]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/scsi_lib.c
Merge branch 'audit.b50' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/audit...
[linux-2.6-omap-h63xx.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE         2
37
38 struct scsi_host_sg_pool {
39         size_t          size;
40         char            *name;
41         struct kmem_cache       *slab;
42         mempool_t       *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50         SP(8),
51         SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53         SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55         SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57         SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64         SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 static struct kmem_cache *scsi_bidi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73  * Function:    scsi_unprep_request()
74  *
75  * Purpose:     Remove all preparation done for a request, including its
76  *              associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:   req     - request to unprepare
79  *
80  * Lock status: Assumed that no locks are held upon entry.
81  *
82  * Returns:     Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86         struct scsi_cmnd *cmd = req->special;
87
88         req->cmd_flags &= ~REQ_DONTPREP;
89         req->special = NULL;
90
91         scsi_put_command(cmd);
92 }
93
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115         struct Scsi_Host *host = cmd->device->host;
116         struct scsi_device *device = cmd->device;
117         struct request_queue *q = device->request_queue;
118         unsigned long flags;
119
120         SCSI_LOG_MLQUEUE(1,
121                  printk("Inserting command %p into mlqueue\n", cmd));
122
123         /*
124          * Set the appropriate busy bit for the device/host.
125          *
126          * If the host/device isn't busy, assume that something actually
127          * completed, and that we should be able to queue a command now.
128          *
129          * Note that the prior mid-layer assumption that any host could
130          * always queue at least one command is now broken.  The mid-layer
131          * will implement a user specifiable stall (see
132          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133          * if a command is requeued with no other commands outstanding
134          * either for the device or for the host.
135          */
136         if (reason == SCSI_MLQUEUE_HOST_BUSY)
137                 host->host_blocked = host->max_host_blocked;
138         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139                 device->device_blocked = device->max_device_blocked;
140
141         /*
142          * Decrement the counters, since these commands are no longer
143          * active on the host/device.
144          */
145         scsi_device_unbusy(device);
146
147         /*
148          * Requeue this command.  It will go before all other commands
149          * that are already in the queue.
150          *
151          * NOTE: there is magic here about the way the queue is plugged if
152          * we have no outstanding commands.
153          * 
154          * Although we *don't* plug the queue, we call the request
155          * function.  The SCSI request function detects the blocked condition
156          * and plugs the queue appropriately.
157          */
158         spin_lock_irqsave(q->queue_lock, flags);
159         blk_requeue_request(q, cmd->request);
160         spin_unlock_irqrestore(q->queue_lock, flags);
161
162         scsi_run_queue(q);
163
164         return 0;
165 }
166
167 /**
168  * scsi_execute - insert request and wait for the result
169  * @sdev:       scsi device
170  * @cmd:        scsi command
171  * @data_direction: data direction
172  * @buffer:     data buffer
173  * @bufflen:    len of buffer
174  * @sense:      optional sense buffer
175  * @timeout:    request timeout in seconds
176  * @retries:    number of times to retry request
177  * @flags:      or into request flags;
178  *
179  * returns the req->errors value which is the scsi_cmnd result
180  * field.
181  */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183                  int data_direction, void *buffer, unsigned bufflen,
184                  unsigned char *sense, int timeout, int retries, int flags)
185 {
186         struct request *req;
187         int write = (data_direction == DMA_TO_DEVICE);
188         int ret = DRIVER_ERROR << 24;
189
190         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191
192         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
193                                         buffer, bufflen, __GFP_WAIT))
194                 goto out;
195
196         req->cmd_len = COMMAND_SIZE(cmd[0]);
197         memcpy(req->cmd, cmd, req->cmd_len);
198         req->sense = sense;
199         req->sense_len = 0;
200         req->retries = retries;
201         req->timeout = timeout;
202         req->cmd_type = REQ_TYPE_BLOCK_PC;
203         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204
205         /*
206          * head injection *required* here otherwise quiesce won't work
207          */
208         blk_execute_rq(req->q, NULL, req, 1);
209
210         ret = req->errors;
211  out:
212         blk_put_request(req);
213
214         return ret;
215 }
216 EXPORT_SYMBOL(scsi_execute);
217
218
219 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
220                      int data_direction, void *buffer, unsigned bufflen,
221                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
222 {
223         char *sense = NULL;
224         int result;
225         
226         if (sshdr) {
227                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
228                 if (!sense)
229                         return DRIVER_ERROR << 24;
230         }
231         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
232                               sense, timeout, retries, 0);
233         if (sshdr)
234                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235
236         kfree(sense);
237         return result;
238 }
239 EXPORT_SYMBOL(scsi_execute_req);
240
241 struct scsi_io_context {
242         void *data;
243         void (*done)(void *data, char *sense, int result, int resid);
244         char sense[SCSI_SENSE_BUFFERSIZE];
245 };
246
247 static struct kmem_cache *scsi_io_context_cache;
248
249 static void scsi_end_async(struct request *req, int uptodate)
250 {
251         struct scsi_io_context *sioc = req->end_io_data;
252
253         if (sioc->done)
254                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
255
256         kmem_cache_free(scsi_io_context_cache, sioc);
257         __blk_put_request(req->q, req);
258 }
259
260 static int scsi_merge_bio(struct request *rq, struct bio *bio)
261 {
262         struct request_queue *q = rq->q;
263
264         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
265         if (rq_data_dir(rq) == WRITE)
266                 bio->bi_rw |= (1 << BIO_RW);
267         blk_queue_bounce(q, &bio);
268
269         return blk_rq_append_bio(q, rq, bio);
270 }
271
272 static void scsi_bi_endio(struct bio *bio, int error)
273 {
274         bio_put(bio);
275 }
276
277 /**
278  * scsi_req_map_sg - map a scatterlist into a request
279  * @rq:         request to fill
280  * @sgl:        scatterlist
281  * @nsegs:      number of elements
282  * @bufflen:    len of buffer
283  * @gfp:        memory allocation flags
284  *
285  * scsi_req_map_sg maps a scatterlist into a request so that the
286  * request can be sent to the block layer. We do not trust the scatterlist
287  * sent to use, as some ULDs use that struct to only organize the pages.
288  */
289 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
290                            int nsegs, unsigned bufflen, gfp_t gfp)
291 {
292         struct request_queue *q = rq->q;
293         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
294         unsigned int data_len = bufflen, len, bytes, off;
295         struct scatterlist *sg;
296         struct page *page;
297         struct bio *bio = NULL;
298         int i, err, nr_vecs = 0;
299
300         for_each_sg(sgl, sg, nsegs, i) {
301                 page = sg_page(sg);
302                 off = sg->offset;
303                 len = sg->length;
304
305                 while (len > 0 && data_len > 0) {
306                         /*
307                          * sg sends a scatterlist that is larger than
308                          * the data_len it wants transferred for certain
309                          * IO sizes
310                          */
311                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
312                         bytes = min(bytes, data_len);
313
314                         if (!bio) {
315                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
316                                 nr_pages -= nr_vecs;
317
318                                 bio = bio_alloc(gfp, nr_vecs);
319                                 if (!bio) {
320                                         err = -ENOMEM;
321                                         goto free_bios;
322                                 }
323                                 bio->bi_end_io = scsi_bi_endio;
324                         }
325
326                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
327                             bytes) {
328                                 bio_put(bio);
329                                 err = -EINVAL;
330                                 goto free_bios;
331                         }
332
333                         if (bio->bi_vcnt >= nr_vecs) {
334                                 err = scsi_merge_bio(rq, bio);
335                                 if (err) {
336                                         bio_endio(bio, 0);
337                                         goto free_bios;
338                                 }
339                                 bio = NULL;
340                         }
341
342                         page++;
343                         len -= bytes;
344                         data_len -=bytes;
345                         off = 0;
346                 }
347         }
348
349         rq->buffer = rq->data = NULL;
350         rq->data_len = bufflen;
351         return 0;
352
353 free_bios:
354         while ((bio = rq->bio) != NULL) {
355                 rq->bio = bio->bi_next;
356                 /*
357                  * call endio instead of bio_put incase it was bounced
358                  */
359                 bio_endio(bio, 0);
360         }
361
362         return err;
363 }
364
365 /**
366  * scsi_execute_async - insert request
367  * @sdev:       scsi device
368  * @cmd:        scsi command
369  * @cmd_len:    length of scsi cdb
370  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
371  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
372  * @bufflen:    len of buffer
373  * @use_sg:     if buffer is a scatterlist this is the number of elements
374  * @timeout:    request timeout in seconds
375  * @retries:    number of times to retry request
376  * @privdata:   data passed to done()
377  * @done:       callback function when done
378  * @gfp:        memory allocation flags
379  */
380 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
381                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
382                        int use_sg, int timeout, int retries, void *privdata,
383                        void (*done)(void *, char *, int, int), gfp_t gfp)
384 {
385         struct request *req;
386         struct scsi_io_context *sioc;
387         int err = 0;
388         int write = (data_direction == DMA_TO_DEVICE);
389
390         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
391         if (!sioc)
392                 return DRIVER_ERROR << 24;
393
394         req = blk_get_request(sdev->request_queue, write, gfp);
395         if (!req)
396                 goto free_sense;
397         req->cmd_type = REQ_TYPE_BLOCK_PC;
398         req->cmd_flags |= REQ_QUIET;
399
400         if (use_sg)
401                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
402         else if (bufflen)
403                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
404
405         if (err)
406                 goto free_req;
407
408         req->cmd_len = cmd_len;
409         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
410         memcpy(req->cmd, cmd, req->cmd_len);
411         req->sense = sioc->sense;
412         req->sense_len = 0;
413         req->timeout = timeout;
414         req->retries = retries;
415         req->end_io_data = sioc;
416
417         sioc->data = privdata;
418         sioc->done = done;
419
420         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
421         return 0;
422
423 free_req:
424         blk_put_request(req);
425 free_sense:
426         kmem_cache_free(scsi_io_context_cache, sioc);
427         return DRIVER_ERROR << 24;
428 }
429 EXPORT_SYMBOL_GPL(scsi_execute_async);
430
431 /*
432  * Function:    scsi_init_cmd_errh()
433  *
434  * Purpose:     Initialize cmd fields related to error handling.
435  *
436  * Arguments:   cmd     - command that is ready to be queued.
437  *
438  * Notes:       This function has the job of initializing a number of
439  *              fields related to error handling.   Typically this will
440  *              be called once for each command, as required.
441  */
442 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
443 {
444         cmd->serial_number = 0;
445         scsi_set_resid(cmd, 0);
446         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
447         if (cmd->cmd_len == 0)
448                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449 }
450
451 void scsi_device_unbusy(struct scsi_device *sdev)
452 {
453         struct Scsi_Host *shost = sdev->host;
454         unsigned long flags;
455
456         spin_lock_irqsave(shost->host_lock, flags);
457         shost->host_busy--;
458         if (unlikely(scsi_host_in_recovery(shost) &&
459                      (shost->host_failed || shost->host_eh_scheduled)))
460                 scsi_eh_wakeup(shost);
461         spin_unlock(shost->host_lock);
462         spin_lock(sdev->request_queue->queue_lock);
463         sdev->device_busy--;
464         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465 }
466
467 /*
468  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469  * and call blk_run_queue for all the scsi_devices on the target -
470  * including current_sdev first.
471  *
472  * Called with *no* scsi locks held.
473  */
474 static void scsi_single_lun_run(struct scsi_device *current_sdev)
475 {
476         struct Scsi_Host *shost = current_sdev->host;
477         struct scsi_device *sdev, *tmp;
478         struct scsi_target *starget = scsi_target(current_sdev);
479         unsigned long flags;
480
481         spin_lock_irqsave(shost->host_lock, flags);
482         starget->starget_sdev_user = NULL;
483         spin_unlock_irqrestore(shost->host_lock, flags);
484
485         /*
486          * Call blk_run_queue for all LUNs on the target, starting with
487          * current_sdev. We race with others (to set starget_sdev_user),
488          * but in most cases, we will be first. Ideally, each LU on the
489          * target would get some limited time or requests on the target.
490          */
491         blk_run_queue(current_sdev->request_queue);
492
493         spin_lock_irqsave(shost->host_lock, flags);
494         if (starget->starget_sdev_user)
495                 goto out;
496         list_for_each_entry_safe(sdev, tmp, &starget->devices,
497                         same_target_siblings) {
498                 if (sdev == current_sdev)
499                         continue;
500                 if (scsi_device_get(sdev))
501                         continue;
502
503                 spin_unlock_irqrestore(shost->host_lock, flags);
504                 blk_run_queue(sdev->request_queue);
505                 spin_lock_irqsave(shost->host_lock, flags);
506         
507                 scsi_device_put(sdev);
508         }
509  out:
510         spin_unlock_irqrestore(shost->host_lock, flags);
511 }
512
513 /*
514  * Function:    scsi_run_queue()
515  *
516  * Purpose:     Select a proper request queue to serve next
517  *
518  * Arguments:   q       - last request's queue
519  *
520  * Returns:     Nothing
521  *
522  * Notes:       The previous command was completely finished, start
523  *              a new one if possible.
524  */
525 static void scsi_run_queue(struct request_queue *q)
526 {
527         struct scsi_device *sdev = q->queuedata;
528         struct Scsi_Host *shost = sdev->host;
529         unsigned long flags;
530
531         if (scsi_target(sdev)->single_lun)
532                 scsi_single_lun_run(sdev);
533
534         spin_lock_irqsave(shost->host_lock, flags);
535         while (!list_empty(&shost->starved_list) &&
536                !shost->host_blocked && !shost->host_self_blocked &&
537                 !((shost->can_queue > 0) &&
538                   (shost->host_busy >= shost->can_queue))) {
539
540                 int flagset;
541
542                 /*
543                  * As long as shost is accepting commands and we have
544                  * starved queues, call blk_run_queue. scsi_request_fn
545                  * drops the queue_lock and can add us back to the
546                  * starved_list.
547                  *
548                  * host_lock protects the starved_list and starved_entry.
549                  * scsi_request_fn must get the host_lock before checking
550                  * or modifying starved_list or starved_entry.
551                  */
552                 sdev = list_entry(shost->starved_list.next,
553                                           struct scsi_device, starved_entry);
554                 list_del_init(&sdev->starved_entry);
555                 spin_unlock(shost->host_lock);
556
557                 spin_lock(sdev->request_queue->queue_lock);
558                 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559                                 !test_bit(QUEUE_FLAG_REENTER,
560                                         &sdev->request_queue->queue_flags);
561                 if (flagset)
562                         queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
563                 __blk_run_queue(sdev->request_queue);
564                 if (flagset)
565                         queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
566                 spin_unlock(sdev->request_queue->queue_lock);
567
568                 spin_lock(shost->host_lock);
569                 if (unlikely(!list_empty(&sdev->starved_entry)))
570                         /*
571                          * sdev lost a race, and was put back on the
572                          * starved list. This is unlikely but without this
573                          * in theory we could loop forever.
574                          */
575                         break;
576         }
577         spin_unlock_irqrestore(shost->host_lock, flags);
578
579         blk_run_queue(q);
580 }
581
582 /*
583  * Function:    scsi_requeue_command()
584  *
585  * Purpose:     Handle post-processing of completed commands.
586  *
587  * Arguments:   q       - queue to operate on
588  *              cmd     - command that may need to be requeued.
589  *
590  * Returns:     Nothing
591  *
592  * Notes:       After command completion, there may be blocks left
593  *              over which weren't finished by the previous command
594  *              this can be for a number of reasons - the main one is
595  *              I/O errors in the middle of the request, in which case
596  *              we need to request the blocks that come after the bad
597  *              sector.
598  * Notes:       Upon return, cmd is a stale pointer.
599  */
600 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
601 {
602         struct request *req = cmd->request;
603         unsigned long flags;
604
605         scsi_unprep_request(req);
606         spin_lock_irqsave(q->queue_lock, flags);
607         blk_requeue_request(q, req);
608         spin_unlock_irqrestore(q->queue_lock, flags);
609
610         scsi_run_queue(q);
611 }
612
613 void scsi_next_command(struct scsi_cmnd *cmd)
614 {
615         struct scsi_device *sdev = cmd->device;
616         struct request_queue *q = sdev->request_queue;
617
618         /* need to hold a reference on the device before we let go of the cmd */
619         get_device(&sdev->sdev_gendev);
620
621         scsi_put_command(cmd);
622         scsi_run_queue(q);
623
624         /* ok to remove device now */
625         put_device(&sdev->sdev_gendev);
626 }
627
628 void scsi_run_host_queues(struct Scsi_Host *shost)
629 {
630         struct scsi_device *sdev;
631
632         shost_for_each_device(sdev, shost)
633                 scsi_run_queue(sdev->request_queue);
634 }
635
636 /*
637  * Function:    scsi_end_request()
638  *
639  * Purpose:     Post-processing of completed commands (usually invoked at end
640  *              of upper level post-processing and scsi_io_completion).
641  *
642  * Arguments:   cmd      - command that is complete.
643  *              error    - 0 if I/O indicates success, < 0 for I/O error.
644  *              bytes    - number of bytes of completed I/O
645  *              requeue  - indicates whether we should requeue leftovers.
646  *
647  * Lock status: Assumed that lock is not held upon entry.
648  *
649  * Returns:     cmd if requeue required, NULL otherwise.
650  *
651  * Notes:       This is called for block device requests in order to
652  *              mark some number of sectors as complete.
653  * 
654  *              We are guaranteeing that the request queue will be goosed
655  *              at some point during this call.
656  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
657  */
658 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
659                                           int bytes, int requeue)
660 {
661         struct request_queue *q = cmd->device->request_queue;
662         struct request *req = cmd->request;
663
664         /*
665          * If there are blocks left over at the end, set up the command
666          * to queue the remainder of them.
667          */
668         if (blk_end_request(req, error, bytes)) {
669                 int leftover = (req->hard_nr_sectors << 9);
670
671                 if (blk_pc_request(req))
672                         leftover = req->data_len;
673
674                 /* kill remainder if no retrys */
675                 if (error && blk_noretry_request(req))
676                         blk_end_request(req, error, leftover);
677                 else {
678                         if (requeue) {
679                                 /*
680                                  * Bleah.  Leftovers again.  Stick the
681                                  * leftovers in the front of the
682                                  * queue, and goose the queue again.
683                                  */
684                                 scsi_requeue_command(q, cmd);
685                                 cmd = NULL;
686                         }
687                         return cmd;
688                 }
689         }
690
691         /*
692          * This will goose the queue request function at the end, so we don't
693          * need to worry about launching another command.
694          */
695         scsi_next_command(cmd);
696         return NULL;
697 }
698
699 static inline unsigned int scsi_sgtable_index(unsigned short nents)
700 {
701         unsigned int index;
702
703         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
704
705         if (nents <= 8)
706                 index = 0;
707         else
708                 index = get_count_order(nents) - 3;
709
710         return index;
711 }
712
713 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
714 {
715         struct scsi_host_sg_pool *sgp;
716
717         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
718         mempool_free(sgl, sgp->pool);
719 }
720
721 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
722 {
723         struct scsi_host_sg_pool *sgp;
724
725         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
726         return mempool_alloc(sgp->pool, gfp_mask);
727 }
728
729 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
730                               gfp_t gfp_mask)
731 {
732         int ret;
733
734         BUG_ON(!nents);
735
736         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
737                                gfp_mask, scsi_sg_alloc);
738         if (unlikely(ret))
739                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
740                                 scsi_sg_free);
741
742         return ret;
743 }
744
745 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
746 {
747         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
748 }
749
750 /*
751  * Function:    scsi_release_buffers()
752  *
753  * Purpose:     Completion processing for block device I/O requests.
754  *
755  * Arguments:   cmd     - command that we are bailing.
756  *
757  * Lock status: Assumed that no lock is held upon entry.
758  *
759  * Returns:     Nothing
760  *
761  * Notes:       In the event that an upper level driver rejects a
762  *              command, we must release resources allocated during
763  *              the __init_io() function.  Primarily this would involve
764  *              the scatter-gather table, and potentially any bounce
765  *              buffers.
766  */
767 void scsi_release_buffers(struct scsi_cmnd *cmd)
768 {
769         if (cmd->sdb.table.nents)
770                 scsi_free_sgtable(&cmd->sdb);
771
772         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
773
774         if (scsi_bidi_cmnd(cmd)) {
775                 struct scsi_data_buffer *bidi_sdb =
776                         cmd->request->next_rq->special;
777                 scsi_free_sgtable(bidi_sdb);
778                 kmem_cache_free(scsi_bidi_sdb_cache, bidi_sdb);
779                 cmd->request->next_rq->special = NULL;
780         }
781 }
782 EXPORT_SYMBOL(scsi_release_buffers);
783
784 /*
785  * Bidi commands Must be complete as a whole, both sides at once.
786  * If part of the bytes were written and lld returned
787  * scsi_in()->resid and/or scsi_out()->resid this information will be left
788  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
789  * decide what to do with this information.
790  */
791 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
792 {
793         struct request *req = cmd->request;
794         unsigned int dlen = req->data_len;
795         unsigned int next_dlen = req->next_rq->data_len;
796
797         req->data_len = scsi_out(cmd)->resid;
798         req->next_rq->data_len = scsi_in(cmd)->resid;
799
800         /* The req and req->next_rq have not been completed */
801         BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
802
803         scsi_release_buffers(cmd);
804
805         /*
806          * This will goose the queue request function at the end, so we don't
807          * need to worry about launching another command.
808          */
809         scsi_next_command(cmd);
810 }
811
812 /*
813  * Function:    scsi_io_completion()
814  *
815  * Purpose:     Completion processing for block device I/O requests.
816  *
817  * Arguments:   cmd   - command that is finished.
818  *
819  * Lock status: Assumed that no lock is held upon entry.
820  *
821  * Returns:     Nothing
822  *
823  * Notes:       This function is matched in terms of capabilities to
824  *              the function that created the scatter-gather list.
825  *              In other words, if there are no bounce buffers
826  *              (the normal case for most drivers), we don't need
827  *              the logic to deal with cleaning up afterwards.
828  *
829  *              We must do one of several things here:
830  *
831  *              a) Call scsi_end_request.  This will finish off the
832  *                 specified number of sectors.  If we are done, the
833  *                 command block will be released, and the queue
834  *                 function will be goosed.  If we are not done, then
835  *                 scsi_end_request will directly goose the queue.
836  *
837  *              b) We can just use scsi_requeue_command() here.  This would
838  *                 be used if we just wanted to retry, for example.
839  */
840 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
841 {
842         int result = cmd->result;
843         int this_count = scsi_bufflen(cmd);
844         struct request_queue *q = cmd->device->request_queue;
845         struct request *req = cmd->request;
846         int error = 0;
847         struct scsi_sense_hdr sshdr;
848         int sense_valid = 0;
849         int sense_deferred = 0;
850
851         if (result) {
852                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
853                 if (sense_valid)
854                         sense_deferred = scsi_sense_is_deferred(&sshdr);
855         }
856
857         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
858                 req->errors = result;
859                 if (result) {
860                         if (sense_valid && req->sense) {
861                                 /*
862                                  * SG_IO wants current and deferred errors
863                                  */
864                                 int len = 8 + cmd->sense_buffer[7];
865
866                                 if (len > SCSI_SENSE_BUFFERSIZE)
867                                         len = SCSI_SENSE_BUFFERSIZE;
868                                 memcpy(req->sense, cmd->sense_buffer,  len);
869                                 req->sense_len = len;
870                         }
871                         if (!sense_deferred)
872                                 error = -EIO;
873                 }
874                 if (scsi_bidi_cmnd(cmd)) {
875                         /* will also release_buffers */
876                         scsi_end_bidi_request(cmd);
877                         return;
878                 }
879                 req->data_len = scsi_get_resid(cmd);
880         }
881
882         BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
883         scsi_release_buffers(cmd);
884
885         /*
886          * Next deal with any sectors which we were able to correctly
887          * handle.
888          */
889         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
890                                       "%d bytes done.\n",
891                                       req->nr_sectors, good_bytes));
892
893         /* A number of bytes were successfully read.  If there
894          * are leftovers and there is some kind of error
895          * (result != 0), retry the rest.
896          */
897         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
898                 return;
899
900         /* good_bytes = 0, or (inclusive) there were leftovers and
901          * result = 0, so scsi_end_request couldn't retry.
902          */
903         if (sense_valid && !sense_deferred) {
904                 switch (sshdr.sense_key) {
905                 case UNIT_ATTENTION:
906                         if (cmd->device->removable) {
907                                 /* Detected disc change.  Set a bit
908                                  * and quietly refuse further access.
909                                  */
910                                 cmd->device->changed = 1;
911                                 scsi_end_request(cmd, -EIO, this_count, 1);
912                                 return;
913                         } else {
914                                 /* Must have been a power glitch, or a
915                                  * bus reset.  Could not have been a
916                                  * media change, so we just retry the
917                                  * request and see what happens.
918                                  */
919                                 scsi_requeue_command(q, cmd);
920                                 return;
921                         }
922                         break;
923                 case ILLEGAL_REQUEST:
924                         /* If we had an ILLEGAL REQUEST returned, then
925                          * we may have performed an unsupported
926                          * command.  The only thing this should be
927                          * would be a ten byte read where only a six
928                          * byte read was supported.  Also, on a system
929                          * where READ CAPACITY failed, we may have
930                          * read past the end of the disk.
931                          */
932                         if ((cmd->device->use_10_for_rw &&
933                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
934                             (cmd->cmnd[0] == READ_10 ||
935                              cmd->cmnd[0] == WRITE_10)) {
936                                 cmd->device->use_10_for_rw = 0;
937                                 /* This will cause a retry with a
938                                  * 6-byte command.
939                                  */
940                                 scsi_requeue_command(q, cmd);
941                                 return;
942                         } else {
943                                 scsi_end_request(cmd, -EIO, this_count, 1);
944                                 return;
945                         }
946                         break;
947                 case NOT_READY:
948                         /* If the device is in the process of becoming
949                          * ready, or has a temporary blockage, retry.
950                          */
951                         if (sshdr.asc == 0x04) {
952                                 switch (sshdr.ascq) {
953                                 case 0x01: /* becoming ready */
954                                 case 0x04: /* format in progress */
955                                 case 0x05: /* rebuild in progress */
956                                 case 0x06: /* recalculation in progress */
957                                 case 0x07: /* operation in progress */
958                                 case 0x08: /* Long write in progress */
959                                 case 0x09: /* self test in progress */
960                                         scsi_requeue_command(q, cmd);
961                                         return;
962                                 default:
963                                         break;
964                                 }
965                         }
966                         if (!(req->cmd_flags & REQ_QUIET))
967                                 scsi_cmd_print_sense_hdr(cmd,
968                                                          "Device not ready",
969                                                          &sshdr);
970
971                         scsi_end_request(cmd, -EIO, this_count, 1);
972                         return;
973                 case VOLUME_OVERFLOW:
974                         if (!(req->cmd_flags & REQ_QUIET)) {
975                                 scmd_printk(KERN_INFO, cmd,
976                                             "Volume overflow, CDB: ");
977                                 __scsi_print_command(cmd->cmnd);
978                                 scsi_print_sense("", cmd);
979                         }
980                         /* See SSC3rXX or current. */
981                         scsi_end_request(cmd, -EIO, this_count, 1);
982                         return;
983                 default:
984                         break;
985                 }
986         }
987         if (host_byte(result) == DID_RESET) {
988                 /* Third party bus reset or reset for error recovery
989                  * reasons.  Just retry the request and see what
990                  * happens.
991                  */
992                 scsi_requeue_command(q, cmd);
993                 return;
994         }
995         if (result) {
996                 if (!(req->cmd_flags & REQ_QUIET)) {
997                         scsi_print_result(cmd);
998                         if (driver_byte(result) & DRIVER_SENSE)
999                                 scsi_print_sense("", cmd);
1000                 }
1001         }
1002         scsi_end_request(cmd, -EIO, this_count, !result);
1003 }
1004
1005 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1006                              gfp_t gfp_mask)
1007 {
1008         int count;
1009
1010         /*
1011          * If sg table allocation fails, requeue request later.
1012          */
1013         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1014                                         gfp_mask))) {
1015                 return BLKPREP_DEFER;
1016         }
1017
1018         req->buffer = NULL;
1019
1020         /* 
1021          * Next, walk the list, and fill in the addresses and sizes of
1022          * each segment.
1023          */
1024         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1025         BUG_ON(count > sdb->table.nents);
1026         sdb->table.nents = count;
1027         if (blk_pc_request(req))
1028                 sdb->length = req->data_len;
1029         else
1030                 sdb->length = req->nr_sectors << 9;
1031         return BLKPREP_OK;
1032 }
1033
1034 /*
1035  * Function:    scsi_init_io()
1036  *
1037  * Purpose:     SCSI I/O initialize function.
1038  *
1039  * Arguments:   cmd   - Command descriptor we wish to initialize
1040  *
1041  * Returns:     0 on success
1042  *              BLKPREP_DEFER if the failure is retryable
1043  *              BLKPREP_KILL if the failure is fatal
1044  */
1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046 {
1047         int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1048         if (error)
1049                 goto err_exit;
1050
1051         if (blk_bidi_rq(cmd->request)) {
1052                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1053                         scsi_bidi_sdb_cache, GFP_ATOMIC);
1054                 if (!bidi_sdb) {
1055                         error = BLKPREP_DEFER;
1056                         goto err_exit;
1057                 }
1058
1059                 cmd->request->next_rq->special = bidi_sdb;
1060                 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1061                                                                     GFP_ATOMIC);
1062                 if (error)
1063                         goto err_exit;
1064         }
1065
1066         return BLKPREP_OK ;
1067
1068 err_exit:
1069         scsi_release_buffers(cmd);
1070         if (error == BLKPREP_KILL)
1071                 scsi_put_command(cmd);
1072         else /* BLKPREP_DEFER */
1073                 scsi_unprep_request(cmd->request);
1074
1075         return error;
1076 }
1077 EXPORT_SYMBOL(scsi_init_io);
1078
1079 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1080                 struct request *req)
1081 {
1082         struct scsi_cmnd *cmd;
1083
1084         if (!req->special) {
1085                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1086                 if (unlikely(!cmd))
1087                         return NULL;
1088                 req->special = cmd;
1089         } else {
1090                 cmd = req->special;
1091         }
1092
1093         /* pull a tag out of the request if we have one */
1094         cmd->tag = req->tag;
1095         cmd->request = req;
1096
1097         return cmd;
1098 }
1099
1100 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1101 {
1102         struct scsi_cmnd *cmd;
1103         int ret = scsi_prep_state_check(sdev, req);
1104
1105         if (ret != BLKPREP_OK)
1106                 return ret;
1107
1108         cmd = scsi_get_cmd_from_req(sdev, req);
1109         if (unlikely(!cmd))
1110                 return BLKPREP_DEFER;
1111
1112         /*
1113          * BLOCK_PC requests may transfer data, in which case they must
1114          * a bio attached to them.  Or they might contain a SCSI command
1115          * that does not transfer data, in which case they may optionally
1116          * submit a request without an attached bio.
1117          */
1118         if (req->bio) {
1119                 int ret;
1120
1121                 BUG_ON(!req->nr_phys_segments);
1122
1123                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1124                 if (unlikely(ret))
1125                         return ret;
1126         } else {
1127                 BUG_ON(req->data_len);
1128                 BUG_ON(req->data);
1129
1130                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1131                 req->buffer = NULL;
1132         }
1133
1134         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1135         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1136         cmd->cmd_len = req->cmd_len;
1137         if (!req->data_len)
1138                 cmd->sc_data_direction = DMA_NONE;
1139         else if (rq_data_dir(req) == WRITE)
1140                 cmd->sc_data_direction = DMA_TO_DEVICE;
1141         else
1142                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1143         
1144         cmd->transfersize = req->data_len;
1145         cmd->allowed = req->retries;
1146         cmd->timeout_per_command = req->timeout;
1147         return BLKPREP_OK;
1148 }
1149 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1150
1151 /*
1152  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1153  * from filesystems that still need to be translated to SCSI CDBs from
1154  * the ULD.
1155  */
1156 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1157 {
1158         struct scsi_cmnd *cmd;
1159         int ret = scsi_prep_state_check(sdev, req);
1160
1161         if (ret != BLKPREP_OK)
1162                 return ret;
1163         /*
1164          * Filesystem requests must transfer data.
1165          */
1166         BUG_ON(!req->nr_phys_segments);
1167
1168         cmd = scsi_get_cmd_from_req(sdev, req);
1169         if (unlikely(!cmd))
1170                 return BLKPREP_DEFER;
1171
1172         return scsi_init_io(cmd, GFP_ATOMIC);
1173 }
1174 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1175
1176 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1177 {
1178         int ret = BLKPREP_OK;
1179
1180         /*
1181          * If the device is not in running state we will reject some
1182          * or all commands.
1183          */
1184         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1185                 switch (sdev->sdev_state) {
1186                 case SDEV_OFFLINE:
1187                         /*
1188                          * If the device is offline we refuse to process any
1189                          * commands.  The device must be brought online
1190                          * before trying any recovery commands.
1191                          */
1192                         sdev_printk(KERN_ERR, sdev,
1193                                     "rejecting I/O to offline device\n");
1194                         ret = BLKPREP_KILL;
1195                         break;
1196                 case SDEV_DEL:
1197                         /*
1198                          * If the device is fully deleted, we refuse to
1199                          * process any commands as well.
1200                          */
1201                         sdev_printk(KERN_ERR, sdev,
1202                                     "rejecting I/O to dead device\n");
1203                         ret = BLKPREP_KILL;
1204                         break;
1205                 case SDEV_QUIESCE:
1206                 case SDEV_BLOCK:
1207                         /*
1208                          * If the devices is blocked we defer normal commands.
1209                          */
1210                         if (!(req->cmd_flags & REQ_PREEMPT))
1211                                 ret = BLKPREP_DEFER;
1212                         break;
1213                 default:
1214                         /*
1215                          * For any other not fully online state we only allow
1216                          * special commands.  In particular any user initiated
1217                          * command is not allowed.
1218                          */
1219                         if (!(req->cmd_flags & REQ_PREEMPT))
1220                                 ret = BLKPREP_KILL;
1221                         break;
1222                 }
1223         }
1224         return ret;
1225 }
1226 EXPORT_SYMBOL(scsi_prep_state_check);
1227
1228 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1229 {
1230         struct scsi_device *sdev = q->queuedata;
1231
1232         switch (ret) {
1233         case BLKPREP_KILL:
1234                 req->errors = DID_NO_CONNECT << 16;
1235                 /* release the command and kill it */
1236                 if (req->special) {
1237                         struct scsi_cmnd *cmd = req->special;
1238                         scsi_release_buffers(cmd);
1239                         scsi_put_command(cmd);
1240                         req->special = NULL;
1241                 }
1242                 break;
1243         case BLKPREP_DEFER:
1244                 /*
1245                  * If we defer, the elv_next_request() returns NULL, but the
1246                  * queue must be restarted, so we plug here if no returning
1247                  * command will automatically do that.
1248                  */
1249                 if (sdev->device_busy == 0)
1250                         blk_plug_device(q);
1251                 break;
1252         default:
1253                 req->cmd_flags |= REQ_DONTPREP;
1254         }
1255
1256         return ret;
1257 }
1258 EXPORT_SYMBOL(scsi_prep_return);
1259
1260 int scsi_prep_fn(struct request_queue *q, struct request *req)
1261 {
1262         struct scsi_device *sdev = q->queuedata;
1263         int ret = BLKPREP_KILL;
1264
1265         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1266                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1267         return scsi_prep_return(q, req, ret);
1268 }
1269
1270 /*
1271  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1272  * return 0.
1273  *
1274  * Called with the queue_lock held.
1275  */
1276 static inline int scsi_dev_queue_ready(struct request_queue *q,
1277                                   struct scsi_device *sdev)
1278 {
1279         if (sdev->device_busy >= sdev->queue_depth)
1280                 return 0;
1281         if (sdev->device_busy == 0 && sdev->device_blocked) {
1282                 /*
1283                  * unblock after device_blocked iterates to zero
1284                  */
1285                 if (--sdev->device_blocked == 0) {
1286                         SCSI_LOG_MLQUEUE(3,
1287                                    sdev_printk(KERN_INFO, sdev,
1288                                    "unblocking device at zero depth\n"));
1289                 } else {
1290                         blk_plug_device(q);
1291                         return 0;
1292                 }
1293         }
1294         if (sdev->device_blocked)
1295                 return 0;
1296
1297         return 1;
1298 }
1299
1300 /*
1301  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1302  * return 0. We must end up running the queue again whenever 0 is
1303  * returned, else IO can hang.
1304  *
1305  * Called with host_lock held.
1306  */
1307 static inline int scsi_host_queue_ready(struct request_queue *q,
1308                                    struct Scsi_Host *shost,
1309                                    struct scsi_device *sdev)
1310 {
1311         if (scsi_host_in_recovery(shost))
1312                 return 0;
1313         if (shost->host_busy == 0 && shost->host_blocked) {
1314                 /*
1315                  * unblock after host_blocked iterates to zero
1316                  */
1317                 if (--shost->host_blocked == 0) {
1318                         SCSI_LOG_MLQUEUE(3,
1319                                 printk("scsi%d unblocking host at zero depth\n",
1320                                         shost->host_no));
1321                 } else {
1322                         blk_plug_device(q);
1323                         return 0;
1324                 }
1325         }
1326         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1327             shost->host_blocked || shost->host_self_blocked) {
1328                 if (list_empty(&sdev->starved_entry))
1329                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1330                 return 0;
1331         }
1332
1333         /* We're OK to process the command, so we can't be starved */
1334         if (!list_empty(&sdev->starved_entry))
1335                 list_del_init(&sdev->starved_entry);
1336
1337         return 1;
1338 }
1339
1340 /*
1341  * Kill a request for a dead device
1342  */
1343 static void scsi_kill_request(struct request *req, struct request_queue *q)
1344 {
1345         struct scsi_cmnd *cmd = req->special;
1346         struct scsi_device *sdev = cmd->device;
1347         struct Scsi_Host *shost = sdev->host;
1348
1349         blkdev_dequeue_request(req);
1350
1351         if (unlikely(cmd == NULL)) {
1352                 printk(KERN_CRIT "impossible request in %s.\n",
1353                                  __FUNCTION__);
1354                 BUG();
1355         }
1356
1357         scsi_init_cmd_errh(cmd);
1358         cmd->result = DID_NO_CONNECT << 16;
1359         atomic_inc(&cmd->device->iorequest_cnt);
1360
1361         /*
1362          * SCSI request completion path will do scsi_device_unbusy(),
1363          * bump busy counts.  To bump the counters, we need to dance
1364          * with the locks as normal issue path does.
1365          */
1366         sdev->device_busy++;
1367         spin_unlock(sdev->request_queue->queue_lock);
1368         spin_lock(shost->host_lock);
1369         shost->host_busy++;
1370         spin_unlock(shost->host_lock);
1371         spin_lock(sdev->request_queue->queue_lock);
1372
1373         __scsi_done(cmd);
1374 }
1375
1376 static void scsi_softirq_done(struct request *rq)
1377 {
1378         struct scsi_cmnd *cmd = rq->completion_data;
1379         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1380         int disposition;
1381
1382         INIT_LIST_HEAD(&cmd->eh_entry);
1383
1384         disposition = scsi_decide_disposition(cmd);
1385         if (disposition != SUCCESS &&
1386             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1387                 sdev_printk(KERN_ERR, cmd->device,
1388                             "timing out command, waited %lus\n",
1389                             wait_for/HZ);
1390                 disposition = SUCCESS;
1391         }
1392                         
1393         scsi_log_completion(cmd, disposition);
1394
1395         switch (disposition) {
1396                 case SUCCESS:
1397                         scsi_finish_command(cmd);
1398                         break;
1399                 case NEEDS_RETRY:
1400                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1401                         break;
1402                 case ADD_TO_MLQUEUE:
1403                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1404                         break;
1405                 default:
1406                         if (!scsi_eh_scmd_add(cmd, 0))
1407                                 scsi_finish_command(cmd);
1408         }
1409 }
1410
1411 /*
1412  * Function:    scsi_request_fn()
1413  *
1414  * Purpose:     Main strategy routine for SCSI.
1415  *
1416  * Arguments:   q       - Pointer to actual queue.
1417  *
1418  * Returns:     Nothing
1419  *
1420  * Lock status: IO request lock assumed to be held when called.
1421  */
1422 static void scsi_request_fn(struct request_queue *q)
1423 {
1424         struct scsi_device *sdev = q->queuedata;
1425         struct Scsi_Host *shost;
1426         struct scsi_cmnd *cmd;
1427         struct request *req;
1428
1429         if (!sdev) {
1430                 printk("scsi: killing requests for dead queue\n");
1431                 while ((req = elv_next_request(q)) != NULL)
1432                         scsi_kill_request(req, q);
1433                 return;
1434         }
1435
1436         if(!get_device(&sdev->sdev_gendev))
1437                 /* We must be tearing the block queue down already */
1438                 return;
1439
1440         /*
1441          * To start with, we keep looping until the queue is empty, or until
1442          * the host is no longer able to accept any more requests.
1443          */
1444         shost = sdev->host;
1445         while (!blk_queue_plugged(q)) {
1446                 int rtn;
1447                 /*
1448                  * get next queueable request.  We do this early to make sure
1449                  * that the request is fully prepared even if we cannot 
1450                  * accept it.
1451                  */
1452                 req = elv_next_request(q);
1453                 if (!req || !scsi_dev_queue_ready(q, sdev))
1454                         break;
1455
1456                 if (unlikely(!scsi_device_online(sdev))) {
1457                         sdev_printk(KERN_ERR, sdev,
1458                                     "rejecting I/O to offline device\n");
1459                         scsi_kill_request(req, q);
1460                         continue;
1461                 }
1462
1463
1464                 /*
1465                  * Remove the request from the request list.
1466                  */
1467                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1468                         blkdev_dequeue_request(req);
1469                 sdev->device_busy++;
1470
1471                 spin_unlock(q->queue_lock);
1472                 cmd = req->special;
1473                 if (unlikely(cmd == NULL)) {
1474                         printk(KERN_CRIT "impossible request in %s.\n"
1475                                          "please mail a stack trace to "
1476                                          "linux-scsi@vger.kernel.org\n",
1477                                          __FUNCTION__);
1478                         blk_dump_rq_flags(req, "foo");
1479                         BUG();
1480                 }
1481                 spin_lock(shost->host_lock);
1482
1483                 if (!scsi_host_queue_ready(q, shost, sdev))
1484                         goto not_ready;
1485                 if (scsi_target(sdev)->single_lun) {
1486                         if (scsi_target(sdev)->starget_sdev_user &&
1487                             scsi_target(sdev)->starget_sdev_user != sdev)
1488                                 goto not_ready;
1489                         scsi_target(sdev)->starget_sdev_user = sdev;
1490                 }
1491                 shost->host_busy++;
1492
1493                 /*
1494                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1495                  *              take the lock again.
1496                  */
1497                 spin_unlock_irq(shost->host_lock);
1498
1499                 /*
1500                  * Finally, initialize any error handling parameters, and set up
1501                  * the timers for timeouts.
1502                  */
1503                 scsi_init_cmd_errh(cmd);
1504
1505                 /*
1506                  * Dispatch the command to the low-level driver.
1507                  */
1508                 rtn = scsi_dispatch_cmd(cmd);
1509                 spin_lock_irq(q->queue_lock);
1510                 if(rtn) {
1511                         /* we're refusing the command; because of
1512                          * the way locks get dropped, we need to 
1513                          * check here if plugging is required */
1514                         if(sdev->device_busy == 0)
1515                                 blk_plug_device(q);
1516
1517                         break;
1518                 }
1519         }
1520
1521         goto out;
1522
1523  not_ready:
1524         spin_unlock_irq(shost->host_lock);
1525
1526         /*
1527          * lock q, handle tag, requeue req, and decrement device_busy. We
1528          * must return with queue_lock held.
1529          *
1530          * Decrementing device_busy without checking it is OK, as all such
1531          * cases (host limits or settings) should run the queue at some
1532          * later time.
1533          */
1534         spin_lock_irq(q->queue_lock);
1535         blk_requeue_request(q, req);
1536         sdev->device_busy--;
1537         if(sdev->device_busy == 0)
1538                 blk_plug_device(q);
1539  out:
1540         /* must be careful here...if we trigger the ->remove() function
1541          * we cannot be holding the q lock */
1542         spin_unlock_irq(q->queue_lock);
1543         put_device(&sdev->sdev_gendev);
1544         spin_lock_irq(q->queue_lock);
1545 }
1546
1547 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1548 {
1549         struct device *host_dev;
1550         u64 bounce_limit = 0xffffffff;
1551
1552         if (shost->unchecked_isa_dma)
1553                 return BLK_BOUNCE_ISA;
1554         /*
1555          * Platforms with virtual-DMA translation
1556          * hardware have no practical limit.
1557          */
1558         if (!PCI_DMA_BUS_IS_PHYS)
1559                 return BLK_BOUNCE_ANY;
1560
1561         host_dev = scsi_get_device(shost);
1562         if (host_dev && host_dev->dma_mask)
1563                 bounce_limit = *host_dev->dma_mask;
1564
1565         return bounce_limit;
1566 }
1567 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1568
1569 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1570                                          request_fn_proc *request_fn)
1571 {
1572         struct request_queue *q;
1573         struct device *dev = shost->shost_gendev.parent;
1574
1575         q = blk_init_queue(request_fn, NULL);
1576         if (!q)
1577                 return NULL;
1578
1579         /*
1580          * this limit is imposed by hardware restrictions
1581          */
1582         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1583         blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1584
1585         blk_queue_max_sectors(q, shost->max_sectors);
1586         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1587         blk_queue_segment_boundary(q, shost->dma_boundary);
1588         dma_set_seg_boundary(dev, shost->dma_boundary);
1589
1590         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1591
1592         /* New queue, no concurrency on queue_flags */
1593         if (!shost->use_clustering)
1594                 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1595
1596         /*
1597          * set a reasonable default alignment on word boundaries: the
1598          * host and device may alter it using
1599          * blk_queue_update_dma_alignment() later.
1600          */
1601         blk_queue_dma_alignment(q, 0x03);
1602
1603         return q;
1604 }
1605 EXPORT_SYMBOL(__scsi_alloc_queue);
1606
1607 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1608 {
1609         struct request_queue *q;
1610
1611         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1612         if (!q)
1613                 return NULL;
1614
1615         blk_queue_prep_rq(q, scsi_prep_fn);
1616         blk_queue_softirq_done(q, scsi_softirq_done);
1617         return q;
1618 }
1619
1620 void scsi_free_queue(struct request_queue *q)
1621 {
1622         blk_cleanup_queue(q);
1623 }
1624
1625 /*
1626  * Function:    scsi_block_requests()
1627  *
1628  * Purpose:     Utility function used by low-level drivers to prevent further
1629  *              commands from being queued to the device.
1630  *
1631  * Arguments:   shost       - Host in question
1632  *
1633  * Returns:     Nothing
1634  *
1635  * Lock status: No locks are assumed held.
1636  *
1637  * Notes:       There is no timer nor any other means by which the requests
1638  *              get unblocked other than the low-level driver calling
1639  *              scsi_unblock_requests().
1640  */
1641 void scsi_block_requests(struct Scsi_Host *shost)
1642 {
1643         shost->host_self_blocked = 1;
1644 }
1645 EXPORT_SYMBOL(scsi_block_requests);
1646
1647 /*
1648  * Function:    scsi_unblock_requests()
1649  *
1650  * Purpose:     Utility function used by low-level drivers to allow further
1651  *              commands from being queued to the device.
1652  *
1653  * Arguments:   shost       - Host in question
1654  *
1655  * Returns:     Nothing
1656  *
1657  * Lock status: No locks are assumed held.
1658  *
1659  * Notes:       There is no timer nor any other means by which the requests
1660  *              get unblocked other than the low-level driver calling
1661  *              scsi_unblock_requests().
1662  *
1663  *              This is done as an API function so that changes to the
1664  *              internals of the scsi mid-layer won't require wholesale
1665  *              changes to drivers that use this feature.
1666  */
1667 void scsi_unblock_requests(struct Scsi_Host *shost)
1668 {
1669         shost->host_self_blocked = 0;
1670         scsi_run_host_queues(shost);
1671 }
1672 EXPORT_SYMBOL(scsi_unblock_requests);
1673
1674 int __init scsi_init_queue(void)
1675 {
1676         int i;
1677
1678         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1679                                         sizeof(struct scsi_io_context),
1680                                         0, 0, NULL);
1681         if (!scsi_io_context_cache) {
1682                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1683                 return -ENOMEM;
1684         }
1685
1686         scsi_bidi_sdb_cache = kmem_cache_create("scsi_bidi_sdb",
1687                                         sizeof(struct scsi_data_buffer),
1688                                         0, 0, NULL);
1689         if (!scsi_bidi_sdb_cache) {
1690                 printk(KERN_ERR "SCSI: can't init scsi bidi sdb cache\n");
1691                 goto cleanup_io_context;
1692         }
1693
1694         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1695                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1696                 int size = sgp->size * sizeof(struct scatterlist);
1697
1698                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1699                                 SLAB_HWCACHE_ALIGN, NULL);
1700                 if (!sgp->slab) {
1701                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1702                                         sgp->name);
1703                         goto cleanup_bidi_sdb;
1704                 }
1705
1706                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1707                                                      sgp->slab);
1708                 if (!sgp->pool) {
1709                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1710                                         sgp->name);
1711                         goto cleanup_bidi_sdb;
1712                 }
1713         }
1714
1715         return 0;
1716
1717 cleanup_bidi_sdb:
1718         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1719                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1720                 if (sgp->pool)
1721                         mempool_destroy(sgp->pool);
1722                 if (sgp->slab)
1723                         kmem_cache_destroy(sgp->slab);
1724         }
1725         kmem_cache_destroy(scsi_bidi_sdb_cache);
1726 cleanup_io_context:
1727         kmem_cache_destroy(scsi_io_context_cache);
1728
1729         return -ENOMEM;
1730 }
1731
1732 void scsi_exit_queue(void)
1733 {
1734         int i;
1735
1736         kmem_cache_destroy(scsi_io_context_cache);
1737         kmem_cache_destroy(scsi_bidi_sdb_cache);
1738
1739         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1740                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1741                 mempool_destroy(sgp->pool);
1742                 kmem_cache_destroy(sgp->slab);
1743         }
1744 }
1745
1746 /**
1747  *      scsi_mode_select - issue a mode select
1748  *      @sdev:  SCSI device to be queried
1749  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1750  *      @sp:    Save page bit (0 == don't save, 1 == save)
1751  *      @modepage: mode page being requested
1752  *      @buffer: request buffer (may not be smaller than eight bytes)
1753  *      @len:   length of request buffer.
1754  *      @timeout: command timeout
1755  *      @retries: number of retries before failing
1756  *      @data: returns a structure abstracting the mode header data
1757  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1758  *              must be SCSI_SENSE_BUFFERSIZE big.
1759  *
1760  *      Returns zero if successful; negative error number or scsi
1761  *      status on error
1762  *
1763  */
1764 int
1765 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1766                  unsigned char *buffer, int len, int timeout, int retries,
1767                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1768 {
1769         unsigned char cmd[10];
1770         unsigned char *real_buffer;
1771         int ret;
1772
1773         memset(cmd, 0, sizeof(cmd));
1774         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1775
1776         if (sdev->use_10_for_ms) {
1777                 if (len > 65535)
1778                         return -EINVAL;
1779                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1780                 if (!real_buffer)
1781                         return -ENOMEM;
1782                 memcpy(real_buffer + 8, buffer, len);
1783                 len += 8;
1784                 real_buffer[0] = 0;
1785                 real_buffer[1] = 0;
1786                 real_buffer[2] = data->medium_type;
1787                 real_buffer[3] = data->device_specific;
1788                 real_buffer[4] = data->longlba ? 0x01 : 0;
1789                 real_buffer[5] = 0;
1790                 real_buffer[6] = data->block_descriptor_length >> 8;
1791                 real_buffer[7] = data->block_descriptor_length;
1792
1793                 cmd[0] = MODE_SELECT_10;
1794                 cmd[7] = len >> 8;
1795                 cmd[8] = len;
1796         } else {
1797                 if (len > 255 || data->block_descriptor_length > 255 ||
1798                     data->longlba)
1799                         return -EINVAL;
1800
1801                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1802                 if (!real_buffer)
1803                         return -ENOMEM;
1804                 memcpy(real_buffer + 4, buffer, len);
1805                 len += 4;
1806                 real_buffer[0] = 0;
1807                 real_buffer[1] = data->medium_type;
1808                 real_buffer[2] = data->device_specific;
1809                 real_buffer[3] = data->block_descriptor_length;
1810                 
1811
1812                 cmd[0] = MODE_SELECT;
1813                 cmd[4] = len;
1814         }
1815
1816         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1817                                sshdr, timeout, retries);
1818         kfree(real_buffer);
1819         return ret;
1820 }
1821 EXPORT_SYMBOL_GPL(scsi_mode_select);
1822
1823 /**
1824  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1825  *      @sdev:  SCSI device to be queried
1826  *      @dbd:   set if mode sense will allow block descriptors to be returned
1827  *      @modepage: mode page being requested
1828  *      @buffer: request buffer (may not be smaller than eight bytes)
1829  *      @len:   length of request buffer.
1830  *      @timeout: command timeout
1831  *      @retries: number of retries before failing
1832  *      @data: returns a structure abstracting the mode header data
1833  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1834  *              must be SCSI_SENSE_BUFFERSIZE big.
1835  *
1836  *      Returns zero if unsuccessful, or the header offset (either 4
1837  *      or 8 depending on whether a six or ten byte command was
1838  *      issued) if successful.
1839  */
1840 int
1841 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1842                   unsigned char *buffer, int len, int timeout, int retries,
1843                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1844 {
1845         unsigned char cmd[12];
1846         int use_10_for_ms;
1847         int header_length;
1848         int result;
1849         struct scsi_sense_hdr my_sshdr;
1850
1851         memset(data, 0, sizeof(*data));
1852         memset(&cmd[0], 0, 12);
1853         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1854         cmd[2] = modepage;
1855
1856         /* caller might not be interested in sense, but we need it */
1857         if (!sshdr)
1858                 sshdr = &my_sshdr;
1859
1860  retry:
1861         use_10_for_ms = sdev->use_10_for_ms;
1862
1863         if (use_10_for_ms) {
1864                 if (len < 8)
1865                         len = 8;
1866
1867                 cmd[0] = MODE_SENSE_10;
1868                 cmd[8] = len;
1869                 header_length = 8;
1870         } else {
1871                 if (len < 4)
1872                         len = 4;
1873
1874                 cmd[0] = MODE_SENSE;
1875                 cmd[4] = len;
1876                 header_length = 4;
1877         }
1878
1879         memset(buffer, 0, len);
1880
1881         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1882                                   sshdr, timeout, retries);
1883
1884         /* This code looks awful: what it's doing is making sure an
1885          * ILLEGAL REQUEST sense return identifies the actual command
1886          * byte as the problem.  MODE_SENSE commands can return
1887          * ILLEGAL REQUEST if the code page isn't supported */
1888
1889         if (use_10_for_ms && !scsi_status_is_good(result) &&
1890             (driver_byte(result) & DRIVER_SENSE)) {
1891                 if (scsi_sense_valid(sshdr)) {
1892                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1893                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1894                                 /* 
1895                                  * Invalid command operation code
1896                                  */
1897                                 sdev->use_10_for_ms = 0;
1898                                 goto retry;
1899                         }
1900                 }
1901         }
1902
1903         if(scsi_status_is_good(result)) {
1904                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1905                              (modepage == 6 || modepage == 8))) {
1906                         /* Initio breakage? */
1907                         header_length = 0;
1908                         data->length = 13;
1909                         data->medium_type = 0;
1910                         data->device_specific = 0;
1911                         data->longlba = 0;
1912                         data->block_descriptor_length = 0;
1913                 } else if(use_10_for_ms) {
1914                         data->length = buffer[0]*256 + buffer[1] + 2;
1915                         data->medium_type = buffer[2];
1916                         data->device_specific = buffer[3];
1917                         data->longlba = buffer[4] & 0x01;
1918                         data->block_descriptor_length = buffer[6]*256
1919                                 + buffer[7];
1920                 } else {
1921                         data->length = buffer[0] + 1;
1922                         data->medium_type = buffer[1];
1923                         data->device_specific = buffer[2];
1924                         data->block_descriptor_length = buffer[3];
1925                 }
1926                 data->header_length = header_length;
1927         }
1928
1929         return result;
1930 }
1931 EXPORT_SYMBOL(scsi_mode_sense);
1932
1933 /**
1934  *      scsi_test_unit_ready - test if unit is ready
1935  *      @sdev:  scsi device to change the state of.
1936  *      @timeout: command timeout
1937  *      @retries: number of retries before failing
1938  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1939  *              returning sense. Make sure that this is cleared before passing
1940  *              in.
1941  *
1942  *      Returns zero if unsuccessful or an error if TUR failed.  For
1943  *      removable media, a return of NOT_READY or UNIT_ATTENTION is
1944  *      translated to success, with the ->changed flag updated.
1945  **/
1946 int
1947 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1948                      struct scsi_sense_hdr *sshdr_external)
1949 {
1950         char cmd[] = {
1951                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1952         };
1953         struct scsi_sense_hdr *sshdr;
1954         int result;
1955
1956         if (!sshdr_external)
1957                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1958         else
1959                 sshdr = sshdr_external;
1960
1961         /* try to eat the UNIT_ATTENTION if there are enough retries */
1962         do {
1963                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1964                                           timeout, retries);
1965         } while ((driver_byte(result) & DRIVER_SENSE) &&
1966                  sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1967                  --retries);
1968
1969         if (!sshdr)
1970                 /* could not allocate sense buffer, so can't process it */
1971                 return result;
1972
1973         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1974
1975                 if ((scsi_sense_valid(sshdr)) &&
1976                     ((sshdr->sense_key == UNIT_ATTENTION) ||
1977                      (sshdr->sense_key == NOT_READY))) {
1978                         sdev->changed = 1;
1979                         result = 0;
1980                 }
1981         }
1982         if (!sshdr_external)
1983                 kfree(sshdr);
1984         return result;
1985 }
1986 EXPORT_SYMBOL(scsi_test_unit_ready);
1987
1988 /**
1989  *      scsi_device_set_state - Take the given device through the device state model.
1990  *      @sdev:  scsi device to change the state of.
1991  *      @state: state to change to.
1992  *
1993  *      Returns zero if unsuccessful or an error if the requested 
1994  *      transition is illegal.
1995  */
1996 int
1997 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1998 {
1999         enum scsi_device_state oldstate = sdev->sdev_state;
2000
2001         if (state == oldstate)
2002                 return 0;
2003
2004         switch (state) {
2005         case SDEV_CREATED:
2006                 /* There are no legal states that come back to
2007                  * created.  This is the manually initialised start
2008                  * state */
2009                 goto illegal;
2010                         
2011         case SDEV_RUNNING:
2012                 switch (oldstate) {
2013                 case SDEV_CREATED:
2014                 case SDEV_OFFLINE:
2015                 case SDEV_QUIESCE:
2016                 case SDEV_BLOCK:
2017                         break;
2018                 default:
2019                         goto illegal;
2020                 }
2021                 break;
2022
2023         case SDEV_QUIESCE:
2024                 switch (oldstate) {
2025                 case SDEV_RUNNING:
2026                 case SDEV_OFFLINE:
2027                         break;
2028                 default:
2029                         goto illegal;
2030                 }
2031                 break;
2032
2033         case SDEV_OFFLINE:
2034                 switch (oldstate) {
2035                 case SDEV_CREATED:
2036                 case SDEV_RUNNING:
2037                 case SDEV_QUIESCE:
2038                 case SDEV_BLOCK:
2039                         break;
2040                 default:
2041                         goto illegal;
2042                 }
2043                 break;
2044
2045         case SDEV_BLOCK:
2046                 switch (oldstate) {
2047                 case SDEV_CREATED:
2048                 case SDEV_RUNNING:
2049                         break;
2050                 default:
2051                         goto illegal;
2052                 }
2053                 break;
2054
2055         case SDEV_CANCEL:
2056                 switch (oldstate) {
2057                 case SDEV_CREATED:
2058                 case SDEV_RUNNING:
2059                 case SDEV_QUIESCE:
2060                 case SDEV_OFFLINE:
2061                 case SDEV_BLOCK:
2062                         break;
2063                 default:
2064                         goto illegal;
2065                 }
2066                 break;
2067
2068         case SDEV_DEL:
2069                 switch (oldstate) {
2070                 case SDEV_CREATED:
2071                 case SDEV_RUNNING:
2072                 case SDEV_OFFLINE:
2073                 case SDEV_CANCEL:
2074                         break;
2075                 default:
2076                         goto illegal;
2077                 }
2078                 break;
2079
2080         }
2081         sdev->sdev_state = state;
2082         return 0;
2083
2084  illegal:
2085         SCSI_LOG_ERROR_RECOVERY(1, 
2086                                 sdev_printk(KERN_ERR, sdev,
2087                                             "Illegal state transition %s->%s\n",
2088                                             scsi_device_state_name(oldstate),
2089                                             scsi_device_state_name(state))
2090                                 );
2091         return -EINVAL;
2092 }
2093 EXPORT_SYMBOL(scsi_device_set_state);
2094
2095 /**
2096  *      sdev_evt_emit - emit a single SCSI device uevent
2097  *      @sdev: associated SCSI device
2098  *      @evt: event to emit
2099  *
2100  *      Send a single uevent (scsi_event) to the associated scsi_device.
2101  */
2102 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2103 {
2104         int idx = 0;
2105         char *envp[3];
2106
2107         switch (evt->evt_type) {
2108         case SDEV_EVT_MEDIA_CHANGE:
2109                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2110                 break;
2111
2112         default:
2113                 /* do nothing */
2114                 break;
2115         }
2116
2117         envp[idx++] = NULL;
2118
2119         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2120 }
2121
2122 /**
2123  *      sdev_evt_thread - send a uevent for each scsi event
2124  *      @work: work struct for scsi_device
2125  *
2126  *      Dispatch queued events to their associated scsi_device kobjects
2127  *      as uevents.
2128  */
2129 void scsi_evt_thread(struct work_struct *work)
2130 {
2131         struct scsi_device *sdev;
2132         LIST_HEAD(event_list);
2133
2134         sdev = container_of(work, struct scsi_device, event_work);
2135
2136         while (1) {
2137                 struct scsi_event *evt;
2138                 struct list_head *this, *tmp;
2139                 unsigned long flags;
2140
2141                 spin_lock_irqsave(&sdev->list_lock, flags);
2142                 list_splice_init(&sdev->event_list, &event_list);
2143                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2144
2145                 if (list_empty(&event_list))
2146                         break;
2147
2148                 list_for_each_safe(this, tmp, &event_list) {
2149                         evt = list_entry(this, struct scsi_event, node);
2150                         list_del(&evt->node);
2151                         scsi_evt_emit(sdev, evt);
2152                         kfree(evt);
2153                 }
2154         }
2155 }
2156
2157 /**
2158  *      sdev_evt_send - send asserted event to uevent thread
2159  *      @sdev: scsi_device event occurred on
2160  *      @evt: event to send
2161  *
2162  *      Assert scsi device event asynchronously.
2163  */
2164 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2165 {
2166         unsigned long flags;
2167
2168 #if 0
2169         /* FIXME: currently this check eliminates all media change events
2170          * for polled devices.  Need to update to discriminate between AN
2171          * and polled events */
2172         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2173                 kfree(evt);
2174                 return;
2175         }
2176 #endif
2177
2178         spin_lock_irqsave(&sdev->list_lock, flags);
2179         list_add_tail(&evt->node, &sdev->event_list);
2180         schedule_work(&sdev->event_work);
2181         spin_unlock_irqrestore(&sdev->list_lock, flags);
2182 }
2183 EXPORT_SYMBOL_GPL(sdev_evt_send);
2184
2185 /**
2186  *      sdev_evt_alloc - allocate a new scsi event
2187  *      @evt_type: type of event to allocate
2188  *      @gfpflags: GFP flags for allocation
2189  *
2190  *      Allocates and returns a new scsi_event.
2191  */
2192 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2193                                   gfp_t gfpflags)
2194 {
2195         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2196         if (!evt)
2197                 return NULL;
2198
2199         evt->evt_type = evt_type;
2200         INIT_LIST_HEAD(&evt->node);
2201
2202         /* evt_type-specific initialization, if any */
2203         switch (evt_type) {
2204         case SDEV_EVT_MEDIA_CHANGE:
2205         default:
2206                 /* do nothing */
2207                 break;
2208         }
2209
2210         return evt;
2211 }
2212 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2213
2214 /**
2215  *      sdev_evt_send_simple - send asserted event to uevent thread
2216  *      @sdev: scsi_device event occurred on
2217  *      @evt_type: type of event to send
2218  *      @gfpflags: GFP flags for allocation
2219  *
2220  *      Assert scsi device event asynchronously, given an event type.
2221  */
2222 void sdev_evt_send_simple(struct scsi_device *sdev,
2223                           enum scsi_device_event evt_type, gfp_t gfpflags)
2224 {
2225         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2226         if (!evt) {
2227                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2228                             evt_type);
2229                 return;
2230         }
2231
2232         sdev_evt_send(sdev, evt);
2233 }
2234 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2235
2236 /**
2237  *      scsi_device_quiesce - Block user issued commands.
2238  *      @sdev:  scsi device to quiesce.
2239  *
2240  *      This works by trying to transition to the SDEV_QUIESCE state
2241  *      (which must be a legal transition).  When the device is in this
2242  *      state, only special requests will be accepted, all others will
2243  *      be deferred.  Since special requests may also be requeued requests,
2244  *      a successful return doesn't guarantee the device will be 
2245  *      totally quiescent.
2246  *
2247  *      Must be called with user context, may sleep.
2248  *
2249  *      Returns zero if unsuccessful or an error if not.
2250  */
2251 int
2252 scsi_device_quiesce(struct scsi_device *sdev)
2253 {
2254         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2255         if (err)
2256                 return err;
2257
2258         scsi_run_queue(sdev->request_queue);
2259         while (sdev->device_busy) {
2260                 msleep_interruptible(200);
2261                 scsi_run_queue(sdev->request_queue);
2262         }
2263         return 0;
2264 }
2265 EXPORT_SYMBOL(scsi_device_quiesce);
2266
2267 /**
2268  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2269  *      @sdev:  scsi device to resume.
2270  *
2271  *      Moves the device from quiesced back to running and restarts the
2272  *      queues.
2273  *
2274  *      Must be called with user context, may sleep.
2275  */
2276 void
2277 scsi_device_resume(struct scsi_device *sdev)
2278 {
2279         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2280                 return;
2281         scsi_run_queue(sdev->request_queue);
2282 }
2283 EXPORT_SYMBOL(scsi_device_resume);
2284
2285 static void
2286 device_quiesce_fn(struct scsi_device *sdev, void *data)
2287 {
2288         scsi_device_quiesce(sdev);
2289 }
2290
2291 void
2292 scsi_target_quiesce(struct scsi_target *starget)
2293 {
2294         starget_for_each_device(starget, NULL, device_quiesce_fn);
2295 }
2296 EXPORT_SYMBOL(scsi_target_quiesce);
2297
2298 static void
2299 device_resume_fn(struct scsi_device *sdev, void *data)
2300 {
2301         scsi_device_resume(sdev);
2302 }
2303
2304 void
2305 scsi_target_resume(struct scsi_target *starget)
2306 {
2307         starget_for_each_device(starget, NULL, device_resume_fn);
2308 }
2309 EXPORT_SYMBOL(scsi_target_resume);
2310
2311 /**
2312  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2313  * @sdev:       device to block
2314  *
2315  * Block request made by scsi lld's to temporarily stop all
2316  * scsi commands on the specified device.  Called from interrupt
2317  * or normal process context.
2318  *
2319  * Returns zero if successful or error if not
2320  *
2321  * Notes:       
2322  *      This routine transitions the device to the SDEV_BLOCK state
2323  *      (which must be a legal transition).  When the device is in this
2324  *      state, all commands are deferred until the scsi lld reenables
2325  *      the device with scsi_device_unblock or device_block_tmo fires.
2326  *      This routine assumes the host_lock is held on entry.
2327  */
2328 int
2329 scsi_internal_device_block(struct scsi_device *sdev)
2330 {
2331         struct request_queue *q = sdev->request_queue;
2332         unsigned long flags;
2333         int err = 0;
2334
2335         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2336         if (err)
2337                 return err;
2338
2339         /* 
2340          * The device has transitioned to SDEV_BLOCK.  Stop the
2341          * block layer from calling the midlayer with this device's
2342          * request queue. 
2343          */
2344         spin_lock_irqsave(q->queue_lock, flags);
2345         blk_stop_queue(q);
2346         spin_unlock_irqrestore(q->queue_lock, flags);
2347
2348         return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2351  
2352 /**
2353  * scsi_internal_device_unblock - resume a device after a block request
2354  * @sdev:       device to resume
2355  *
2356  * Called by scsi lld's or the midlayer to restart the device queue
2357  * for the previously suspended scsi device.  Called from interrupt or
2358  * normal process context.
2359  *
2360  * Returns zero if successful or error if not.
2361  *
2362  * Notes:       
2363  *      This routine transitions the device to the SDEV_RUNNING state
2364  *      (which must be a legal transition) allowing the midlayer to
2365  *      goose the queue for this device.  This routine assumes the 
2366  *      host_lock is held upon entry.
2367  */
2368 int
2369 scsi_internal_device_unblock(struct scsi_device *sdev)
2370 {
2371         struct request_queue *q = sdev->request_queue; 
2372         int err;
2373         unsigned long flags;
2374         
2375         /* 
2376          * Try to transition the scsi device to SDEV_RUNNING
2377          * and goose the device queue if successful.  
2378          */
2379         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2380         if (err)
2381                 return err;
2382
2383         spin_lock_irqsave(q->queue_lock, flags);
2384         blk_start_queue(q);
2385         spin_unlock_irqrestore(q->queue_lock, flags);
2386
2387         return 0;
2388 }
2389 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2390
2391 static void
2392 device_block(struct scsi_device *sdev, void *data)
2393 {
2394         scsi_internal_device_block(sdev);
2395 }
2396
2397 static int
2398 target_block(struct device *dev, void *data)
2399 {
2400         if (scsi_is_target_device(dev))
2401                 starget_for_each_device(to_scsi_target(dev), NULL,
2402                                         device_block);
2403         return 0;
2404 }
2405
2406 void
2407 scsi_target_block(struct device *dev)
2408 {
2409         if (scsi_is_target_device(dev))
2410                 starget_for_each_device(to_scsi_target(dev), NULL,
2411                                         device_block);
2412         else
2413                 device_for_each_child(dev, NULL, target_block);
2414 }
2415 EXPORT_SYMBOL_GPL(scsi_target_block);
2416
2417 static void
2418 device_unblock(struct scsi_device *sdev, void *data)
2419 {
2420         scsi_internal_device_unblock(sdev);
2421 }
2422
2423 static int
2424 target_unblock(struct device *dev, void *data)
2425 {
2426         if (scsi_is_target_device(dev))
2427                 starget_for_each_device(to_scsi_target(dev), NULL,
2428                                         device_unblock);
2429         return 0;
2430 }
2431
2432 void
2433 scsi_target_unblock(struct device *dev)
2434 {
2435         if (scsi_is_target_device(dev))
2436                 starget_for_each_device(to_scsi_target(dev), NULL,
2437                                         device_unblock);
2438         else
2439                 device_for_each_child(dev, NULL, target_unblock);
2440 }
2441 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2442
2443 /**
2444  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2445  * @sgl:        scatter-gather list
2446  * @sg_count:   number of segments in sg
2447  * @offset:     offset in bytes into sg, on return offset into the mapped area
2448  * @len:        bytes to map, on return number of bytes mapped
2449  *
2450  * Returns virtual address of the start of the mapped page
2451  */
2452 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2453                           size_t *offset, size_t *len)
2454 {
2455         int i;
2456         size_t sg_len = 0, len_complete = 0;
2457         struct scatterlist *sg;
2458         struct page *page;
2459
2460         WARN_ON(!irqs_disabled());
2461
2462         for_each_sg(sgl, sg, sg_count, i) {
2463                 len_complete = sg_len; /* Complete sg-entries */
2464                 sg_len += sg->length;
2465                 if (sg_len > *offset)
2466                         break;
2467         }
2468
2469         if (unlikely(i == sg_count)) {
2470                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2471                         "elements %d\n",
2472                        __FUNCTION__, sg_len, *offset, sg_count);
2473                 WARN_ON(1);
2474                 return NULL;
2475         }
2476
2477         /* Offset starting from the beginning of first page in this sg-entry */
2478         *offset = *offset - len_complete + sg->offset;
2479
2480         /* Assumption: contiguous pages can be accessed as "page + i" */
2481         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2482         *offset &= ~PAGE_MASK;
2483
2484         /* Bytes in this sg-entry from *offset to the end of the page */
2485         sg_len = PAGE_SIZE - *offset;
2486         if (*len > sg_len)
2487                 *len = sg_len;
2488
2489         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2490 }
2491 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2492
2493 /**
2494  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2495  * @virt:       virtual address to be unmapped
2496  */
2497 void scsi_kunmap_atomic_sg(void *virt)
2498 {
2499         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2500 }
2501 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);