]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/btrfs/async-thread.c
Merge branch 'omap-clock-fixes' of git://git.pwsan.com/linux-2.6
[linux-2.6-omap-h63xx.git] / fs / btrfs / async-thread.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kthread.h>
20 #include <linux/list.h>
21 #include <linux/spinlock.h>
22 #include <linux/freezer.h>
23 #include "async-thread.h"
24
25 #define WORK_QUEUED_BIT 0
26 #define WORK_DONE_BIT 1
27 #define WORK_ORDER_DONE_BIT 2
28
29 /*
30  * container for the kthread task pointer and the list of pending work
31  * One of these is allocated per thread.
32  */
33 struct btrfs_worker_thread {
34         /* pool we belong to */
35         struct btrfs_workers *workers;
36
37         /* list of struct btrfs_work that are waiting for service */
38         struct list_head pending;
39
40         /* list of worker threads from struct btrfs_workers */
41         struct list_head worker_list;
42
43         /* kthread */
44         struct task_struct *task;
45
46         /* number of things on the pending list */
47         atomic_t num_pending;
48
49         unsigned long sequence;
50
51         /* protects the pending list. */
52         spinlock_t lock;
53
54         /* set to non-zero when this thread is already awake and kicking */
55         int working;
56
57         /* are we currently idle */
58         int idle;
59 };
60
61 /*
62  * helper function to move a thread onto the idle list after it
63  * has finished some requests.
64  */
65 static void check_idle_worker(struct btrfs_worker_thread *worker)
66 {
67         if (!worker->idle && atomic_read(&worker->num_pending) <
68             worker->workers->idle_thresh / 2) {
69                 unsigned long flags;
70                 spin_lock_irqsave(&worker->workers->lock, flags);
71                 worker->idle = 1;
72                 list_move(&worker->worker_list, &worker->workers->idle_list);
73                 spin_unlock_irqrestore(&worker->workers->lock, flags);
74         }
75 }
76
77 /*
78  * helper function to move a thread off the idle list after new
79  * pending work is added.
80  */
81 static void check_busy_worker(struct btrfs_worker_thread *worker)
82 {
83         if (worker->idle && atomic_read(&worker->num_pending) >=
84             worker->workers->idle_thresh) {
85                 unsigned long flags;
86                 spin_lock_irqsave(&worker->workers->lock, flags);
87                 worker->idle = 0;
88                 list_move_tail(&worker->worker_list,
89                                &worker->workers->worker_list);
90                 spin_unlock_irqrestore(&worker->workers->lock, flags);
91         }
92 }
93
94 static noinline int run_ordered_completions(struct btrfs_workers *workers,
95                                             struct btrfs_work *work)
96 {
97         unsigned long flags;
98
99         if (!workers->ordered)
100                 return 0;
101
102         set_bit(WORK_DONE_BIT, &work->flags);
103
104         spin_lock_irqsave(&workers->lock, flags);
105
106         while (!list_empty(&workers->order_list)) {
107                 work = list_entry(workers->order_list.next,
108                                   struct btrfs_work, order_list);
109
110                 if (!test_bit(WORK_DONE_BIT, &work->flags))
111                         break;
112
113                 /* we are going to call the ordered done function, but
114                  * we leave the work item on the list as a barrier so
115                  * that later work items that are done don't have their
116                  * functions called before this one returns
117                  */
118                 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
119                         break;
120
121                 spin_unlock_irqrestore(&workers->lock, flags);
122
123                 work->ordered_func(work);
124
125                 /* now take the lock again and call the freeing code */
126                 spin_lock_irqsave(&workers->lock, flags);
127                 list_del(&work->order_list);
128                 work->ordered_free(work);
129         }
130
131         spin_unlock_irqrestore(&workers->lock, flags);
132         return 0;
133 }
134
135 /*
136  * main loop for servicing work items
137  */
138 static int worker_loop(void *arg)
139 {
140         struct btrfs_worker_thread *worker = arg;
141         struct list_head *cur;
142         struct btrfs_work *work;
143         do {
144                 spin_lock_irq(&worker->lock);
145 again_locked:
146                 while (!list_empty(&worker->pending)) {
147                         cur = worker->pending.next;
148                         work = list_entry(cur, struct btrfs_work, list);
149                         list_del(&work->list);
150                         clear_bit(WORK_QUEUED_BIT, &work->flags);
151
152                         work->worker = worker;
153                         spin_unlock_irq(&worker->lock);
154
155                         work->func(work);
156
157                         atomic_dec(&worker->num_pending);
158                         /*
159                          * unless this is an ordered work queue,
160                          * 'work' was probably freed by func above.
161                          */
162                         run_ordered_completions(worker->workers, work);
163
164                         spin_lock_irq(&worker->lock);
165                         check_idle_worker(worker);
166
167                 }
168                 if (freezing(current)) {
169                         worker->working = 0;
170                         spin_unlock_irq(&worker->lock);
171                         refrigerator();
172                 } else {
173                         spin_unlock_irq(&worker->lock);
174                         if (!kthread_should_stop()) {
175                                 cpu_relax();
176                                 /*
177                                  * we've dropped the lock, did someone else
178                                  * jump_in?
179                                  */
180                                 smp_mb();
181                                 if (!list_empty(&worker->pending))
182                                         continue;
183
184                                 /*
185                                  * this short schedule allows more work to
186                                  * come in without the queue functions
187                                  * needing to go through wake_up_process()
188                                  *
189                                  * worker->working is still 1, so nobody
190                                  * is going to try and wake us up
191                                  */
192                                 schedule_timeout(1);
193                                 smp_mb();
194                                 if (!list_empty(&worker->pending))
195                                         continue;
196
197                                 if (kthread_should_stop())
198                                         break;
199
200                                 /* still no more work?, sleep for real */
201                                 spin_lock_irq(&worker->lock);
202                                 set_current_state(TASK_INTERRUPTIBLE);
203                                 if (!list_empty(&worker->pending))
204                                         goto again_locked;
205
206                                 /*
207                                  * this makes sure we get a wakeup when someone
208                                  * adds something new to the queue
209                                  */
210                                 worker->working = 0;
211                                 spin_unlock_irq(&worker->lock);
212
213                                 if (!kthread_should_stop())
214                                         schedule();
215                         }
216                         __set_current_state(TASK_RUNNING);
217                 }
218         } while (!kthread_should_stop());
219         return 0;
220 }
221
222 /*
223  * this will wait for all the worker threads to shutdown
224  */
225 int btrfs_stop_workers(struct btrfs_workers *workers)
226 {
227         struct list_head *cur;
228         struct btrfs_worker_thread *worker;
229
230         list_splice_init(&workers->idle_list, &workers->worker_list);
231         while (!list_empty(&workers->worker_list)) {
232                 cur = workers->worker_list.next;
233                 worker = list_entry(cur, struct btrfs_worker_thread,
234                                     worker_list);
235                 kthread_stop(worker->task);
236                 list_del(&worker->worker_list);
237                 kfree(worker);
238         }
239         return 0;
240 }
241
242 /*
243  * simple init on struct btrfs_workers
244  */
245 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max)
246 {
247         workers->num_workers = 0;
248         INIT_LIST_HEAD(&workers->worker_list);
249         INIT_LIST_HEAD(&workers->idle_list);
250         INIT_LIST_HEAD(&workers->order_list);
251         spin_lock_init(&workers->lock);
252         workers->max_workers = max;
253         workers->idle_thresh = 32;
254         workers->name = name;
255         workers->ordered = 0;
256 }
257
258 /*
259  * starts new worker threads.  This does not enforce the max worker
260  * count in case you need to temporarily go past it.
261  */
262 int btrfs_start_workers(struct btrfs_workers *workers, int num_workers)
263 {
264         struct btrfs_worker_thread *worker;
265         int ret = 0;
266         int i;
267
268         for (i = 0; i < num_workers; i++) {
269                 worker = kzalloc(sizeof(*worker), GFP_NOFS);
270                 if (!worker) {
271                         ret = -ENOMEM;
272                         goto fail;
273                 }
274
275                 INIT_LIST_HEAD(&worker->pending);
276                 INIT_LIST_HEAD(&worker->worker_list);
277                 spin_lock_init(&worker->lock);
278                 atomic_set(&worker->num_pending, 0);
279                 worker->task = kthread_run(worker_loop, worker,
280                                            "btrfs-%s-%d", workers->name,
281                                            workers->num_workers + i);
282                 worker->workers = workers;
283                 if (IS_ERR(worker->task)) {
284                         kfree(worker);
285                         ret = PTR_ERR(worker->task);
286                         goto fail;
287                 }
288
289                 spin_lock_irq(&workers->lock);
290                 list_add_tail(&worker->worker_list, &workers->idle_list);
291                 worker->idle = 1;
292                 workers->num_workers++;
293                 spin_unlock_irq(&workers->lock);
294         }
295         return 0;
296 fail:
297         btrfs_stop_workers(workers);
298         return ret;
299 }
300
301 /*
302  * run through the list and find a worker thread that doesn't have a lot
303  * to do right now.  This can return null if we aren't yet at the thread
304  * count limit and all of the threads are busy.
305  */
306 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
307 {
308         struct btrfs_worker_thread *worker;
309         struct list_head *next;
310         int enforce_min = workers->num_workers < workers->max_workers;
311
312         /*
313          * if we find an idle thread, don't move it to the end of the
314          * idle list.  This improves the chance that the next submission
315          * will reuse the same thread, and maybe catch it while it is still
316          * working
317          */
318         if (!list_empty(&workers->idle_list)) {
319                 next = workers->idle_list.next;
320                 worker = list_entry(next, struct btrfs_worker_thread,
321                                     worker_list);
322                 return worker;
323         }
324         if (enforce_min || list_empty(&workers->worker_list))
325                 return NULL;
326
327         /*
328          * if we pick a busy task, move the task to the end of the list.
329          * hopefully this will keep things somewhat evenly balanced.
330          * Do the move in batches based on the sequence number.  This groups
331          * requests submitted at roughly the same time onto the same worker.
332          */
333         next = workers->worker_list.next;
334         worker = list_entry(next, struct btrfs_worker_thread, worker_list);
335         atomic_inc(&worker->num_pending);
336         worker->sequence++;
337
338         if (worker->sequence % workers->idle_thresh == 0)
339                 list_move_tail(next, &workers->worker_list);
340         return worker;
341 }
342
343 /*
344  * selects a worker thread to take the next job.  This will either find
345  * an idle worker, start a new worker up to the max count, or just return
346  * one of the existing busy workers.
347  */
348 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
349 {
350         struct btrfs_worker_thread *worker;
351         unsigned long flags;
352
353 again:
354         spin_lock_irqsave(&workers->lock, flags);
355         worker = next_worker(workers);
356         spin_unlock_irqrestore(&workers->lock, flags);
357
358         if (!worker) {
359                 spin_lock_irqsave(&workers->lock, flags);
360                 if (workers->num_workers >= workers->max_workers) {
361                         struct list_head *fallback = NULL;
362                         /*
363                          * we have failed to find any workers, just
364                          * return the force one
365                          */
366                         if (!list_empty(&workers->worker_list))
367                                 fallback = workers->worker_list.next;
368                         if (!list_empty(&workers->idle_list))
369                                 fallback = workers->idle_list.next;
370                         BUG_ON(!fallback);
371                         worker = list_entry(fallback,
372                                   struct btrfs_worker_thread, worker_list);
373                         spin_unlock_irqrestore(&workers->lock, flags);
374                 } else {
375                         spin_unlock_irqrestore(&workers->lock, flags);
376                         /* we're below the limit, start another worker */
377                         btrfs_start_workers(workers, 1);
378                         goto again;
379                 }
380         }
381         return worker;
382 }
383
384 /*
385  * btrfs_requeue_work just puts the work item back on the tail of the list
386  * it was taken from.  It is intended for use with long running work functions
387  * that make some progress and want to give the cpu up for others.
388  */
389 int btrfs_requeue_work(struct btrfs_work *work)
390 {
391         struct btrfs_worker_thread *worker = work->worker;
392         unsigned long flags;
393         int wake = 0;
394
395         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
396                 goto out;
397
398         spin_lock_irqsave(&worker->lock, flags);
399         list_add_tail(&work->list, &worker->pending);
400         atomic_inc(&worker->num_pending);
401
402         /* by definition we're busy, take ourselves off the idle
403          * list
404          */
405         if (worker->idle) {
406                 spin_lock_irqsave(&worker->workers->lock, flags);
407                 worker->idle = 0;
408                 list_move_tail(&worker->worker_list,
409                                &worker->workers->worker_list);
410                 spin_unlock_irqrestore(&worker->workers->lock, flags);
411         }
412         if (!worker->working) {
413                 wake = 1;
414                 worker->working = 1;
415         }
416
417         spin_unlock_irqrestore(&worker->lock, flags);
418         if (wake)
419                 wake_up_process(worker->task);
420 out:
421
422         return 0;
423 }
424
425 /*
426  * places a struct btrfs_work into the pending queue of one of the kthreads
427  */
428 int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
429 {
430         struct btrfs_worker_thread *worker;
431         unsigned long flags;
432         int wake = 0;
433
434         /* don't requeue something already on a list */
435         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
436                 goto out;
437
438         worker = find_worker(workers);
439         if (workers->ordered) {
440                 spin_lock_irqsave(&workers->lock, flags);
441                 list_add_tail(&work->order_list, &workers->order_list);
442                 spin_unlock_irqrestore(&workers->lock, flags);
443         } else {
444                 INIT_LIST_HEAD(&work->order_list);
445         }
446
447         spin_lock_irqsave(&worker->lock, flags);
448
449         list_add_tail(&work->list, &worker->pending);
450         atomic_inc(&worker->num_pending);
451         check_busy_worker(worker);
452
453         /*
454          * avoid calling into wake_up_process if this thread has already
455          * been kicked
456          */
457         if (!worker->working)
458                 wake = 1;
459         worker->working = 1;
460
461         spin_unlock_irqrestore(&worker->lock, flags);
462
463         if (wake)
464                 wake_up_process(worker->task);
465 out:
466         return 0;
467 }