE_EXTENT_REG ||
539             found_type == BTRFS_FILE_EXTENT_PREALLOC)
540                 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
541         else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
542                 size = btrfs_file_extent_inline_len(eb, item);
543                 extent_end = (start + size + mask) & ~mask;
544         } else {
545                 ret = 0;
546                 goto out;
547         }
548
549         inode = read_one_inode(root, key->objectid);
550         if (!inode) {
551                 ret = -EIO;
552                 goto out;
553         }
554
555         /*
556          * first check to see if we already have this extent in the
557          * file.  This must be done before the btrfs_drop_extents run
558          * so we don't try to drop this extent.
559          */
560         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
561                                        start, 0);
562
563         if (ret == 0 &&
564             (found_type == BTRFS_FILE_EXTENT_REG ||
565              found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
566                 struct btrfs_file_extent_item cmp1;
567                 struct btrfs_file_extent_item cmp2;
568                 struct btrfs_file_extent_item *existing;
569                 struct extent_buffer *leaf;
570
571                 leaf = path->nodes[0];
572                 existing = btrfs_item_ptr(leaf, path->slots[0],
573                                           struct btrfs_file_extent_item);
574
575                 read_extent_buffer(eb, &cmp1, (unsigned long)item,
576                                    sizeof(cmp1));
577                 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
578                                    sizeof(cmp2));
579
580                 /*
581                  * we already have a pointer to this exact extent,
582                  * we don't have to do anything
583                  */
584                 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
585                         btrfs_release_path(root, path);
586                         goto out;
587                 }
588         }
589         btrfs_release_path(root, path);
590
591         /* drop any overlapping extents */
592         ret = btrfs_drop_extents(trans, root, inode,
593                          start, extent_end, start, &alloc_hint);
594         BUG_ON(ret);
595
596         /* insert the extent */
597         ret = overwrite_item(trans, root, path, eb, slot, key);
598         BUG_ON(ret);
599
600         /* btrfs_drop_extents changes i_bytes & i_blocks, update it here */
601         inode_add_bytes(inode, extent_end - start);
602         btrfs_update_inode(trans, root, inode);
603 out:
604         if (inode)
605                 iput(inode);
606         return ret;
607 }
608
609 /*
610  * when cleaning up conflicts between the directory names in the
611  * subvolume, directory names in the log and directory names in the
612  * inode back references, we may have to unlink inodes from directories.
613  *
614  * This is a helper function to do the unlink of a specific directory
615  * item
616  */
617 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
618                                       struct btrfs_root *root,
619                                       struct btrfs_path *path,
620                                       struct inode *dir,
621                                       struct btrfs_dir_item *di)
622 {
623         struct inode *inode;
624         char *name;
625         int name_len;
626         struct extent_buffer *leaf;
627         struct btrfs_key location;
628         int ret;
629
630         leaf = path->nodes[0];
631
632         btrfs_dir_item_key_to_cpu(leaf, di, &location);
633         name_len = btrfs_dir_name_len(leaf, di);
634         name = kmalloc(name_len, GFP_NOFS);
635         read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
636         btrfs_release_path(root, path);
637
638         inode = read_one_inode(root, location.objectid);
639         BUG_ON(!inode);
640
641         btrfs_inc_nlink(inode);
642         ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
643         kfree(name);
644
645         iput(inode);
646         return ret;
647 }
648
649 /*
650  * helper function to see if a given name and sequence number found
651  * in an inode back reference are already in a directory and correctly
652  * point to this inode
653  */
654 static noinline int inode_in_dir(struct btrfs_root *root,
655                                  struct btrfs_path *path,
656                                  u64 dirid, u64 objectid, u64 index,
657                                  const char *name, int name_len)
658 {
659         struct btrfs_dir_item *di;
660         struct btrfs_key location;
661         int match = 0;
662
663         di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
664                                          index, name, name_len, 0);
665         if (di && !IS_ERR(di)) {
666                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
667                 if (location.objectid != objectid)
668                         goto out;
669         } else
670                 goto out;
671         btrfs_release_path(root, path);
672
673         di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
674         if (di && !IS_ERR(di)) {
675                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
676                 if (location.objectid != objectid)
677                         goto out;
678         } else
679                 goto out;
680         match = 1;
681 out:
682         btrfs_release_path(root, path);
683         return match;
684 }
685
686 /*
687  * helper function to check a log tree for a named back reference in
688  * an inode.  This is used to decide if a back reference that is
689  * found in the subvolume conflicts with what we find in the log.
690  *
691  * inode backreferences may have multiple refs in a single item,
692  * during replay we process one reference at a time, and we don't
693  * want to delete valid links to a file from the subvolume if that
694  * link is also in the log.
695  */
696 static noinline int backref_in_log(struct btrfs_root *log,
697                                    struct btrfs_key *key,
698                                    char *name, int namelen)
699 {
700         struct btrfs_path *path;
701         struct btrfs_inode_ref *ref;
702         unsigned long ptr;
703         unsigned long ptr_end;
704         unsigned long name_ptr;
705         int found_name_len;
706         int item_size;
707         int ret;
708         int match = 0;
709
710         path = btrfs_alloc_path();
711         ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
712         if (ret != 0)
713                 goto out;
714
715         item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
716         ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
717         ptr_end = ptr + item_size;
718         while (ptr < ptr_end) {
719                 ref = (struct btrfs_inode_ref *)ptr;
720                 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
721                 if (found_name_len == namelen) {
722                         name_ptr = (unsigned long)(ref + 1);
723                         ret = memcmp_extent_buffer(path->nodes[0], name,
724                                                    name_ptr, namelen);
725                         if (ret == 0) {
726                                 match = 1;
727                                 goto out;
728                         }
729                 }
730                 ptr = (unsigned long)(ref + 1) + found_name_len;
731         }
732 out:
733         btrfs_free_path(path);
734         return match;
735 }
736
737
738 /*
739  * replay one inode back reference item found in the log tree.
740  * eb, slot and key refer to the buffer and key found in the log tree.
741  * root is the destination we are replaying into, and path is for temp
742  * use by this function.  (it should be released on return).
743  */
744 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
745                                   struct btrfs_root *root,
746                                   struct btrfs_root *log,
747                                   struct btrfs_path *path,
748                                   struct extent_buffer *eb, int slot,
749                                   struct btrfs_key *key)
750 {
751         struct inode *dir;
752         int ret;
753         struct btrfs_key location;
754         struct btrfs_inode_ref *ref;
755         struct btrfs_dir_item *di;
756         struct inode *inode;
757         char *name;
758         int namelen;
759         unsigned long ref_ptr;
760         unsigned long ref_end;
761
762         location.objectid = key->objectid;
763         location.type = BTRFS_INODE_ITEM_KEY;
764         location.offset = 0;
765
766         /*
767          * it is possible that we didn't log all the parent directories
768          * for a given inode.  If we don't find the dir, just don't
769          * copy the back ref in.  The link count fixup code will take
770          * care of the rest
771          */
772         dir = read_one_inode(root, key->offset);
773         if (!dir)
774                 return -ENOENT;
775
776         inode = read_one_inode(root, key->objectid);
777         BUG_ON(!dir);
778
779         ref_ptr = btrfs_item_ptr_offset(eb, slot);
780         ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
781
782 again:
783         ref = (struct btrfs_inode_ref *)ref_ptr;
784
785         namelen = btrfs_inode_ref_name_len(eb, ref);
786         name = kmalloc(namelen, GFP_NOFS);
787         BUG_ON(!name);
788
789         read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
790
791         /* if we already have a perfect match, we're done */
792         if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
793                          btrfs_inode_ref_index(eb, ref),
794                          name, namelen)) {
795                 goto out;
796         }
797
798         /*
799          * look for a conflicting back reference in the metadata.
800          * if we find one we have to unlink that name of the file
801          * before we add our new link.  Later on, we overwrite any
802          * existing back reference, and we don't want to create
803          * dangling pointers in the directory.
804          */
805 conflict_again:
806         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
807         if (ret == 0) {
808                 char *victim_name;
809                 int victim_name_len;
810                 struct btrfs_inode_ref *victim_ref;
811                 unsigned long ptr;
812                 unsigned long ptr_end;
813                 struct extent_buffer *leaf = path->nodes[0];
814
815                 /* are we trying to overwrite a back ref for the root directory
816                  * if so, just jump out, we're done
817                  */
818                 if (key->objectid == key->offset)
819                         goto out_nowrite;
820
821                 /* check all the names in this back reference to see
822                  * if they are in the log.  if so, we allow them to stay
823                  * otherwise they must be unlinked as a conflict
824                  */
825                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
826                 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
827                 while(ptr < ptr_end) {
828                         victim_ref = (struct btrfs_inode_ref *)ptr;
829                         victim_name_len = btrfs_inode_ref_name_len(leaf,
830                                                                    victim_ref);
831                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
832                         BUG_ON(!victim_name);
833
834                         read_extent_buffer(leaf, victim_name,
835                                            (unsigned long)(victim_ref + 1),
836                                            victim_name_len);
837
838                         if (!backref_in_log(log, key, victim_name,
839                                             victim_name_len)) {
840                                 btrfs_inc_nlink(inode);
841                                 btrfs_release_path(root, path);
842                                 ret = btrfs_unlink_inode(trans, root, dir,
843                                                          inode, victim_name,
844                                                          victim_name_len);
845                                 kfree(victim_name);
846                                 btrfs_release_path(root, path);
847                                 goto conflict_again;
848                         }
849                         kfree(victim_name);
850                         ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
851                 }
852                 BUG_ON(ret);
853         }
854         btrfs_release_path(root, path);
855
856         /* look for a conflicting sequence number */
857         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
858                                          btrfs_inode_ref_index(eb, ref),
859                                          name, namelen, 0);
860         if (di && !IS_ERR(di)) {
861                 ret = drop_one_dir_item(trans, root, path, dir, di);
862                 BUG_ON(ret);
863         }
864         btrfs_release_path(root, path);
865
866
867         /* look for a conflicting name */
868         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
869                                    name, namelen, 0);
870         if (di && !IS_ERR(di)) {
871                 ret = drop_one_dir_item(trans, root, path, dir, di);
872                 BUG_ON(ret);
873         }
874         btrfs_release_path(root, path);
875
876         /* insert our name */
877         ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
878                              btrfs_inode_ref_index(eb, ref));
879         BUG_ON(ret);
880
881         btrfs_update_inode(trans, root, inode);
882
883 out:
884         ref_ptr = (unsigned long)(ref + 1) + namelen;
885         kfree(name);
886         if (ref_ptr < ref_end)
887                 goto again;
888
889         /* finally write the back reference in the inode */
890         ret = overwrite_item(trans, root, path, eb, slot, key);
891         BUG_ON(ret);
892
893 out_nowrite:
894         btrfs_release_path(root, path);
895         iput(dir);
896         iput(inode);
897         return 0;
898 }
899
900 /*
901  * replay one csum item from the log tree into the subvolume 'root'
902  * eb, slot and key all refer to the log tree
903  * path is for temp use by this function and should be released on return
904  *
905  * This copies the checksums out of the log tree and inserts them into
906  * the subvolume.  Any existing checksums for this range in the file
907  * are overwritten, and new items are added where required.
908  *
909  * We keep this simple by reusing the btrfs_ordered_sum code from
910  * the data=ordered mode.  This basically means making a copy
911  * of all the checksums in ram, which we have to do anyway for kmap
912  * rules.
913  *
914  * The copy is then sent down to btrfs_csum_file_blocks, which
915  * does all the hard work of finding existing items in the file
916  * or adding new ones.
917  */
918 static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
919                                       struct btrfs_root *root,
920                                       struct btrfs_path *path,
921                                       struct extent_buffer *eb, int slot,
922                                       struct btrfs_key *key)
923 {
924         int ret;
925         u32 item_size = btrfs_item_size_nr(eb, slot);
926         u64 cur_offset;
927         u16 csum_size =
928                 btrfs_super_csum_size(&root->fs_info->super_copy);
929         unsigned long file_bytes;
930         struct btrfs_ordered_sum *sums;
931         struct btrfs_sector_sum *sector_sum;
932         unsigned long ptr;
933
934         file_bytes = (item_size / csum_size) * root->sectorsize;
935         sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
936         if (!sums) {
937                 return -ENOMEM;
938         }
939
940         INIT_LIST_HEAD(&sums->list);
941         sums->len = file_bytes;
942         sums->bytenr = key->offset;
943
944         /*
945          * copy all the sums into the ordered sum struct
946          */
947         sector_sum = sums->sums;
948         cur_offset = key->offset;
949         ptr = btrfs_item_ptr_offset(eb, slot);
950         while(item_size > 0) {
951                 sector_sum->bytenr = cur_offset;
952                 read_extent_buffer(eb, &sector_sum->sum, ptr, csum_size);
953                 sector_sum++;
954                 item_size -= csum_size;
955                 ptr += csum_size;
956                 cur_offset += root->sectorsize;
957         }
958
959         /* let btrfs_csum_file_blocks add them into the file */
960         ret = btrfs_csum_file_blocks(trans, root->fs_info->csum_root, sums);
961         BUG_ON(ret);
962         kfree(sums);
963         return 0;
964 }
965 /*
966  * There are a few corners where the link count of the file can't
967  * be properly maintained during replay.  So, instead of adding
968  * lots of complexity to the log code, we just scan the backrefs
969  * for any file that has been through replay.
970  *
971  * The scan will update the link count on the inode to reflect the
972  * number of back refs found.  If it goes down to zero, the iput
973  * will free the inode.
974  */
975 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
976                                            struct btrfs_root *root,
977                                            struct inode *inode)
978 {
979         struct btrfs_path *path;
980         int ret;
981         struct btrfs_key key;
982         u64 nlink = 0;
983         unsigned long ptr;
984         unsigned long ptr_end;
985         int name_len;
986
987         key.objectid = inode->i_ino;
988         key.type = BTRFS_INODE_REF_KEY;
989         key.offset = (u64)-1;
990
991         path = btrfs_alloc_path();
992
993         while(1) {
994                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
995                 if (ret < 0)
996                         break;
997                 if (ret > 0) {
998                         if (path->slots[0] == 0)
999                                 break;
1000                         path->slots[0]--;
1001                 }
1002                 btrfs_item_key_to_cpu(path->nodes[0], &key,
1003                                       path->slots[0]);
1004                 if (key.objectid != inode->i_ino ||
1005                     key.type != BTRFS_INODE_REF_KEY)
1006                         break;
1007                 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1008                 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1009                                                    path->slots[0]);
1010                 while(ptr < ptr_end) {
1011                         struct btrfs_inode_ref *ref;
1012
1013                         ref = (struct btrfs_inode_ref *)ptr;
1014                         name_len = btrfs_inode_ref_name_len(path->nodes[0],
1015                                                             ref);
1016                         ptr = (unsigned long)(ref + 1) + name_len;
1017                         nlink++;
1018                 }
1019
1020                 if (key.offset == 0)
1021                         break;
1022                 key.offset--;
1023                 btrfs_release_path(root, path);
1024         }
1025         btrfs_free_path(path);
1026         if (nlink != inode->i_nlink) {
1027                 inode->i_nlink = nlink;
1028                 btrfs_update_inode(trans, root, inode);
1029         }
1030         BTRFS_I(inode)->index_cnt = (u64)-1;
1031
1032         return 0;
1033 }
1034
1035 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1036                                             struct btrfs_root *root,
1037                                             struct btrfs_path *path)
1038 {
1039         int ret;
1040         struct btrfs_key key;
1041         struct inode *inode;
1042
1043         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1044         key.type = BTRFS_ORPHAN_ITEM_KEY;
1045         key.offset = (u64)-1;
1046         while(1) {
1047                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1048                 if (ret < 0)
1049                         break;
1050
1051                 if (ret == 1) {
1052                         if (path->slots[0] == 0)
1053                                 break;
1054                         path->slots[0]--;
1055                 }
1056
1057                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1058                 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1059                     key.type != BTRFS_ORPHAN_ITEM_KEY)
1060                         break;
1061
1062                 ret = btrfs_del_item(trans, root, path);
1063                 BUG_ON(ret);
1064
1065                 btrfs_release_path(root, path);
1066                 inode = read_one_inode(root, key.offset);
1067                 BUG_ON(!inode);
1068
1069                 ret = fixup_inode_link_count(trans, root, inode);
1070                 BUG_ON(ret);
1071
1072                 iput(inode);
1073
1074                 if (key.offset == 0)
1075                         break;
1076                 key.offset--;
1077         }
1078         btrfs_release_path(root, path);
1079         return 0;
1080 }
1081
1082
1083 /*
1084  * record a given inode in the fixup dir so we can check its link
1085  * count when replay is done.  The link count is incremented here
1086  * so the inode won't go away until we check it
1087  */
1088 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1089                                       struct btrfs_root *root,
1090                                       struct btrfs_path *path,
1091                                       u64 objectid)
1092 {
1093         struct btrfs_key key;
1094         int ret = 0;
1095         struct inode *inode;
1096
1097         inode = read_one_inode(root, objectid);
1098         BUG_ON(!inode);
1099
1100         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1101         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1102         key.offset = objectid;
1103
1104         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1105
1106         btrfs_release_path(root, path);
1107         if (ret == 0) {
1108                 btrfs_inc_nlink(inode);
1109                 btrfs_update_inode(trans, root, inode);
1110         } else if (ret == -EEXIST) {
1111                 ret = 0;
1112         } else {
1113                 BUG();
1114         }
1115         iput(inode);
1116
1117         return ret;
1118 }
1119
1120 /*
1121  * when replaying the log for a directory, we only insert names
1122  * for inodes that actually exist.  This means an fsync on a directory
1123  * does not implicitly fsync all the new files in it
1124  */
1125 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1126                                     struct btrfs_root *root,
1127                                     struct btrfs_path *path,
1128                                     u64 dirid, u64 index,
1129                                     char *name, int name_len, u8 type,
1130                                     struct btrfs_key *location)
1131 {
1132         struct inode *inode;
1133         struct inode *dir;
1134         int ret;
1135
1136         inode = read_one_inode(root, location->objectid);
1137         if (!inode)
1138                 return -ENOENT;
1139
1140         dir = read_one_inode(root, dirid);
1141         if (!dir) {
1142                 iput(inode);
1143                 return -EIO;
1144         }
1145         ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1146
1147         /* FIXME, put inode into FIXUP list */
1148
1149         iput(inode);
1150         iput(dir);
1151         return ret;
1152 }
1153
1154 /*
1155  * take a single entry in a log directory item and replay it into
1156  * the subvolume.
1157  *
1158  * if a conflicting item exists in the subdirectory already,
1159  * the inode it points to is unlinked and put into the link count
1160  * fix up tree.
1161  *
1162  * If a name from the log points to a file or directory that does
1163  * not exist in the FS, it is skipped.  fsyncs on directories
1164  * do not force down inodes inside that directory, just changes to the
1165  * names or unlinks in a directory.
1166  */
1167 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1168                                     struct btrfs_root *root,
1169                                     struct btrfs_path *path,
1170                                     struct extent_buffer *eb,
1171                                     struct btrfs_dir_item *di,
1172                                     struct btrfs_key *key)
1173 {
1174         char *name;
1175         int name_len;
1176         struct btrfs_dir_item *dst_di;
1177         struct btrfs_key found_key;
1178         struct btrfs_key log_key;
1179         struct inode *dir;
1180         u8 log_type;
1181         int exists;
1182         int ret;
1183
1184         dir = read_one_inode(root, key->objectid);
1185         BUG_ON(!dir);
1186
1187         name_len = btrfs_dir_name_len(eb, di);
1188         name = kmalloc(name_len, GFP_NOFS);
1189         log_type = btrfs_dir_type(eb, di);
1190         read_extent_buffer(eb, name, (unsigned long)(di + 1),
1191                    name_len);
1192
1193         btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1194         exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1195         if (exists == 0)
1196                 exists = 1;
1197         else
1198                 exists = 0;
1199         btrfs_release_path(root, path);
1200
1201         if (key->type == BTRFS_DIR_ITEM_KEY) {
1202                 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1203                                        name, name_len, 1);
1204         }
1205         else if (key->type == BTRFS_DIR_INDEX_KEY) {
1206                 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1207                                                      key->objectid,
1208                                                      key->offset, name,
1209                                                      name_len, 1);
1210         } else {
1211                 BUG();
1212         }
1213         if (!dst_di || IS_ERR(dst_di)) {
1214                 /* we need a sequence number to insert, so we only
1215                  * do inserts for the BTRFS_DIR_INDEX_KEY types
1216                  */
1217                 if (key->type != BTRFS_DIR_INDEX_KEY)
1218                         goto out;
1219                 goto insert;
1220         }
1221
1222         btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1223         /* the existing item matches the logged item */
1224         if (found_key.objectid == log_key.objectid &&
1225             found_key.type == log_key.type &&
1226             found_key.offset == log_key.offset &&
1227             btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1228                 goto out;
1229         }
1230
1231         /*
1232          * don't drop the conflicting directory entry if the inode
1233          * for the new entry doesn't exist
1234          */
1235         if (!exists)
1236                 goto out;
1237
1238         ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1239         BUG_ON(ret);
1240
1241         if (key->type == BTRFS_DIR_INDEX_KEY)
1242                 goto insert;
1243 out:
1244         btrfs_release_path(root, path);
1245         kfree(name);
1246         iput(dir);
1247         return 0;
1248
1249 insert:
1250         btrfs_release_path(root, path);
1251         ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1252                               name, name_len, log_type, &log_key);
1253
1254         if (ret && ret != -ENOENT)
1255                 BUG();
1256         goto out;
1257 }
1258
1259 /*
1260  * find all the names in a directory item and reconcile them into
1261  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1262  * one name in a directory item, but the same code gets used for
1263  * both directory index types
1264  */
1265 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1266                                         struct btrfs_root *root,
1267                                         struct btrfs_path *path,
1268                                         struct extent_buffer *eb, int slot,
1269                                         struct btrfs_key *key)
1270 {
1271         int ret;
1272         u32 item_size = btrfs_item_size_nr(eb, slot);
1273         struct btrfs_dir_item *di;
1274         int name_len;
1275         unsigned long ptr;
1276         unsigned long ptr_end;
1277
1278         ptr = btrfs_item_ptr_offset(eb, slot);
1279         ptr_end = ptr + item_size;
1280         while(ptr < ptr_end) {
1281                 di = (struct btrfs_dir_item *)ptr;
1282                 name_len = btrfs_dir_name_len(eb, di);
1283                 ret = replay_one_name(trans, root, path, eb, di, key);
1284                 BUG_ON(ret);
1285                 ptr = (unsigned long)(di + 1);
1286                 ptr += name_len;
1287         }
1288         return 0;
1289 }
1290
1291 /*
1292  * directory replay has two parts.  There are the standard directory
1293  * items in the log copied from the subvolume, and range items
1294  * created in the log while the subvolume was logged.
1295  *
1296  * The range items tell us which parts of the key space the log
1297  * is authoritative for.  During replay, if a key in the subvolume
1298  * directory is in a logged range item, but not actually in the log
1299  * that means it was deleted from the directory before the fsync
1300  * and should be removed.
1301  */
1302 static noinline int find_dir_range(struct btrfs_root *root,
1303                                    struct btrfs_path *path,
1304                                    u64 dirid, int key_type,
1305                                    u64 *start_ret, u64 *end_ret)
1306 {
1307         struct btrfs_key key;
1308         u64 found_end;
1309         struct btrfs_dir_log_item *item;
1310         int ret;
1311         int nritems;
1312
1313         if (*start_ret == (u64)-1)
1314                 return 1;
1315
1316         key.objectid = dirid;
1317         key.type = key_type;
1318         key.offset = *start_ret;
1319
1320         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1321         if (ret < 0)
1322                 goto out;
1323         if (ret > 0) {
1324                 if (path->slots[0] == 0)
1325                         goto out;
1326                 path->slots[0]--;
1327         }
1328         if (ret != 0)
1329                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1330
1331         if (key.type != key_type || key.objectid != dirid) {
1332                 ret = 1;
1333                 goto next;
1334         }
1335         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1336                               struct btrfs_dir_log_item);
1337         found_end = btrfs_dir_log_end(path->nodes[0], item);
1338
1339         if (*start_ret >= key.offset && *start_ret <= found_end) {
1340                 ret = 0;
1341                 *start_ret = key.offset;
1342                 *end_ret = found_end;
1343                 goto out;
1344         }
1345         ret = 1;
1346 next:
1347         /* check the next slot in the tree to see if it is a valid item */
1348         nritems = btrfs_header_nritems(path->nodes[0]);
1349         if (path->slots[0] >= nritems) {
1350                 ret = btrfs_next_leaf(root, path);
1351                 if (ret)
1352                         goto out;
1353         } else {
1354                 path->slots[0]++;
1355         }
1356
1357         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1358
1359         if (key.type != key_type || key.objectid != dirid) {
1360                 ret = 1;
1361                 goto out;
1362         }
1363         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1364                               struct btrfs_dir_log_item);
1365         found_end = btrfs_dir_log_end(path->nodes[0], item);
1366         *start_ret = key.offset;
1367         *end_ret = found_end;
1368         ret = 0;
1369 out:
1370         btrfs_release_path(root, path);
1371         return ret;
1372 }
1373
1374 /*
1375  * this looks for a given directory item in the log.  If the directory
1376  * item is not in the log, the item is removed and the inode it points
1377  * to is unlinked
1378  */
1379 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1380                                       struct btrfs_root *root,
1381                                       struct btrfs_root *log,
1382                                       struct btrfs_path *path,
1383                                       struct btrfs_path *log_path,
1384                                       struct inode *dir,
1385                                       struct btrfs_key *dir_key)
1386 {
1387         int ret;
1388         struct extent_buffer *eb;
1389         int slot;
1390         u32 item_size;
1391         struct btrfs_dir_item *di;
1392         struct btrfs_dir_item *log_di;
1393         int name_len;
1394         unsigned long ptr;
1395         unsigned long ptr_end;
1396         char *name;
1397         struct inode *inode;
1398         struct btrfs_key location;
1399
1400 again:
1401         eb = path->nodes[0];
1402         slot = path->slots[0];
1403         item_size = btrfs_item_size_nr(eb, slot);
1404         ptr = btrfs_item_ptr_offset(eb, slot);
1405         ptr_end = ptr + item_size;
1406         while(ptr < ptr_end) {
1407                 di = (struct btrfs_dir_item *)ptr;
1408                 name_len = btrfs_dir_name_len(eb, di);
1409                 name = kmalloc(name_len, GFP_NOFS);
1410                 if (!name) {
1411                         ret = -ENOMEM;
1412                         goto out;
1413                 }
1414                 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1415                                   name_len);
1416                 log_di = NULL;
1417                 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1418                         log_di = btrfs_lookup_dir_item(trans, log, log_path,
1419                                                        dir_key->objectid,
1420                                                        name, name_len, 0);
1421                 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1422                         log_di = btrfs_lookup_dir_index_item(trans, log,
1423                                                      log_path,
1424                                                      dir_key->objectid,
1425                                                      dir_key->offset,
1426                                                      name, name_len, 0);
1427                 }
1428                 if (!log_di || IS_ERR(log_di)) {
1429                         btrfs_dir_item_key_to_cpu(eb, di, &location);
1430                         btrfs_release_path(root, path);
1431                         btrfs_release_path(log, log_path);
1432                         inode = read_one_inode(root, location.objectid);
1433                         BUG_ON(!inode);
1434
1435                         ret = link_to_fixup_dir(trans, root,
1436                                                 path, location.objectid);
1437                         BUG_ON(ret);
1438                         btrfs_inc_nlink(inode);
1439                         ret = btrfs_unlink_inode(trans, root, dir, inode,
1440                                                  name, name_len);
1441                         BUG_ON(ret);
1442                         kfree(name);
1443                         iput(inode);
1444
1445                         /* there might still be more names under this key
1446                          * check and repeat if required
1447                          */
1448                         ret = btrfs_search_slot(NULL, root, dir_key, path,
1449                                                 0, 0);
1450                         if (ret == 0)
1451                                 goto again;
1452                         ret = 0;
1453                         goto out;
1454                 }
1455                 btrfs_release_path(log, log_path);
1456                 kfree(name);
1457
1458                 ptr = (unsigned long)(di + 1);
1459                 ptr += name_len;
1460         }
1461         ret = 0;
1462 out:
1463         btrfs_release_path(root, path);
1464         btrfs_release_path(log, log_path);
1465         return ret;
1466 }
1467
1468 /*
1469  * deletion replay happens before we copy any new directory items
1470  * out of the log or out of backreferences from inodes.  It
1471  * scans the log to find ranges of keys that log is authoritative for,
1472  * and then scans the directory to find items in those ranges that are
1473  * not present in the log.
1474  *
1475  * Anything we don't find in the log is unlinked and removed from the
1476  * directory.
1477  */
1478 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1479                                        struct btrfs_root *root,
1480                                        struct btrfs_root *log,
1481                                        struct btrfs_path *path,
1482                                        u64 dirid)
1483 {
1484         u64 range_start;
1485         u64 range_end;
1486         int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1487         int ret = 0;
1488         struct btrfs_key dir_key;
1489         struct btrfs_key found_key;
1490         struct btrfs_path *log_path;
1491         struct inode *dir;
1492
1493         dir_key.objectid = dirid;
1494         dir_key.type = BTRFS_DIR_ITEM_KEY;
1495         log_path = btrfs_alloc_path();
1496         if (!log_path)
1497                 return -ENOMEM;
1498
1499         dir = read_one_inode(root, dirid);
1500         /* it isn't an error if the inode isn't there, that can happen
1501          * because we replay the deletes before we copy in the inode item
1502          * from the log
1503          */
1504         if (!dir) {
1505                 btrfs_free_path(log_path);
1506                 return 0;
1507         }
1508 again:
1509         range_start = 0;
1510         range_end = 0;
1511         while(1) {
1512                 ret = find_dir_range(log, path, dirid, key_type,
1513                                      &range_start, &range_end);
1514                 if (ret != 0)
1515                         break;
1516
1517                 dir_key.offset = range_start;
1518                 while(1) {
1519                         int nritems;
1520                         ret = btrfs_search_slot(NULL, root, &dir_key, path,
1521                                                 0, 0);
1522                         if (ret < 0)
1523                                 goto out;
1524
1525                         nritems = btrfs_header_nritems(path->nodes[0]);
1526                         if (path->slots[0] >= nritems) {
1527                                 ret = btrfs_next_leaf(root, path);
1528                                 if (ret)
1529                                         break;
1530                         }
1531                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1532                                               path->slots[0]);
1533                         if (found_key.objectid != dirid ||
1534                             found_key.type != dir_key.type)
1535                                 goto next_type;
1536
1537                         if (found_key.offset > range_end)
1538                                 break;
1539
1540                         ret = check_item_in_log(trans, root, log, path,
1541                                                 log_path, dir, &found_key);
1542                         BUG_ON(ret);
1543                         if (found_key.offset == (u64)-1)
1544                                 break;
1545                         dir_key.offset = found_key.offset + 1;
1546                 }
1547                 btrfs_release_path(root, path);
1548                 if (range_end == (u64)-1)
1549                         break;
1550                 range_start = range_end + 1;
1551         }
1552
1553 next_type:
1554         ret = 0;
1555         if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1556                 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1557                 dir_key.type = BTRFS_DIR_INDEX_KEY;
1558                 btrfs_release_path(root, path);
1559                 goto again;
1560         }
1561 out:
1562         btrfs_release_path(root, path);
1563         btrfs_free_path(log_path);
1564         iput(dir);
1565         return ret;
1566 }
1567
1568 /*
1569  * the process_func used to replay items from the log tree.  This
1570  * gets called in two different stages.  The first stage just looks
1571  * for inodes and makes sure they are all copied into the subvolume.
1572  *
1573  * The second stage copies all the other item types from the log into
1574  * the subvolume.  The two stage approach is slower, but gets rid of
1575  * lots of complexity around inodes referencing other inodes that exist
1576  * only in the log (references come from either directory items or inode
1577  * back refs).
1578  */
1579 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1580                              struct walk_control *wc, u64 gen)
1581 {
1582         int nritems;
1583         struct btrfs_path *path;
1584         struct btrfs_root *root = wc->replay_dest;
1585         struct btrfs_key key;
1586         u32 item_size;
1587         int level;
1588         int i;
1589         int ret;
1590
1591         btrfs_read_buffer(eb, gen);
1592
1593         level = btrfs_header_level(eb);
1594
1595         if (level != 0)
1596                 return 0;
1597
1598         path = btrfs_alloc_path();
1599         BUG_ON(!path);
1600
1601         nritems = btrfs_header_nritems(eb);
1602         for (i = 0; i < nritems; i++) {
1603                 btrfs_item_key_to_cpu(eb, &key, i);
1604                 item_size = btrfs_item_size_nr(eb, i);
1605
1606                 /* inode keys are done during the first stage */
1607                 if (key.type == BTRFS_INODE_ITEM_KEY &&
1608                     wc->stage == LOG_WALK_REPLAY_INODES) {
1609                         struct inode *inode;
1610                         struct btrfs_inode_item *inode_item;
1611                         u32 mode;
1612
1613                         inode_item = btrfs_item_ptr(eb, i,
1614                                             struct btrfs_inode_item);
1615                         mode = btrfs_inode_mode(eb, inode_item);
1616                         if (S_ISDIR(mode)) {
1617                                 ret = replay_dir_deletes(wc->trans,
1618                                          root, log, path, key.objectid);
1619                                 BUG_ON(ret);
1620                         }
1621                         ret = overwrite_item(wc->trans, root, path,
1622                                              eb, i, &key);
1623                         BUG_ON(ret);
1624
1625                         /* for regular files, truncate away
1626                          * extents past the new EOF
1627                          */
1628                         if (S_ISREG(mode)) {
1629                                 inode = read_one_inode(root,
1630                                                        key.objectid);
1631                                 BUG_ON(!inode);
1632
1633                                 ret = btrfs_truncate_inode_items(wc->trans,
1634                                         root, inode, inode->i_size,
1635                                         BTRFS_EXTENT_DATA_KEY);
1636                                 BUG_ON(ret);
1637                                 iput(inode);
1638                         }
1639                         ret = link_to_fixup_dir(wc->trans, root,
1640                                                 path, key.objectid);
1641                         BUG_ON(ret);
1642                 }
1643                 if (wc->stage < LOG_WALK_REPLAY_ALL)
1644                         continue;
1645
1646                 /* these keys are simply copied */
1647                 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1648                         ret = overwrite_item(wc->trans, root, path,
1649                                              eb, i, &key);
1650                         BUG_ON(ret);
1651                 } else if (key.type == BTRFS_INODE_REF_KEY) {
1652                         ret = add_inode_ref(wc->trans, root, log, path,
1653                                             eb, i, &key);
1654                         BUG_ON(ret && ret != -ENOENT);
1655                 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1656                         ret = replay_one_extent(wc->trans, root, path,
1657                                                 eb, i, &key);
1658                         BUG_ON(ret);
1659                 } else if (key.type == BTRFS_EXTENT_CSUM_KEY) {
1660                         ret = replay_one_csum(wc->trans, root, path,
1661                                               eb, i, &key);
1662                         BUG_ON(ret);
1663                 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1664                            key.type == BTRFS_DIR_INDEX_KEY) {
1665                         ret = replay_one_dir_item(wc->trans, root, path,
1666                                                   eb, i, &key);
1667                         BUG_ON(ret);
1668                 }
1669         }
1670         btrfs_free_path(path);
1671         return 0;
1672 }
1673
1674 static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
1675                                    struct btrfs_root *root,
1676                                    struct btrfs_path *path, int *level,
1677                                    struct walk_control *wc)
1678 {
1679         u64 root_owner;
1680         u64 root_gen;
1681         u64 bytenr;
1682         u64 ptr_gen;
1683         struct extent_buffer *next;
1684         struct extent_buffer *cur;
1685         struct extent_buffer *parent;
1686         u32 blocksize;
1687         int ret = 0;
1688
1689         WARN_ON(*level < 0);
1690         WARN_ON(*level >= BTRFS_MAX_LEVEL);
1691
1692         while(*level > 0) {
1693                 WARN_ON(*level < 0);
1694                 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1695                 cur = path->nodes[*level];
1696
1697                 if (btrfs_header_level(cur) != *level)
1698                         WARN_ON(1);
1699
1700                 if (path->slots[*level] >=
1701                     btrfs_header_nritems(cur))
1702                         break;
1703
1704                 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1705                 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1706                 blocksize = btrfs_level_size(root, *level - 1);
1707
1708                 parent = path->nodes[*level];
1709                 root_owner = btrfs_header_owner(parent);
1710                 root_gen = btrfs_header_generation(parent);
1711
1712                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1713
1714                 wc->process_func(root, next, wc, ptr_gen);
1715
1716                 if (*level == 1) {
1717                         path->slots[*level]++;
1718                         if (wc->free) {
1719                                 btrfs_read_buffer(next, ptr_gen);
1720
1721                                 btrfs_tree_lock(next);
1722                                 clean_tree_block(trans, root, next);
1723                                 btrfs_wait_tree_block_writeback(next);
1724                                 btrfs_tree_unlock(next);
1725
1726                                 ret = btrfs_drop_leaf_ref(trans, root, next);
1727                                 BUG_ON(ret);
1728
1729                                 WARN_ON(root_owner !=
1730                                         BTRFS_TREE_LOG_OBJECTID);
1731                                 ret = btrfs_free_reserved_extent(root,
1732                                                          bytenr, blocksize);
1733                                 BUG_ON(ret);
1734                         }
1735                         free_extent_buffer(next);
1736                         continue;
1737                 }
1738                 btrfs_read_buffer(next, ptr_gen);
1739
1740                 WARN_ON(*level <= 0);
1741                 if (path->nodes[*level-1])
1742                         free_extent_buffer(path->nodes[*level-1]);
1743                 path->nodes[*level-1] = next;
1744                 *level = btrfs_header_level(next);
1745                 path->slots[*level] = 0;
1746                 cond_resched();
1747         }
1748         WARN_ON(*level < 0);
1749         WARN_ON(*level >= BTRFS_MAX_LEVEL);
1750
1751         if (path->nodes[*level] == root->node) {
1752                 parent = path->nodes[*level];
1753         } else {
1754                 parent = path->nodes[*level + 1];
1755         }
1756         bytenr = path->nodes[*level]->start;
1757
1758         blocksize = btrfs_level_size(root, *level);
1759         root_owner = btrfs_header_owner(parent);
1760         root_gen = btrfs_header_generation(parent);
1761
1762         wc->process_func(root, path->nodes[*level], wc,
1763                          btrfs_header_generation(path->nodes[*level]));
1764
1765         if (wc->free) {
1766                 next = path->nodes[*level];
1767                 btrfs_tree_lock(next);
1768                 clean_tree_block(trans, root, next);
1769                 btrfs_wait_tree_block_writeback(next);
1770                 btrfs_tree_unlock(next);
1771
1772                 if (*level == 0) {
1773                         ret = btrfs_drop_leaf_ref(trans, root, next);
1774                         BUG_ON(ret);
1775                 }
1776                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1777                 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1778                 BUG_ON(ret);
1779         }
1780         free_extent_buffer(path->nodes[*level]);
1781         path->nodes[*level] = NULL;
1782         *level += 1;
1783
1784         cond_resched();
1785         return 0;
1786 }
1787
1788 static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
1789                                  struct btrfs_root *root,
1790                                  struct btrfs_path *path, int *level,
1791                                  struct walk_control *wc)
1792 {
1793         u64 root_owner;
1794         u64 root_gen;
1795         int i;
1796         int slot;
1797         int ret;
1798
1799         for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1800                 slot = path->slots[i];
1801                 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1802                         struct extent_buffer *node;
1803                         node = path->nodes[i];
1804                         path->slots[i]++;
1805                         *level = i;
1806                         WARN_ON(*level == 0);
1807                         return 0;
1808                 } else {
1809                         struct extent_buffer *parent;
1810                         if (path->nodes[*level] == root->node)
1811                                 parent = path->nodes[*level];
1812                         else
1813                                 parent = path->nodes[*level + 1];
1814
1815                         root_owner = btrfs_header_owner(parent);
1816                         root_gen = btrfs_header_generation(parent);
1817                         wc->process_func(root, path->nodes[*level], wc,
1818                                  btrfs_header_generation(path->nodes[*level]));
1819                         if (wc->free) {
1820                                 struct extent_buffer *next;
1821
1822                                 next = path->nodes[*level];
1823
1824                                 btrfs_tree_lock(next);
1825                                 clean_tree_block(trans, root, next);
1826                                 btrfs_wait_tree_block_writeback(next);
1827                                 btrfs_tree_unlock(next);
1828
1829                                 if (*level == 0) {
1830                                         ret = btrfs_drop_leaf_ref(trans, root,
1831                                                                   next);
1832                                         BUG_ON(ret);
1833                                 }
1834
1835                                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1836                                 ret = btrfs_free_reserved_extent(root,
1837                                                 path->nodes[*level]->start,
1838                                                 path->nodes[*level]->len);
1839                                 BUG_ON(ret);
1840                         }
1841                         free_extent_buffer(path->nodes[*level]);
1842                         path->nodes[*level] = NULL;
1843                         *level = i + 1;
1844                 }
1845         }
1846         return 1;
1847 }
1848
1849 /*
1850  * drop the reference count on the tree rooted at 'snap'.  This traverses
1851  * the tree freeing any blocks that have a ref count of zero after being
1852  * decremented.
1853  */
1854 static int walk_log_tree(struct btrfs_trans_handle *trans,
1855                          struct btrfs_root *log, struct walk_control *wc)
1856 {
1857         int ret = 0;
1858         int wret;
1859         int level;
1860         struct btrfs_path *path;
1861         int i;
1862         int orig_level;
1863
1864         path = btrfs_alloc_path();
1865         BUG_ON(!path);
1866
1867         level = btrfs_header_level(log->node);
1868         orig_level = level;
1869         path->nodes[level] = log->node;
1870         extent_buffer_get(log->node);
1871         path->slots[level] = 0;
1872
1873         while(1) {
1874                 wret = walk_down_log_tree(trans, log, path, &level, wc);
1875                 if (wret > 0)
1876                         break;
1877                 if (wret < 0)
1878                         ret = wret;
1879
1880                 wret = walk_up_log_tree(trans, log, path, &level, wc);
1881                 if (wret > 0)
1882                         break;
1883                 if (wret < 0)
1884                         ret = wret;
1885         }
1886
1887         /* was the root node processed? if not, catch it here */
1888         if (path->nodes[orig_level]) {
1889                 wc->process_func(log, path->nodes[orig_level], wc,
1890                          btrfs_header_generation(path->nodes[orig_level]));
1891                 if (wc->free) {
1892                         struct extent_buffer *next;
1893
1894                         next = path->nodes[orig_level];
1895
1896                         btrfs_tree_lock(next);
1897                         clean_tree_block(trans, log, next);
1898                         btrfs_wait_tree_block_writeback(next);
1899                         btrfs_tree_unlock(next);
1900
1901                         if (orig_level == 0) {
1902                                 ret = btrfs_drop_leaf_ref(trans, log,
1903                                                           next);
1904                                 BUG_ON(ret);
1905                         }
1906                         WARN_ON(log->root_key.objectid !=
1907                                 BTRFS_TREE_LOG_OBJECTID);
1908                         ret = btrfs_free_reserved_extent(log, next->start,
1909                                                          next->len);
1910                         BUG_ON(ret);
1911                 }
1912         }
1913
1914         for (i = 0; i <= orig_level; i++) {
1915                 if (path->nodes[i]) {
1916                         free_extent_buffer(path->nodes[i]);
1917                         path->nodes[i] = NULL;
1918                 }
1919         }
1920         btrfs_free_path(path);
1921         if (wc->free)
1922                 free_extent_buffer(log->node);
1923         return ret;
1924 }
1925
1926 static int wait_log_commit(struct btrfs_root *log)
1927 {
1928         DEFINE_WAIT(wait);
1929         u64 transid = log->fs_info->tree_log_transid;
1930
1931         do {
1932                 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1933                                 TASK_UNINTERRUPTIBLE);
1934                 mutex_unlock(&log->fs_info->tree_log_mutex);
1935                 if (atomic_read(&log->fs_info->tree_log_commit))
1936                         schedule();
1937                 finish_wait(&log->fs_info->tree_log_wait, &wait);
1938                 mutex_lock(&log->fs_info->tree_log_mutex);
1939         } while(transid == log->fs_info->tree_log_transid &&
1940                 atomic_read(&log->fs_info->tree_log_commit));
1941         return 0;
1942 }
1943
1944 /*
1945  * btrfs_sync_log does sends a given tree log down to the disk and
1946  * updates the super blocks to record it.  When this call is done,
1947  * you know that any inodes previously logged are safely on disk
1948  */
1949 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1950                    struct btrfs_root *root)
1951 {
1952         int ret;
1953         unsigned long batch;
1954         struct btrfs_root *log = root->log_root;
1955
1956         mutex_lock(&log->fs_info->tree_log_mutex);
1957         if (atomic_read(&log->fs_info->tree_log_commit)) {
1958                 wait_log_commit(log);
1959                 goto out;
1960         }
1961         atomic_set(&log->fs_info->tree_log_commit, 1);
1962
1963         while(1) {
1964                 batch = log->fs_info->tree_log_batch;
1965                 mutex_unlock(&log->fs_info->tree_log_mutex);
1966                 schedule_timeout_uninterruptible(1);
1967                 mutex_lock(&log->fs_info->tree_log_mutex);
1968
1969                 while(atomic_read(&log->fs_info->tree_log_writers)) {
1970                         DEFINE_WAIT(wait);
1971                         prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1972                                         TASK_UNINTERRUPTIBLE);
1973                         mutex_unlock(&log->fs_info->tree_log_mutex);
1974                         if (atomic_read(&log->fs_info->tree_log_writers))
1975                                 schedule();
1976                         mutex_lock(&log->fs_info->tree_log_mutex);
1977                         finish_wait(&log->fs_info->tree_log_wait, &wait);
1978                 }
1979                 if (batch == log->fs_info->tree_log_batch)
1980                         break;
1981         }
1982
1983         ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
1984         BUG_ON(ret);
1985         ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
1986                                &root->fs_info->log_root_tree->dirty_log_pages);
1987         BUG_ON(ret);
1988
1989         btrfs_set_super_log_root(&root->fs_info->super_for_commit,
1990                                  log->fs_info->log_root_tree->node->start);
1991         btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
1992                        btrfs_header_level(log->fs_info->log_root_tree->node));
1993
1994         write_ctree_super(trans, log->fs_info->tree_root, 2);
1995         log->fs_info->tree_log_transid++;
1996         log->fs_info->tree_log_batch = 0;
1997         atomic_set(&log->fs_info->tree_log_commit, 0);
1998         smp_mb();
1999         if (waitqueue_active(&log->fs_info->tree_log_wait))
2000                 wake_up(&log->fs_info->tree_log_wait);
2001 out:
2002         mutex_unlock(&log->fs_info->tree_log_mutex);
2003         return 0;
2004 }
2005
2006 /* * free all the extents used by the tree log.  This should be called
2007  * at commit time of the full transaction
2008  */
2009 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2010 {
2011         int ret;
2012         struct btrfs_root *log;
2013         struct key;
2014         u64 start;
2015         u64 end;
2016         struct walk_control wc = {
2017                 .free = 1,
2018                 .process_func = process_one_buffer
2019         };
2020
2021         if (!root->log_root)
2022                 return 0;
2023
2024         log = root->log_root;
2025         ret = walk_log_tree(trans, log, &wc);
2026         BUG_ON(ret);
2027
2028         while(1) {
2029                 ret = find_first_extent_bit(&log->dirty_log_pages,
2030                                     0, &start, &end, EXTENT_DIRTY);
2031                 if (ret)
2032                         break;
2033
2034                 clear_extent_dirty(&log->dirty_log_pages,
2035                                    start, end, GFP_NOFS);
2036         }
2037
2038         log = root->log_root;
2039         ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2040                              &log->root_key);
2041         BUG_ON(ret);
2042         root->log_root = NULL;
2043         kfree(root->log_root);
2044         return 0;
2045 }
2046
2047 /*
2048  * helper function to update the item for a given subvolumes log root
2049  * in the tree of log roots
2050  */
2051 static int update_log_root(struct btrfs_trans_handle *trans,
2052                            struct btrfs_root *log)
2053 {
2054         u64 bytenr = btrfs_root_bytenr(&log->root_item);
2055         int ret;
2056
2057         if (log->node->start == bytenr)
2058                 return 0;
2059
2060         btrfs_set_root_bytenr(&log->root_item, log->node->start);
2061         btrfs_set_root_generation(&log->root_item, trans->transid);
2062         btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2063         ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2064                                 &log->root_key, &log->root_item);
2065         BUG_ON(ret);
2066         return ret;
2067 }
2068
2069 /*
2070  * If both a file and directory are logged, and unlinks or renames are
2071  * mixed in, we have a few interesting corners:
2072  *
2073  * create file X in dir Y
2074  * link file X to X.link in dir Y
2075  * fsync file X
2076  * unlink file X but leave X.link
2077  * fsync dir Y
2078  *
2079  * After a crash we would expect only X.link to exist.  But file X
2080  * didn't get fsync'd again so the log has back refs for X and X.link.
2081  *
2082  * We solve this by removing directory entries and inode backrefs from the
2083  * log when a file that was logged in the current transaction is
2084  * unlinked.  Any later fsync will include the updated log entries, and
2085  * we'll be able to reconstruct the proper directory items from backrefs.
2086  *
2087  * This optimizations allows us to avoid relogging the entire inode
2088  * or the entire directory.
2089  */
2090 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2091                                  struct btrfs_root *root,
2092                                  const char *name, int name_len,
2093                                  struct inode *dir, u64 index)
2094 {
2095         struct btrfs_root *log;
2096         struct btrfs_dir_item *di;
2097         struct btrfs_path *path;
2098         int ret;
2099         int bytes_del = 0;
2100
2101         if (BTRFS_I(dir)->logged_trans < trans->transid)
2102                 return 0;
2103
2104         ret = join_running_log_trans(root);
2105         if (ret)
2106                 return 0;
2107
2108         mutex_lock(&BTRFS_I(dir)->log_mutex);
2109
2110         log = root->log_root;
2111         path = btrfs_alloc_path();
2112         di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2113                                    name, name_len, -1);
2114         if (di && !IS_ERR(di)) {
2115                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2116                 bytes_del += name_len;
2117                 BUG_ON(ret);
2118         }
2119         btrfs_release_path(log, path);
2120         di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2121                                          index, name, name_len, -1);
2122         if (di && !IS_ERR(di)) {
2123                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2124                 bytes_del += name_len;
2125                 BUG_ON(ret);
2126         }
2127
2128         /* update the directory size in the log to reflect the names
2129          * we have removed
2130          */
2131         if (bytes_del) {
2132                 struct btrfs_key key;
2133
2134                 key.objectid = dir->i_ino;
2135                 key.offset = 0;
2136                 key.type = BTRFS_INODE_ITEM_KEY;
2137                 btrfs_release_path(log, path);
2138
2139                 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2140                 if (ret == 0) {
2141                         struct btrfs_inode_item *item;
2142                         u64 i_size;
2143
2144                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2145                                               struct btrfs_inode_item);
2146                         i_size = btrfs_inode_size(path->nodes[0], item);
2147                         if (i_size > bytes_del)
2148                                 i_size -= bytes_del;
2149                         else
2150                                 i_size = 0;
2151                         btrfs_set_inode_size(path->nodes[0], item, i_size);
2152                         btrfs_mark_buffer_dirty(path->nodes[0]);
2153                 } else
2154                         ret = 0;
2155                 btrfs_release_path(log, path);
2156         }
2157
2158         btrfs_free_path(path);
2159         mutex_unlock(&BTRFS_I(dir)->log_mutex);
2160         end_log_trans(root);
2161
2162         return 0;
2163 }
2164
2165 /* see comments for btrfs_del_dir_entries_in_log */
2166 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2167                                struct btrfs_root *root,
2168                                const char *name, int name_len,
2169                                struct inode *inode, u64 dirid)
2170 {
2171         struct btrfs_root *log;
2172         u64 index;
2173         int ret;
2174
2175         if (BTRFS_I(inode)->logged_trans < trans->transid)
2176                 return 0;
2177
2178         ret = join_running_log_trans(root);
2179         if (ret)
2180                 return 0;
2181         log = root->log_root;
2182         mutex_lock(&BTRFS_I(inode)->log_mutex);
2183
2184         ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2185                                   dirid, &index);
2186         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2187         end_log_trans(root);
2188
2189         return ret;
2190 }
2191
2192 /*
2193  * creates a range item in the log for 'dirid'.  first_offset and
2194  * last_offset tell us which parts of the key space the log should
2195  * be considered authoritative for.
2196  */
2197 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2198                                        struct btrfs_root *log,
2199                                        struct btrfs_path *path,
2200                                        int key_type, u64 dirid,
2201                                        u64 first_offset, u64 last_offset)
2202 {
2203         int ret;
2204         struct btrfs_key key;
2205         struct btrfs_dir_log_item *item;
2206
2207         key.objectid = dirid;
2208         key.offset = first_offset;
2209         if (key_type == BTRFS_DIR_ITEM_KEY)
2210                 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2211         else
2212                 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2213         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2214         BUG_ON(ret);
2215
2216         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2217                               struct btrfs_dir_log_item);
2218         btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2219         btrfs_mark_buffer_dirty(path->nodes[0]);
2220         btrfs_release_path(log, path);
2221         return 0;
2222 }
2223
2224 /*
2225  * log all the items included in the current transaction for a given
2226  * directory.  This also creates the range items in the log tree required
2227  * to replay anything deleted before the fsync
2228  */
2229 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2230                           struct btrfs_root *root, struct inode *inode,
2231                           struct btrfs_path *path,
2232                           struct btrfs_path *dst_path, int key_type,
2233                           u64 min_offset, u64 *last_offset_ret)
2234 {
2235         struct btrfs_key min_key;
2236         struct btrfs_key max_key;
2237         struct btrfs_root *log = root->log_root;
2238         struct extent_buffer *src;
2239         int ret;
2240         int i;
2241         int nritems;
2242         u64 first_offset = min_offset;
2243         u64 last_offset = (u64)-1;
2244
2245         log = root->log_root;
2246         max_key.objectid = inode->i_ino;
2247         max_key.offset = (u64)-1;
2248         max_key.type = key_type;
2249
2250         min_key.objectid = inode->i_ino;
2251         min_key.type = key_type;
2252         min_key.offset = min_offset;
2253
2254         path->keep_locks = 1;
2255
2256         ret = btrfs_search_forward(root, &min_key, &max_key,
2257                                    path, 0, trans->transid);
2258
2259         /*
2260          * we didn't find anything from this transaction, see if there
2261          * is anything at all
2262          */
2263         if (ret != 0 || min_key.objectid != inode->i_ino ||
2264             min_key.type != key_type) {
2265                 min_key.objectid = inode->i_ino;
2266                 min_key.type = key_type;
2267                 min_key.offset = (u64)-1;
2268                 btrfs_release_path(root, path);
2269                 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2270                 if (ret < 0) {
2271                         btrfs_release_path(root, path);
2272                         return ret;
2273                 }
2274                 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2275
2276                 /* if ret == 0 there are items for this type,
2277                  * create a range to tell us the last key of this type.
2278                  * otherwise, there are no items in this directory after
2279                  * *min_offset, and we create a range to indicate that.
2280                  */
2281                 if (ret == 0) {
2282                         struct btrfs_key tmp;
2283                         btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2284                                               path->slots[0]);
2285                         if (key_type == tmp.type) {
2286                                 first_offset = max(min_offset, tmp.offset) + 1;
2287                         }
2288                 }
2289                 goto done;
2290         }
2291
2292         /* go backward to find any previous key */
2293         ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2294         if (ret == 0) {
2295                 struct btrfs_key tmp;
2296                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2297                 if (key_type == tmp.type) {
2298                         first_offset = tmp.offset;
2299                         ret = overwrite_item(trans, log, dst_path,
2300                                              path->nodes[0], path->slots[0],
2301                                              &tmp);
2302                 }
2303         }
2304         btrfs_release_path(root, path);
2305
2306         /* find the first key from this transaction again */
2307         ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2308         if (ret != 0) {
2309                 WARN_ON(1);
2310                 goto done;
2311         }
2312
2313         /*
2314          * we have a block from this transaction, log every item in it
2315          * from our directory
2316          */
2317         while(1) {
2318                 struct btrfs_key tmp;
2319                 src = path->nodes[0];
2320                 nritems = btrfs_header_nritems(src);
2321                 for (i = path->slots[0]; i < nritems; i++) {
2322                         btrfs_item_key_to_cpu(src, &min_key, i);
2323
2324                         if (min_key.objectid != inode->i_ino ||
2325                             min_key.type != key_type)
2326                                 goto done;
2327                         ret = overwrite_item(trans, log, dst_path, src, i,
2328                                              &min_key);
2329                         BUG_ON(ret);
2330                 }
2331                 path->slots[0] = nritems;
2332
2333                 /*
2334                  * look ahead to the next item and see if it is also
2335                  * from this directory and from this transaction
2336                  */
2337                 ret = btrfs_next_leaf(root, path);
2338                 if (ret == 1) {
2339                         last_offset = (u64)-1;
2340                         goto done;
2341                 }
2342                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2343                 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2344                         last_offset = (u64)-1;
2345                         goto done;
2346                 }
2347                 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2348                         ret = overwrite_item(trans, log, dst_path,
2349                                              path->nodes[0], path->slots[0],
2350                                              &tmp);
2351
2352                         BUG_ON(ret);
2353                         last_offset = tmp.offset;
2354                         goto done;
2355                 }
2356         }
2357 done:
2358         *last_offset_ret = last_offset;
2359         btrfs_release_path(root, path);
2360         btrfs_release_path(log, dst_path);
2361
2362         /* insert the log range keys to indicate where the log is valid */
2363         ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2364                                  first_offset, last_offset);
2365         BUG_ON(ret);
2366         return 0;
2367 }
2368
2369 /*
2370  * logging directories is very similar to logging inodes, We find all the items
2371  * from the current transaction and write them to the log.
2372  *
2373  * The recovery code scans the directory in the subvolume, and if it finds a
2374  * key in the range logged that is not present in the log tree, then it means
2375  * that dir entry was unlinked during the transaction.
2376  *
2377  * In order for that scan to work, we must include one key smaller than
2378  * the smallest logged by this transaction and one key larger than the largest
2379  * key logged by this transaction.
2380  */
2381 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2382                           struct btrfs_root *root, struct inode *inode,
2383                           struct btrfs_path *path,
2384                           struct btrfs_path *dst_path)
2385 {
2386         u64 min_key;
2387         u64 max_key;
2388         int ret;
2389         int key_type = BTRFS_DIR_ITEM_KEY;
2390
2391 again:
2392         min_key = 0;
2393         max_key = 0;
2394         while(1) {
2395                 ret = log_dir_items(trans, root, inode, path,
2396                                     dst_path, key_type, min_key,
2397                                     &max_key);
2398                 BUG_ON(ret);
2399                 if (max_key == (u64)-1)
2400                         break;
2401                 min_key = max_key + 1;
2402         }
2403
2404         if (key_type == BTRFS_DIR_ITEM_KEY) {
2405                 key_type = BTRFS_DIR_INDEX_KEY;
2406                 goto again;
2407         }
2408         return 0;
2409 }
2410
2411 /*
2412  * a helper function to drop items from the log before we relog an
2413  * inode.  max_key_type indicates the highest item type to remove.
2414  * This cannot be run for file data extents because it does not
2415  * free the extents they point to.
2416  */
2417 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2418                                   struct btrfs_root *log,
2419                                   struct btrfs_path *path,
2420                                   u64 objectid, int max_key_type)
2421 {
2422         int ret;
2423         struct btrfs_key key;
2424         struct btrfs_key found_key;
2425
2426         key.objectid = objectid;
2427         key.type = max_key_type;
2428         key.offset = (u64)-1;
2429
2430         while(1) {
2431                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2432
2433                 if (ret != 1)
2434                         break;
2435
2436                 if (path->slots[0] == 0)
2437                         break;
2438
2439                 path->slots[0]--;
2440                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2441                                       path->slots[0]);
2442
2443                 if (found_key.objectid != objectid)
2444                         break;
2445
2446                 ret = btrfs_del_item(trans, log, path);
2447                 BUG_ON(ret);
2448                 btrfs_release_path(log, path);
2449         }
2450         btrfs_release_path(log, path);
2451         return 0;
2452 }
2453
2454 static noinline int copy_extent_csums(struct btrfs_trans_handle *trans,
2455                                       struct list_head *list,
2456                                       struct btrfs_root *root,
2457                                       u64 disk_bytenr, u64 len)
2458 {
2459         struct btrfs_ordered_sum *sums;
2460         struct btrfs_sector_sum *sector_sum;
2461         int ret;
2462         struct btrfs_path *path;
2463         struct btrfs_csum_item *item = NULL;
2464         u64 end = disk_bytenr + len;
2465         u64 item_start_offset = 0;
2466         u64 item_last_offset = 0;
2467         u32 diff;
2468         u32 sum;
2469         u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
2470
2471         sums = kzalloc(btrfs_ordered_sum_size(root, len), GFP_NOFS);
2472
2473         sector_sum = sums->sums;
2474         sums->bytenr = disk_bytenr;
2475         sums->len = len;
2476         list_add_tail(&sums->list, list);
2477
2478         path = btrfs_alloc_path();
2479         while(disk_bytenr < end) {
2480                 if (!item || disk_bytenr < item_start_offset ||
2481                     disk_bytenr >= item_last_offset) {
2482                         struct btrfs_key found_key;
2483                         u32 item_size;
2484
2485                         if (item)
2486                                 btrfs_release_path(root, path);
2487                         item = btrfs_lookup_csum(NULL, root, path,
2488                                                  disk_bytenr, 0);
2489                         if (IS_ERR(item)) {
2490                                 ret = PTR_ERR(item);
2491                                 if (ret == -ENOENT || ret == -EFBIG)
2492                                         ret = 0;
2493                                 sum = 0;
2494                                 printk("log no csum found for byte %llu\n",
2495                                        (unsigned long long)disk_bytenr);
2496                                 item = NULL;
2497                                 btrfs_release_path(root, path);
2498                                 goto found;
2499                         }
2500                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2501                                               path->slots[0]);
2502
2503                         item_start_offset = found_key.offset;
2504                         item_size = btrfs_item_size_nr(path->nodes[0],
2505                                                        path->slots[0]);
2506                         item_last_offset = item_start_offset +
2507                                 (item_size / csum_size) *
2508                                 root->sectorsize;
2509                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2510                                               struct btrfs_csum_item);
2511                 }
2512                 /*
2513                  * this byte range must be able to fit inside
2514                  * a single leaf so it will also fit inside a u32
2515                  */
2516                 diff = disk_bytenr - item_start_offset;
2517                 diff = diff / root->sectorsize;
2518                 diff = diff * csum_size;
2519
2520                 read_extent_buffer(path->nodes[0], &sum,
2521                                    ((unsigned long)item) + diff,
2522                                    csum_size);
2523 found:
2524                 sector_sum->bytenr = disk_bytenr;
2525                 sector_sum->sum = sum;
2526                 disk_bytenr += root->sectorsize;
2527                 sector_sum++;
2528         }
2529         btrfs_free_path(path);
2530         return 0;
2531 }
2532
2533 static noinline int copy_items(struct btrfs_trans_handle *trans,
2534                                struct btrfs_root *log,
2535                                struct btrfs_path *dst_path,
2536                                struct extent_buffer *src,
2537                                int start_slot, int nr, int inode_only)
2538 {
2539         unsigned long src_offset;
2540         unsigned long dst_offset;
2541         struct btrfs_file_extent_item *extent;
2542         struct btrfs_inode_item *inode_item;
2543         int ret;
2544         struct btrfs_key *ins_keys;
2545         u32 *ins_sizes;
2546         char *ins_data;
2547         int i;
2548         struct list_head ordered_sums;
2549
2550         INIT_LIST_HEAD(&ordered_sums);
2551
2552         ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2553                            nr * sizeof(u32), GFP_NOFS);
2554         ins_sizes = (u32 *)ins_data;
2555         ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2556
2557         for (i = 0; i < nr; i++) {
2558                 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2559                 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2560         }
2561         ret = btrfs_insert_empty_items(trans, log, dst_path,
2562                                        ins_keys, ins_sizes, nr);
2563         BUG_ON(ret);
2564
2565         for (i = 0; i < nr; i++) {
2566                 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2567                                                    dst_path->slots[0]);
2568
2569                 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2570
2571                 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2572                                    src_offset, ins_sizes[i]);
2573
2574                 if (inode_only == LOG_INODE_EXISTS &&
2575                     ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2576                         inode_item = btrfs_item_ptr(dst_path->nodes[0],
2577                                                     dst_path->slots[0],
2578                                                     struct btrfs_inode_item);
2579                         btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2580
2581                         /* set the generation to zero so the recover code
2582                          * can tell the difference between an logging
2583                          * just to say 'this inode exists' and a logging
2584                          * to say 'update this inode with these values'
2585                          */
2586                         btrfs_set_inode_generation(dst_path->nodes[0],
2587                                                    inode_item, 0);
2588                 }
2589                 /* take a reference on file data extents so that truncates
2590                  * or deletes of this inode don't have to relog the inode
2591                  * again
2592                  */
2593                 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2594                         int found_type;
2595                         extent = btrfs_item_ptr(src, start_slot + i,
2596                                                 struct btrfs_file_extent_item);
2597
2598                         found_type = btrfs_file_extent_type(src, extent);
2599                         if (found_type == BTRFS_FILE_EXTENT_REG ||
2600                             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2601                                 u64 ds = btrfs_file_extent_disk_bytenr(src,
2602                                                                    extent);
2603                                 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2604                                                                       extent);
2605                                 u64 cs = btrfs_file_extent_offset(src, extent);
2606                                 u64 cl = btrfs_file_extent_num_bytes(src,
2607                                                                      extent);;
2608                                 if (btrfs_file_extent_compression(src,
2609                                                                   extent)) {
2610                                         cs = 0;
2611                                         cl = dl;
2612                                 }
2613                                 /* ds == 0 is a hole */
2614                                 if (ds != 0) {
2615                                         ret = btrfs_inc_extent_ref(trans, log,
2616                                                    ds, dl,
2617                                                    dst_path->nodes[0]->start,
2618                                                    BTRFS_TREE_LOG_OBJECTID,
2619                                                    trans->transid,
2620                                                    ins_keys[i].objectid);
2621                                         BUG_ON(ret);
2622                                         ret = copy_extent_csums(trans,
2623                                                 &ordered_sums,
2624                                                 log->fs_info->csum_root,
2625                                                 ds + cs, cl);
2626                                         BUG_ON(ret);
2627                                 }
2628                         }
2629                 }
2630                 dst_path->slots[0]++;
2631         }
2632
2633         btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2634         btrfs_release_path(log, dst_path);
2635         kfree(ins_data);
2636
2637         /*
2638          * we have to do this after the loop above to avoid changing the
2639          * log tree while trying to change the log tree.
2640          */
2641         while(!list_empty(&ordered_sums)) {
2642                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2643                                                    struct btrfs_ordered_sum,
2644                                                    list);
2645                 ret = btrfs_csum_file_blocks(trans, log, sums);
2646                 BUG_ON(ret);
2647                 list_del(&sums->list);
2648                 kfree(sums);
2649         }
2650         return 0;
2651 }
2652
2653 /* log a single inode in the tree log.
2654  * At least one parent directory for this inode must exist in the tree
2655  * or be logged already.
2656  *
2657  * Any items from this inode changed by the current transaction are copied
2658  * to the log tree.  An extra reference is taken on any extents in this
2659  * file, allowing us to avoid a whole pile of corner cases around logging
2660  * blocks that have been removed from the tree.
2661  *
2662  * See LOG_INODE_ALL and related defines for a description of what inode_only
2663  * does.
2664  *
2665  * This handles both files and directories.
2666  */
2667 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2668                              struct btrfs_root *root, struct inode *inode,
2669                              int inode_only)
2670 {
2671         struct btrfs_path *path;
2672         struct btrfs_path *dst_path;
2673         struct btrfs_key min_key;
2674         struct btrfs_key max_key;
2675         struct btrfs_root *log = root->log_root;
2676         struct extent_buffer *src = NULL;
2677         u32 size;
2678         int ret;
2679         int nritems;
2680         int ins_start_slot = 0;
2681         int ins_nr;
2682
2683         log = root->log_root;
2684
2685         path = btrfs_alloc_path();
2686         dst_path = btrfs_alloc_path();
2687
2688         min_key.objectid = inode->i_ino;
2689         min_key.type = BTRFS_INODE_ITEM_KEY;
2690         min_key.offset = 0;
2691
2692         max_key.objectid = inode->i_ino;
2693         if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2694                 max_key.type = BTRFS_XATTR_ITEM_KEY;
2695         else
2696                 max_key.type = (u8)-1;
2697         max_key.offset = (u64)-1;
2698
2699         /*
2700          * if this inode has already been logged and we're in inode_only
2701          * mode, we don't want to delete the things that have already
2702          * been written to the log.
2703          *
2704          * But, if the inode has been through an inode_only log,
2705          * the logged_trans field is not set.  This allows us to catch
2706          * any new names for this inode in the backrefs by logging it
2707          * again
2708          */
2709         if (inode_only == LOG_INODE_EXISTS &&
2710             BTRFS_I(inode)->logged_trans == trans->transid) {
2711                 btrfs_free_path(path);
2712                 btrfs_free_path(dst_path);
2713                 goto out;
2714         }
2715         mutex_lock(&BTRFS_I(inode)->log_mutex);
2716
2717         /*
2718          * a brute force approach to making sure we get the most uptodate
2719          * copies of everything.
2720          */
2721         if (S_ISDIR(inode->i_mode)) {
2722                 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2723
2724                 if (inode_only == LOG_INODE_EXISTS)
2725                         max_key_type = BTRFS_XATTR_ITEM_KEY;
2726                 ret = drop_objectid_items(trans, log, path,
2727                                           inode->i_ino, max_key_type);
2728         } else {
2729                 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2730         }
2731         BUG_ON(ret);
2732         path->keep_locks = 1;
2733
2734         while(1) {
2735                 ins_nr = 0;
2736                 ret = btrfs_search_forward(root, &min_key, &max_key,
2737                                            path, 0, trans->transid);
2738                 if (ret != 0)
2739                         break;
2740 again:
2741                 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2742                 if (min_key.objectid != inode->i_ino)
2743                         break;
2744                 if (min_key.type > max_key.type)
2745                         break;
2746
2747                 src = path->nodes[0];
2748                 size = btrfs_item_size_nr(src, path->slots[0]);
2749                 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2750                         ins_nr++;
2751                         goto next_slot;
2752                 } else if (!ins_nr) {
2753                         ins_start_slot = path->slots[0];
2754                         ins_nr = 1;
2755                         goto next_slot;
2756                 }
2757
2758                 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2759                                  ins_nr, inode_only);
2760                 BUG_ON(ret);
2761                 ins_nr = 1;
2762                 ins_start_slot = path->slots[0];
2763 next_slot:
2764
2765                 nritems = btrfs_header_nritems(path->nodes[0]);
2766                 path->slots[0]++;
2767                 if (path->slots[0] < nritems) {
2768                         btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2769                                               path->slots[0]);
2770                         goto again;
2771                 }
2772                 if (ins_nr) {
2773                         ret = copy_items(trans, log, dst_path, src,
2774                                          ins_start_slot,
2775                                          ins_nr, inode_only);
2776                         BUG_ON(ret);
2777                         ins_nr = 0;
2778                 }
2779                 btrfs_release_path(root, path);
2780
2781                 if (min_key.offset < (u64)-1)
2782                         min_key.offset++;
2783                 else if (min_key.type < (u8)-1)
2784                         min_key.type++;
2785                 else if (min_key.objectid < (u64)-1)
2786                         min_key.objectid++;
2787                 else
2788                         break;
2789         }
2790         if (ins_nr) {
2791                 ret = copy_items(trans, log, dst_path, src,
2792                                  ins_start_slot,
2793                                  ins_nr, inode_only);
2794                 BUG_ON(ret);
2795                 ins_nr = 0;
2796         }
2797         WARN_ON(ins_nr);
2798         if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2799                 btrfs_release_path(root, path);
2800                 btrfs_release_path(log, dst_path);
2801                 BTRFS_I(inode)->log_dirty_trans = 0;
2802                 ret = log_directory_changes(trans, root, inode, path, dst_path);
2803                 BUG_ON(ret);
2804         }
2805         BTRFS_I(inode)->logged_trans = trans->transid;
2806         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2807
2808         btrfs_free_path(path);
2809         btrfs_free_path(dst_path);
2810
2811         mutex_lock(&root->fs_info->tree_log_mutex);
2812         ret = update_log_root(trans, log);
2813         BUG_ON(ret);
2814         mutex_unlock(&root->fs_info->tree_log_mutex);
2815 out:
2816         return 0;
2817 }
2818
2819 int btrfs_log_inode(struct btrfs_trans_handle *trans,
2820                     struct btrfs_root *root, struct inode *inode,
2821                     int inode_only)
2822 {
2823         int ret;
2824
2825         start_log_trans(trans, root);
2826         ret = __btrfs_log_inode(trans, root, inode, inode_only);
2827         end_log_trans(root);
2828         return ret;
2829 }
2830
2831 /*
2832  * helper function around btrfs_log_inode to make sure newly created
2833  * parent directories also end up in the log.  A minimal inode and backref
2834  * only logging is done of any parent directories that are older than
2835  * the last committed transaction
2836  */
2837 int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2838                     struct btrfs_root *root, struct dentry *dentry)
2839 {
2840         int inode_only = LOG_INODE_ALL;
2841         struct super_block *sb;
2842         int ret;
2843
2844         start_log_trans(trans, root);
2845         sb = dentry->d_inode->i_sb;
2846         while(1) {
2847                 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2848                                         inode_only);
2849                 BUG_ON(ret);
2850                 inode_only = LOG_INODE_EXISTS;
2851
2852                 dentry = dentry->d_parent;
2853                 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2854                         break;
2855
2856                 if (BTRFS_I(dentry->d_inode)->generation <=
2857                     root->fs_info->last_trans_committed)
2858                         break;
2859         }
2860         end_log_trans(root);
2861         return 0;
2862 }
2863
2864 /*
2865  * it is not safe to log dentry if the chunk root has added new
2866  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
2867  * If this returns 1, you must commit the transaction to safely get your
2868  * data on disk.
2869  */
2870 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2871                           struct btrfs_root *root, struct dentry *dentry)
2872 {
2873         u64 gen;
2874         gen = root->fs_info->last_trans_new_blockgroup;
2875         if (gen > root->fs_info->last_trans_committed)
2876                 return 1;
2877         else
2878                 return btrfs_log_dentry(trans, root, dentry);
2879 }
2880
2881 /*
2882  * should be called during mount to recover any replay any log trees
2883  * from the FS
2884  */
2885 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2886 {
2887         int ret;
2888         struct btrfs_path *path;
2889         struct btrfs_trans_handle *trans;
2890         struct btrfs_key key;
2891         struct btrfs_key found_key;
2892         struct btrfs_key tmp_key;
2893         struct btrfs_root *log;
2894         struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2895         u64 highest_inode;
2896         struct walk_control wc = {
2897                 .process_func = process_one_buffer,
2898                 .stage = 0,
2899         };
2900
2901         fs_info->log_root_recovering = 1;
2902         path = btrfs_alloc_path();
2903         BUG_ON(!path);
2904
2905         trans = btrfs_start_transaction(fs_info->tree_root, 1);
2906
2907         wc.trans = trans;
2908         wc.pin = 1;
2909
2910         walk_log_tree(trans, log_root_tree, &wc);
2911
2912 again:
2913         key.objectid = BTRFS_TREE_LOG_OBJECTID;
2914         key.offset = (u64)-1;
2915         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2916
2917         while(1) {
2918                 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2919                 if (ret < 0)
2920                         break;
2921                 if (ret > 0) {
2922                         if (path->slots[0] == 0)
2923                                 break;
2924                         path->slots[0]--;
2925                 }
2926                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2927                                       path->slots[0]);
2928                 btrfs_release_path(log_root_tree, path);
2929                 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2930                         break;
2931
2932                 log = btrfs_read_fs_root_no_radix(log_root_tree,
2933                                                   &found_key);
2934                 BUG_ON(!log);
2935
2936
2937                 tmp_key.objectid = found_key.offset;
2938                 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2939                 tmp_key.offset = (u64)-1;
2940
2941                 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2942
2943                 BUG_ON(!wc.replay_dest);
2944
2945                 btrfs_record_root_in_trans(wc.replay_dest);
2946                 ret = walk_log_tree(trans, log, &wc);
2947                 BUG_ON(ret);
2948
2949                 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2950                         ret = fixup_inode_link_counts(trans, wc.replay_dest,
2951                                                       path);
2952                         BUG_ON(ret);
2953                 }
2954                 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2955                 if (ret == 0) {
2956                         wc.replay_dest->highest_inode = highest_inode;
2957                         wc.replay_dest->last_inode_alloc = highest_inode;
2958                 }
2959
2960                 key.offset = found_key.offset - 1;
2961                 free_extent_buffer(log->node);
2962                 kfree(log);
2963
2964                 if (found_key.offset == 0)
2965                         break;
2966         }
2967         btrfs_release_path(log_root_tree, path);
2968
2969         /* step one is to pin it all, step two is to replay just inodes */
2970         if (wc.pin) {
2971                 wc.pin = 0;
2972                 wc.process_func = replay_one_buffer;
2973                 wc.stage = LOG_WALK_REPLAY_INODES;
2974                 goto again;
2975         }
2976         /* step three is to replay everything */
2977         if (wc.stage < LOG_WALK_REPLAY_ALL) {
2978                 wc.stage++;
2979                 goto again;
2980         }
2981
2982         btrfs_free_path(path);
2983
2984         free_extent_buffer(log_root_tree->node);
2985         log_root_tree->log_root = NULL;
2986         fs_info->log_root_recovering = 0;
2987
2988         /* step 4: commit the transaction, which also unpins the blocks */
2989         btrfs_commit_transaction(trans, fs_info->tree_root);
2990
2991         kfree(log_root_tree);
2992         return 0;
2993 }