]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/btrfs/tree-log.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[linux-2.6-omap-h63xx.git] / fs / btrfs / tree-log.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
27
28 /* magic values for the inode_only field in btrfs_log_inode:
29  *
30  * LOG_INODE_ALL means to log everything
31  * LOG_INODE_EXISTS means to log just enough to recreate the inode
32  * during log replay
33  */
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
36
37 /*
38  * stages for the tree walking.  The first
39  * stage (0) is to only pin down the blocks we find
40  * the second stage (1) is to make sure that all the inodes
41  * we find in the log are created in the subvolume.
42  *
43  * The last stage is to deal with directories and links and extents
44  * and all the other fun semantics
45  */
46 #define LOG_WALK_PIN_ONLY 0
47 #define LOG_WALK_REPLAY_INODES 1
48 #define LOG_WALK_REPLAY_ALL 2
49
50 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51                              struct btrfs_root *root, struct inode *inode,
52                              int inode_only);
53 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
54                              struct btrfs_root *root,
55                              struct btrfs_path *path, u64 objectid);
56
57 /*
58  * tree logging is a special write ahead log used to make sure that
59  * fsyncs and O_SYNCs can happen without doing full tree commits.
60  *
61  * Full tree commits are expensive because they require commonly
62  * modified blocks to be recowed, creating many dirty pages in the
63  * extent tree an 4x-6x higher write load than ext3.
64  *
65  * Instead of doing a tree commit on every fsync, we use the
66  * key ranges and transaction ids to find items for a given file or directory
67  * that have changed in this transaction.  Those items are copied into
68  * a special tree (one per subvolume root), that tree is written to disk
69  * and then the fsync is considered complete.
70  *
71  * After a crash, items are copied out of the log-tree back into the
72  * subvolume tree.  Any file data extents found are recorded in the extent
73  * allocation tree, and the log-tree freed.
74  *
75  * The log tree is read three times, once to pin down all the extents it is
76  * using in ram and once, once to create all the inodes logged in the tree
77  * and once to do all the other items.
78  */
79
80 /*
81  * btrfs_add_log_tree adds a new per-subvolume log tree into the
82  * tree of log tree roots.  This must be called with a tree log transaction
83  * running (see start_log_trans).
84  */
85 static int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
86                       struct btrfs_root *root)
87 {
88         struct btrfs_key key;
89         struct btrfs_root_item root_item;
90         struct btrfs_inode_item *inode_item;
91         struct extent_buffer *leaf;
92         struct btrfs_root *new_root = root;
93         int ret;
94         u64 objectid = root->root_key.objectid;
95
96         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
97                                       BTRFS_TREE_LOG_OBJECTID,
98                                       trans->transid, 0, 0, 0);
99         if (IS_ERR(leaf)) {
100                 ret = PTR_ERR(leaf);
101                 return ret;
102         }
103
104         btrfs_set_header_nritems(leaf, 0);
105         btrfs_set_header_level(leaf, 0);
106         btrfs_set_header_bytenr(leaf, leaf->start);
107         btrfs_set_header_generation(leaf, trans->transid);
108         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
109
110         write_extent_buffer(leaf, root->fs_info->fsid,
111                             (unsigned long)btrfs_header_fsid(leaf),
112                             BTRFS_FSID_SIZE);
113         btrfs_mark_buffer_dirty(leaf);
114
115         inode_item = &root_item.inode;
116         memset(inode_item, 0, sizeof(*inode_item));
117         inode_item->generation = cpu_to_le64(1);
118         inode_item->size = cpu_to_le64(3);
119         inode_item->nlink = cpu_to_le32(1);
120         inode_item->nbytes = cpu_to_le64(root->leafsize);
121         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
122
123         btrfs_set_root_bytenr(&root_item, leaf->start);
124         btrfs_set_root_generation(&root_item, trans->transid);
125         btrfs_set_root_level(&root_item, 0);
126         btrfs_set_root_refs(&root_item, 0);
127         btrfs_set_root_used(&root_item, 0);
128
129         memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
130         root_item.drop_level = 0;
131
132         btrfs_tree_unlock(leaf);
133         free_extent_buffer(leaf);
134         leaf = NULL;
135
136         btrfs_set_root_dirid(&root_item, 0);
137
138         key.objectid = BTRFS_TREE_LOG_OBJECTID;
139         key.offset = objectid;
140         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
141         ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
142                                 &root_item);
143         if (ret)
144                 goto fail;
145
146         new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
147                                                &key);
148         BUG_ON(!new_root);
149
150         WARN_ON(root->log_root);
151         root->log_root = new_root;
152
153         /*
154          * log trees do not get reference counted because they go away
155          * before a real commit is actually done.  They do store pointers
156          * to file data extents, and those reference counts still get
157          * updated (along with back refs to the log tree).
158          */
159         new_root->ref_cows = 0;
160         new_root->last_trans = trans->transid;
161 fail:
162         return ret;
163 }
164
165 /*
166  * start a sub transaction and setup the log tree
167  * this increments the log tree writer count to make the people
168  * syncing the tree wait for us to finish
169  */
170 static int start_log_trans(struct btrfs_trans_handle *trans,
171                            struct btrfs_root *root)
172 {
173         int ret;
174         mutex_lock(&root->fs_info->tree_log_mutex);
175         if (!root->fs_info->log_root_tree) {
176                 ret = btrfs_init_log_root_tree(trans, root->fs_info);
177                 BUG_ON(ret);
178         }
179         if (!root->log_root) {
180                 ret = btrfs_add_log_tree(trans, root);
181                 BUG_ON(ret);
182         }
183         atomic_inc(&root->fs_info->tree_log_writers);
184         root->fs_info->tree_log_batch++;
185         mutex_unlock(&root->fs_info->tree_log_mutex);
186         return 0;
187 }
188
189 /*
190  * returns 0 if there was a log transaction running and we were able
191  * to join, or returns -ENOENT if there were not transactions
192  * in progress
193  */
194 static int join_running_log_trans(struct btrfs_root *root)
195 {
196         int ret = -ENOENT;
197
198         smp_mb();
199         if (!root->log_root)
200                 return -ENOENT;
201
202         mutex_lock(&root->fs_info->tree_log_mutex);
203         if (root->log_root) {
204                 ret = 0;
205                 atomic_inc(&root->fs_info->tree_log_writers);
206                 root->fs_info->tree_log_batch++;
207         }
208         mutex_unlock(&root->fs_info->tree_log_mutex);
209         return ret;
210 }
211
212 /*
213  * indicate we're done making changes to the log tree
214  * and wake up anyone waiting to do a sync
215  */
216 static int end_log_trans(struct btrfs_root *root)
217 {
218         atomic_dec(&root->fs_info->tree_log_writers);
219         smp_mb();
220         if (waitqueue_active(&root->fs_info->tree_log_wait))
221                 wake_up(&root->fs_info->tree_log_wait);
222         return 0;
223 }
224
225
226 /*
227  * the walk control struct is used to pass state down the chain when
228  * processing the log tree.  The stage field tells us which part
229  * of the log tree processing we are currently doing.  The others
230  * are state fields used for that specific part
231  */
232 struct walk_control {
233         /* should we free the extent on disk when done?  This is used
234          * at transaction commit time while freeing a log tree
235          */
236         int free;
237
238         /* should we write out the extent buffer?  This is used
239          * while flushing the log tree to disk during a sync
240          */
241         int write;
242
243         /* should we wait for the extent buffer io to finish?  Also used
244          * while flushing the log tree to disk for a sync
245          */
246         int wait;
247
248         /* pin only walk, we record which extents on disk belong to the
249          * log trees
250          */
251         int pin;
252
253         /* what stage of the replay code we're currently in */
254         int stage;
255
256         /* the root we are currently replaying */
257         struct btrfs_root *replay_dest;
258
259         /* the trans handle for the current replay */
260         struct btrfs_trans_handle *trans;
261
262         /* the function that gets used to process blocks we find in the
263          * tree.  Note the extent_buffer might not be up to date when it is
264          * passed in, and it must be checked or read if you need the data
265          * inside it
266          */
267         int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268                             struct walk_control *wc, u64 gen);
269 };
270
271 /*
272  * process_func used to pin down extents, write them or wait on them
273  */
274 static int process_one_buffer(struct btrfs_root *log,
275                               struct extent_buffer *eb,
276                               struct walk_control *wc, u64 gen)
277 {
278         if (wc->pin) {
279                 mutex_lock(&log->fs_info->pinned_mutex);
280                 btrfs_update_pinned_extents(log->fs_info->extent_root,
281                                             eb->start, eb->len, 1);
282                 mutex_unlock(&log->fs_info->pinned_mutex);
283         }
284
285         if (btrfs_buffer_uptodate(eb, gen)) {
286                 if (wc->write)
287                         btrfs_write_tree_block(eb);
288                 if (wc->wait)
289                         btrfs_wait_tree_block_writeback(eb);
290         }
291         return 0;
292 }
293
294 /*
295  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
296  * to the src data we are copying out.
297  *
298  * root is the tree we are copying into, and path is a scratch
299  * path for use in this function (it should be released on entry and
300  * will be released on exit).
301  *
302  * If the key is already in the destination tree the existing item is
303  * overwritten.  If the existing item isn't big enough, it is extended.
304  * If it is too large, it is truncated.
305  *
306  * If the key isn't in the destination yet, a new item is inserted.
307  */
308 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
309                                    struct btrfs_root *root,
310                                    struct btrfs_path *path,
311                                    struct extent_buffer *eb, int slot,
312                                    struct btrfs_key *key)
313 {
314         int ret;
315         u32 item_size;
316         u64 saved_i_size = 0;
317         int save_old_i_size = 0;
318         unsigned long src_ptr;
319         unsigned long dst_ptr;
320         int overwrite_root = 0;
321
322         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
323                 overwrite_root = 1;
324
325         item_size = btrfs_item_size_nr(eb, slot);
326         src_ptr = btrfs_item_ptr_offset(eb, slot);
327
328         /* look for the key in the destination tree */
329         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
330         if (ret == 0) {
331                 char *src_copy;
332                 char *dst_copy;
333                 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
334                                                   path->slots[0]);
335                 if (dst_size != item_size)
336                         goto insert;
337
338                 if (item_size == 0) {
339                         btrfs_release_path(root, path);
340                         return 0;
341                 }
342                 dst_copy = kmalloc(item_size, GFP_NOFS);
343                 src_copy = kmalloc(item_size, GFP_NOFS);
344
345                 read_extent_buffer(eb, src_copy, src_ptr, item_size);
346
347                 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
348                 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
349                                    item_size);
350                 ret = memcmp(dst_copy, src_copy, item_size);
351
352                 kfree(dst_copy);
353                 kfree(src_copy);
354                 /*
355                  * they have the same contents, just return, this saves
356                  * us from cowing blocks in the destination tree and doing
357                  * extra writes that may not have been done by a previous
358                  * sync
359                  */
360                 if (ret == 0) {
361                         btrfs_release_path(root, path);
362                         return 0;
363                 }
364
365         }
366 insert:
367         btrfs_release_path(root, path);
368         /* try to insert the key into the destination tree */
369         ret = btrfs_insert_empty_item(trans, root, path,
370                                       key, item_size);
371
372         /* make sure any existing item is the correct size */
373         if (ret == -EEXIST) {
374                 u32 found_size;
375                 found_size = btrfs_item_size_nr(path->nodes[0],
376                                                 path->slots[0]);
377                 if (found_size > item_size) {
378                         btrfs_truncate_item(trans, root, path, item_size, 1);
379                 } else if (found_size < item_size) {
380                         ret = btrfs_extend_item(trans, root, path,
381                                                 item_size - found_size);
382                         BUG_ON(ret);
383                 }
384         } else if (ret) {
385                 BUG();
386         }
387         dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
388                                         path->slots[0]);
389
390         /* don't overwrite an existing inode if the generation number
391          * was logged as zero.  This is done when the tree logging code
392          * is just logging an inode to make sure it exists after recovery.
393          *
394          * Also, don't overwrite i_size on directories during replay.
395          * log replay inserts and removes directory items based on the
396          * state of the tree found in the subvolume, and i_size is modified
397          * as it goes
398          */
399         if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
400                 struct btrfs_inode_item *src_item;
401                 struct btrfs_inode_item *dst_item;
402
403                 src_item = (struct btrfs_inode_item *)src_ptr;
404                 dst_item = (struct btrfs_inode_item *)dst_ptr;
405
406                 if (btrfs_inode_generation(eb, src_item) == 0)
407                         goto no_copy;
408
409                 if (overwrite_root &&
410                     S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
411                     S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
412                         save_old_i_size = 1;
413                         saved_i_size = btrfs_inode_size(path->nodes[0],
414                                                         dst_item);
415                 }
416         }
417
418         copy_extent_buffer(path->nodes[0], eb, dst_ptr,
419                            src_ptr, item_size);
420
421         if (save_old_i_size) {
422                 struct btrfs_inode_item *dst_item;
423                 dst_item = (struct btrfs_inode_item *)dst_ptr;
424                 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
425         }
426
427         /* make sure the generation is filled in */
428         if (key->type == BTRFS_INODE_ITEM_KEY) {
429                 struct btrfs_inode_item *dst_item;
430                 dst_item = (struct btrfs_inode_item *)dst_ptr;
431                 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
432                         btrfs_set_inode_generation(path->nodes[0], dst_item,
433                                                    trans->transid);
434                 }
435         }
436
437         if (overwrite_root &&
438             key->type == BTRFS_EXTENT_DATA_KEY) {
439                 int extent_type;
440                 struct btrfs_file_extent_item *fi;
441
442                 fi = (struct btrfs_file_extent_item *)dst_ptr;
443                 extent_type = btrfs_file_extent_type(path->nodes[0], fi);
444                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
445                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
446                         struct btrfs_key ins;
447                         ins.objectid = btrfs_file_extent_disk_bytenr(
448                                                         path->nodes[0], fi);
449                         ins.offset = btrfs_file_extent_disk_num_bytes(
450                                                         path->nodes[0], fi);
451                         ins.type = BTRFS_EXTENT_ITEM_KEY;
452
453                         /*
454                          * is this extent already allocated in the extent
455                          * allocation tree?  If so, just add a reference
456                          */
457                         ret = btrfs_lookup_extent(root, ins.objectid,
458                                                   ins.offset);
459                         if (ret == 0) {
460                                 ret = btrfs_inc_extent_ref(trans, root,
461                                                 ins.objectid, ins.offset,
462                                                 path->nodes[0]->start,
463                                                 root->root_key.objectid,
464                                                 trans->transid, key->objectid);
465                         } else {
466                                 /*
467                                  * insert the extent pointer in the extent
468                                  * allocation tree
469                                  */
470                                 ret = btrfs_alloc_logged_extent(trans, root,
471                                                 path->nodes[0]->start,
472                                                 root->root_key.objectid,
473                                                 trans->transid, key->objectid,
474                                                 &ins);
475                                 BUG_ON(ret);
476                         }
477                 }
478         }
479 no_copy:
480         btrfs_mark_buffer_dirty(path->nodes[0]);
481         btrfs_release_path(root, path);
482         return 0;
483 }
484
485 /*
486  * simple helper to read an inode off the disk from a given root
487  * This can only be called for subvolume roots and not for the log
488  */
489 static noinline struct inode *read_one_inode(struct btrfs_root *root,
490                                              u64 objectid)
491 {
492         struct inode *inode;
493         inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
494         if (inode->i_state & I_NEW) {
495                 BTRFS_I(inode)->root = root;
496                 BTRFS_I(inode)->location.objectid = objectid;
497                 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
498                 BTRFS_I(inode)->location.offset = 0;
499                 btrfs_read_locked_inode(inode);
500                 unlock_new_inode(inode);
501
502         }
503         if (is_bad_inode(inode)) {
504                 iput(inode);
505                 inode = NULL;
506         }
507         return inode;
508 }
509
510 /* replays a single extent in 'eb' at 'slot' with 'key' into the
511  * subvolume 'root'.  path is released on entry and should be released
512  * on exit.
513  *
514  * extents in the log tree have not been allocated out of the extent
515  * tree yet.  So, this completes the allocation, taking a reference
516  * as required if the extent already exists or creating a new extent
517  * if it isn't in the extent allocation tree yet.
518  *
519  * The extent is inserted into the file, dropping any existing extents
520  * from the file that overlap the new one.
521  */
522 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
523                                       struct btrfs_root *root,
524                                       struct btrfs_path *path,
525                                       struct extent_buffer *eb, int slot,
526                                       struct btrfs_key *key)
527 {
528         int found_type;
529         u64 mask = root->sectorsize - 1;
530         u64 extent_end;
531         u64 alloc_hint;
532         u64 start = key->offset;
533         struct btrfs_file_extent_item *item;
534         struct inode *inode = NULL;
535         unsigned long size;
536         int ret = 0;
537
538         item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539         found_type = btrfs_file_extent_type(eb, item);
540
541         if (found_type == BTRFS_FILE_EXTENT_REG ||
542             found_type == BTRFS_FILE_EXTENT_PREALLOC)
543                 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
544         else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
545                 size = btrfs_file_extent_inline_len(eb, item);
546                 extent_end = (start + size + mask) & ~mask;
547         } else {
548                 ret = 0;
549                 goto out;
550         }
551
552         inode = read_one_inode(root, key->objectid);
553         if (!inode) {
554                 ret = -EIO;
555                 goto out;
556         }
557
558         /*
559          * first check to see if we already have this extent in the
560          * file.  This must be done before the btrfs_drop_extents run
561          * so we don't try to drop this extent.
562          */
563         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
564                                        start, 0);
565
566         if (ret == 0 &&
567             (found_type == BTRFS_FILE_EXTENT_REG ||
568              found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
569                 struct btrfs_file_extent_item cmp1;
570                 struct btrfs_file_extent_item cmp2;
571                 struct btrfs_file_extent_item *existing;
572                 struct extent_buffer *leaf;
573
574                 leaf = path->nodes[0];
575                 existing = btrfs_item_ptr(leaf, path->slots[0],
576                                           struct btrfs_file_extent_item);
577
578                 read_extent_buffer(eb, &cmp1, (unsigned long)item,
579                                    sizeof(cmp1));
580                 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
581                                    sizeof(cmp2));
582
583                 /*
584                  * we already have a pointer to this exact extent,
585                  * we don't have to do anything
586                  */
587                 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
588                         btrfs_release_path(root, path);
589                         goto out;
590                 }
591         }
592         btrfs_release_path(root, path);
593
594         /* drop any overlapping extents */
595         ret = btrfs_drop_extents(trans, root, inode,
596                          start, extent_end, start, &alloc_hint);
597         BUG_ON(ret);
598
599         /* insert the extent */
600         ret = overwrite_item(trans, root, path, eb, slot, key);
601         BUG_ON(ret);
602
603         /* btrfs_drop_extents changes i_bytes & i_blocks, update it here */
604         inode_add_bytes(inode, extent_end - start);
605         btrfs_update_inode(trans, root, inode);
606 out:
607         if (inode)
608                 iput(inode);
609         return ret;
610 }
611
612 /*
613  * when cleaning up conflicts between the directory names in the
614  * subvolume, directory names in the log and directory names in the
615  * inode back references, we may have to unlink inodes from directories.
616  *
617  * This is a helper function to do the unlink of a specific directory
618  * item
619  */
620 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
621                                       struct btrfs_root *root,
622                                       struct btrfs_path *path,
623                                       struct inode *dir,
624                                       struct btrfs_dir_item *di)
625 {
626         struct inode *inode;
627         char *name;
628         int name_len;
629         struct extent_buffer *leaf;
630         struct btrfs_key location;
631         int ret;
632
633         leaf = path->nodes[0];
634
635         btrfs_dir_item_key_to_cpu(leaf, di, &location);
636         name_len = btrfs_dir_name_len(leaf, di);
637         name = kmalloc(name_len, GFP_NOFS);
638         read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
639         btrfs_release_path(root, path);
640
641         inode = read_one_inode(root, location.objectid);
642         BUG_ON(!inode);
643
644         ret = link_to_fixup_dir(trans, root, path, location.objectid);
645         BUG_ON(ret);
646         ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
647         BUG_ON(ret);
648         kfree(name);
649
650         iput(inode);
651         return ret;
652 }
653
654 /*
655  * helper function to see if a given name and sequence number found
656  * in an inode back reference are already in a directory and correctly
657  * point to this inode
658  */
659 static noinline int inode_in_dir(struct btrfs_root *root,
660                                  struct btrfs_path *path,
661                                  u64 dirid, u64 objectid, u64 index,
662                                  const char *name, int name_len)
663 {
664         struct btrfs_dir_item *di;
665         struct btrfs_key location;
666         int match = 0;
667
668         di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
669                                          index, name, name_len, 0);
670         if (di && !IS_ERR(di)) {
671                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
672                 if (location.objectid != objectid)
673                         goto out;
674         } else
675                 goto out;
676         btrfs_release_path(root, path);
677
678         di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
679         if (di && !IS_ERR(di)) {
680                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
681                 if (location.objectid != objectid)
682                         goto out;
683         } else
684                 goto out;
685         match = 1;
686 out:
687         btrfs_release_path(root, path);
688         return match;
689 }
690
691 /*
692  * helper function to check a log tree for a named back reference in
693  * an inode.  This is used to decide if a back reference that is
694  * found in the subvolume conflicts with what we find in the log.
695  *
696  * inode backreferences may have multiple refs in a single item,
697  * during replay we process one reference at a time, and we don't
698  * want to delete valid links to a file from the subvolume if that
699  * link is also in the log.
700  */
701 static noinline int backref_in_log(struct btrfs_root *log,
702                                    struct btrfs_key *key,
703                                    char *name, int namelen)
704 {
705         struct btrfs_path *path;
706         struct btrfs_inode_ref *ref;
707         unsigned long ptr;
708         unsigned long ptr_end;
709         unsigned long name_ptr;
710         int found_name_len;
711         int item_size;
712         int ret;
713         int match = 0;
714
715         path = btrfs_alloc_path();
716         ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
717         if (ret != 0)
718                 goto out;
719
720         item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
721         ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
722         ptr_end = ptr + item_size;
723         while (ptr < ptr_end) {
724                 ref = (struct btrfs_inode_ref *)ptr;
725                 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
726                 if (found_name_len == namelen) {
727                         name_ptr = (unsigned long)(ref + 1);
728                         ret = memcmp_extent_buffer(path->nodes[0], name,
729                                                    name_ptr, namelen);
730                         if (ret == 0) {
731                                 match = 1;
732                                 goto out;
733                         }
734                 }
735                 ptr = (unsigned long)(ref + 1) + found_name_len;
736         }
737 out:
738         btrfs_free_path(path);
739         return match;
740 }
741
742
743 /*
744  * replay one inode back reference item found in the log tree.
745  * eb, slot and key refer to the buffer and key found in the log tree.
746  * root is the destination we are replaying into, and path is for temp
747  * use by this function.  (it should be released on return).
748  */
749 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
750                                   struct btrfs_root *root,
751                                   struct btrfs_root *log,
752                                   struct btrfs_path *path,
753                                   struct extent_buffer *eb, int slot,
754                                   struct btrfs_key *key)
755 {
756         struct inode *dir;
757         int ret;
758         struct btrfs_key location;
759         struct btrfs_inode_ref *ref;
760         struct btrfs_dir_item *di;
761         struct inode *inode;
762         char *name;
763         int namelen;
764         unsigned long ref_ptr;
765         unsigned long ref_end;
766
767         location.objectid = key->objectid;
768         location.type = BTRFS_INODE_ITEM_KEY;
769         location.offset = 0;
770
771         /*
772          * it is possible that we didn't log all the parent directories
773          * for a given inode.  If we don't find the dir, just don't
774          * copy the back ref in.  The link count fixup code will take
775          * care of the rest
776          */
777         dir = read_one_inode(root, key->offset);
778         if (!dir)
779                 return -ENOENT;
780
781         inode = read_one_inode(root, key->objectid);
782         BUG_ON(!dir);
783
784         ref_ptr = btrfs_item_ptr_offset(eb, slot);
785         ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
786
787 again:
788         ref = (struct btrfs_inode_ref *)ref_ptr;
789
790         namelen = btrfs_inode_ref_name_len(eb, ref);
791         name = kmalloc(namelen, GFP_NOFS);
792         BUG_ON(!name);
793
794         read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
795
796         /* if we already have a perfect match, we're done */
797         if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
798                          btrfs_inode_ref_index(eb, ref),
799                          name, namelen)) {
800                 goto out;
801         }
802
803         /*
804          * look for a conflicting back reference in the metadata.
805          * if we find one we have to unlink that name of the file
806          * before we add our new link.  Later on, we overwrite any
807          * existing back reference, and we don't want to create
808          * dangling pointers in the directory.
809          */
810 conflict_again:
811         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
812         if (ret == 0) {
813                 char *victim_name;
814                 int victim_name_len;
815                 struct btrfs_inode_ref *victim_ref;
816                 unsigned long ptr;
817                 unsigned long ptr_end;
818                 struct extent_buffer *leaf = path->nodes[0];
819
820                 /* are we trying to overwrite a back ref for the root directory
821                  * if so, just jump out, we're done
822                  */
823                 if (key->objectid == key->offset)
824                         goto out_nowrite;
825
826                 /* check all the names in this back reference to see
827                  * if they are in the log.  if so, we allow them to stay
828                  * otherwise they must be unlinked as a conflict
829                  */
830                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
831                 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
832                 while (ptr < ptr_end) {
833                         victim_ref = (struct btrfs_inode_ref *)ptr;
834                         victim_name_len = btrfs_inode_ref_name_len(leaf,
835                                                                    victim_ref);
836                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
837                         BUG_ON(!victim_name);
838
839                         read_extent_buffer(leaf, victim_name,
840                                            (unsigned long)(victim_ref + 1),
841                                            victim_name_len);
842
843                         if (!backref_in_log(log, key, victim_name,
844                                             victim_name_len)) {
845                                 btrfs_inc_nlink(inode);
846                                 btrfs_release_path(root, path);
847                                 ret = btrfs_unlink_inode(trans, root, dir,
848                                                          inode, victim_name,
849                                                          victim_name_len);
850                                 kfree(victim_name);
851                                 btrfs_release_path(root, path);
852                                 goto conflict_again;
853                         }
854                         kfree(victim_name);
855                         ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
856                 }
857                 BUG_ON(ret);
858         }
859         btrfs_release_path(root, path);
860
861         /* look for a conflicting sequence number */
862         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
863                                          btrfs_inode_ref_index(eb, ref),
864                                          name, namelen, 0);
865         if (di && !IS_ERR(di)) {
866                 ret = drop_one_dir_item(trans, root, path, dir, di);
867                 BUG_ON(ret);
868         }
869         btrfs_release_path(root, path);
870
871
872         /* look for a conflicting name */
873         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
874                                    name, namelen, 0);
875         if (di && !IS_ERR(di)) {
876                 ret = drop_one_dir_item(trans, root, path, dir, di);
877                 BUG_ON(ret);
878         }
879         btrfs_release_path(root, path);
880
881         /* insert our name */
882         ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
883                              btrfs_inode_ref_index(eb, ref));
884         BUG_ON(ret);
885
886         btrfs_update_inode(trans, root, inode);
887
888 out:
889         ref_ptr = (unsigned long)(ref + 1) + namelen;
890         kfree(name);
891         if (ref_ptr < ref_end)
892                 goto again;
893
894         /* finally write the back reference in the inode */
895         ret = overwrite_item(trans, root, path, eb, slot, key);
896         BUG_ON(ret);
897
898 out_nowrite:
899         btrfs_release_path(root, path);
900         iput(dir);
901         iput(inode);
902         return 0;
903 }
904
905 /*
906  * replay one csum item from the log tree into the subvolume 'root'
907  * eb, slot and key all refer to the log tree
908  * path is for temp use by this function and should be released on return
909  *
910  * This copies the checksums out of the log tree and inserts them into
911  * the subvolume.  Any existing checksums for this range in the file
912  * are overwritten, and new items are added where required.
913  *
914  * We keep this simple by reusing the btrfs_ordered_sum code from
915  * the data=ordered mode.  This basically means making a copy
916  * of all the checksums in ram, which we have to do anyway for kmap
917  * rules.
918  *
919  * The copy is then sent down to btrfs_csum_file_blocks, which
920  * does all the hard work of finding existing items in the file
921  * or adding new ones.
922  */
923 static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
924                                       struct btrfs_root *root,
925                                       struct btrfs_path *path,
926                                       struct extent_buffer *eb, int slot,
927                                       struct btrfs_key *key)
928 {
929         int ret;
930         u32 item_size = btrfs_item_size_nr(eb, slot);
931         u64 cur_offset;
932         u16 csum_size =
933                 btrfs_super_csum_size(&root->fs_info->super_copy);
934         unsigned long file_bytes;
935         struct btrfs_ordered_sum *sums;
936         struct btrfs_sector_sum *sector_sum;
937         unsigned long ptr;
938
939         file_bytes = (item_size / csum_size) * root->sectorsize;
940         sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
941         if (!sums)
942                 return -ENOMEM;
943
944         INIT_LIST_HEAD(&sums->list);
945         sums->len = file_bytes;
946         sums->bytenr = key->offset;
947
948         /*
949          * copy all the sums into the ordered sum struct
950          */
951         sector_sum = sums->sums;
952         cur_offset = key->offset;
953         ptr = btrfs_item_ptr_offset(eb, slot);
954         while (item_size > 0) {
955                 sector_sum->bytenr = cur_offset;
956                 read_extent_buffer(eb, &sector_sum->sum, ptr, csum_size);
957                 sector_sum++;
958                 item_size -= csum_size;
959                 ptr += csum_size;
960                 cur_offset += root->sectorsize;
961         }
962
963         /* let btrfs_csum_file_blocks add them into the file */
964         ret = btrfs_csum_file_blocks(trans, root->fs_info->csum_root, sums);
965         BUG_ON(ret);
966         kfree(sums);
967         return 0;
968 }
969 /*
970  * There are a few corners where the link count of the file can't
971  * be properly maintained during replay.  So, instead of adding
972  * lots of complexity to the log code, we just scan the backrefs
973  * for any file that has been through replay.
974  *
975  * The scan will update the link count on the inode to reflect the
976  * number of back refs found.  If it goes down to zero, the iput
977  * will free the inode.
978  */
979 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
980                                            struct btrfs_root *root,
981                                            struct inode *inode)
982 {
983         struct btrfs_path *path;
984         int ret;
985         struct btrfs_key key;
986         u64 nlink = 0;
987         unsigned long ptr;
988         unsigned long ptr_end;
989         int name_len;
990
991         key.objectid = inode->i_ino;
992         key.type = BTRFS_INODE_REF_KEY;
993         key.offset = (u64)-1;
994
995         path = btrfs_alloc_path();
996
997         while (1) {
998                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
999                 if (ret < 0)
1000                         break;
1001                 if (ret > 0) {
1002                         if (path->slots[0] == 0)
1003                                 break;
1004                         path->slots[0]--;
1005                 }
1006                 btrfs_item_key_to_cpu(path->nodes[0], &key,
1007                                       path->slots[0]);
1008                 if (key.objectid != inode->i_ino ||
1009                     key.type != BTRFS_INODE_REF_KEY)
1010                         break;
1011                 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1012                 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1013                                                    path->slots[0]);
1014                 while (ptr < ptr_end) {
1015                         struct btrfs_inode_ref *ref;
1016
1017                         ref = (struct btrfs_inode_ref *)ptr;
1018                         name_len = btrfs_inode_ref_name_len(path->nodes[0],
1019                                                             ref);
1020                         ptr = (unsigned long)(ref + 1) + name_len;
1021                         nlink++;
1022                 }
1023
1024                 if (key.offset == 0)
1025                         break;
1026                 key.offset--;
1027                 btrfs_release_path(root, path);
1028         }
1029         btrfs_free_path(path);
1030         if (nlink != inode->i_nlink) {
1031                 inode->i_nlink = nlink;
1032                 btrfs_update_inode(trans, root, inode);
1033         }
1034         BTRFS_I(inode)->index_cnt = (u64)-1;
1035
1036         return 0;
1037 }
1038
1039 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1040                                             struct btrfs_root *root,
1041                                             struct btrfs_path *path)
1042 {
1043         int ret;
1044         struct btrfs_key key;
1045         struct inode *inode;
1046
1047         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1048         key.type = BTRFS_ORPHAN_ITEM_KEY;
1049         key.offset = (u64)-1;
1050         while (1) {
1051                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1052                 if (ret < 0)
1053                         break;
1054
1055                 if (ret == 1) {
1056                         if (path->slots[0] == 0)
1057                                 break;
1058                         path->slots[0]--;
1059                 }
1060
1061                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1062                 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1063                     key.type != BTRFS_ORPHAN_ITEM_KEY)
1064                         break;
1065
1066                 ret = btrfs_del_item(trans, root, path);
1067                 BUG_ON(ret);
1068
1069                 btrfs_release_path(root, path);
1070                 inode = read_one_inode(root, key.offset);
1071                 BUG_ON(!inode);
1072
1073                 ret = fixup_inode_link_count(trans, root, inode);
1074                 BUG_ON(ret);
1075
1076                 iput(inode);
1077
1078                 if (key.offset == 0)
1079                         break;
1080                 key.offset--;
1081         }
1082         btrfs_release_path(root, path);
1083         return 0;
1084 }
1085
1086
1087 /*
1088  * record a given inode in the fixup dir so we can check its link
1089  * count when replay is done.  The link count is incremented here
1090  * so the inode won't go away until we check it
1091  */
1092 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1093                                       struct btrfs_root *root,
1094                                       struct btrfs_path *path,
1095                                       u64 objectid)
1096 {
1097         struct btrfs_key key;
1098         int ret = 0;
1099         struct inode *inode;
1100
1101         inode = read_one_inode(root, objectid);
1102         BUG_ON(!inode);
1103
1104         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1105         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1106         key.offset = objectid;
1107
1108         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1109
1110         btrfs_release_path(root, path);
1111         if (ret == 0) {
1112                 btrfs_inc_nlink(inode);
1113                 btrfs_update_inode(trans, root, inode);
1114         } else if (ret == -EEXIST) {
1115                 ret = 0;
1116         } else {
1117                 BUG();
1118         }
1119         iput(inode);
1120
1121         return ret;
1122 }
1123
1124 /*
1125  * when replaying the log for a directory, we only insert names
1126  * for inodes that actually exist.  This means an fsync on a directory
1127  * does not implicitly fsync all the new files in it
1128  */
1129 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1130                                     struct btrfs_root *root,
1131                                     struct btrfs_path *path,
1132                                     u64 dirid, u64 index,
1133                                     char *name, int name_len, u8 type,
1134                                     struct btrfs_key *location)
1135 {
1136         struct inode *inode;
1137         struct inode *dir;
1138         int ret;
1139
1140         inode = read_one_inode(root, location->objectid);
1141         if (!inode)
1142                 return -ENOENT;
1143
1144         dir = read_one_inode(root, dirid);
1145         if (!dir) {
1146                 iput(inode);
1147                 return -EIO;
1148         }
1149         ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1150
1151         /* FIXME, put inode into FIXUP list */
1152
1153         iput(inode);
1154         iput(dir);
1155         return ret;
1156 }
1157
1158 /*
1159  * take a single entry in a log directory item and replay it into
1160  * the subvolume.
1161  *
1162  * if a conflicting item exists in the subdirectory already,
1163  * the inode it points to is unlinked and put into the link count
1164  * fix up tree.
1165  *
1166  * If a name from the log points to a file or directory that does
1167  * not exist in the FS, it is skipped.  fsyncs on directories
1168  * do not force down inodes inside that directory, just changes to the
1169  * names or unlinks in a directory.
1170  */
1171 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1172                                     struct btrfs_root *root,
1173                                     struct btrfs_path *path,
1174                                     struct extent_buffer *eb,
1175                                     struct btrfs_dir_item *di,
1176                                     struct btrfs_key *key)
1177 {
1178         char *name;
1179         int name_len;
1180         struct btrfs_dir_item *dst_di;
1181         struct btrfs_key found_key;
1182         struct btrfs_key log_key;
1183         struct inode *dir;
1184         u8 log_type;
1185         int exists;
1186         int ret;
1187
1188         dir = read_one_inode(root, key->objectid);
1189         BUG_ON(!dir);
1190
1191         name_len = btrfs_dir_name_len(eb, di);
1192         name = kmalloc(name_len, GFP_NOFS);
1193         log_type = btrfs_dir_type(eb, di);
1194         read_extent_buffer(eb, name, (unsigned long)(di + 1),
1195                    name_len);
1196
1197         btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1198         exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1199         if (exists == 0)
1200                 exists = 1;
1201         else
1202                 exists = 0;
1203         btrfs_release_path(root, path);
1204
1205         if (key->type == BTRFS_DIR_ITEM_KEY) {
1206                 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1207                                        name, name_len, 1);
1208         } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1209                 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1210                                                      key->objectid,
1211                                                      key->offset, name,
1212                                                      name_len, 1);
1213         } else {
1214                 BUG();
1215         }
1216         if (!dst_di || IS_ERR(dst_di)) {
1217                 /* we need a sequence number to insert, so we only
1218                  * do inserts for the BTRFS_DIR_INDEX_KEY types
1219                  */
1220                 if (key->type != BTRFS_DIR_INDEX_KEY)
1221                         goto out;
1222                 goto insert;
1223         }
1224
1225         btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1226         /* the existing item matches the logged item */
1227         if (found_key.objectid == log_key.objectid &&
1228             found_key.type == log_key.type &&
1229             found_key.offset == log_key.offset &&
1230             btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1231                 goto out;
1232         }
1233
1234         /*
1235          * don't drop the conflicting directory entry if the inode
1236          * for the new entry doesn't exist
1237          */
1238         if (!exists)
1239                 goto out;
1240
1241         ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1242         BUG_ON(ret);
1243
1244         if (key->type == BTRFS_DIR_INDEX_KEY)
1245                 goto insert;
1246 out:
1247         btrfs_release_path(root, path);
1248         kfree(name);
1249         iput(dir);
1250         return 0;
1251
1252 insert:
1253         btrfs_release_path(root, path);
1254         ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1255                               name, name_len, log_type, &log_key);
1256
1257         if (ret && ret != -ENOENT)
1258                 BUG();
1259         goto out;
1260 }
1261
1262 /*
1263  * find all the names in a directory item and reconcile them into
1264  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1265  * one name in a directory item, but the same code gets used for
1266  * both directory index types
1267  */
1268 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1269                                         struct btrfs_root *root,
1270                                         struct btrfs_path *path,
1271                                         struct extent_buffer *eb, int slot,
1272                                         struct btrfs_key *key)
1273 {
1274         int ret;
1275         u32 item_size = btrfs_item_size_nr(eb, slot);
1276         struct btrfs_dir_item *di;
1277         int name_len;
1278         unsigned long ptr;
1279         unsigned long ptr_end;
1280
1281         ptr = btrfs_item_ptr_offset(eb, slot);
1282         ptr_end = ptr + item_size;
1283         while (ptr < ptr_end) {
1284                 di = (struct btrfs_dir_item *)ptr;
1285                 name_len = btrfs_dir_name_len(eb, di);
1286                 ret = replay_one_name(trans, root, path, eb, di, key);
1287                 BUG_ON(ret);
1288                 ptr = (unsigned long)(di + 1);
1289                 ptr += name_len;
1290         }
1291         return 0;
1292 }
1293
1294 /*
1295  * directory replay has two parts.  There are the standard directory
1296  * items in the log copied from the subvolume, and range items
1297  * created in the log while the subvolume was logged.
1298  *
1299  * The range items tell us which parts of the key space the log
1300  * is authoritative for.  During replay, if a key in the subvolume
1301  * directory is in a logged range item, but not actually in the log
1302  * that means it was deleted from the directory before the fsync
1303  * and should be removed.
1304  */
1305 static noinline int find_dir_range(struct btrfs_root *root,
1306                                    struct btrfs_path *path,
1307                                    u64 dirid, int key_type,
1308                                    u64 *start_ret, u64 *end_ret)
1309 {
1310         struct btrfs_key key;
1311         u64 found_end;
1312         struct btrfs_dir_log_item *item;
1313         int ret;
1314         int nritems;
1315
1316         if (*start_ret == (u64)-1)
1317                 return 1;
1318
1319         key.objectid = dirid;
1320         key.type = key_type;
1321         key.offset = *start_ret;
1322
1323         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1324         if (ret < 0)
1325                 goto out;
1326         if (ret > 0) {
1327                 if (path->slots[0] == 0)
1328                         goto out;
1329                 path->slots[0]--;
1330         }
1331         if (ret != 0)
1332                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1333
1334         if (key.type != key_type || key.objectid != dirid) {
1335                 ret = 1;
1336                 goto next;
1337         }
1338         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1339                               struct btrfs_dir_log_item);
1340         found_end = btrfs_dir_log_end(path->nodes[0], item);
1341
1342         if (*start_ret >= key.offset && *start_ret <= found_end) {
1343                 ret = 0;
1344                 *start_ret = key.offset;
1345                 *end_ret = found_end;
1346                 goto out;
1347         }
1348         ret = 1;
1349 next:
1350         /* check the next slot in the tree to see if it is a valid item */
1351         nritems = btrfs_header_nritems(path->nodes[0]);
1352         if (path->slots[0] >= nritems) {
1353                 ret = btrfs_next_leaf(root, path);
1354                 if (ret)
1355                         goto out;
1356         } else {
1357                 path->slots[0]++;
1358         }
1359
1360         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1361
1362         if (key.type != key_type || key.objectid != dirid) {
1363                 ret = 1;
1364                 goto out;
1365         }
1366         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1367                               struct btrfs_dir_log_item);
1368         found_end = btrfs_dir_log_end(path->nodes[0], item);
1369         *start_ret = key.offset;
1370         *end_ret = found_end;
1371         ret = 0;
1372 out:
1373         btrfs_release_path(root, path);
1374         return ret;
1375 }
1376
1377 /*
1378  * this looks for a given directory item in the log.  If the directory
1379  * item is not in the log, the item is removed and the inode it points
1380  * to is unlinked
1381  */
1382 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1383                                       struct btrfs_root *root,
1384                                       struct btrfs_root *log,
1385                                       struct btrfs_path *path,
1386                                       struct btrfs_path *log_path,
1387                                       struct inode *dir,
1388                                       struct btrfs_key *dir_key)
1389 {
1390         int ret;
1391         struct extent_buffer *eb;
1392         int slot;
1393         u32 item_size;
1394         struct btrfs_dir_item *di;
1395         struct btrfs_dir_item *log_di;
1396         int name_len;
1397         unsigned long ptr;
1398         unsigned long ptr_end;
1399         char *name;
1400         struct inode *inode;
1401         struct btrfs_key location;
1402
1403 again:
1404         eb = path->nodes[0];
1405         slot = path->slots[0];
1406         item_size = btrfs_item_size_nr(eb, slot);
1407         ptr = btrfs_item_ptr_offset(eb, slot);
1408         ptr_end = ptr + item_size;
1409         while (ptr < ptr_end) {
1410                 di = (struct btrfs_dir_item *)ptr;
1411                 name_len = btrfs_dir_name_len(eb, di);
1412                 name = kmalloc(name_len, GFP_NOFS);
1413                 if (!name) {
1414                         ret = -ENOMEM;
1415                         goto out;
1416                 }
1417                 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1418                                   name_len);
1419                 log_di = NULL;
1420                 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1421                         log_di = btrfs_lookup_dir_item(trans, log, log_path,
1422                                                        dir_key->objectid,
1423                                                        name, name_len, 0);
1424                 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1425                         log_di = btrfs_lookup_dir_index_item(trans, log,
1426                                                      log_path,
1427                                                      dir_key->objectid,
1428                                                      dir_key->offset,
1429                                                      name, name_len, 0);
1430                 }
1431                 if (!log_di || IS_ERR(log_di)) {
1432                         btrfs_dir_item_key_to_cpu(eb, di, &location);
1433                         btrfs_release_path(root, path);
1434                         btrfs_release_path(log, log_path);
1435                         inode = read_one_inode(root, location.objectid);
1436                         BUG_ON(!inode);
1437
1438                         ret = link_to_fixup_dir(trans, root,
1439                                                 path, location.objectid);
1440                         BUG_ON(ret);
1441                         btrfs_inc_nlink(inode);
1442                         ret = btrfs_unlink_inode(trans, root, dir, inode,
1443                                                  name, name_len);
1444                         BUG_ON(ret);
1445                         kfree(name);
1446                         iput(inode);
1447
1448                         /* there might still be more names under this key
1449                          * check and repeat if required
1450                          */
1451                         ret = btrfs_search_slot(NULL, root, dir_key, path,
1452                                                 0, 0);
1453                         if (ret == 0)
1454                                 goto again;
1455                         ret = 0;
1456                         goto out;
1457                 }
1458                 btrfs_release_path(log, log_path);
1459                 kfree(name);
1460
1461                 ptr = (unsigned long)(di + 1);
1462                 ptr += name_len;
1463         }
1464         ret = 0;
1465 out:
1466         btrfs_release_path(root, path);
1467         btrfs_release_path(log, log_path);
1468         return ret;
1469 }
1470
1471 /*
1472  * deletion replay happens before we copy any new directory items
1473  * out of the log or out of backreferences from inodes.  It
1474  * scans the log to find ranges of keys that log is authoritative for,
1475  * and then scans the directory to find items in those ranges that are
1476  * not present in the log.
1477  *
1478  * Anything we don't find in the log is unlinked and removed from the
1479  * directory.
1480  */
1481 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1482                                        struct btrfs_root *root,
1483                                        struct btrfs_root *log,
1484                                        struct btrfs_path *path,
1485                                        u64 dirid)
1486 {
1487         u64 range_start;
1488         u64 range_end;
1489         int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1490         int ret = 0;
1491         struct btrfs_key dir_key;
1492         struct btrfs_key found_key;
1493         struct btrfs_path *log_path;
1494         struct inode *dir;
1495
1496         dir_key.objectid = dirid;
1497         dir_key.type = BTRFS_DIR_ITEM_KEY;
1498         log_path = btrfs_alloc_path();
1499         if (!log_path)
1500                 return -ENOMEM;
1501
1502         dir = read_one_inode(root, dirid);
1503         /* it isn't an error if the inode isn't there, that can happen
1504          * because we replay the deletes before we copy in the inode item
1505          * from the log
1506          */
1507         if (!dir) {
1508                 btrfs_free_path(log_path);
1509                 return 0;
1510         }
1511 again:
1512         range_start = 0;
1513         range_end = 0;
1514         while (1) {
1515                 ret = find_dir_range(log, path, dirid, key_type,
1516                                      &range_start, &range_end);
1517                 if (ret != 0)
1518                         break;
1519
1520                 dir_key.offset = range_start;
1521                 while (1) {
1522                         int nritems;
1523                         ret = btrfs_search_slot(NULL, root, &dir_key, path,
1524                                                 0, 0);
1525                         if (ret < 0)
1526                                 goto out;
1527
1528                         nritems = btrfs_header_nritems(path->nodes[0]);
1529                         if (path->slots[0] >= nritems) {
1530                                 ret = btrfs_next_leaf(root, path);
1531                                 if (ret)
1532                                         break;
1533                         }
1534                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1535                                               path->slots[0]);
1536                         if (found_key.objectid != dirid ||
1537                             found_key.type != dir_key.type)
1538                                 goto next_type;
1539
1540                         if (found_key.offset > range_end)
1541                                 break;
1542
1543                         ret = check_item_in_log(trans, root, log, path,
1544                                                 log_path, dir, &found_key);
1545                         BUG_ON(ret);
1546                         if (found_key.offset == (u64)-1)
1547                                 break;
1548                         dir_key.offset = found_key.offset + 1;
1549                 }
1550                 btrfs_release_path(root, path);
1551                 if (range_end == (u64)-1)
1552                         break;
1553                 range_start = range_end + 1;
1554         }
1555
1556 next_type:
1557         ret = 0;
1558         if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1559                 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1560                 dir_key.type = BTRFS_DIR_INDEX_KEY;
1561                 btrfs_release_path(root, path);
1562                 goto again;
1563         }
1564 out:
1565         btrfs_release_path(root, path);
1566         btrfs_free_path(log_path);
1567         iput(dir);
1568         return ret;
1569 }
1570
1571 /*
1572  * the process_func used to replay items from the log tree.  This
1573  * gets called in two different stages.  The first stage just looks
1574  * for inodes and makes sure they are all copied into the subvolume.
1575  *
1576  * The second stage copies all the other item types from the log into
1577  * the subvolume.  The two stage approach is slower, but gets rid of
1578  * lots of complexity around inodes referencing other inodes that exist
1579  * only in the log (references come from either directory items or inode
1580  * back refs).
1581  */
1582 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1583                              struct walk_control *wc, u64 gen)
1584 {
1585         int nritems;
1586         struct btrfs_path *path;
1587         struct btrfs_root *root = wc->replay_dest;
1588         struct btrfs_key key;
1589         u32 item_size;
1590         int level;
1591         int i;
1592         int ret;
1593
1594         btrfs_read_buffer(eb, gen);
1595
1596         level = btrfs_header_level(eb);
1597
1598         if (level != 0)
1599                 return 0;
1600
1601         path = btrfs_alloc_path();
1602         BUG_ON(!path);
1603
1604         nritems = btrfs_header_nritems(eb);
1605         for (i = 0; i < nritems; i++) {
1606                 btrfs_item_key_to_cpu(eb, &key, i);
1607                 item_size = btrfs_item_size_nr(eb, i);
1608
1609                 /* inode keys are done during the first stage */
1610                 if (key.type == BTRFS_INODE_ITEM_KEY &&
1611                     wc->stage == LOG_WALK_REPLAY_INODES) {
1612                         struct inode *inode;
1613                         struct btrfs_inode_item *inode_item;
1614                         u32 mode;
1615
1616                         inode_item = btrfs_item_ptr(eb, i,
1617                                             struct btrfs_inode_item);
1618                         mode = btrfs_inode_mode(eb, inode_item);
1619                         if (S_ISDIR(mode)) {
1620                                 ret = replay_dir_deletes(wc->trans,
1621                                          root, log, path, key.objectid);
1622                                 BUG_ON(ret);
1623                         }
1624                         ret = overwrite_item(wc->trans, root, path,
1625                                              eb, i, &key);
1626                         BUG_ON(ret);
1627
1628                         /* for regular files, truncate away
1629                          * extents past the new EOF
1630                          */
1631                         if (S_ISREG(mode)) {
1632                                 inode = read_one_inode(root,
1633                                                        key.objectid);
1634                                 BUG_ON(!inode);
1635
1636                                 ret = btrfs_truncate_inode_items(wc->trans,
1637                                         root, inode, inode->i_size,
1638                                         BTRFS_EXTENT_DATA_KEY);
1639                                 BUG_ON(ret);
1640                                 iput(inode);
1641                         }
1642                         ret = link_to_fixup_dir(wc->trans, root,
1643                                                 path, key.objectid);
1644                         BUG_ON(ret);
1645                 }
1646                 if (wc->stage < LOG_WALK_REPLAY_ALL)
1647                         continue;
1648
1649                 /* these keys are simply copied */
1650                 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1651                         ret = overwrite_item(wc->trans, root, path,
1652                                              eb, i, &key);
1653                         BUG_ON(ret);
1654                 } else if (key.type == BTRFS_INODE_REF_KEY) {
1655                         ret = add_inode_ref(wc->trans, root, log, path,
1656                                             eb, i, &key);
1657                         BUG_ON(ret && ret != -ENOENT);
1658                 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1659                         ret = replay_one_extent(wc->trans, root, path,
1660                                                 eb, i, &key);
1661                         BUG_ON(ret);
1662                 } else if (key.type == BTRFS_EXTENT_CSUM_KEY) {
1663                         ret = replay_one_csum(wc->trans, root, path,
1664                                               eb, i, &key);
1665                         BUG_ON(ret);
1666                 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1667                            key.type == BTRFS_DIR_INDEX_KEY) {
1668                         ret = replay_one_dir_item(wc->trans, root, path,
1669                                                   eb, i, &key);
1670                         BUG_ON(ret);
1671                 }
1672         }
1673         btrfs_free_path(path);
1674         return 0;
1675 }
1676
1677 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1678                                    struct btrfs_root *root,
1679                                    struct btrfs_path *path, int *level,
1680                                    struct walk_control *wc)
1681 {
1682         u64 root_owner;
1683         u64 root_gen;
1684         u64 bytenr;
1685         u64 ptr_gen;
1686         struct extent_buffer *next;
1687         struct extent_buffer *cur;
1688         struct extent_buffer *parent;
1689         u32 blocksize;
1690         int ret = 0;
1691
1692         WARN_ON(*level < 0);
1693         WARN_ON(*level >= BTRFS_MAX_LEVEL);
1694
1695         while (*level > 0) {
1696                 WARN_ON(*level < 0);
1697                 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1698                 cur = path->nodes[*level];
1699
1700                 if (btrfs_header_level(cur) != *level)
1701                         WARN_ON(1);
1702
1703                 if (path->slots[*level] >=
1704                     btrfs_header_nritems(cur))
1705                         break;
1706
1707                 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1708                 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1709                 blocksize = btrfs_level_size(root, *level - 1);
1710
1711                 parent = path->nodes[*level];
1712                 root_owner = btrfs_header_owner(parent);
1713                 root_gen = btrfs_header_generation(parent);
1714
1715                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1716
1717                 wc->process_func(root, next, wc, ptr_gen);
1718
1719                 if (*level == 1) {
1720                         path->slots[*level]++;
1721                         if (wc->free) {
1722                                 btrfs_read_buffer(next, ptr_gen);
1723
1724                                 btrfs_tree_lock(next);
1725                                 clean_tree_block(trans, root, next);
1726                                 btrfs_wait_tree_block_writeback(next);
1727                                 btrfs_tree_unlock(next);
1728
1729                                 ret = btrfs_drop_leaf_ref(trans, root, next);
1730                                 BUG_ON(ret);
1731
1732                                 WARN_ON(root_owner !=
1733                                         BTRFS_TREE_LOG_OBJECTID);
1734                                 ret = btrfs_free_reserved_extent(root,
1735                                                          bytenr, blocksize);
1736                                 BUG_ON(ret);
1737                         }
1738                         free_extent_buffer(next);
1739                         continue;
1740                 }
1741                 btrfs_read_buffer(next, ptr_gen);
1742
1743                 WARN_ON(*level <= 0);
1744                 if (path->nodes[*level-1])
1745                         free_extent_buffer(path->nodes[*level-1]);
1746                 path->nodes[*level-1] = next;
1747                 *level = btrfs_header_level(next);
1748                 path->slots[*level] = 0;
1749                 cond_resched();
1750         }
1751         WARN_ON(*level < 0);
1752         WARN_ON(*level >= BTRFS_MAX_LEVEL);
1753
1754         if (path->nodes[*level] == root->node)
1755                 parent = path->nodes[*level];
1756         else
1757                 parent = path->nodes[*level + 1];
1758
1759         bytenr = path->nodes[*level]->start;
1760
1761         blocksize = btrfs_level_size(root, *level);
1762         root_owner = btrfs_header_owner(parent);
1763         root_gen = btrfs_header_generation(parent);
1764
1765         wc->process_func(root, path->nodes[*level], wc,
1766                          btrfs_header_generation(path->nodes[*level]));
1767
1768         if (wc->free) {
1769                 next = path->nodes[*level];
1770                 btrfs_tree_lock(next);
1771                 clean_tree_block(trans, root, next);
1772                 btrfs_wait_tree_block_writeback(next);
1773                 btrfs_tree_unlock(next);
1774
1775                 if (*level == 0) {
1776                         ret = btrfs_drop_leaf_ref(trans, root, next);
1777                         BUG_ON(ret);
1778                 }
1779                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1780                 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1781                 BUG_ON(ret);
1782         }
1783         free_extent_buffer(path->nodes[*level]);
1784         path->nodes[*level] = NULL;
1785         *level += 1;
1786
1787         cond_resched();
1788         return 0;
1789 }
1790
1791 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1792                                  struct btrfs_root *root,
1793                                  struct btrfs_path *path, int *level,
1794                                  struct walk_control *wc)
1795 {
1796         u64 root_owner;
1797         u64 root_gen;
1798         int i;
1799         int slot;
1800         int ret;
1801
1802         for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1803                 slot = path->slots[i];
1804                 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1805                         struct extent_buffer *node;
1806                         node = path->nodes[i];
1807                         path->slots[i]++;
1808                         *level = i;
1809                         WARN_ON(*level == 0);
1810                         return 0;
1811                 } else {
1812                         struct extent_buffer *parent;
1813                         if (path->nodes[*level] == root->node)
1814                                 parent = path->nodes[*level];
1815                         else
1816                                 parent = path->nodes[*level + 1];
1817
1818                         root_owner = btrfs_header_owner(parent);
1819                         root_gen = btrfs_header_generation(parent);
1820                         wc->process_func(root, path->nodes[*level], wc,
1821                                  btrfs_header_generation(path->nodes[*level]));
1822                         if (wc->free) {
1823                                 struct extent_buffer *next;
1824
1825                                 next = path->nodes[*level];
1826
1827                                 btrfs_tree_lock(next);
1828                                 clean_tree_block(trans, root, next);
1829                                 btrfs_wait_tree_block_writeback(next);
1830                                 btrfs_tree_unlock(next);
1831
1832                                 if (*level == 0) {
1833                                         ret = btrfs_drop_leaf_ref(trans, root,
1834                                                                   next);
1835                                         BUG_ON(ret);
1836                                 }
1837
1838                                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1839                                 ret = btrfs_free_reserved_extent(root,
1840                                                 path->nodes[*level]->start,
1841                                                 path->nodes[*level]->len);
1842                                 BUG_ON(ret);
1843                         }
1844                         free_extent_buffer(path->nodes[*level]);
1845                         path->nodes[*level] = NULL;
1846                         *level = i + 1;
1847                 }
1848         }
1849         return 1;
1850 }
1851
1852 /*
1853  * drop the reference count on the tree rooted at 'snap'.  This traverses
1854  * the tree freeing any blocks that have a ref count of zero after being
1855  * decremented.
1856  */
1857 static int walk_log_tree(struct btrfs_trans_handle *trans,
1858                          struct btrfs_root *log, struct walk_control *wc)
1859 {
1860         int ret = 0;
1861         int wret;
1862         int level;
1863         struct btrfs_path *path;
1864         int i;
1865         int orig_level;
1866
1867         path = btrfs_alloc_path();
1868         BUG_ON(!path);
1869
1870         level = btrfs_header_level(log->node);
1871         orig_level = level;
1872         path->nodes[level] = log->node;
1873         extent_buffer_get(log->node);
1874         path->slots[level] = 0;
1875
1876         while (1) {
1877                 wret = walk_down_log_tree(trans, log, path, &level, wc);
1878                 if (wret > 0)
1879                         break;
1880                 if (wret < 0)
1881                         ret = wret;
1882
1883                 wret = walk_up_log_tree(trans, log, path, &level, wc);
1884                 if (wret > 0)
1885                         break;
1886                 if (wret < 0)
1887                         ret = wret;
1888         }
1889
1890         /* was the root node processed? if not, catch it here */
1891         if (path->nodes[orig_level]) {
1892                 wc->process_func(log, path->nodes[orig_level], wc,
1893                          btrfs_header_generation(path->nodes[orig_level]));
1894                 if (wc->free) {
1895                         struct extent_buffer *next;
1896
1897                         next = path->nodes[orig_level];
1898
1899                         btrfs_tree_lock(next);
1900                         clean_tree_block(trans, log, next);
1901                         btrfs_wait_tree_block_writeback(next);
1902                         btrfs_tree_unlock(next);
1903
1904                         if (orig_level == 0) {
1905                                 ret = btrfs_drop_leaf_ref(trans, log,
1906                                                           next);
1907                                 BUG_ON(ret);
1908                         }
1909                         WARN_ON(log->root_key.objectid !=
1910                                 BTRFS_TREE_LOG_OBJECTID);
1911                         ret = btrfs_free_reserved_extent(log, next->start,
1912                                                          next->len);
1913                         BUG_ON(ret);
1914                 }
1915         }
1916
1917         for (i = 0; i <= orig_level; i++) {
1918                 if (path->nodes[i]) {
1919                         free_extent_buffer(path->nodes[i]);
1920                         path->nodes[i] = NULL;
1921                 }
1922         }
1923         btrfs_free_path(path);
1924         if (wc->free)
1925                 free_extent_buffer(log->node);
1926         return ret;
1927 }
1928
1929 static int wait_log_commit(struct btrfs_root *log)
1930 {
1931         DEFINE_WAIT(wait);
1932         u64 transid = log->fs_info->tree_log_transid;
1933
1934         do {
1935                 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1936                                 TASK_UNINTERRUPTIBLE);
1937                 mutex_unlock(&log->fs_info->tree_log_mutex);
1938                 if (atomic_read(&log->fs_info->tree_log_commit))
1939                         schedule();
1940                 finish_wait(&log->fs_info->tree_log_wait, &wait);
1941                 mutex_lock(&log->fs_info->tree_log_mutex);
1942         } while (transid == log->fs_info->tree_log_transid &&
1943                 atomic_read(&log->fs_info->tree_log_commit));
1944         return 0;
1945 }
1946
1947 /*
1948  * btrfs_sync_log does sends a given tree log down to the disk and
1949  * updates the super blocks to record it.  When this call is done,
1950  * you know that any inodes previously logged are safely on disk
1951  */
1952 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1953                    struct btrfs_root *root)
1954 {
1955         int ret;
1956         unsigned long batch;
1957         struct btrfs_root *log = root->log_root;
1958
1959         mutex_lock(&log->fs_info->tree_log_mutex);
1960         if (atomic_read(&log->fs_info->tree_log_commit)) {
1961                 wait_log_commit(log);
1962                 goto out;
1963         }
1964         atomic_set(&log->fs_info->tree_log_commit, 1);
1965
1966         while (1) {
1967                 batch = log->fs_info->tree_log_batch;
1968                 mutex_unlock(&log->fs_info->tree_log_mutex);
1969                 schedule_timeout_uninterruptible(1);
1970                 mutex_lock(&log->fs_info->tree_log_mutex);
1971
1972                 while (atomic_read(&log->fs_info->tree_log_writers)) {
1973                         DEFINE_WAIT(wait);
1974                         prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1975                                         TASK_UNINTERRUPTIBLE);
1976                         mutex_unlock(&log->fs_info->tree_log_mutex);
1977                         if (atomic_read(&log->fs_info->tree_log_writers))
1978                                 schedule();
1979                         mutex_lock(&log->fs_info->tree_log_mutex);
1980                         finish_wait(&log->fs_info->tree_log_wait, &wait);
1981                 }
1982                 if (batch == log->fs_info->tree_log_batch)
1983                         break;
1984         }
1985
1986         ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
1987         BUG_ON(ret);
1988         ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
1989                                &root->fs_info->log_root_tree->dirty_log_pages);
1990         BUG_ON(ret);
1991
1992         btrfs_set_super_log_root(&root->fs_info->super_for_commit,
1993                                  log->fs_info->log_root_tree->node->start);
1994         btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
1995                        btrfs_header_level(log->fs_info->log_root_tree->node));
1996
1997         write_ctree_super(trans, log->fs_info->tree_root, 2);
1998         log->fs_info->tree_log_transid++;
1999         log->fs_info->tree_log_batch = 0;
2000         atomic_set(&log->fs_info->tree_log_commit, 0);
2001         smp_mb();
2002         if (waitqueue_active(&log->fs_info->tree_log_wait))
2003                 wake_up(&log->fs_info->tree_log_wait);
2004 out:
2005         mutex_unlock(&log->fs_info->tree_log_mutex);
2006         return 0;
2007 }
2008
2009 /* * free all the extents used by the tree log.  This should be called
2010  * at commit time of the full transaction
2011  */
2012 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2013 {
2014         int ret;
2015         struct btrfs_root *log;
2016         struct key;
2017         u64 start;
2018         u64 end;
2019         struct walk_control wc = {
2020                 .free = 1,
2021                 .process_func = process_one_buffer
2022         };
2023
2024         if (!root->log_root)
2025                 return 0;
2026
2027         log = root->log_root;
2028         ret = walk_log_tree(trans, log, &wc);
2029         BUG_ON(ret);
2030
2031         while (1) {
2032                 ret = find_first_extent_bit(&log->dirty_log_pages,
2033                                     0, &start, &end, EXTENT_DIRTY);
2034                 if (ret)
2035                         break;
2036
2037                 clear_extent_dirty(&log->dirty_log_pages,
2038                                    start, end, GFP_NOFS);
2039         }
2040
2041         log = root->log_root;
2042         ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2043                              &log->root_key);
2044         BUG_ON(ret);
2045         root->log_root = NULL;
2046         kfree(root->log_root);
2047         return 0;
2048 }
2049
2050 /*
2051  * helper function to update the item for a given subvolumes log root
2052  * in the tree of log roots
2053  */
2054 static int update_log_root(struct btrfs_trans_handle *trans,
2055                            struct btrfs_root *log)
2056 {
2057         u64 bytenr = btrfs_root_bytenr(&log->root_item);
2058         int ret;
2059
2060         if (log->node->start == bytenr)
2061                 return 0;
2062
2063         btrfs_set_root_bytenr(&log->root_item, log->node->start);
2064         btrfs_set_root_generation(&log->root_item, trans->transid);
2065         btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2066         ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2067                                 &log->root_key, &log->root_item);
2068         BUG_ON(ret);
2069         return ret;
2070 }
2071
2072 /*
2073  * If both a file and directory are logged, and unlinks or renames are
2074  * mixed in, we have a few interesting corners:
2075  *
2076  * create file X in dir Y
2077  * link file X to X.link in dir Y
2078  * fsync file X
2079  * unlink file X but leave X.link
2080  * fsync dir Y
2081  *
2082  * After a crash we would expect only X.link to exist.  But file X
2083  * didn't get fsync'd again so the log has back refs for X and X.link.
2084  *
2085  * We solve this by removing directory entries and inode backrefs from the
2086  * log when a file that was logged in the current transaction is
2087  * unlinked.  Any later fsync will include the updated log entries, and
2088  * we'll be able to reconstruct the proper directory items from backrefs.
2089  *
2090  * This optimizations allows us to avoid relogging the entire inode
2091  * or the entire directory.
2092  */
2093 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2094                                  struct btrfs_root *root,
2095                                  const char *name, int name_len,
2096                                  struct inode *dir, u64 index)
2097 {
2098         struct btrfs_root *log;
2099         struct btrfs_dir_item *di;
2100         struct btrfs_path *path;
2101         int ret;
2102         int bytes_del = 0;
2103
2104         if (BTRFS_I(dir)->logged_trans < trans->transid)
2105                 return 0;
2106
2107         ret = join_running_log_trans(root);
2108         if (ret)
2109                 return 0;
2110
2111         mutex_lock(&BTRFS_I(dir)->log_mutex);
2112
2113         log = root->log_root;
2114         path = btrfs_alloc_path();
2115         di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2116                                    name, name_len, -1);
2117         if (di && !IS_ERR(di)) {
2118                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2119                 bytes_del += name_len;
2120                 BUG_ON(ret);
2121         }
2122         btrfs_release_path(log, path);
2123         di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2124                                          index, name, name_len, -1);
2125         if (di && !IS_ERR(di)) {
2126                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2127                 bytes_del += name_len;
2128                 BUG_ON(ret);
2129         }
2130
2131         /* update the directory size in the log to reflect the names
2132          * we have removed
2133          */
2134         if (bytes_del) {
2135                 struct btrfs_key key;
2136
2137                 key.objectid = dir->i_ino;
2138                 key.offset = 0;
2139                 key.type = BTRFS_INODE_ITEM_KEY;
2140                 btrfs_release_path(log, path);
2141
2142                 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2143                 if (ret == 0) {
2144                         struct btrfs_inode_item *item;
2145                         u64 i_size;
2146
2147                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2148                                               struct btrfs_inode_item);
2149                         i_size = btrfs_inode_size(path->nodes[0], item);
2150                         if (i_size > bytes_del)
2151                                 i_size -= bytes_del;
2152                         else
2153                                 i_size = 0;
2154                         btrfs_set_inode_size(path->nodes[0], item, i_size);
2155                         btrfs_mark_buffer_dirty(path->nodes[0]);
2156                 } else
2157                         ret = 0;
2158                 btrfs_release_path(log, path);
2159         }
2160
2161         btrfs_free_path(path);
2162         mutex_unlock(&BTRFS_I(dir)->log_mutex);
2163         end_log_trans(root);
2164
2165         return 0;
2166 }
2167
2168 /* see comments for btrfs_del_dir_entries_in_log */
2169 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2170                                struct btrfs_root *root,
2171                                const char *name, int name_len,
2172                                struct inode *inode, u64 dirid)
2173 {
2174         struct btrfs_root *log;
2175         u64 index;
2176         int ret;
2177
2178         if (BTRFS_I(inode)->logged_trans < trans->transid)
2179                 return 0;
2180
2181         ret = join_running_log_trans(root);
2182         if (ret)
2183                 return 0;
2184         log = root->log_root;
2185         mutex_lock(&BTRFS_I(inode)->log_mutex);
2186
2187         ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2188                                   dirid, &index);
2189         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2190         end_log_trans(root);
2191
2192         return ret;
2193 }
2194
2195 /*
2196  * creates a range item in the log for 'dirid'.  first_offset and
2197  * last_offset tell us which parts of the key space the log should
2198  * be considered authoritative for.
2199  */
2200 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2201                                        struct btrfs_root *log,
2202                                        struct btrfs_path *path,
2203                                        int key_type, u64 dirid,
2204                                        u64 first_offset, u64 last_offset)
2205 {
2206         int ret;
2207         struct btrfs_key key;
2208         struct btrfs_dir_log_item *item;
2209
2210         key.objectid = dirid;
2211         key.offset = first_offset;
2212         if (key_type == BTRFS_DIR_ITEM_KEY)
2213                 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2214         else
2215                 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2216         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2217         BUG_ON(ret);
2218
2219         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2220                               struct btrfs_dir_log_item);
2221         btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2222         btrfs_mark_buffer_dirty(path->nodes[0]);
2223         btrfs_release_path(log, path);
2224         return 0;
2225 }
2226
2227 /*
2228  * log all the items included in the current transaction for a given
2229  * directory.  This also creates the range items in the log tree required
2230  * to replay anything deleted before the fsync
2231  */
2232 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2233                           struct btrfs_root *root, struct inode *inode,
2234                           struct btrfs_path *path,
2235                           struct btrfs_path *dst_path, int key_type,
2236                           u64 min_offset, u64 *last_offset_ret)
2237 {
2238         struct btrfs_key min_key;
2239         struct btrfs_key max_key;
2240         struct btrfs_root *log = root->log_root;
2241         struct extent_buffer *src;
2242         int ret;
2243         int i;
2244         int nritems;
2245         u64 first_offset = min_offset;
2246         u64 last_offset = (u64)-1;
2247
2248         log = root->log_root;
2249         max_key.objectid = inode->i_ino;
2250         max_key.offset = (u64)-1;
2251         max_key.type = key_type;
2252
2253         min_key.objectid = inode->i_ino;
2254         min_key.type = key_type;
2255         min_key.offset = min_offset;
2256
2257         path->keep_locks = 1;
2258
2259         ret = btrfs_search_forward(root, &min_key, &max_key,
2260                                    path, 0, trans->transid);
2261
2262         /*
2263          * we didn't find anything from this transaction, see if there
2264          * is anything at all
2265          */
2266         if (ret != 0 || min_key.objectid != inode->i_ino ||
2267             min_key.type != key_type) {
2268                 min_key.objectid = inode->i_ino;
2269                 min_key.type = key_type;
2270                 min_key.offset = (u64)-1;
2271                 btrfs_release_path(root, path);
2272                 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2273                 if (ret < 0) {
2274                         btrfs_release_path(root, path);
2275                         return ret;
2276                 }
2277                 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2278
2279                 /* if ret == 0 there are items for this type,
2280                  * create a range to tell us the last key of this type.
2281                  * otherwise, there are no items in this directory after
2282                  * *min_offset, and we create a range to indicate that.
2283                  */
2284                 if (ret == 0) {
2285                         struct btrfs_key tmp;
2286                         btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2287                                               path->slots[0]);
2288                         if (key_type == tmp.type)
2289                                 first_offset = max(min_offset, tmp.offset) + 1;
2290                 }
2291                 goto done;
2292         }
2293
2294         /* go backward to find any previous key */
2295         ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2296         if (ret == 0) {
2297                 struct btrfs_key tmp;
2298                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2299                 if (key_type == tmp.type) {
2300                         first_offset = tmp.offset;
2301                         ret = overwrite_item(trans, log, dst_path,
2302                                              path->nodes[0], path->slots[0],
2303                                              &tmp);
2304                 }
2305         }
2306         btrfs_release_path(root, path);
2307
2308         /* find the first key from this transaction again */
2309         ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2310         if (ret != 0) {
2311                 WARN_ON(1);
2312                 goto done;
2313         }
2314
2315         /*
2316          * we have a block from this transaction, log every item in it
2317          * from our directory
2318          */
2319         while (1) {
2320                 struct btrfs_key tmp;
2321                 src = path->nodes[0];
2322                 nritems = btrfs_header_nritems(src);
2323                 for (i = path->slots[0]; i < nritems; i++) {
2324                         btrfs_item_key_to_cpu(src, &min_key, i);
2325
2326                         if (min_key.objectid != inode->i_ino ||
2327                             min_key.type != key_type)
2328                                 goto done;
2329                         ret = overwrite_item(trans, log, dst_path, src, i,
2330                                              &min_key);
2331                         BUG_ON(ret);
2332                 }
2333                 path->slots[0] = nritems;
2334
2335                 /*
2336                  * look ahead to the next item and see if it is also
2337                  * from this directory and from this transaction
2338                  */
2339                 ret = btrfs_next_leaf(root, path);
2340                 if (ret == 1) {
2341                         last_offset = (u64)-1;
2342                         goto done;
2343                 }
2344                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2345                 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2346                         last_offset = (u64)-1;
2347                         goto done;
2348                 }
2349                 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2350                         ret = overwrite_item(trans, log, dst_path,
2351                                              path->nodes[0], path->slots[0],
2352                                              &tmp);
2353
2354                         BUG_ON(ret);
2355                         last_offset = tmp.offset;
2356                         goto done;
2357                 }
2358         }
2359 done:
2360         *last_offset_ret = last_offset;
2361         btrfs_release_path(root, path);
2362         btrfs_release_path(log, dst_path);
2363
2364         /* insert the log range keys to indicate where the log is valid */
2365         ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2366                                  first_offset, last_offset);
2367         BUG_ON(ret);
2368         return 0;
2369 }
2370
2371 /*
2372  * logging directories is very similar to logging inodes, We find all the items
2373  * from the current transaction and write them to the log.
2374  *
2375  * The recovery code scans the directory in the subvolume, and if it finds a
2376  * key in the range logged that is not present in the log tree, then it means
2377  * that dir entry was unlinked during the transaction.
2378  *
2379  * In order for that scan to work, we must include one key smaller than
2380  * the smallest logged by this transaction and one key larger than the largest
2381  * key logged by this transaction.
2382  */
2383 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2384                           struct btrfs_root *root, struct inode *inode,
2385                           struct btrfs_path *path,
2386                           struct btrfs_path *dst_path)
2387 {
2388         u64 min_key;
2389         u64 max_key;
2390         int ret;
2391         int key_type = BTRFS_DIR_ITEM_KEY;
2392
2393 again:
2394         min_key = 0;
2395         max_key = 0;
2396         while (1) {
2397                 ret = log_dir_items(trans, root, inode, path,
2398                                     dst_path, key_type, min_key,
2399                                     &max_key);
2400                 BUG_ON(ret);
2401                 if (max_key == (u64)-1)
2402                         break;
2403                 min_key = max_key + 1;
2404         }
2405
2406         if (key_type == BTRFS_DIR_ITEM_KEY) {
2407                 key_type = BTRFS_DIR_INDEX_KEY;
2408                 goto again;
2409         }
2410         return 0;
2411 }
2412
2413 /*
2414  * a helper function to drop items from the log before we relog an
2415  * inode.  max_key_type indicates the highest item type to remove.
2416  * This cannot be run for file data extents because it does not
2417  * free the extents they point to.
2418  */
2419 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2420                                   struct btrfs_root *log,
2421                                   struct btrfs_path *path,
2422                                   u64 objectid, int max_key_type)
2423 {
2424         int ret;
2425         struct btrfs_key key;
2426         struct btrfs_key found_key;
2427
2428         key.objectid = objectid;
2429         key.type = max_key_type;
2430         key.offset = (u64)-1;
2431
2432         while (1) {
2433                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2434
2435                 if (ret != 1)
2436                         break;
2437
2438                 if (path->slots[0] == 0)
2439                         break;
2440
2441                 path->slots[0]--;
2442                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2443                                       path->slots[0]);
2444
2445                 if (found_key.objectid != objectid)
2446                         break;
2447
2448                 ret = btrfs_del_item(trans, log, path);
2449                 BUG_ON(ret);
2450                 btrfs_release_path(log, path);
2451         }
2452         btrfs_release_path(log, path);
2453         return 0;
2454 }
2455
2456 static noinline int copy_extent_csums(struct btrfs_trans_handle *trans,
2457                                       struct list_head *list,
2458                                       struct btrfs_root *root,
2459                                       u64 disk_bytenr, u64 len)
2460 {
2461         struct btrfs_ordered_sum *sums;
2462         struct btrfs_sector_sum *sector_sum;
2463         int ret;
2464         struct btrfs_path *path;
2465         struct btrfs_csum_item *item = NULL;
2466         u64 end = disk_bytenr + len;
2467         u64 item_start_offset = 0;
2468         u64 item_last_offset = 0;
2469         u32 diff;
2470         u32 sum;
2471         u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
2472
2473         sums = kzalloc(btrfs_ordered_sum_size(root, len), GFP_NOFS);
2474
2475         sector_sum = sums->sums;
2476         sums->bytenr = disk_bytenr;
2477         sums->len = len;
2478         list_add_tail(&sums->list, list);
2479
2480         path = btrfs_alloc_path();
2481         while (disk_bytenr < end) {
2482                 if (!item || disk_bytenr < item_start_offset ||
2483                     disk_bytenr >= item_last_offset) {
2484                         struct btrfs_key found_key;
2485                         u32 item_size;
2486
2487                         if (item)
2488                                 btrfs_release_path(root, path);
2489                         item = btrfs_lookup_csum(NULL, root, path,
2490                                                  disk_bytenr, 0);
2491                         if (IS_ERR(item)) {
2492                                 ret = PTR_ERR(item);
2493                                 if (ret == -ENOENT || ret == -EFBIG)
2494                                         ret = 0;
2495                                 sum = 0;
2496                                 printk(KERN_INFO "log no csum found for "
2497                                        "byte %llu\n",
2498                                        (unsigned long long)disk_bytenr);
2499                                 item = NULL;
2500                                 btrfs_release_path(root, path);
2501                                 goto found;
2502                         }
2503                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2504                                               path->slots[0]);
2505
2506                         item_start_offset = found_key.offset;
2507                         item_size = btrfs_item_size_nr(path->nodes[0],
2508                                                        path->slots[0]);
2509                         item_last_offset = item_start_offset +
2510                                 (item_size / csum_size) *
2511                                 root->sectorsize;
2512                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2513                                               struct btrfs_csum_item);
2514                 }
2515                 /*
2516                  * this byte range must be able to fit inside
2517                  * a single leaf so it will also fit inside a u32
2518                  */
2519                 diff = disk_bytenr - item_start_offset;
2520                 diff = diff / root->sectorsize;
2521                 diff = diff * csum_size;
2522
2523                 read_extent_buffer(path->nodes[0], &sum,
2524                                    ((unsigned long)item) + diff,
2525                                    csum_size);
2526 found:
2527                 sector_sum->bytenr = disk_bytenr;
2528                 sector_sum->sum = sum;
2529                 disk_bytenr += root->sectorsize;
2530                 sector_sum++;
2531         }
2532         btrfs_free_path(path);
2533         return 0;
2534 }
2535
2536 static noinline int copy_items(struct btrfs_trans_handle *trans,
2537                                struct btrfs_root *log,
2538                                struct btrfs_path *dst_path,
2539                                struct extent_buffer *src,
2540                                int start_slot, int nr, int inode_only)
2541 {
2542         unsigned long src_offset;
2543         unsigned long dst_offset;
2544         struct btrfs_file_extent_item *extent;
2545         struct btrfs_inode_item *inode_item;
2546         int ret;
2547         struct btrfs_key *ins_keys;
2548         u32 *ins_sizes;
2549         char *ins_data;
2550         int i;
2551         struct list_head ordered_sums;
2552
2553         INIT_LIST_HEAD(&ordered_sums);
2554
2555         ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2556                            nr * sizeof(u32), GFP_NOFS);
2557         ins_sizes = (u32 *)ins_data;
2558         ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2559
2560         for (i = 0; i < nr; i++) {
2561                 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2562                 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2563         }
2564         ret = btrfs_insert_empty_items(trans, log, dst_path,
2565                                        ins_keys, ins_sizes, nr);
2566         BUG_ON(ret);
2567
2568         for (i = 0; i < nr; i++) {
2569                 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2570                                                    dst_path->slots[0]);
2571
2572                 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2573
2574                 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2575                                    src_offset, ins_sizes[i]);
2576
2577                 if (inode_only == LOG_INODE_EXISTS &&
2578                     ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2579                         inode_item = btrfs_item_ptr(dst_path->nodes[0],
2580                                                     dst_path->slots[0],
2581                                                     struct btrfs_inode_item);
2582                         btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2583
2584                         /* set the generation to zero so the recover code
2585                          * can tell the difference between an logging
2586                          * just to say 'this inode exists' and a logging
2587                          * to say 'update this inode with these values'
2588                          */
2589                         btrfs_set_inode_generation(dst_path->nodes[0],
2590                                                    inode_item, 0);
2591                 }
2592                 /* take a reference on file data extents so that truncates
2593                  * or deletes of this inode don't have to relog the inode
2594                  * again
2595                  */
2596                 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2597                         int found_type;
2598                         extent = btrfs_item_ptr(src, start_slot + i,
2599                                                 struct btrfs_file_extent_item);
2600
2601                         found_type = btrfs_file_extent_type(src, extent);
2602                         if (found_type == BTRFS_FILE_EXTENT_REG ||
2603                             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2604                                 u64 ds = btrfs_file_extent_disk_bytenr(src,
2605                                                                    extent);
2606                                 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2607                                                                       extent);
2608                                 u64 cs = btrfs_file_extent_offset(src, extent);
2609                                 u64 cl = btrfs_file_extent_num_bytes(src,
2610                                                                      extent);;
2611                                 if (btrfs_file_extent_compression(src,
2612                                                                   extent)) {
2613                                         cs = 0;
2614                                         cl = dl;
2615                                 }
2616                                 /* ds == 0 is a hole */
2617                                 if (ds != 0) {
2618                                         ret = btrfs_inc_extent_ref(trans, log,
2619                                                    ds, dl,
2620                                                    dst_path->nodes[0]->start,
2621                                                    BTRFS_TREE_LOG_OBJECTID,
2622                                                    trans->transid,
2623                                                    ins_keys[i].objectid);
2624                                         BUG_ON(ret);
2625                                         ret = copy_extent_csums(trans,
2626                                                 &ordered_sums,
2627                                                 log->fs_info->csum_root,
2628                                                 ds + cs, cl);
2629                                         BUG_ON(ret);
2630                                 }
2631                         }
2632                 }
2633                 dst_path->slots[0]++;
2634         }
2635
2636         btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2637         btrfs_release_path(log, dst_path);
2638         kfree(ins_data);
2639
2640         /*
2641          * we have to do this after the loop above to avoid changing the
2642          * log tree while trying to change the log tree.
2643          */
2644         while (!list_empty(&ordered_sums)) {
2645                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2646                                                    struct btrfs_ordered_sum,
2647                                                    list);
2648                 ret = btrfs_csum_file_blocks(trans, log, sums);
2649                 BUG_ON(ret);
2650                 list_del(&sums->list);
2651                 kfree(sums);
2652         }
2653         return 0;
2654 }
2655
2656 /* log a single inode in the tree log.
2657  * At least one parent directory for this inode must exist in the tree
2658  * or be logged already.
2659  *
2660  * Any items from this inode changed by the current transaction are copied
2661  * to the log tree.  An extra reference is taken on any extents in this
2662  * file, allowing us to avoid a whole pile of corner cases around logging
2663  * blocks that have been removed from the tree.
2664  *
2665  * See LOG_INODE_ALL and related defines for a description of what inode_only
2666  * does.
2667  *
2668  * This handles both files and directories.
2669  */
2670 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2671                              struct btrfs_root *root, struct inode *inode,
2672                              int inode_only)
2673 {
2674         struct btrfs_path *path;
2675         struct btrfs_path *dst_path;
2676         struct btrfs_key min_key;
2677         struct btrfs_key max_key;
2678         struct btrfs_root *log = root->log_root;
2679         struct extent_buffer *src = NULL;
2680         u32 size;
2681         int ret;
2682         int nritems;
2683         int ins_start_slot = 0;
2684         int ins_nr;
2685
2686         log = root->log_root;
2687
2688         path = btrfs_alloc_path();
2689         dst_path = btrfs_alloc_path();
2690
2691         min_key.objectid = inode->i_ino;
2692         min_key.type = BTRFS_INODE_ITEM_KEY;
2693         min_key.offset = 0;
2694
2695         max_key.objectid = inode->i_ino;
2696         if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2697                 max_key.type = BTRFS_XATTR_ITEM_KEY;
2698         else
2699                 max_key.type = (u8)-1;
2700         max_key.offset = (u64)-1;
2701
2702         /*
2703          * if this inode has already been logged and we're in inode_only
2704          * mode, we don't want to delete the things that have already
2705          * been written to the log.
2706          *
2707          * But, if the inode has been through an inode_only log,
2708          * the logged_trans field is not set.  This allows us to catch
2709          * any new names for this inode in the backrefs by logging it
2710          * again
2711          */
2712         if (inode_only == LOG_INODE_EXISTS &&
2713             BTRFS_I(inode)->logged_trans == trans->transid) {
2714                 btrfs_free_path(path);
2715                 btrfs_free_path(dst_path);
2716                 goto out;
2717         }
2718         mutex_lock(&BTRFS_I(inode)->log_mutex);
2719
2720         /*
2721          * a brute force approach to making sure we get the most uptodate
2722          * copies of everything.
2723          */
2724         if (S_ISDIR(inode->i_mode)) {
2725                 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2726
2727                 if (inode_only == LOG_INODE_EXISTS)
2728                         max_key_type = BTRFS_XATTR_ITEM_KEY;
2729                 ret = drop_objectid_items(trans, log, path,
2730                                           inode->i_ino, max_key_type);
2731         } else {
2732                 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2733         }
2734         BUG_ON(ret);
2735         path->keep_locks = 1;
2736
2737         while (1) {
2738                 ins_nr = 0;
2739                 ret = btrfs_search_forward(root, &min_key, &max_key,
2740                                            path, 0, trans->transid);
2741                 if (ret != 0)
2742                         break;
2743 again:
2744                 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2745                 if (min_key.objectid != inode->i_ino)
2746                         break;
2747                 if (min_key.type > max_key.type)
2748                         break;
2749
2750                 src = path->nodes[0];
2751                 size = btrfs_item_size_nr(src, path->slots[0]);
2752                 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2753                         ins_nr++;
2754                         goto next_slot;
2755                 } else if (!ins_nr) {
2756                         ins_start_slot = path->slots[0];
2757                         ins_nr = 1;
2758                         goto next_slot;
2759                 }
2760
2761                 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2762                                  ins_nr, inode_only);
2763                 BUG_ON(ret);
2764                 ins_nr = 1;
2765                 ins_start_slot = path->slots[0];
2766 next_slot:
2767
2768                 nritems = btrfs_header_nritems(path->nodes[0]);
2769                 path->slots[0]++;
2770                 if (path->slots[0] < nritems) {
2771                         btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2772                                               path->slots[0]);
2773                         goto again;
2774                 }
2775                 if (ins_nr) {
2776                         ret = copy_items(trans, log, dst_path, src,
2777                                          ins_start_slot,
2778                                          ins_nr, inode_only);
2779                         BUG_ON(ret);
2780                         ins_nr = 0;
2781                 }
2782                 btrfs_release_path(root, path);
2783
2784                 if (min_key.offset < (u64)-1)
2785                         min_key.offset++;
2786                 else if (min_key.type < (u8)-1)
2787                         min_key.type++;
2788                 else if (min_key.objectid < (u64)-1)
2789                         min_key.objectid++;
2790                 else
2791                         break;
2792         }
2793         if (ins_nr) {
2794                 ret = copy_items(trans, log, dst_path, src,
2795                                  ins_start_slot,
2796                                  ins_nr, inode_only);
2797                 BUG_ON(ret);
2798                 ins_nr = 0;
2799         }
2800         WARN_ON(ins_nr);
2801         if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2802                 btrfs_release_path(root, path);
2803                 btrfs_release_path(log, dst_path);
2804                 BTRFS_I(inode)->log_dirty_trans = 0;
2805                 ret = log_directory_changes(trans, root, inode, path, dst_path);
2806                 BUG_ON(ret);
2807         }
2808         BTRFS_I(inode)->logged_trans = trans->transid;
2809         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2810
2811         btrfs_free_path(path);
2812         btrfs_free_path(dst_path);
2813
2814         mutex_lock(&root->fs_info->tree_log_mutex);
2815         ret = update_log_root(trans, log);
2816         BUG_ON(ret);
2817         mutex_unlock(&root->fs_info->tree_log_mutex);
2818 out:
2819         return 0;
2820 }
2821
2822 int btrfs_log_inode(struct btrfs_trans_handle *trans,
2823                     struct btrfs_root *root, struct inode *inode,
2824                     int inode_only)
2825 {
2826         int ret;
2827
2828         start_log_trans(trans, root);
2829         ret = __btrfs_log_inode(trans, root, inode, inode_only);
2830         end_log_trans(root);
2831         return ret;
2832 }
2833
2834 /*
2835  * helper function around btrfs_log_inode to make sure newly created
2836  * parent directories also end up in the log.  A minimal inode and backref
2837  * only logging is done of any parent directories that are older than
2838  * the last committed transaction
2839  */
2840 int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2841                     struct btrfs_root *root, struct dentry *dentry)
2842 {
2843         int inode_only = LOG_INODE_ALL;
2844         struct super_block *sb;
2845         int ret;
2846
2847         start_log_trans(trans, root);
2848         sb = dentry->d_inode->i_sb;
2849         while (1) {
2850                 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2851                                         inode_only);
2852                 BUG_ON(ret);
2853                 inode_only = LOG_INODE_EXISTS;
2854
2855                 dentry = dentry->d_parent;
2856                 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2857                         break;
2858
2859                 if (BTRFS_I(dentry->d_inode)->generation <=
2860                     root->fs_info->last_trans_committed)
2861                         break;
2862         }
2863         end_log_trans(root);
2864         return 0;
2865 }
2866
2867 /*
2868  * it is not safe to log dentry if the chunk root has added new
2869  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
2870  * If this returns 1, you must commit the transaction to safely get your
2871  * data on disk.
2872  */
2873 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2874                           struct btrfs_root *root, struct dentry *dentry)
2875 {
2876         u64 gen;
2877         gen = root->fs_info->last_trans_new_blockgroup;
2878         if (gen > root->fs_info->last_trans_committed)
2879                 return 1;
2880         else
2881                 return btrfs_log_dentry(trans, root, dentry);
2882 }
2883
2884 /*
2885  * should be called during mount to recover any replay any log trees
2886  * from the FS
2887  */
2888 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2889 {
2890         int ret;
2891         struct btrfs_path *path;
2892         struct btrfs_trans_handle *trans;
2893         struct btrfs_key key;
2894         struct btrfs_key found_key;
2895         struct btrfs_key tmp_key;
2896         struct btrfs_root *log;
2897         struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2898         u64 highest_inode;
2899         struct walk_control wc = {
2900                 .process_func = process_one_buffer,
2901                 .stage = 0,
2902         };
2903
2904         fs_info->log_root_recovering = 1;
2905         path = btrfs_alloc_path();
2906         BUG_ON(!path);
2907
2908         trans = btrfs_start_transaction(fs_info->tree_root, 1);
2909
2910         wc.trans = trans;
2911         wc.pin = 1;
2912
2913         walk_log_tree(trans, log_root_tree, &wc);
2914
2915 again:
2916         key.objectid = BTRFS_TREE_LOG_OBJECTID;
2917         key.offset = (u64)-1;
2918         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2919
2920         while (1) {
2921                 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2922                 if (ret < 0)
2923                         break;
2924                 if (ret > 0) {
2925                         if (path->slots[0] == 0)
2926                                 break;
2927                         path->slots[0]--;
2928                 }
2929                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2930                                       path->slots[0]);
2931                 btrfs_release_path(log_root_tree, path);
2932                 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2933                         break;
2934
2935                 log = btrfs_read_fs_root_no_radix(log_root_tree,
2936                                                   &found_key);
2937                 BUG_ON(!log);
2938
2939
2940                 tmp_key.objectid = found_key.offset;
2941                 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2942                 tmp_key.offset = (u64)-1;
2943
2944                 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2945
2946                 BUG_ON(!wc.replay_dest);
2947
2948                 btrfs_record_root_in_trans(wc.replay_dest);
2949                 ret = walk_log_tree(trans, log, &wc);
2950                 BUG_ON(ret);
2951
2952                 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2953                         ret = fixup_inode_link_counts(trans, wc.replay_dest,
2954                                                       path);
2955                         BUG_ON(ret);
2956                 }
2957                 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2958                 if (ret == 0) {
2959                         wc.replay_dest->highest_inode = highest_inode;
2960                         wc.replay_dest->last_inode_alloc = highest_inode;
2961                 }
2962
2963                 key.offset = found_key.offset - 1;
2964                 free_extent_buffer(log->node);
2965                 kfree(log);
2966
2967                 if (found_key.offset == 0)
2968                         break;
2969         }
2970         btrfs_release_path(log_root_tree, path);
2971
2972         /* step one is to pin it all, step two is to replay just inodes */
2973         if (wc.pin) {
2974                 wc.pin = 0;
2975                 wc.process_func = replay_one_buffer;
2976                 wc.stage = LOG_WALK_REPLAY_INODES;
2977                 goto again;
2978         }
2979         /* step three is to replay everything */
2980         if (wc.stage < LOG_WALK_REPLAY_ALL) {
2981                 wc.stage++;
2982                 goto again;
2983         }
2984
2985         btrfs_free_path(path);
2986
2987         free_extent_buffer(log_root_tree->node);
2988         log_root_tree->log_root = NULL;
2989         fs_info->log_root_recovering = 0;
2990
2991         /* step 4: commit the transaction, which also unpins the blocks */
2992         btrfs_commit_transaction(trans, fs_info->tree_root);
2993
2994         kfree(log_root_tree);
2995         return 0;
2996 }