]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/usb/core/hcd.c
Fix nfsd truncation of readdir results
[linux-2.6-omap-h63xx.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
78  *              associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
80  */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS              64
94 struct usb_busmap {
95         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* wait queue for synchronous unlinks */
110 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
111
112 static inline int is_root_hub(struct usb_device *udev)
113 {
114         return (udev->parent == NULL);
115 }
116
117 /*-------------------------------------------------------------------------*/
118
119 /*
120  * Sharable chunks of root hub code.
121  */
122
123 /*-------------------------------------------------------------------------*/
124
125 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
126 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
127
128 /* usb 2.0 root hub device descriptor */
129 static const u8 usb2_rh_dev_descriptor [18] = {
130         0x12,       /*  __u8  bLength; */
131         0x01,       /*  __u8  bDescriptorType; Device */
132         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
133
134         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
135         0x00,       /*  __u8  bDeviceSubClass; */
136         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
137         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
138
139         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
140         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
141         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
142
143         0x03,       /*  __u8  iManufacturer; */
144         0x02,       /*  __u8  iProduct; */
145         0x01,       /*  __u8  iSerialNumber; */
146         0x01        /*  __u8  bNumConfigurations; */
147 };
148
149 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
150
151 /* usb 1.1 root hub device descriptor */
152 static const u8 usb11_rh_dev_descriptor [18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
160         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172
173 /*-------------------------------------------------------------------------*/
174
175 /* Configuration descriptors for our root hubs */
176
177 static const u8 fs_rh_config_descriptor [] = {
178
179         /* one configuration */
180         0x09,       /*  __u8  bLength; */
181         0x02,       /*  __u8  bDescriptorType; Configuration */
182         0x19, 0x00, /*  __le16 wTotalLength; */
183         0x01,       /*  __u8  bNumInterfaces; (1) */
184         0x01,       /*  __u8  bConfigurationValue; */
185         0x00,       /*  __u8  iConfiguration; */
186         0xc0,       /*  __u8  bmAttributes; 
187                                  Bit 7: must be set,
188                                      6: Self-powered,
189                                      5: Remote wakeup,
190                                      4..0: resvd */
191         0x00,       /*  __u8  MaxPower; */
192       
193         /* USB 1.1:
194          * USB 2.0, single TT organization (mandatory):
195          *      one interface, protocol 0
196          *
197          * USB 2.0, multiple TT organization (optional):
198          *      two interfaces, protocols 1 (like single TT)
199          *      and 2 (multiple TT mode) ... config is
200          *      sometimes settable
201          *      NOT IMPLEMENTED
202          */
203
204         /* one interface */
205         0x09,       /*  __u8  if_bLength; */
206         0x04,       /*  __u8  if_bDescriptorType; Interface */
207         0x00,       /*  __u8  if_bInterfaceNumber; */
208         0x00,       /*  __u8  if_bAlternateSetting; */
209         0x01,       /*  __u8  if_bNumEndpoints; */
210         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
211         0x00,       /*  __u8  if_bInterfaceSubClass; */
212         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
213         0x00,       /*  __u8  if_iInterface; */
214      
215         /* one endpoint (status change endpoint) */
216         0x07,       /*  __u8  ep_bLength; */
217         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
218         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
219         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
220         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
221         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
222 };
223
224 static const u8 hs_rh_config_descriptor [] = {
225
226         /* one configuration */
227         0x09,       /*  __u8  bLength; */
228         0x02,       /*  __u8  bDescriptorType; Configuration */
229         0x19, 0x00, /*  __le16 wTotalLength; */
230         0x01,       /*  __u8  bNumInterfaces; (1) */
231         0x01,       /*  __u8  bConfigurationValue; */
232         0x00,       /*  __u8  iConfiguration; */
233         0xc0,       /*  __u8  bmAttributes; 
234                                  Bit 7: must be set,
235                                      6: Self-powered,
236                                      5: Remote wakeup,
237                                      4..0: resvd */
238         0x00,       /*  __u8  MaxPower; */
239       
240         /* USB 1.1:
241          * USB 2.0, single TT organization (mandatory):
242          *      one interface, protocol 0
243          *
244          * USB 2.0, multiple TT organization (optional):
245          *      two interfaces, protocols 1 (like single TT)
246          *      and 2 (multiple TT mode) ... config is
247          *      sometimes settable
248          *      NOT IMPLEMENTED
249          */
250
251         /* one interface */
252         0x09,       /*  __u8  if_bLength; */
253         0x04,       /*  __u8  if_bDescriptorType; Interface */
254         0x00,       /*  __u8  if_bInterfaceNumber; */
255         0x00,       /*  __u8  if_bAlternateSetting; */
256         0x01,       /*  __u8  if_bNumEndpoints; */
257         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
258         0x00,       /*  __u8  if_bInterfaceSubClass; */
259         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
260         0x00,       /*  __u8  if_iInterface; */
261      
262         /* one endpoint (status change endpoint) */
263         0x07,       /*  __u8  ep_bLength; */
264         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
265         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
266         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
267                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
268                      * see hub.c:hub_configure() for details. */
269         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
270         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
271 };
272
273 /*-------------------------------------------------------------------------*/
274
275 /*
276  * helper routine for returning string descriptors in UTF-16LE
277  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
278  */
279 static int ascii2utf (char *s, u8 *utf, int utfmax)
280 {
281         int retval;
282
283         for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
284                 *utf++ = *s++;
285                 *utf++ = 0;
286         }
287         if (utfmax > 0) {
288                 *utf = *s;
289                 ++retval;
290         }
291         return retval;
292 }
293
294 /*
295  * rh_string - provides manufacturer, product and serial strings for root hub
296  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
297  * @hcd: the host controller for this root hub
298  * @data: return packet in UTF-16 LE
299  * @len: length of the return packet
300  *
301  * Produces either a manufacturer, product or serial number string for the
302  * virtual root hub device.
303  */
304 static int rh_string (
305         int             id,
306         struct usb_hcd  *hcd,
307         u8              *data,
308         int             len
309 ) {
310         char buf [100];
311
312         // language ids
313         if (id == 0) {
314                 buf[0] = 4;    buf[1] = 3;      /* 4 bytes string data */
315                 buf[2] = 0x09; buf[3] = 0x04;   /* MSFT-speak for "en-us" */
316                 len = min (len, 4);
317                 memcpy (data, buf, len);
318                 return len;
319
320         // serial number
321         } else if (id == 1) {
322                 strlcpy (buf, hcd->self.bus_name, sizeof buf);
323
324         // product description
325         } else if (id == 2) {
326                 strlcpy (buf, hcd->product_desc, sizeof buf);
327
328         // id 3 == vendor description
329         } else if (id == 3) {
330                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
331                         init_utsname()->release, hcd->driver->description);
332
333         // unsupported IDs --> "protocol stall"
334         } else
335                 return -EPIPE;
336
337         switch (len) {          /* All cases fall through */
338         default:
339                 len = 2 + ascii2utf (buf, data + 2, len - 2);
340         case 2:
341                 data [1] = 3;   /* type == string */
342         case 1:
343                 data [0] = 2 * (strlen (buf) + 1);
344         case 0:
345                 ;               /* Compiler wants a statement here */
346         }
347         return len;
348 }
349
350
351 /* Root hub control transfers execute synchronously */
352 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
353 {
354         struct usb_ctrlrequest *cmd;
355         u16             typeReq, wValue, wIndex, wLength;
356         u8              *ubuf = urb->transfer_buffer;
357         u8              tbuf [sizeof (struct usb_hub_descriptor)]
358                 __attribute__((aligned(4)));
359         const u8        *bufp = tbuf;
360         int             len = 0;
361         int             status;
362         int             n;
363         u8              patch_wakeup = 0;
364         u8              patch_protocol = 0;
365
366         might_sleep();
367
368         spin_lock_irq(&hcd_root_hub_lock);
369         status = usb_hcd_link_urb_to_ep(hcd, urb);
370         spin_unlock_irq(&hcd_root_hub_lock);
371         if (status)
372                 return status;
373         urb->hcpriv = hcd;      /* Indicate it's queued */
374
375         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
376         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
377         wValue   = le16_to_cpu (cmd->wValue);
378         wIndex   = le16_to_cpu (cmd->wIndex);
379         wLength  = le16_to_cpu (cmd->wLength);
380
381         if (wLength > urb->transfer_buffer_length)
382                 goto error;
383
384         urb->actual_length = 0;
385         switch (typeReq) {
386
387         /* DEVICE REQUESTS */
388
389         /* The root hub's remote wakeup enable bit is implemented using
390          * driver model wakeup flags.  If this system supports wakeup
391          * through USB, userspace may change the default "allow wakeup"
392          * policy through sysfs or these calls.
393          *
394          * Most root hubs support wakeup from downstream devices, for
395          * runtime power management (disabling USB clocks and reducing
396          * VBUS power usage).  However, not all of them do so; silicon,
397          * board, and BIOS bugs here are not uncommon, so these can't
398          * be treated quite like external hubs.
399          *
400          * Likewise, not all root hubs will pass wakeup events upstream,
401          * to wake up the whole system.  So don't assume root hub and
402          * controller capabilities are identical.
403          */
404
405         case DeviceRequest | USB_REQ_GET_STATUS:
406                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
407                                         << USB_DEVICE_REMOTE_WAKEUP)
408                                 | (1 << USB_DEVICE_SELF_POWERED);
409                 tbuf [1] = 0;
410                 len = 2;
411                 break;
412         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
413                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
414                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
415                 else
416                         goto error;
417                 break;
418         case DeviceOutRequest | USB_REQ_SET_FEATURE:
419                 if (device_can_wakeup(&hcd->self.root_hub->dev)
420                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
421                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
422                 else
423                         goto error;
424                 break;
425         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
426                 tbuf [0] = 1;
427                 len = 1;
428                         /* FALLTHROUGH */
429         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
430                 break;
431         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
432                 switch (wValue & 0xff00) {
433                 case USB_DT_DEVICE << 8:
434                         if (hcd->driver->flags & HCD_USB2)
435                                 bufp = usb2_rh_dev_descriptor;
436                         else if (hcd->driver->flags & HCD_USB11)
437                                 bufp = usb11_rh_dev_descriptor;
438                         else
439                                 goto error;
440                         len = 18;
441                         if (hcd->has_tt)
442                                 patch_protocol = 1;
443                         break;
444                 case USB_DT_CONFIG << 8:
445                         if (hcd->driver->flags & HCD_USB2) {
446                                 bufp = hs_rh_config_descriptor;
447                                 len = sizeof hs_rh_config_descriptor;
448                         } else {
449                                 bufp = fs_rh_config_descriptor;
450                                 len = sizeof fs_rh_config_descriptor;
451                         }
452                         if (device_can_wakeup(&hcd->self.root_hub->dev))
453                                 patch_wakeup = 1;
454                         break;
455                 case USB_DT_STRING << 8:
456                         n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
457                         if (n < 0)
458                                 goto error;
459                         urb->actual_length = n;
460                         break;
461                 default:
462                         goto error;
463                 }
464                 break;
465         case DeviceRequest | USB_REQ_GET_INTERFACE:
466                 tbuf [0] = 0;
467                 len = 1;
468                         /* FALLTHROUGH */
469         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
470                 break;
471         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
472                 // wValue == urb->dev->devaddr
473                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
474                         wValue);
475                 break;
476
477         /* INTERFACE REQUESTS (no defined feature/status flags) */
478
479         /* ENDPOINT REQUESTS */
480
481         case EndpointRequest | USB_REQ_GET_STATUS:
482                 // ENDPOINT_HALT flag
483                 tbuf [0] = 0;
484                 tbuf [1] = 0;
485                 len = 2;
486                         /* FALLTHROUGH */
487         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
488         case EndpointOutRequest | USB_REQ_SET_FEATURE:
489                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
490                 break;
491
492         /* CLASS REQUESTS (and errors) */
493
494         default:
495                 /* non-generic request */
496                 switch (typeReq) {
497                 case GetHubStatus:
498                 case GetPortStatus:
499                         len = 4;
500                         break;
501                 case GetHubDescriptor:
502                         len = sizeof (struct usb_hub_descriptor);
503                         break;
504                 }
505                 status = hcd->driver->hub_control (hcd,
506                         typeReq, wValue, wIndex,
507                         tbuf, wLength);
508                 break;
509 error:
510                 /* "protocol stall" on error */
511                 status = -EPIPE;
512         }
513
514         if (status) {
515                 len = 0;
516                 if (status != -EPIPE) {
517                         dev_dbg (hcd->self.controller,
518                                 "CTRL: TypeReq=0x%x val=0x%x "
519                                 "idx=0x%x len=%d ==> %d\n",
520                                 typeReq, wValue, wIndex,
521                                 wLength, status);
522                 }
523         }
524         if (len) {
525                 if (urb->transfer_buffer_length < len)
526                         len = urb->transfer_buffer_length;
527                 urb->actual_length = len;
528                 // always USB_DIR_IN, toward host
529                 memcpy (ubuf, bufp, len);
530
531                 /* report whether RH hardware supports remote wakeup */
532                 if (patch_wakeup &&
533                                 len > offsetof (struct usb_config_descriptor,
534                                                 bmAttributes))
535                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
536                                 |= USB_CONFIG_ATT_WAKEUP;
537
538                 /* report whether RH hardware has an integrated TT */
539                 if (patch_protocol &&
540                                 len > offsetof(struct usb_device_descriptor,
541                                                 bDeviceProtocol))
542                         ((struct usb_device_descriptor *) ubuf)->
543                                         bDeviceProtocol = 1;
544         }
545
546         /* any errors get returned through the urb completion */
547         spin_lock_irq(&hcd_root_hub_lock);
548         usb_hcd_unlink_urb_from_ep(hcd, urb);
549
550         /* This peculiar use of spinlocks echoes what real HC drivers do.
551          * Avoiding calls to local_irq_disable/enable makes the code
552          * RT-friendly.
553          */
554         spin_unlock(&hcd_root_hub_lock);
555         usb_hcd_giveback_urb(hcd, urb, status);
556         spin_lock(&hcd_root_hub_lock);
557
558         spin_unlock_irq(&hcd_root_hub_lock);
559         return 0;
560 }
561
562 /*-------------------------------------------------------------------------*/
563
564 /*
565  * Root Hub interrupt transfers are polled using a timer if the
566  * driver requests it; otherwise the driver is responsible for
567  * calling usb_hcd_poll_rh_status() when an event occurs.
568  *
569  * Completions are called in_interrupt(), but they may or may not
570  * be in_irq().
571  */
572 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
573 {
574         struct urb      *urb;
575         int             length;
576         unsigned long   flags;
577         char            buffer[4];      /* Any root hubs with > 31 ports? */
578
579         if (unlikely(!hcd->rh_registered))
580                 return;
581         if (!hcd->uses_new_polling && !hcd->status_urb)
582                 return;
583
584         length = hcd->driver->hub_status_data(hcd, buffer);
585         if (length > 0) {
586
587                 /* try to complete the status urb */
588                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
589                 urb = hcd->status_urb;
590                 if (urb) {
591                         hcd->poll_pending = 0;
592                         hcd->status_urb = NULL;
593                         urb->actual_length = length;
594                         memcpy(urb->transfer_buffer, buffer, length);
595
596                         usb_hcd_unlink_urb_from_ep(hcd, urb);
597                         spin_unlock(&hcd_root_hub_lock);
598                         usb_hcd_giveback_urb(hcd, urb, 0);
599                         spin_lock(&hcd_root_hub_lock);
600                 } else {
601                         length = 0;
602                         hcd->poll_pending = 1;
603                 }
604                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
605         }
606
607         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
608          * exceed that limit if HZ is 100. The math is more clunky than
609          * maybe expected, this is to make sure that all timers for USB devices
610          * fire at the same time to give the CPU a break inbetween */
611         if (hcd->uses_new_polling ? hcd->poll_rh :
612                         (length == 0 && hcd->status_urb != NULL))
613                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
614 }
615 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
616
617 /* timer callback */
618 static void rh_timer_func (unsigned long _hcd)
619 {
620         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
621 }
622
623 /*-------------------------------------------------------------------------*/
624
625 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
626 {
627         int             retval;
628         unsigned long   flags;
629         int             len = 1 + (urb->dev->maxchild / 8);
630
631         spin_lock_irqsave (&hcd_root_hub_lock, flags);
632         if (hcd->status_urb || urb->transfer_buffer_length < len) {
633                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
634                 retval = -EINVAL;
635                 goto done;
636         }
637
638         retval = usb_hcd_link_urb_to_ep(hcd, urb);
639         if (retval)
640                 goto done;
641
642         hcd->status_urb = urb;
643         urb->hcpriv = hcd;      /* indicate it's queued */
644         if (!hcd->uses_new_polling)
645                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
646
647         /* If a status change has already occurred, report it ASAP */
648         else if (hcd->poll_pending)
649                 mod_timer(&hcd->rh_timer, jiffies);
650         retval = 0;
651  done:
652         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
653         return retval;
654 }
655
656 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
657 {
658         if (usb_endpoint_xfer_int(&urb->ep->desc))
659                 return rh_queue_status (hcd, urb);
660         if (usb_endpoint_xfer_control(&urb->ep->desc))
661                 return rh_call_control (hcd, urb);
662         return -EINVAL;
663 }
664
665 /*-------------------------------------------------------------------------*/
666
667 /* Unlinks of root-hub control URBs are legal, but they don't do anything
668  * since these URBs always execute synchronously.
669  */
670 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
671 {
672         unsigned long   flags;
673         int             rc;
674
675         spin_lock_irqsave(&hcd_root_hub_lock, flags);
676         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
677         if (rc)
678                 goto done;
679
680         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
681                 ;       /* Do nothing */
682
683         } else {                                /* Status URB */
684                 if (!hcd->uses_new_polling)
685                         del_timer (&hcd->rh_timer);
686                 if (urb == hcd->status_urb) {
687                         hcd->status_urb = NULL;
688                         usb_hcd_unlink_urb_from_ep(hcd, urb);
689
690                         spin_unlock(&hcd_root_hub_lock);
691                         usb_hcd_giveback_urb(hcd, urb, status);
692                         spin_lock(&hcd_root_hub_lock);
693                 }
694         }
695  done:
696         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
697         return rc;
698 }
699
700
701
702 /*
703  * Show & store the current value of authorized_default
704  */
705 static ssize_t usb_host_authorized_default_show(struct device *dev,
706                                                 struct device_attribute *attr,
707                                                 char *buf)
708 {
709         struct usb_device *rh_usb_dev = to_usb_device(dev);
710         struct usb_bus *usb_bus = rh_usb_dev->bus;
711         struct usb_hcd *usb_hcd;
712
713         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
714                 return -ENODEV;
715         usb_hcd = bus_to_hcd(usb_bus);
716         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
717 }
718
719 static ssize_t usb_host_authorized_default_store(struct device *dev,
720                                                  struct device_attribute *attr,
721                                                  const char *buf, size_t size)
722 {
723         ssize_t result;
724         unsigned val;
725         struct usb_device *rh_usb_dev = to_usb_device(dev);
726         struct usb_bus *usb_bus = rh_usb_dev->bus;
727         struct usb_hcd *usb_hcd;
728
729         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
730                 return -ENODEV;
731         usb_hcd = bus_to_hcd(usb_bus);
732         result = sscanf(buf, "%u\n", &val);
733         if (result == 1) {
734                 usb_hcd->authorized_default = val? 1 : 0;
735                 result = size;
736         }
737         else
738                 result = -EINVAL;
739         return result;
740 }
741
742 static DEVICE_ATTR(authorized_default, 0644,
743             usb_host_authorized_default_show,
744             usb_host_authorized_default_store);
745
746
747 /* Group all the USB bus attributes */
748 static struct attribute *usb_bus_attrs[] = {
749                 &dev_attr_authorized_default.attr,
750                 NULL,
751 };
752
753 static struct attribute_group usb_bus_attr_group = {
754         .name = NULL,   /* we want them in the same directory */
755         .attrs = usb_bus_attrs,
756 };
757
758
759
760 /*-------------------------------------------------------------------------*/
761
762 static struct class *usb_host_class;
763
764 int usb_host_init(void)
765 {
766         int retval = 0;
767
768         usb_host_class = class_create(THIS_MODULE, "usb_host");
769         if (IS_ERR(usb_host_class))
770                 retval = PTR_ERR(usb_host_class);
771         return retval;
772 }
773
774 void usb_host_cleanup(void)
775 {
776         class_destroy(usb_host_class);
777 }
778
779 /**
780  * usb_bus_init - shared initialization code
781  * @bus: the bus structure being initialized
782  *
783  * This code is used to initialize a usb_bus structure, memory for which is
784  * separately managed.
785  */
786 static void usb_bus_init (struct usb_bus *bus)
787 {
788         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
789
790         bus->devnum_next = 1;
791
792         bus->root_hub = NULL;
793         bus->busnum = -1;
794         bus->bandwidth_allocated = 0;
795         bus->bandwidth_int_reqs  = 0;
796         bus->bandwidth_isoc_reqs = 0;
797
798         INIT_LIST_HEAD (&bus->bus_list);
799 }
800
801 /*-------------------------------------------------------------------------*/
802
803 /**
804  * usb_register_bus - registers the USB host controller with the usb core
805  * @bus: pointer to the bus to register
806  * Context: !in_interrupt()
807  *
808  * Assigns a bus number, and links the controller into usbcore data
809  * structures so that it can be seen by scanning the bus list.
810  */
811 static int usb_register_bus(struct usb_bus *bus)
812 {
813         int result = -E2BIG;
814         int busnum;
815
816         mutex_lock(&usb_bus_list_lock);
817         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
818         if (busnum >= USB_MAXBUS) {
819                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
820                 goto error_find_busnum;
821         }
822         set_bit (busnum, busmap.busmap);
823         bus->busnum = busnum;
824
825         bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
826                                  bus, "usb_host%d", busnum);
827         result = PTR_ERR(bus->dev);
828         if (IS_ERR(bus->dev))
829                 goto error_create_class_dev;
830
831         /* Add it to the local list of buses */
832         list_add (&bus->bus_list, &usb_bus_list);
833         mutex_unlock(&usb_bus_list_lock);
834
835         usb_notify_add_bus(bus);
836
837         dev_info (bus->controller, "new USB bus registered, assigned bus "
838                   "number %d\n", bus->busnum);
839         return 0;
840
841 error_create_class_dev:
842         clear_bit(busnum, busmap.busmap);
843 error_find_busnum:
844         mutex_unlock(&usb_bus_list_lock);
845         return result;
846 }
847
848 /**
849  * usb_deregister_bus - deregisters the USB host controller
850  * @bus: pointer to the bus to deregister
851  * Context: !in_interrupt()
852  *
853  * Recycles the bus number, and unlinks the controller from usbcore data
854  * structures so that it won't be seen by scanning the bus list.
855  */
856 static void usb_deregister_bus (struct usb_bus *bus)
857 {
858         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
859
860         /*
861          * NOTE: make sure that all the devices are removed by the
862          * controller code, as well as having it call this when cleaning
863          * itself up
864          */
865         mutex_lock(&usb_bus_list_lock);
866         list_del (&bus->bus_list);
867         mutex_unlock(&usb_bus_list_lock);
868
869         usb_notify_remove_bus(bus);
870
871         clear_bit (bus->busnum, busmap.busmap);
872
873         device_unregister(bus->dev);
874 }
875
876 /**
877  * register_root_hub - called by usb_add_hcd() to register a root hub
878  * @hcd: host controller for this root hub
879  *
880  * This function registers the root hub with the USB subsystem.  It sets up
881  * the device properly in the device tree and then calls usb_new_device()
882  * to register the usb device.  It also assigns the root hub's USB address
883  * (always 1).
884  */
885 static int register_root_hub(struct usb_hcd *hcd)
886 {
887         struct device *parent_dev = hcd->self.controller;
888         struct usb_device *usb_dev = hcd->self.root_hub;
889         const int devnum = 1;
890         int retval;
891
892         usb_dev->devnum = devnum;
893         usb_dev->bus->devnum_next = devnum + 1;
894         memset (&usb_dev->bus->devmap.devicemap, 0,
895                         sizeof usb_dev->bus->devmap.devicemap);
896         set_bit (devnum, usb_dev->bus->devmap.devicemap);
897         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
898
899         mutex_lock(&usb_bus_list_lock);
900
901         usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
902         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
903         if (retval != sizeof usb_dev->descriptor) {
904                 mutex_unlock(&usb_bus_list_lock);
905                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
906                                 dev_name(&usb_dev->dev), retval);
907                 return (retval < 0) ? retval : -EMSGSIZE;
908         }
909
910         retval = usb_new_device (usb_dev);
911         if (retval) {
912                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
913                                 dev_name(&usb_dev->dev), retval);
914         }
915         mutex_unlock(&usb_bus_list_lock);
916
917         if (retval == 0) {
918                 spin_lock_irq (&hcd_root_hub_lock);
919                 hcd->rh_registered = 1;
920                 spin_unlock_irq (&hcd_root_hub_lock);
921
922                 /* Did the HC die before the root hub was registered? */
923                 if (hcd->state == HC_STATE_HALT)
924                         usb_hc_died (hcd);      /* This time clean up */
925         }
926
927         return retval;
928 }
929
930
931 /*-------------------------------------------------------------------------*/
932
933 /**
934  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
935  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
936  * @is_input: true iff the transaction sends data to the host
937  * @isoc: true for isochronous transactions, false for interrupt ones
938  * @bytecount: how many bytes in the transaction.
939  *
940  * Returns approximate bus time in nanoseconds for a periodic transaction.
941  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
942  * scheduled in software, this function is only used for such scheduling.
943  */
944 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
945 {
946         unsigned long   tmp;
947
948         switch (speed) {
949         case USB_SPEED_LOW:     /* INTR only */
950                 if (is_input) {
951                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
952                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
953                 } else {
954                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
955                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
956                 }
957         case USB_SPEED_FULL:    /* ISOC or INTR */
958                 if (isoc) {
959                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
960                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
961                 } else {
962                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
963                         return (9107L + BW_HOST_DELAY + tmp);
964                 }
965         case USB_SPEED_HIGH:    /* ISOC or INTR */
966                 // FIXME adjust for input vs output
967                 if (isoc)
968                         tmp = HS_NSECS_ISO (bytecount);
969                 else
970                         tmp = HS_NSECS (bytecount);
971                 return tmp;
972         default:
973                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
974                 return -1;
975         }
976 }
977 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
978
979
980 /*-------------------------------------------------------------------------*/
981
982 /*
983  * Generic HC operations.
984  */
985
986 /*-------------------------------------------------------------------------*/
987
988 /**
989  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
990  * @hcd: host controller to which @urb was submitted
991  * @urb: URB being submitted
992  *
993  * Host controller drivers should call this routine in their enqueue()
994  * method.  The HCD's private spinlock must be held and interrupts must
995  * be disabled.  The actions carried out here are required for URB
996  * submission, as well as for endpoint shutdown and for usb_kill_urb.
997  *
998  * Returns 0 for no error, otherwise a negative error code (in which case
999  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1000  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1001  * the private spinlock and returning.
1002  */
1003 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1004 {
1005         int             rc = 0;
1006
1007         spin_lock(&hcd_urb_list_lock);
1008
1009         /* Check that the URB isn't being killed */
1010         if (unlikely(urb->reject)) {
1011                 rc = -EPERM;
1012                 goto done;
1013         }
1014
1015         if (unlikely(!urb->ep->enabled)) {
1016                 rc = -ENOENT;
1017                 goto done;
1018         }
1019
1020         if (unlikely(!urb->dev->can_submit)) {
1021                 rc = -EHOSTUNREACH;
1022                 goto done;
1023         }
1024
1025         /*
1026          * Check the host controller's state and add the URB to the
1027          * endpoint's queue.
1028          */
1029         switch (hcd->state) {
1030         case HC_STATE_RUNNING:
1031         case HC_STATE_RESUMING:
1032                 urb->unlinked = 0;
1033                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1034                 break;
1035         default:
1036                 rc = -ESHUTDOWN;
1037                 goto done;
1038         }
1039  done:
1040         spin_unlock(&hcd_urb_list_lock);
1041         return rc;
1042 }
1043 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1044
1045 /**
1046  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1047  * @hcd: host controller to which @urb was submitted
1048  * @urb: URB being checked for unlinkability
1049  * @status: error code to store in @urb if the unlink succeeds
1050  *
1051  * Host controller drivers should call this routine in their dequeue()
1052  * method.  The HCD's private spinlock must be held and interrupts must
1053  * be disabled.  The actions carried out here are required for making
1054  * sure than an unlink is valid.
1055  *
1056  * Returns 0 for no error, otherwise a negative error code (in which case
1057  * the dequeue() method must fail).  The possible error codes are:
1058  *
1059  *      -EIDRM: @urb was not submitted or has already completed.
1060  *              The completion function may not have been called yet.
1061  *
1062  *      -EBUSY: @urb has already been unlinked.
1063  */
1064 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1065                 int status)
1066 {
1067         struct list_head        *tmp;
1068
1069         /* insist the urb is still queued */
1070         list_for_each(tmp, &urb->ep->urb_list) {
1071                 if (tmp == &urb->urb_list)
1072                         break;
1073         }
1074         if (tmp != &urb->urb_list)
1075                 return -EIDRM;
1076
1077         /* Any status except -EINPROGRESS means something already started to
1078          * unlink this URB from the hardware.  So there's no more work to do.
1079          */
1080         if (urb->unlinked)
1081                 return -EBUSY;
1082         urb->unlinked = status;
1083
1084         /* IRQ setup can easily be broken so that USB controllers
1085          * never get completion IRQs ... maybe even the ones we need to
1086          * finish unlinking the initial failed usb_set_address()
1087          * or device descriptor fetch.
1088          */
1089         if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1090                         !is_root_hub(urb->dev)) {
1091                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1092                         "Controller is probably using the wrong IRQ.\n");
1093                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1094         }
1095
1096         return 0;
1097 }
1098 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1099
1100 /**
1101  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1102  * @hcd: host controller to which @urb was submitted
1103  * @urb: URB being unlinked
1104  *
1105  * Host controller drivers should call this routine before calling
1106  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1107  * interrupts must be disabled.  The actions carried out here are required
1108  * for URB completion.
1109  */
1110 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1111 {
1112         /* clear all state linking urb to this dev (and hcd) */
1113         spin_lock(&hcd_urb_list_lock);
1114         list_del_init(&urb->urb_list);
1115         spin_unlock(&hcd_urb_list_lock);
1116 }
1117 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1118
1119 /*
1120  * Some usb host controllers can only perform dma using a small SRAM area.
1121  * The usb core itself is however optimized for host controllers that can dma
1122  * using regular system memory - like pci devices doing bus mastering.
1123  *
1124  * To support host controllers with limited dma capabilites we provide dma
1125  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1126  * For this to work properly the host controller code must first use the
1127  * function dma_declare_coherent_memory() to point out which memory area
1128  * that should be used for dma allocations.
1129  *
1130  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1131  * dma using dma_alloc_coherent() which in turn allocates from the memory
1132  * area pointed out with dma_declare_coherent_memory().
1133  *
1134  * So, to summarize...
1135  *
1136  * - We need "local" memory, canonical example being
1137  *   a small SRAM on a discrete controller being the
1138  *   only memory that the controller can read ...
1139  *   (a) "normal" kernel memory is no good, and
1140  *   (b) there's not enough to share
1141  *
1142  * - The only *portable* hook for such stuff in the
1143  *   DMA framework is dma_declare_coherent_memory()
1144  *
1145  * - So we use that, even though the primary requirement
1146  *   is that the memory be "local" (hence addressible
1147  *   by that device), not "coherent".
1148  *
1149  */
1150
1151 static int hcd_alloc_coherent(struct usb_bus *bus,
1152                               gfp_t mem_flags, dma_addr_t *dma_handle,
1153                               void **vaddr_handle, size_t size,
1154                               enum dma_data_direction dir)
1155 {
1156         unsigned char *vaddr;
1157
1158         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1159                                  mem_flags, dma_handle);
1160         if (!vaddr)
1161                 return -ENOMEM;
1162
1163         /*
1164          * Store the virtual address of the buffer at the end
1165          * of the allocated dma buffer. The size of the buffer
1166          * may be uneven so use unaligned functions instead
1167          * of just rounding up. It makes sense to optimize for
1168          * memory footprint over access speed since the amount
1169          * of memory available for dma may be limited.
1170          */
1171         put_unaligned((unsigned long)*vaddr_handle,
1172                       (unsigned long *)(vaddr + size));
1173
1174         if (dir == DMA_TO_DEVICE)
1175                 memcpy(vaddr, *vaddr_handle, size);
1176
1177         *vaddr_handle = vaddr;
1178         return 0;
1179 }
1180
1181 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1182                               void **vaddr_handle, size_t size,
1183                               enum dma_data_direction dir)
1184 {
1185         unsigned char *vaddr = *vaddr_handle;
1186
1187         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1188
1189         if (dir == DMA_FROM_DEVICE)
1190                 memcpy(vaddr, *vaddr_handle, size);
1191
1192         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1193
1194         *vaddr_handle = vaddr;
1195         *dma_handle = 0;
1196 }
1197
1198 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1199                            gfp_t mem_flags)
1200 {
1201         enum dma_data_direction dir;
1202         int ret = 0;
1203
1204         /* Map the URB's buffers for DMA access.
1205          * Lower level HCD code should use *_dma exclusively,
1206          * unless it uses pio or talks to another transport.
1207          */
1208         if (is_root_hub(urb->dev))
1209                 return 0;
1210
1211         if (usb_endpoint_xfer_control(&urb->ep->desc)
1212             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1213                 if (hcd->self.uses_dma)
1214                         urb->setup_dma = dma_map_single(
1215                                         hcd->self.controller,
1216                                         urb->setup_packet,
1217                                         sizeof(struct usb_ctrlrequest),
1218                                         DMA_TO_DEVICE);
1219                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1220                         ret = hcd_alloc_coherent(
1221                                         urb->dev->bus, mem_flags,
1222                                         &urb->setup_dma,
1223                                         (void **)&urb->setup_packet,
1224                                         sizeof(struct usb_ctrlrequest),
1225                                         DMA_TO_DEVICE);
1226         }
1227
1228         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1229         if (ret == 0 && urb->transfer_buffer_length != 0
1230             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1231                 if (hcd->self.uses_dma)
1232                         urb->transfer_dma = dma_map_single (
1233                                         hcd->self.controller,
1234                                         urb->transfer_buffer,
1235                                         urb->transfer_buffer_length,
1236                                         dir);
1237                 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1238                         ret = hcd_alloc_coherent(
1239                                         urb->dev->bus, mem_flags,
1240                                         &urb->transfer_dma,
1241                                         &urb->transfer_buffer,
1242                                         urb->transfer_buffer_length,
1243                                         dir);
1244
1245                         if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1246                             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1247                                 hcd_free_coherent(urb->dev->bus,
1248                                         &urb->setup_dma,
1249                                         (void **)&urb->setup_packet,
1250                                         sizeof(struct usb_ctrlrequest),
1251                                         DMA_TO_DEVICE);
1252                 }
1253         }
1254         return ret;
1255 }
1256
1257 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1258 {
1259         enum dma_data_direction dir;
1260
1261         if (is_root_hub(urb->dev))
1262                 return;
1263
1264         if (usb_endpoint_xfer_control(&urb->ep->desc)
1265             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1266                 if (hcd->self.uses_dma)
1267                         dma_unmap_single(hcd->self.controller, urb->setup_dma,
1268                                         sizeof(struct usb_ctrlrequest),
1269                                         DMA_TO_DEVICE);
1270                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1271                         hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1272                                         (void **)&urb->setup_packet,
1273                                         sizeof(struct usb_ctrlrequest),
1274                                         DMA_TO_DEVICE);
1275         }
1276
1277         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1278         if (urb->transfer_buffer_length != 0
1279             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1280                 if (hcd->self.uses_dma)
1281                         dma_unmap_single(hcd->self.controller,
1282                                         urb->transfer_dma,
1283                                         urb->transfer_buffer_length,
1284                                         dir);
1285                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1286                         hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1287                                         &urb->transfer_buffer,
1288                                         urb->transfer_buffer_length,
1289                                         dir);
1290         }
1291 }
1292
1293 /*-------------------------------------------------------------------------*/
1294
1295 /* may be called in any context with a valid urb->dev usecount
1296  * caller surrenders "ownership" of urb
1297  * expects usb_submit_urb() to have sanity checked and conditioned all
1298  * inputs in the urb
1299  */
1300 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1301 {
1302         int                     status;
1303         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1304
1305         /* increment urb's reference count as part of giving it to the HCD
1306          * (which will control it).  HCD guarantees that it either returns
1307          * an error or calls giveback(), but not both.
1308          */
1309         usb_get_urb(urb);
1310         atomic_inc(&urb->use_count);
1311         atomic_inc(&urb->dev->urbnum);
1312         usbmon_urb_submit(&hcd->self, urb);
1313
1314         /* NOTE requirements on root-hub callers (usbfs and the hub
1315          * driver, for now):  URBs' urb->transfer_buffer must be
1316          * valid and usb_buffer_{sync,unmap}() not be needed, since
1317          * they could clobber root hub response data.  Also, control
1318          * URBs must be submitted in process context with interrupts
1319          * enabled.
1320          */
1321         status = map_urb_for_dma(hcd, urb, mem_flags);
1322         if (unlikely(status)) {
1323                 usbmon_urb_submit_error(&hcd->self, urb, status);
1324                 goto error;
1325         }
1326
1327         if (is_root_hub(urb->dev))
1328                 status = rh_urb_enqueue(hcd, urb);
1329         else
1330                 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1331
1332         if (unlikely(status)) {
1333                 usbmon_urb_submit_error(&hcd->self, urb, status);
1334                 unmap_urb_for_dma(hcd, urb);
1335  error:
1336                 urb->hcpriv = NULL;
1337                 INIT_LIST_HEAD(&urb->urb_list);
1338                 atomic_dec(&urb->use_count);
1339                 atomic_dec(&urb->dev->urbnum);
1340                 if (urb->reject)
1341                         wake_up(&usb_kill_urb_queue);
1342                 usb_put_urb(urb);
1343         }
1344         return status;
1345 }
1346
1347 /*-------------------------------------------------------------------------*/
1348
1349 /* this makes the hcd giveback() the urb more quickly, by kicking it
1350  * off hardware queues (which may take a while) and returning it as
1351  * soon as practical.  we've already set up the urb's return status,
1352  * but we can't know if the callback completed already.
1353  */
1354 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1355 {
1356         int             value;
1357
1358         if (is_root_hub(urb->dev))
1359                 value = usb_rh_urb_dequeue(hcd, urb, status);
1360         else {
1361
1362                 /* The only reason an HCD might fail this call is if
1363                  * it has not yet fully queued the urb to begin with.
1364                  * Such failures should be harmless. */
1365                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1366         }
1367         return value;
1368 }
1369
1370 /*
1371  * called in any context
1372  *
1373  * caller guarantees urb won't be recycled till both unlink()
1374  * and the urb's completion function return
1375  */
1376 int usb_hcd_unlink_urb (struct urb *urb, int status)
1377 {
1378         struct usb_hcd          *hcd;
1379         int                     retval;
1380
1381         hcd = bus_to_hcd(urb->dev->bus);
1382         retval = unlink1(hcd, urb, status);
1383
1384         if (retval == 0)
1385                 retval = -EINPROGRESS;
1386         else if (retval != -EIDRM && retval != -EBUSY)
1387                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1388                                 urb, retval);
1389         return retval;
1390 }
1391
1392 /*-------------------------------------------------------------------------*/
1393
1394 /**
1395  * usb_hcd_giveback_urb - return URB from HCD to device driver
1396  * @hcd: host controller returning the URB
1397  * @urb: urb being returned to the USB device driver.
1398  * @status: completion status code for the URB.
1399  * Context: in_interrupt()
1400  *
1401  * This hands the URB from HCD to its USB device driver, using its
1402  * completion function.  The HCD has freed all per-urb resources
1403  * (and is done using urb->hcpriv).  It also released all HCD locks;
1404  * the device driver won't cause problems if it frees, modifies,
1405  * or resubmits this URB.
1406  *
1407  * If @urb was unlinked, the value of @status will be overridden by
1408  * @urb->unlinked.  Erroneous short transfers are detected in case
1409  * the HCD hasn't checked for them.
1410  */
1411 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1412 {
1413         urb->hcpriv = NULL;
1414         if (unlikely(urb->unlinked))
1415                 status = urb->unlinked;
1416         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1417                         urb->actual_length < urb->transfer_buffer_length &&
1418                         !status))
1419                 status = -EREMOTEIO;
1420
1421         unmap_urb_for_dma(hcd, urb);
1422         usbmon_urb_complete(&hcd->self, urb, status);
1423         usb_unanchor_urb(urb);
1424
1425         /* pass ownership to the completion handler */
1426         urb->status = status;
1427         urb->complete (urb);
1428         atomic_dec (&urb->use_count);
1429         if (unlikely (urb->reject))
1430                 wake_up (&usb_kill_urb_queue);
1431         usb_put_urb (urb);
1432 }
1433 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1434
1435 /*-------------------------------------------------------------------------*/
1436
1437 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1438  * queue to drain completely.  The caller must first insure that no more
1439  * URBs can be submitted for this endpoint.
1440  */
1441 void usb_hcd_flush_endpoint(struct usb_device *udev,
1442                 struct usb_host_endpoint *ep)
1443 {
1444         struct usb_hcd          *hcd;
1445         struct urb              *urb;
1446
1447         if (!ep)
1448                 return;
1449         might_sleep();
1450         hcd = bus_to_hcd(udev->bus);
1451
1452         /* No more submits can occur */
1453         spin_lock_irq(&hcd_urb_list_lock);
1454 rescan:
1455         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1456                 int     is_in;
1457
1458                 if (urb->unlinked)
1459                         continue;
1460                 usb_get_urb (urb);
1461                 is_in = usb_urb_dir_in(urb);
1462                 spin_unlock(&hcd_urb_list_lock);
1463
1464                 /* kick hcd */
1465                 unlink1(hcd, urb, -ESHUTDOWN);
1466                 dev_dbg (hcd->self.controller,
1467                         "shutdown urb %p ep%d%s%s\n",
1468                         urb, usb_endpoint_num(&ep->desc),
1469                         is_in ? "in" : "out",
1470                         ({      char *s;
1471
1472                                  switch (usb_endpoint_type(&ep->desc)) {
1473                                  case USB_ENDPOINT_XFER_CONTROL:
1474                                         s = ""; break;
1475                                  case USB_ENDPOINT_XFER_BULK:
1476                                         s = "-bulk"; break;
1477                                  case USB_ENDPOINT_XFER_INT:
1478                                         s = "-intr"; break;
1479                                  default:
1480                                         s = "-iso"; break;
1481                                 };
1482                                 s;
1483                         }));
1484                 usb_put_urb (urb);
1485
1486                 /* list contents may have changed */
1487                 spin_lock(&hcd_urb_list_lock);
1488                 goto rescan;
1489         }
1490         spin_unlock_irq(&hcd_urb_list_lock);
1491
1492         /* Wait until the endpoint queue is completely empty */
1493         while (!list_empty (&ep->urb_list)) {
1494                 spin_lock_irq(&hcd_urb_list_lock);
1495
1496                 /* The list may have changed while we acquired the spinlock */
1497                 urb = NULL;
1498                 if (!list_empty (&ep->urb_list)) {
1499                         urb = list_entry (ep->urb_list.prev, struct urb,
1500                                         urb_list);
1501                         usb_get_urb (urb);
1502                 }
1503                 spin_unlock_irq(&hcd_urb_list_lock);
1504
1505                 if (urb) {
1506                         usb_kill_urb (urb);
1507                         usb_put_urb (urb);
1508                 }
1509         }
1510 }
1511
1512 /* Disables the endpoint: synchronizes with the hcd to make sure all
1513  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1514  * have been called previously.  Use for set_configuration, set_interface,
1515  * driver removal, physical disconnect.
1516  *
1517  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1518  * type, maxpacket size, toggle, halt status, and scheduling.
1519  */
1520 void usb_hcd_disable_endpoint(struct usb_device *udev,
1521                 struct usb_host_endpoint *ep)
1522 {
1523         struct usb_hcd          *hcd;
1524
1525         might_sleep();
1526         hcd = bus_to_hcd(udev->bus);
1527         if (hcd->driver->endpoint_disable)
1528                 hcd->driver->endpoint_disable(hcd, ep);
1529 }
1530
1531 /*-------------------------------------------------------------------------*/
1532
1533 /* called in any context */
1534 int usb_hcd_get_frame_number (struct usb_device *udev)
1535 {
1536         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1537
1538         if (!HC_IS_RUNNING (hcd->state))
1539                 return -ESHUTDOWN;
1540         return hcd->driver->get_frame_number (hcd);
1541 }
1542
1543 /*-------------------------------------------------------------------------*/
1544
1545 #ifdef  CONFIG_PM
1546
1547 int hcd_bus_suspend(struct usb_device *rhdev)
1548 {
1549         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1550         int             status;
1551         int             old_state = hcd->state;
1552
1553         dev_dbg(&rhdev->dev, "bus %s%s\n",
1554                         rhdev->auto_pm ? "auto-" : "", "suspend");
1555         if (!hcd->driver->bus_suspend) {
1556                 status = -ENOENT;
1557         } else {
1558                 hcd->state = HC_STATE_QUIESCING;
1559                 status = hcd->driver->bus_suspend(hcd);
1560         }
1561         if (status == 0) {
1562                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1563                 hcd->state = HC_STATE_SUSPENDED;
1564         } else {
1565                 hcd->state = old_state;
1566                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1567                                 "suspend", status);
1568         }
1569         return status;
1570 }
1571
1572 int hcd_bus_resume(struct usb_device *rhdev)
1573 {
1574         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1575         int             status;
1576         int             old_state = hcd->state;
1577
1578         dev_dbg(&rhdev->dev, "usb %s%s\n",
1579                         rhdev->auto_pm ? "auto-" : "", "resume");
1580         if (!hcd->driver->bus_resume)
1581                 return -ENOENT;
1582         if (hcd->state == HC_STATE_RUNNING)
1583                 return 0;
1584
1585         hcd->state = HC_STATE_RESUMING;
1586         status = hcd->driver->bus_resume(hcd);
1587         if (status == 0) {
1588                 /* TRSMRCY = 10 msec */
1589                 msleep(10);
1590                 usb_set_device_state(rhdev, rhdev->actconfig
1591                                 ? USB_STATE_CONFIGURED
1592                                 : USB_STATE_ADDRESS);
1593                 hcd->state = HC_STATE_RUNNING;
1594         } else {
1595                 hcd->state = old_state;
1596                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1597                                 "resume", status);
1598                 if (status != -ESHUTDOWN)
1599                         usb_hc_died(hcd);
1600         }
1601         return status;
1602 }
1603
1604 /* Workqueue routine for root-hub remote wakeup */
1605 static void hcd_resume_work(struct work_struct *work)
1606 {
1607         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1608         struct usb_device *udev = hcd->self.root_hub;
1609
1610         usb_lock_device(udev);
1611         usb_mark_last_busy(udev);
1612         usb_external_resume_device(udev);
1613         usb_unlock_device(udev);
1614 }
1615
1616 /**
1617  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
1618  * @hcd: host controller for this root hub
1619  *
1620  * The USB host controller calls this function when its root hub is
1621  * suspended (with the remote wakeup feature enabled) and a remote
1622  * wakeup request is received.  The routine submits a workqueue request
1623  * to resume the root hub (that is, manage its downstream ports again).
1624  */
1625 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1626 {
1627         unsigned long flags;
1628
1629         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1630         if (hcd->rh_registered)
1631                 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1632         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1633 }
1634 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1635
1636 #endif
1637
1638 /*-------------------------------------------------------------------------*/
1639
1640 #ifdef  CONFIG_USB_OTG
1641
1642 /**
1643  * usb_bus_start_enum - start immediate enumeration (for OTG)
1644  * @bus: the bus (must use hcd framework)
1645  * @port_num: 1-based number of port; usually bus->otg_port
1646  * Context: in_interrupt()
1647  *
1648  * Starts enumeration, with an immediate reset followed later by
1649  * khubd identifying and possibly configuring the device.
1650  * This is needed by OTG controller drivers, where it helps meet
1651  * HNP protocol timing requirements for starting a port reset.
1652  */
1653 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1654 {
1655         struct usb_hcd          *hcd;
1656         int                     status = -EOPNOTSUPP;
1657
1658         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1659          * boards with root hubs hooked up to internal devices (instead of
1660          * just the OTG port) may need more attention to resetting...
1661          */
1662         hcd = container_of (bus, struct usb_hcd, self);
1663         if (port_num && hcd->driver->start_port_reset)
1664                 status = hcd->driver->start_port_reset(hcd, port_num);
1665
1666         /* run khubd shortly after (first) root port reset finishes;
1667          * it may issue others, until at least 50 msecs have passed.
1668          */
1669         if (status == 0)
1670                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1671         return status;
1672 }
1673 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1674
1675 #endif
1676
1677 /*-------------------------------------------------------------------------*/
1678
1679 /**
1680  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1681  * @irq: the IRQ being raised
1682  * @__hcd: pointer to the HCD whose IRQ is being signaled
1683  *
1684  * If the controller isn't HALTed, calls the driver's irq handler.
1685  * Checks whether the controller is now dead.
1686  */
1687 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1688 {
1689         struct usb_hcd          *hcd = __hcd;
1690         unsigned long           flags;
1691         irqreturn_t             rc;
1692
1693         /* IRQF_DISABLED doesn't work correctly with shared IRQs
1694          * when the first handler doesn't use it.  So let's just
1695          * assume it's never used.
1696          */
1697         local_irq_save(flags);
1698
1699         if (unlikely(hcd->state == HC_STATE_HALT ||
1700                      !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1701                 rc = IRQ_NONE;
1702         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1703                 rc = IRQ_NONE;
1704         } else {
1705                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1706
1707                 if (unlikely(hcd->state == HC_STATE_HALT))
1708                         usb_hc_died(hcd);
1709                 rc = IRQ_HANDLED;
1710         }
1711
1712         local_irq_restore(flags);
1713         return rc;
1714 }
1715
1716 /*-------------------------------------------------------------------------*/
1717
1718 /**
1719  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1720  * @hcd: pointer to the HCD representing the controller
1721  *
1722  * This is called by bus glue to report a USB host controller that died
1723  * while operations may still have been pending.  It's called automatically
1724  * by the PCI glue, so only glue for non-PCI busses should need to call it. 
1725  */
1726 void usb_hc_died (struct usb_hcd *hcd)
1727 {
1728         unsigned long flags;
1729
1730         dev_err (hcd->self.controller, "HC died; cleaning up\n");
1731
1732         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1733         if (hcd->rh_registered) {
1734                 hcd->poll_rh = 0;
1735
1736                 /* make khubd clean up old urbs and devices */
1737                 usb_set_device_state (hcd->self.root_hub,
1738                                 USB_STATE_NOTATTACHED);
1739                 usb_kick_khubd (hcd->self.root_hub);
1740         }
1741         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1742 }
1743 EXPORT_SYMBOL_GPL (usb_hc_died);
1744
1745 /*-------------------------------------------------------------------------*/
1746
1747 /**
1748  * usb_create_hcd - create and initialize an HCD structure
1749  * @driver: HC driver that will use this hcd
1750  * @dev: device for this HC, stored in hcd->self.controller
1751  * @bus_name: value to store in hcd->self.bus_name
1752  * Context: !in_interrupt()
1753  *
1754  * Allocate a struct usb_hcd, with extra space at the end for the
1755  * HC driver's private data.  Initialize the generic members of the
1756  * hcd structure.
1757  *
1758  * If memory is unavailable, returns NULL.
1759  */
1760 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1761                 struct device *dev, const char *bus_name)
1762 {
1763         struct usb_hcd *hcd;
1764
1765         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1766         if (!hcd) {
1767                 dev_dbg (dev, "hcd alloc failed\n");
1768                 return NULL;
1769         }
1770         dev_set_drvdata(dev, hcd);
1771         kref_init(&hcd->kref);
1772
1773         usb_bus_init(&hcd->self);
1774         hcd->self.controller = dev;
1775         hcd->self.bus_name = bus_name;
1776         hcd->self.uses_dma = (dev->dma_mask != NULL);
1777
1778         init_timer(&hcd->rh_timer);
1779         hcd->rh_timer.function = rh_timer_func;
1780         hcd->rh_timer.data = (unsigned long) hcd;
1781 #ifdef CONFIG_PM
1782         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1783 #endif
1784
1785         hcd->driver = driver;
1786         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1787                         "USB Host Controller";
1788         return hcd;
1789 }
1790 EXPORT_SYMBOL_GPL(usb_create_hcd);
1791
1792 static void hcd_release (struct kref *kref)
1793 {
1794         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1795
1796         kfree(hcd);
1797 }
1798
1799 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1800 {
1801         if (hcd)
1802                 kref_get (&hcd->kref);
1803         return hcd;
1804 }
1805 EXPORT_SYMBOL_GPL(usb_get_hcd);
1806
1807 void usb_put_hcd (struct usb_hcd *hcd)
1808 {
1809         if (hcd)
1810                 kref_put (&hcd->kref, hcd_release);
1811 }
1812 EXPORT_SYMBOL_GPL(usb_put_hcd);
1813
1814 /**
1815  * usb_add_hcd - finish generic HCD structure initialization and register
1816  * @hcd: the usb_hcd structure to initialize
1817  * @irqnum: Interrupt line to allocate
1818  * @irqflags: Interrupt type flags
1819  *
1820  * Finish the remaining parts of generic HCD initialization: allocate the
1821  * buffers of consistent memory, register the bus, request the IRQ line,
1822  * and call the driver's reset() and start() routines.
1823  */
1824 int usb_add_hcd(struct usb_hcd *hcd,
1825                 unsigned int irqnum, unsigned long irqflags)
1826 {
1827         int retval;
1828         struct usb_device *rhdev;
1829
1830         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1831
1832         hcd->authorized_default = hcd->wireless? 0 : 1;
1833         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1834
1835         /* HC is in reset state, but accessible.  Now do the one-time init,
1836          * bottom up so that hcds can customize the root hubs before khubd
1837          * starts talking to them.  (Note, bus id is assigned early too.)
1838          */
1839         if ((retval = hcd_buffer_create(hcd)) != 0) {
1840                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1841                 return retval;
1842         }
1843
1844         if ((retval = usb_register_bus(&hcd->self)) < 0)
1845                 goto err_register_bus;
1846
1847         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1848                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1849                 retval = -ENOMEM;
1850                 goto err_allocate_root_hub;
1851         }
1852         rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1853                         USB_SPEED_FULL;
1854         hcd->self.root_hub = rhdev;
1855
1856         /* wakeup flag init defaults to "everything works" for root hubs,
1857          * but drivers can override it in reset() if needed, along with
1858          * recording the overall controller's system wakeup capability.
1859          */
1860         device_init_wakeup(&rhdev->dev, 1);
1861
1862         /* "reset" is misnamed; its role is now one-time init. the controller
1863          * should already have been reset (and boot firmware kicked off etc).
1864          */
1865         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1866                 dev_err(hcd->self.controller, "can't setup\n");
1867                 goto err_hcd_driver_setup;
1868         }
1869
1870         /* NOTE: root hub and controller capabilities may not be the same */
1871         if (device_can_wakeup(hcd->self.controller)
1872                         && device_can_wakeup(&hcd->self.root_hub->dev))
1873                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1874
1875         /* enable irqs just before we start the controller */
1876         if (hcd->driver->irq) {
1877
1878                 /* IRQF_DISABLED doesn't work as advertised when used together
1879                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
1880                  * interrupts we can remove it here.
1881                  */
1882                 if (irqflags & IRQF_SHARED)
1883                         irqflags &= ~IRQF_DISABLED;
1884
1885                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1886                                 hcd->driver->description, hcd->self.busnum);
1887                 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1888                                 hcd->irq_descr, hcd)) != 0) {
1889                         dev_err(hcd->self.controller,
1890                                         "request interrupt %d failed\n", irqnum);
1891                         goto err_request_irq;
1892                 }
1893                 hcd->irq = irqnum;
1894                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1895                                 (hcd->driver->flags & HCD_MEMORY) ?
1896                                         "io mem" : "io base",
1897                                         (unsigned long long)hcd->rsrc_start);
1898         } else {
1899                 hcd->irq = -1;
1900                 if (hcd->rsrc_start)
1901                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
1902                                         (hcd->driver->flags & HCD_MEMORY) ?
1903                                         "io mem" : "io base",
1904                                         (unsigned long long)hcd->rsrc_start);
1905         }
1906
1907         if ((retval = hcd->driver->start(hcd)) < 0) {
1908                 dev_err(hcd->self.controller, "startup error %d\n", retval);
1909                 goto err_hcd_driver_start;
1910         }
1911
1912         /* starting here, usbcore will pay attention to this root hub */
1913         rhdev->bus_mA = min(500u, hcd->power_budget);
1914         if ((retval = register_root_hub(hcd)) != 0)
1915                 goto err_register_root_hub;
1916
1917         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1918         if (retval < 0) {
1919                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1920                        retval);
1921                 goto error_create_attr_group;
1922         }
1923         if (hcd->uses_new_polling && hcd->poll_rh)
1924                 usb_hcd_poll_rh_status(hcd);
1925         return retval;
1926
1927 error_create_attr_group:
1928         mutex_lock(&usb_bus_list_lock);
1929         usb_disconnect(&hcd->self.root_hub);
1930         mutex_unlock(&usb_bus_list_lock);
1931 err_register_root_hub:
1932         hcd->driver->stop(hcd);
1933 err_hcd_driver_start:
1934         if (hcd->irq >= 0)
1935                 free_irq(irqnum, hcd);
1936 err_request_irq:
1937 err_hcd_driver_setup:
1938         hcd->self.root_hub = NULL;
1939         usb_put_dev(rhdev);
1940 err_allocate_root_hub:
1941         usb_deregister_bus(&hcd->self);
1942 err_register_bus:
1943         hcd_buffer_destroy(hcd);
1944         return retval;
1945
1946 EXPORT_SYMBOL_GPL(usb_add_hcd);
1947
1948 /**
1949  * usb_remove_hcd - shutdown processing for generic HCDs
1950  * @hcd: the usb_hcd structure to remove
1951  * Context: !in_interrupt()
1952  *
1953  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1954  * invoking the HCD's stop() method.
1955  */
1956 void usb_remove_hcd(struct usb_hcd *hcd)
1957 {
1958         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1959
1960         if (HC_IS_RUNNING (hcd->state))
1961                 hcd->state = HC_STATE_QUIESCING;
1962
1963         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1964         spin_lock_irq (&hcd_root_hub_lock);
1965         hcd->rh_registered = 0;
1966         spin_unlock_irq (&hcd_root_hub_lock);
1967
1968 #ifdef CONFIG_PM
1969         cancel_work_sync(&hcd->wakeup_work);
1970 #endif
1971
1972         sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1973         mutex_lock(&usb_bus_list_lock);
1974         usb_disconnect(&hcd->self.root_hub);
1975         mutex_unlock(&usb_bus_list_lock);
1976
1977         hcd->driver->stop(hcd);
1978         hcd->state = HC_STATE_HALT;
1979
1980         hcd->poll_rh = 0;
1981         del_timer_sync(&hcd->rh_timer);
1982
1983         if (hcd->irq >= 0)
1984                 free_irq(hcd->irq, hcd);
1985         usb_deregister_bus(&hcd->self);
1986         hcd_buffer_destroy(hcd);
1987 }
1988 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1989
1990 void
1991 usb_hcd_platform_shutdown(struct platform_device* dev)
1992 {
1993         struct usb_hcd *hcd = platform_get_drvdata(dev);
1994
1995         if (hcd->driver->shutdown)
1996                 hcd->driver->shutdown(hcd);
1997 }
1998 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
1999
2000 /*-------------------------------------------------------------------------*/
2001
2002 #if defined(CONFIG_USB_MON)
2003
2004 struct usb_mon_operations *mon_ops;
2005
2006 /*
2007  * The registration is unlocked.
2008  * We do it this way because we do not want to lock in hot paths.
2009  *
2010  * Notice that the code is minimally error-proof. Because usbmon needs
2011  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2012  */
2013  
2014 int usb_mon_register (struct usb_mon_operations *ops)
2015 {
2016
2017         if (mon_ops)
2018                 return -EBUSY;
2019
2020         mon_ops = ops;
2021         mb();
2022         return 0;
2023 }
2024 EXPORT_SYMBOL_GPL (usb_mon_register);
2025
2026 void usb_mon_deregister (void)
2027 {
2028
2029         if (mon_ops == NULL) {
2030                 printk(KERN_ERR "USB: monitor was not registered\n");
2031                 return;
2032         }
2033         mon_ops = NULL;
2034         mb();
2035 }
2036 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2037
2038 #endif /* CONFIG_USB_MON */