]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/scsi_lib.c
SG: work with the SCSI fixed maximum allocations.
[linux-2.6-omap-h63xx.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE         2
36
37 /*
38  * The maximum number of SG segments that we will put inside a scatterlist
39  * (unless chaining is used). Should ideally fit inside a single page, to
40  * avoid a higher order allocation.
41  */
42 #define SCSI_MAX_SG_SEGMENTS    128
43
44 struct scsi_host_sg_pool {
45         size_t          size;
46         char            *name;
47         struct kmem_cache       *slab;
48         mempool_t       *pool;
49 };
50
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53         SP(8),
54         SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56         SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(128),
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  */
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static struct kmem_cache *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         return blk_rq_append_bio(q, rq, bio);
267 }
268
269 static void scsi_bi_endio(struct bio *bio, int error)
270 {
271         bio_put(bio);
272 }
273
274 /**
275  * scsi_req_map_sg - map a scatterlist into a request
276  * @rq:         request to fill
277  * @sgl:        scatterlist
278  * @nsegs:      number of elements
279  * @bufflen:    len of buffer
280  * @gfp:        memory allocation flags
281  *
282  * scsi_req_map_sg maps a scatterlist into a request so that the
283  * request can be sent to the block layer. We do not trust the scatterlist
284  * sent to use, as some ULDs use that struct to only organize the pages.
285  */
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287                            int nsegs, unsigned bufflen, gfp_t gfp)
288 {
289         struct request_queue *q = rq->q;
290         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291         unsigned int data_len = bufflen, len, bytes, off;
292         struct scatterlist *sg;
293         struct page *page;
294         struct bio *bio = NULL;
295         int i, err, nr_vecs = 0;
296
297         for_each_sg(sgl, sg, nsegs, i) {
298                 page = sg_page(sg);
299                 off = sg->offset;
300                 len = sg->length;
301                 data_len += len;
302
303                 while (len > 0 && data_len > 0) {
304                         /*
305                          * sg sends a scatterlist that is larger than
306                          * the data_len it wants transferred for certain
307                          * IO sizes
308                          */
309                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310                         bytes = min(bytes, data_len);
311
312                         if (!bio) {
313                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314                                 nr_pages -= nr_vecs;
315
316                                 bio = bio_alloc(gfp, nr_vecs);
317                                 if (!bio) {
318                                         err = -ENOMEM;
319                                         goto free_bios;
320                                 }
321                                 bio->bi_end_io = scsi_bi_endio;
322                         }
323
324                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
325                             bytes) {
326                                 bio_put(bio);
327                                 err = -EINVAL;
328                                 goto free_bios;
329                         }
330
331                         if (bio->bi_vcnt >= nr_vecs) {
332                                 err = scsi_merge_bio(rq, bio);
333                                 if (err) {
334                                         bio_endio(bio, 0);
335                                         goto free_bios;
336                                 }
337                                 bio = NULL;
338                         }
339
340                         page++;
341                         len -= bytes;
342                         data_len -=bytes;
343                         off = 0;
344                 }
345         }
346
347         rq->buffer = rq->data = NULL;
348         rq->data_len = bufflen;
349         return 0;
350
351 free_bios:
352         while ((bio = rq->bio) != NULL) {
353                 rq->bio = bio->bi_next;
354                 /*
355                  * call endio instead of bio_put incase it was bounced
356                  */
357                 bio_endio(bio, 0);
358         }
359
360         return err;
361 }
362
363 /**
364  * scsi_execute_async - insert request
365  * @sdev:       scsi device
366  * @cmd:        scsi command
367  * @cmd_len:    length of scsi cdb
368  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
369  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
370  * @bufflen:    len of buffer
371  * @use_sg:     if buffer is a scatterlist this is the number of elements
372  * @timeout:    request timeout in seconds
373  * @retries:    number of times to retry request
374  * @privdata:   data passed to done()
375  * @done:       callback function when done
376  * @gfp:        memory allocation flags
377  */
378 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
379                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
380                        int use_sg, int timeout, int retries, void *privdata,
381                        void (*done)(void *, char *, int, int), gfp_t gfp)
382 {
383         struct request *req;
384         struct scsi_io_context *sioc;
385         int err = 0;
386         int write = (data_direction == DMA_TO_DEVICE);
387
388         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
389         if (!sioc)
390                 return DRIVER_ERROR << 24;
391
392         req = blk_get_request(sdev->request_queue, write, gfp);
393         if (!req)
394                 goto free_sense;
395         req->cmd_type = REQ_TYPE_BLOCK_PC;
396         req->cmd_flags |= REQ_QUIET;
397
398         if (use_sg)
399                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
400         else if (bufflen)
401                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
402
403         if (err)
404                 goto free_req;
405
406         req->cmd_len = cmd_len;
407         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
408         memcpy(req->cmd, cmd, req->cmd_len);
409         req->sense = sioc->sense;
410         req->sense_len = 0;
411         req->timeout = timeout;
412         req->retries = retries;
413         req->end_io_data = sioc;
414
415         sioc->data = privdata;
416         sioc->done = done;
417
418         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
419         return 0;
420
421 free_req:
422         blk_put_request(req);
423 free_sense:
424         kmem_cache_free(scsi_io_context_cache, sioc);
425         return DRIVER_ERROR << 24;
426 }
427 EXPORT_SYMBOL_GPL(scsi_execute_async);
428
429 /*
430  * Function:    scsi_init_cmd_errh()
431  *
432  * Purpose:     Initialize cmd fields related to error handling.
433  *
434  * Arguments:   cmd     - command that is ready to be queued.
435  *
436  * Notes:       This function has the job of initializing a number of
437  *              fields related to error handling.   Typically this will
438  *              be called once for each command, as required.
439  */
440 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
441 {
442         cmd->serial_number = 0;
443         cmd->resid = 0;
444         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
445         if (cmd->cmd_len == 0)
446                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
447 }
448
449 void scsi_device_unbusy(struct scsi_device *sdev)
450 {
451         struct Scsi_Host *shost = sdev->host;
452         unsigned long flags;
453
454         spin_lock_irqsave(shost->host_lock, flags);
455         shost->host_busy--;
456         if (unlikely(scsi_host_in_recovery(shost) &&
457                      (shost->host_failed || shost->host_eh_scheduled)))
458                 scsi_eh_wakeup(shost);
459         spin_unlock(shost->host_lock);
460         spin_lock(sdev->request_queue->queue_lock);
461         sdev->device_busy--;
462         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
463 }
464
465 /*
466  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
467  * and call blk_run_queue for all the scsi_devices on the target -
468  * including current_sdev first.
469  *
470  * Called with *no* scsi locks held.
471  */
472 static void scsi_single_lun_run(struct scsi_device *current_sdev)
473 {
474         struct Scsi_Host *shost = current_sdev->host;
475         struct scsi_device *sdev, *tmp;
476         struct scsi_target *starget = scsi_target(current_sdev);
477         unsigned long flags;
478
479         spin_lock_irqsave(shost->host_lock, flags);
480         starget->starget_sdev_user = NULL;
481         spin_unlock_irqrestore(shost->host_lock, flags);
482
483         /*
484          * Call blk_run_queue for all LUNs on the target, starting with
485          * current_sdev. We race with others (to set starget_sdev_user),
486          * but in most cases, we will be first. Ideally, each LU on the
487          * target would get some limited time or requests on the target.
488          */
489         blk_run_queue(current_sdev->request_queue);
490
491         spin_lock_irqsave(shost->host_lock, flags);
492         if (starget->starget_sdev_user)
493                 goto out;
494         list_for_each_entry_safe(sdev, tmp, &starget->devices,
495                         same_target_siblings) {
496                 if (sdev == current_sdev)
497                         continue;
498                 if (scsi_device_get(sdev))
499                         continue;
500
501                 spin_unlock_irqrestore(shost->host_lock, flags);
502                 blk_run_queue(sdev->request_queue);
503                 spin_lock_irqsave(shost->host_lock, flags);
504         
505                 scsi_device_put(sdev);
506         }
507  out:
508         spin_unlock_irqrestore(shost->host_lock, flags);
509 }
510
511 /*
512  * Function:    scsi_run_queue()
513  *
514  * Purpose:     Select a proper request queue to serve next
515  *
516  * Arguments:   q       - last request's queue
517  *
518  * Returns:     Nothing
519  *
520  * Notes:       The previous command was completely finished, start
521  *              a new one if possible.
522  */
523 static void scsi_run_queue(struct request_queue *q)
524 {
525         struct scsi_device *sdev = q->queuedata;
526         struct Scsi_Host *shost = sdev->host;
527         unsigned long flags;
528
529         if (scsi_target(sdev)->single_lun)
530                 scsi_single_lun_run(sdev);
531
532         spin_lock_irqsave(shost->host_lock, flags);
533         while (!list_empty(&shost->starved_list) &&
534                !shost->host_blocked && !shost->host_self_blocked &&
535                 !((shost->can_queue > 0) &&
536                   (shost->host_busy >= shost->can_queue))) {
537                 /*
538                  * As long as shost is accepting commands and we have
539                  * starved queues, call blk_run_queue. scsi_request_fn
540                  * drops the queue_lock and can add us back to the
541                  * starved_list.
542                  *
543                  * host_lock protects the starved_list and starved_entry.
544                  * scsi_request_fn must get the host_lock before checking
545                  * or modifying starved_list or starved_entry.
546                  */
547                 sdev = list_entry(shost->starved_list.next,
548                                           struct scsi_device, starved_entry);
549                 list_del_init(&sdev->starved_entry);
550                 spin_unlock_irqrestore(shost->host_lock, flags);
551
552
553                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
554                     !test_and_set_bit(QUEUE_FLAG_REENTER,
555                                       &sdev->request_queue->queue_flags)) {
556                         blk_run_queue(sdev->request_queue);
557                         clear_bit(QUEUE_FLAG_REENTER,
558                                   &sdev->request_queue->queue_flags);
559                 } else
560                         blk_run_queue(sdev->request_queue);
561
562                 spin_lock_irqsave(shost->host_lock, flags);
563                 if (unlikely(!list_empty(&sdev->starved_entry)))
564                         /*
565                          * sdev lost a race, and was put back on the
566                          * starved list. This is unlikely but without this
567                          * in theory we could loop forever.
568                          */
569                         break;
570         }
571         spin_unlock_irqrestore(shost->host_lock, flags);
572
573         blk_run_queue(q);
574 }
575
576 /*
577  * Function:    scsi_requeue_command()
578  *
579  * Purpose:     Handle post-processing of completed commands.
580  *
581  * Arguments:   q       - queue to operate on
582  *              cmd     - command that may need to be requeued.
583  *
584  * Returns:     Nothing
585  *
586  * Notes:       After command completion, there may be blocks left
587  *              over which weren't finished by the previous command
588  *              this can be for a number of reasons - the main one is
589  *              I/O errors in the middle of the request, in which case
590  *              we need to request the blocks that come after the bad
591  *              sector.
592  * Notes:       Upon return, cmd is a stale pointer.
593  */
594 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
595 {
596         struct request *req = cmd->request;
597         unsigned long flags;
598
599         scsi_unprep_request(req);
600         spin_lock_irqsave(q->queue_lock, flags);
601         blk_requeue_request(q, req);
602         spin_unlock_irqrestore(q->queue_lock, flags);
603
604         scsi_run_queue(q);
605 }
606
607 void scsi_next_command(struct scsi_cmnd *cmd)
608 {
609         struct scsi_device *sdev = cmd->device;
610         struct request_queue *q = sdev->request_queue;
611
612         /* need to hold a reference on the device before we let go of the cmd */
613         get_device(&sdev->sdev_gendev);
614
615         scsi_put_command(cmd);
616         scsi_run_queue(q);
617
618         /* ok to remove device now */
619         put_device(&sdev->sdev_gendev);
620 }
621
622 void scsi_run_host_queues(struct Scsi_Host *shost)
623 {
624         struct scsi_device *sdev;
625
626         shost_for_each_device(sdev, shost)
627                 scsi_run_queue(sdev->request_queue);
628 }
629
630 /*
631  * Function:    scsi_end_request()
632  *
633  * Purpose:     Post-processing of completed commands (usually invoked at end
634  *              of upper level post-processing and scsi_io_completion).
635  *
636  * Arguments:   cmd      - command that is complete.
637  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
638  *              bytes    - number of bytes of completed I/O
639  *              requeue  - indicates whether we should requeue leftovers.
640  *
641  * Lock status: Assumed that lock is not held upon entry.
642  *
643  * Returns:     cmd if requeue required, NULL otherwise.
644  *
645  * Notes:       This is called for block device requests in order to
646  *              mark some number of sectors as complete.
647  * 
648  *              We are guaranteeing that the request queue will be goosed
649  *              at some point during this call.
650  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
651  */
652 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
653                                           int bytes, int requeue)
654 {
655         struct request_queue *q = cmd->device->request_queue;
656         struct request *req = cmd->request;
657         unsigned long flags;
658
659         /*
660          * If there are blocks left over at the end, set up the command
661          * to queue the remainder of them.
662          */
663         if (end_that_request_chunk(req, uptodate, bytes)) {
664                 int leftover = (req->hard_nr_sectors << 9);
665
666                 if (blk_pc_request(req))
667                         leftover = req->data_len;
668
669                 /* kill remainder if no retrys */
670                 if (!uptodate && blk_noretry_request(req))
671                         end_that_request_chunk(req, 0, leftover);
672                 else {
673                         if (requeue) {
674                                 /*
675                                  * Bleah.  Leftovers again.  Stick the
676                                  * leftovers in the front of the
677                                  * queue, and goose the queue again.
678                                  */
679                                 scsi_requeue_command(q, cmd);
680                                 cmd = NULL;
681                         }
682                         return cmd;
683                 }
684         }
685
686         add_disk_randomness(req->rq_disk);
687
688         spin_lock_irqsave(q->queue_lock, flags);
689         if (blk_rq_tagged(req))
690                 blk_queue_end_tag(q, req);
691         end_that_request_last(req, uptodate);
692         spin_unlock_irqrestore(q->queue_lock, flags);
693
694         /*
695          * This will goose the queue request function at the end, so we don't
696          * need to worry about launching another command.
697          */
698         scsi_next_command(cmd);
699         return NULL;
700 }
701
702 /*
703  * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
704  * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
705  */
706 #define SCSI_MAX_SG_CHAIN_SEGMENTS      2048
707
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
709 {
710         unsigned int index;
711
712         switch (nents) {
713         case 1 ... 8:
714                 index = 0;
715                 break;
716         case 9 ... 16:
717                 index = 1;
718                 break;
719 #if (SCSI_MAX_SG_SEGMENTS > 16)
720         case 17 ... 32:
721                 index = 2;
722                 break;
723 #if (SCSI_MAX_SG_SEGMENTS > 32)
724         case 33 ... 64:
725                 index = 3;
726                 break;
727 #if (SCSI_MAX_SG_SEGMENTS > 64)
728         case 65 ... 128:
729                 index = 4;
730                 break;
731 #endif
732 #endif
733 #endif
734         default:
735                 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
736                 BUG();
737         }
738
739         return index;
740 }
741
742 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
743 {
744         struct scsi_host_sg_pool *sgp;
745
746         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
747         mempool_free(sgl, sgp->pool);
748 }
749
750 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
751 {
752         struct scsi_host_sg_pool *sgp;
753
754         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
755         return mempool_alloc(sgp->pool, gfp_mask);
756 }
757
758 int scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
759 {
760         int ret;
761
762         BUG_ON(!cmd->use_sg);
763
764         ret = __sg_alloc_table(&cmd->sg_table, cmd->use_sg,
765                                SCSI_MAX_SG_SEGMENTS, gfp_mask, scsi_sg_alloc);
766         if (unlikely(ret))
767                 __sg_free_table(&cmd->sg_table, SCSI_MAX_SG_SEGMENTS,
768                                 scsi_sg_free);
769
770         cmd->request_buffer = cmd->sg_table.sgl;
771         return ret;
772 }
773
774 EXPORT_SYMBOL(scsi_alloc_sgtable);
775
776 void scsi_free_sgtable(struct scsi_cmnd *cmd)
777 {
778         __sg_free_table(&cmd->sg_table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
779 }
780
781 EXPORT_SYMBOL(scsi_free_sgtable);
782
783 /*
784  * Function:    scsi_release_buffers()
785  *
786  * Purpose:     Completion processing for block device I/O requests.
787  *
788  * Arguments:   cmd     - command that we are bailing.
789  *
790  * Lock status: Assumed that no lock is held upon entry.
791  *
792  * Returns:     Nothing
793  *
794  * Notes:       In the event that an upper level driver rejects a
795  *              command, we must release resources allocated during
796  *              the __init_io() function.  Primarily this would involve
797  *              the scatter-gather table, and potentially any bounce
798  *              buffers.
799  */
800 static void scsi_release_buffers(struct scsi_cmnd *cmd)
801 {
802         if (cmd->use_sg)
803                 scsi_free_sgtable(cmd);
804
805         /*
806          * Zero these out.  They now point to freed memory, and it is
807          * dangerous to hang onto the pointers.
808          */
809         cmd->request_buffer = NULL;
810         cmd->request_bufflen = 0;
811 }
812
813 /*
814  * Function:    scsi_io_completion()
815  *
816  * Purpose:     Completion processing for block device I/O requests.
817  *
818  * Arguments:   cmd   - command that is finished.
819  *
820  * Lock status: Assumed that no lock is held upon entry.
821  *
822  * Returns:     Nothing
823  *
824  * Notes:       This function is matched in terms of capabilities to
825  *              the function that created the scatter-gather list.
826  *              In other words, if there are no bounce buffers
827  *              (the normal case for most drivers), we don't need
828  *              the logic to deal with cleaning up afterwards.
829  *
830  *              We must do one of several things here:
831  *
832  *              a) Call scsi_end_request.  This will finish off the
833  *                 specified number of sectors.  If we are done, the
834  *                 command block will be released, and the queue
835  *                 function will be goosed.  If we are not done, then
836  *                 scsi_end_request will directly goose the queue.
837  *
838  *              b) We can just use scsi_requeue_command() here.  This would
839  *                 be used if we just wanted to retry, for example.
840  */
841 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
842 {
843         int result = cmd->result;
844         int this_count = cmd->request_bufflen;
845         struct request_queue *q = cmd->device->request_queue;
846         struct request *req = cmd->request;
847         int clear_errors = 1;
848         struct scsi_sense_hdr sshdr;
849         int sense_valid = 0;
850         int sense_deferred = 0;
851
852         scsi_release_buffers(cmd);
853
854         if (result) {
855                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
856                 if (sense_valid)
857                         sense_deferred = scsi_sense_is_deferred(&sshdr);
858         }
859
860         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
861                 req->errors = result;
862                 if (result) {
863                         clear_errors = 0;
864                         if (sense_valid && req->sense) {
865                                 /*
866                                  * SG_IO wants current and deferred errors
867                                  */
868                                 int len = 8 + cmd->sense_buffer[7];
869
870                                 if (len > SCSI_SENSE_BUFFERSIZE)
871                                         len = SCSI_SENSE_BUFFERSIZE;
872                                 memcpy(req->sense, cmd->sense_buffer,  len);
873                                 req->sense_len = len;
874                         }
875                 }
876                 req->data_len = cmd->resid;
877         }
878
879         /*
880          * Next deal with any sectors which we were able to correctly
881          * handle.
882          */
883         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
884                                       "%d bytes done.\n",
885                                       req->nr_sectors, good_bytes));
886         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
887
888         if (clear_errors)
889                 req->errors = 0;
890
891         /* A number of bytes were successfully read.  If there
892          * are leftovers and there is some kind of error
893          * (result != 0), retry the rest.
894          */
895         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
896                 return;
897
898         /* good_bytes = 0, or (inclusive) there were leftovers and
899          * result = 0, so scsi_end_request couldn't retry.
900          */
901         if (sense_valid && !sense_deferred) {
902                 switch (sshdr.sense_key) {
903                 case UNIT_ATTENTION:
904                         if (cmd->device->removable) {
905                                 /* Detected disc change.  Set a bit
906                                  * and quietly refuse further access.
907                                  */
908                                 cmd->device->changed = 1;
909                                 scsi_end_request(cmd, 0, this_count, 1);
910                                 return;
911                         } else {
912                                 /* Must have been a power glitch, or a
913                                  * bus reset.  Could not have been a
914                                  * media change, so we just retry the
915                                  * request and see what happens.
916                                  */
917                                 scsi_requeue_command(q, cmd);
918                                 return;
919                         }
920                         break;
921                 case ILLEGAL_REQUEST:
922                         /* If we had an ILLEGAL REQUEST returned, then
923                          * we may have performed an unsupported
924                          * command.  The only thing this should be
925                          * would be a ten byte read where only a six
926                          * byte read was supported.  Also, on a system
927                          * where READ CAPACITY failed, we may have
928                          * read past the end of the disk.
929                          */
930                         if ((cmd->device->use_10_for_rw &&
931                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
932                             (cmd->cmnd[0] == READ_10 ||
933                              cmd->cmnd[0] == WRITE_10)) {
934                                 cmd->device->use_10_for_rw = 0;
935                                 /* This will cause a retry with a
936                                  * 6-byte command.
937                                  */
938                                 scsi_requeue_command(q, cmd);
939                                 return;
940                         } else {
941                                 scsi_end_request(cmd, 0, this_count, 1);
942                                 return;
943                         }
944                         break;
945                 case NOT_READY:
946                         /* If the device is in the process of becoming
947                          * ready, or has a temporary blockage, retry.
948                          */
949                         if (sshdr.asc == 0x04) {
950                                 switch (sshdr.ascq) {
951                                 case 0x01: /* becoming ready */
952                                 case 0x04: /* format in progress */
953                                 case 0x05: /* rebuild in progress */
954                                 case 0x06: /* recalculation in progress */
955                                 case 0x07: /* operation in progress */
956                                 case 0x08: /* Long write in progress */
957                                 case 0x09: /* self test in progress */
958                                         scsi_requeue_command(q, cmd);
959                                         return;
960                                 default:
961                                         break;
962                                 }
963                         }
964                         if (!(req->cmd_flags & REQ_QUIET))
965                                 scsi_cmd_print_sense_hdr(cmd,
966                                                          "Device not ready",
967                                                          &sshdr);
968
969                         scsi_end_request(cmd, 0, this_count, 1);
970                         return;
971                 case VOLUME_OVERFLOW:
972                         if (!(req->cmd_flags & REQ_QUIET)) {
973                                 scmd_printk(KERN_INFO, cmd,
974                                             "Volume overflow, CDB: ");
975                                 __scsi_print_command(cmd->cmnd);
976                                 scsi_print_sense("", cmd);
977                         }
978                         /* See SSC3rXX or current. */
979                         scsi_end_request(cmd, 0, this_count, 1);
980                         return;
981                 default:
982                         break;
983                 }
984         }
985         if (host_byte(result) == DID_RESET) {
986                 /* Third party bus reset or reset for error recovery
987                  * reasons.  Just retry the request and see what
988                  * happens.
989                  */
990                 scsi_requeue_command(q, cmd);
991                 return;
992         }
993         if (result) {
994                 if (!(req->cmd_flags & REQ_QUIET)) {
995                         scsi_print_result(cmd);
996                         if (driver_byte(result) & DRIVER_SENSE)
997                                 scsi_print_sense("", cmd);
998                 }
999         }
1000         scsi_end_request(cmd, 0, this_count, !result);
1001 }
1002
1003 /*
1004  * Function:    scsi_init_io()
1005  *
1006  * Purpose:     SCSI I/O initialize function.
1007  *
1008  * Arguments:   cmd   - Command descriptor we wish to initialize
1009  *
1010  * Returns:     0 on success
1011  *              BLKPREP_DEFER if the failure is retryable
1012  */
1013 static int scsi_init_io(struct scsi_cmnd *cmd)
1014 {
1015         struct request     *req = cmd->request;
1016         int                count;
1017
1018         /*
1019          * We used to not use scatter-gather for single segment request,
1020          * but now we do (it makes highmem I/O easier to support without
1021          * kmapping pages)
1022          */
1023         cmd->use_sg = req->nr_phys_segments;
1024
1025         /*
1026          * If sg table allocation fails, requeue request later.
1027          */
1028         if (unlikely(scsi_alloc_sgtable(cmd, GFP_ATOMIC))) {
1029                 scsi_unprep_request(req);
1030                 return BLKPREP_DEFER;
1031         }
1032
1033         req->buffer = NULL;
1034         if (blk_pc_request(req))
1035                 cmd->request_bufflen = req->data_len;
1036         else
1037                 cmd->request_bufflen = req->nr_sectors << 9;
1038
1039         /* 
1040          * Next, walk the list, and fill in the addresses and sizes of
1041          * each segment.
1042          */
1043         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1044         BUG_ON(count > cmd->use_sg);
1045         cmd->use_sg = count;
1046         return BLKPREP_OK;
1047 }
1048
1049 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1050                 struct request *req)
1051 {
1052         struct scsi_cmnd *cmd;
1053
1054         if (!req->special) {
1055                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1056                 if (unlikely(!cmd))
1057                         return NULL;
1058                 req->special = cmd;
1059         } else {
1060                 cmd = req->special;
1061         }
1062
1063         /* pull a tag out of the request if we have one */
1064         cmd->tag = req->tag;
1065         cmd->request = req;
1066
1067         return cmd;
1068 }
1069
1070 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1071 {
1072         struct scsi_cmnd *cmd;
1073         int ret = scsi_prep_state_check(sdev, req);
1074
1075         if (ret != BLKPREP_OK)
1076                 return ret;
1077
1078         cmd = scsi_get_cmd_from_req(sdev, req);
1079         if (unlikely(!cmd))
1080                 return BLKPREP_DEFER;
1081
1082         /*
1083          * BLOCK_PC requests may transfer data, in which case they must
1084          * a bio attached to them.  Or they might contain a SCSI command
1085          * that does not transfer data, in which case they may optionally
1086          * submit a request without an attached bio.
1087          */
1088         if (req->bio) {
1089                 int ret;
1090
1091                 BUG_ON(!req->nr_phys_segments);
1092
1093                 ret = scsi_init_io(cmd);
1094                 if (unlikely(ret))
1095                         return ret;
1096         } else {
1097                 BUG_ON(req->data_len);
1098                 BUG_ON(req->data);
1099
1100                 cmd->request_bufflen = 0;
1101                 cmd->request_buffer = NULL;
1102                 cmd->use_sg = 0;
1103                 req->buffer = NULL;
1104         }
1105
1106         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1107         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1108         cmd->cmd_len = req->cmd_len;
1109         if (!req->data_len)
1110                 cmd->sc_data_direction = DMA_NONE;
1111         else if (rq_data_dir(req) == WRITE)
1112                 cmd->sc_data_direction = DMA_TO_DEVICE;
1113         else
1114                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1115         
1116         cmd->transfersize = req->data_len;
1117         cmd->allowed = req->retries;
1118         cmd->timeout_per_command = req->timeout;
1119         return BLKPREP_OK;
1120 }
1121 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1122
1123 /*
1124  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1125  * from filesystems that still need to be translated to SCSI CDBs from
1126  * the ULD.
1127  */
1128 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1129 {
1130         struct scsi_cmnd *cmd;
1131         int ret = scsi_prep_state_check(sdev, req);
1132
1133         if (ret != BLKPREP_OK)
1134                 return ret;
1135         /*
1136          * Filesystem requests must transfer data.
1137          */
1138         BUG_ON(!req->nr_phys_segments);
1139
1140         cmd = scsi_get_cmd_from_req(sdev, req);
1141         if (unlikely(!cmd))
1142                 return BLKPREP_DEFER;
1143
1144         return scsi_init_io(cmd);
1145 }
1146 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1147
1148 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1149 {
1150         int ret = BLKPREP_OK;
1151
1152         /*
1153          * If the device is not in running state we will reject some
1154          * or all commands.
1155          */
1156         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1157                 switch (sdev->sdev_state) {
1158                 case SDEV_OFFLINE:
1159                         /*
1160                          * If the device is offline we refuse to process any
1161                          * commands.  The device must be brought online
1162                          * before trying any recovery commands.
1163                          */
1164                         sdev_printk(KERN_ERR, sdev,
1165                                     "rejecting I/O to offline device\n");
1166                         ret = BLKPREP_KILL;
1167                         break;
1168                 case SDEV_DEL:
1169                         /*
1170                          * If the device is fully deleted, we refuse to
1171                          * process any commands as well.
1172                          */
1173                         sdev_printk(KERN_ERR, sdev,
1174                                     "rejecting I/O to dead device\n");
1175                         ret = BLKPREP_KILL;
1176                         break;
1177                 case SDEV_QUIESCE:
1178                 case SDEV_BLOCK:
1179                         /*
1180                          * If the devices is blocked we defer normal commands.
1181                          */
1182                         if (!(req->cmd_flags & REQ_PREEMPT))
1183                                 ret = BLKPREP_DEFER;
1184                         break;
1185                 default:
1186                         /*
1187                          * For any other not fully online state we only allow
1188                          * special commands.  In particular any user initiated
1189                          * command is not allowed.
1190                          */
1191                         if (!(req->cmd_flags & REQ_PREEMPT))
1192                                 ret = BLKPREP_KILL;
1193                         break;
1194                 }
1195         }
1196         return ret;
1197 }
1198 EXPORT_SYMBOL(scsi_prep_state_check);
1199
1200 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1201 {
1202         struct scsi_device *sdev = q->queuedata;
1203
1204         switch (ret) {
1205         case BLKPREP_KILL:
1206                 req->errors = DID_NO_CONNECT << 16;
1207                 /* release the command and kill it */
1208                 if (req->special) {
1209                         struct scsi_cmnd *cmd = req->special;
1210                         scsi_release_buffers(cmd);
1211                         scsi_put_command(cmd);
1212                         req->special = NULL;
1213                 }
1214                 break;
1215         case BLKPREP_DEFER:
1216                 /*
1217                  * If we defer, the elv_next_request() returns NULL, but the
1218                  * queue must be restarted, so we plug here if no returning
1219                  * command will automatically do that.
1220                  */
1221                 if (sdev->device_busy == 0)
1222                         blk_plug_device(q);
1223                 break;
1224         default:
1225                 req->cmd_flags |= REQ_DONTPREP;
1226         }
1227
1228         return ret;
1229 }
1230 EXPORT_SYMBOL(scsi_prep_return);
1231
1232 int scsi_prep_fn(struct request_queue *q, struct request *req)
1233 {
1234         struct scsi_device *sdev = q->queuedata;
1235         int ret = BLKPREP_KILL;
1236
1237         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1238                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1239         return scsi_prep_return(q, req, ret);
1240 }
1241
1242 /*
1243  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1244  * return 0.
1245  *
1246  * Called with the queue_lock held.
1247  */
1248 static inline int scsi_dev_queue_ready(struct request_queue *q,
1249                                   struct scsi_device *sdev)
1250 {
1251         if (sdev->device_busy >= sdev->queue_depth)
1252                 return 0;
1253         if (sdev->device_busy == 0 && sdev->device_blocked) {
1254                 /*
1255                  * unblock after device_blocked iterates to zero
1256                  */
1257                 if (--sdev->device_blocked == 0) {
1258                         SCSI_LOG_MLQUEUE(3,
1259                                    sdev_printk(KERN_INFO, sdev,
1260                                    "unblocking device at zero depth\n"));
1261                 } else {
1262                         blk_plug_device(q);
1263                         return 0;
1264                 }
1265         }
1266         if (sdev->device_blocked)
1267                 return 0;
1268
1269         return 1;
1270 }
1271
1272 /*
1273  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1274  * return 0. We must end up running the queue again whenever 0 is
1275  * returned, else IO can hang.
1276  *
1277  * Called with host_lock held.
1278  */
1279 static inline int scsi_host_queue_ready(struct request_queue *q,
1280                                    struct Scsi_Host *shost,
1281                                    struct scsi_device *sdev)
1282 {
1283         if (scsi_host_in_recovery(shost))
1284                 return 0;
1285         if (shost->host_busy == 0 && shost->host_blocked) {
1286                 /*
1287                  * unblock after host_blocked iterates to zero
1288                  */
1289                 if (--shost->host_blocked == 0) {
1290                         SCSI_LOG_MLQUEUE(3,
1291                                 printk("scsi%d unblocking host at zero depth\n",
1292                                         shost->host_no));
1293                 } else {
1294                         blk_plug_device(q);
1295                         return 0;
1296                 }
1297         }
1298         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1299             shost->host_blocked || shost->host_self_blocked) {
1300                 if (list_empty(&sdev->starved_entry))
1301                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1302                 return 0;
1303         }
1304
1305         /* We're OK to process the command, so we can't be starved */
1306         if (!list_empty(&sdev->starved_entry))
1307                 list_del_init(&sdev->starved_entry);
1308
1309         return 1;
1310 }
1311
1312 /*
1313  * Kill a request for a dead device
1314  */
1315 static void scsi_kill_request(struct request *req, struct request_queue *q)
1316 {
1317         struct scsi_cmnd *cmd = req->special;
1318         struct scsi_device *sdev = cmd->device;
1319         struct Scsi_Host *shost = sdev->host;
1320
1321         blkdev_dequeue_request(req);
1322
1323         if (unlikely(cmd == NULL)) {
1324                 printk(KERN_CRIT "impossible request in %s.\n",
1325                                  __FUNCTION__);
1326                 BUG();
1327         }
1328
1329         scsi_init_cmd_errh(cmd);
1330         cmd->result = DID_NO_CONNECT << 16;
1331         atomic_inc(&cmd->device->iorequest_cnt);
1332
1333         /*
1334          * SCSI request completion path will do scsi_device_unbusy(),
1335          * bump busy counts.  To bump the counters, we need to dance
1336          * with the locks as normal issue path does.
1337          */
1338         sdev->device_busy++;
1339         spin_unlock(sdev->request_queue->queue_lock);
1340         spin_lock(shost->host_lock);
1341         shost->host_busy++;
1342         spin_unlock(shost->host_lock);
1343         spin_lock(sdev->request_queue->queue_lock);
1344
1345         __scsi_done(cmd);
1346 }
1347
1348 static void scsi_softirq_done(struct request *rq)
1349 {
1350         struct scsi_cmnd *cmd = rq->completion_data;
1351         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1352         int disposition;
1353
1354         INIT_LIST_HEAD(&cmd->eh_entry);
1355
1356         disposition = scsi_decide_disposition(cmd);
1357         if (disposition != SUCCESS &&
1358             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1359                 sdev_printk(KERN_ERR, cmd->device,
1360                             "timing out command, waited %lus\n",
1361                             wait_for/HZ);
1362                 disposition = SUCCESS;
1363         }
1364                         
1365         scsi_log_completion(cmd, disposition);
1366
1367         switch (disposition) {
1368                 case SUCCESS:
1369                         scsi_finish_command(cmd);
1370                         break;
1371                 case NEEDS_RETRY:
1372                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1373                         break;
1374                 case ADD_TO_MLQUEUE:
1375                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1376                         break;
1377                 default:
1378                         if (!scsi_eh_scmd_add(cmd, 0))
1379                                 scsi_finish_command(cmd);
1380         }
1381 }
1382
1383 /*
1384  * Function:    scsi_request_fn()
1385  *
1386  * Purpose:     Main strategy routine for SCSI.
1387  *
1388  * Arguments:   q       - Pointer to actual queue.
1389  *
1390  * Returns:     Nothing
1391  *
1392  * Lock status: IO request lock assumed to be held when called.
1393  */
1394 static void scsi_request_fn(struct request_queue *q)
1395 {
1396         struct scsi_device *sdev = q->queuedata;
1397         struct Scsi_Host *shost;
1398         struct scsi_cmnd *cmd;
1399         struct request *req;
1400
1401         if (!sdev) {
1402                 printk("scsi: killing requests for dead queue\n");
1403                 while ((req = elv_next_request(q)) != NULL)
1404                         scsi_kill_request(req, q);
1405                 return;
1406         }
1407
1408         if(!get_device(&sdev->sdev_gendev))
1409                 /* We must be tearing the block queue down already */
1410                 return;
1411
1412         /*
1413          * To start with, we keep looping until the queue is empty, or until
1414          * the host is no longer able to accept any more requests.
1415          */
1416         shost = sdev->host;
1417         while (!blk_queue_plugged(q)) {
1418                 int rtn;
1419                 /*
1420                  * get next queueable request.  We do this early to make sure
1421                  * that the request is fully prepared even if we cannot 
1422                  * accept it.
1423                  */
1424                 req = elv_next_request(q);
1425                 if (!req || !scsi_dev_queue_ready(q, sdev))
1426                         break;
1427
1428                 if (unlikely(!scsi_device_online(sdev))) {
1429                         sdev_printk(KERN_ERR, sdev,
1430                                     "rejecting I/O to offline device\n");
1431                         scsi_kill_request(req, q);
1432                         continue;
1433                 }
1434
1435
1436                 /*
1437                  * Remove the request from the request list.
1438                  */
1439                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1440                         blkdev_dequeue_request(req);
1441                 sdev->device_busy++;
1442
1443                 spin_unlock(q->queue_lock);
1444                 cmd = req->special;
1445                 if (unlikely(cmd == NULL)) {
1446                         printk(KERN_CRIT "impossible request in %s.\n"
1447                                          "please mail a stack trace to "
1448                                          "linux-scsi@vger.kernel.org\n",
1449                                          __FUNCTION__);
1450                         blk_dump_rq_flags(req, "foo");
1451                         BUG();
1452                 }
1453                 spin_lock(shost->host_lock);
1454
1455                 if (!scsi_host_queue_ready(q, shost, sdev))
1456                         goto not_ready;
1457                 if (scsi_target(sdev)->single_lun) {
1458                         if (scsi_target(sdev)->starget_sdev_user &&
1459                             scsi_target(sdev)->starget_sdev_user != sdev)
1460                                 goto not_ready;
1461                         scsi_target(sdev)->starget_sdev_user = sdev;
1462                 }
1463                 shost->host_busy++;
1464
1465                 /*
1466                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1467                  *              take the lock again.
1468                  */
1469                 spin_unlock_irq(shost->host_lock);
1470
1471                 /*
1472                  * Finally, initialize any error handling parameters, and set up
1473                  * the timers for timeouts.
1474                  */
1475                 scsi_init_cmd_errh(cmd);
1476
1477                 /*
1478                  * Dispatch the command to the low-level driver.
1479                  */
1480                 rtn = scsi_dispatch_cmd(cmd);
1481                 spin_lock_irq(q->queue_lock);
1482                 if(rtn) {
1483                         /* we're refusing the command; because of
1484                          * the way locks get dropped, we need to 
1485                          * check here if plugging is required */
1486                         if(sdev->device_busy == 0)
1487                                 blk_plug_device(q);
1488
1489                         break;
1490                 }
1491         }
1492
1493         goto out;
1494
1495  not_ready:
1496         spin_unlock_irq(shost->host_lock);
1497
1498         /*
1499          * lock q, handle tag, requeue req, and decrement device_busy. We
1500          * must return with queue_lock held.
1501          *
1502          * Decrementing device_busy without checking it is OK, as all such
1503          * cases (host limits or settings) should run the queue at some
1504          * later time.
1505          */
1506         spin_lock_irq(q->queue_lock);
1507         blk_requeue_request(q, req);
1508         sdev->device_busy--;
1509         if(sdev->device_busy == 0)
1510                 blk_plug_device(q);
1511  out:
1512         /* must be careful here...if we trigger the ->remove() function
1513          * we cannot be holding the q lock */
1514         spin_unlock_irq(q->queue_lock);
1515         put_device(&sdev->sdev_gendev);
1516         spin_lock_irq(q->queue_lock);
1517 }
1518
1519 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1520 {
1521         struct device *host_dev;
1522         u64 bounce_limit = 0xffffffff;
1523
1524         if (shost->unchecked_isa_dma)
1525                 return BLK_BOUNCE_ISA;
1526         /*
1527          * Platforms with virtual-DMA translation
1528          * hardware have no practical limit.
1529          */
1530         if (!PCI_DMA_BUS_IS_PHYS)
1531                 return BLK_BOUNCE_ANY;
1532
1533         host_dev = scsi_get_device(shost);
1534         if (host_dev && host_dev->dma_mask)
1535                 bounce_limit = *host_dev->dma_mask;
1536
1537         return bounce_limit;
1538 }
1539 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1540
1541 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1542                                          request_fn_proc *request_fn)
1543 {
1544         struct request_queue *q;
1545
1546         q = blk_init_queue(request_fn, NULL);
1547         if (!q)
1548                 return NULL;
1549
1550         /*
1551          * this limit is imposed by hardware restrictions
1552          */
1553         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1554
1555         /*
1556          * In the future, sg chaining support will be mandatory and this
1557          * ifdef can then go away. Right now we don't have all archs
1558          * converted, so better keep it safe.
1559          */
1560 #ifdef ARCH_HAS_SG_CHAIN
1561         if (shost->use_sg_chaining)
1562                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1563         else
1564                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1565 #else
1566         blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1567 #endif
1568
1569         blk_queue_max_sectors(q, shost->max_sectors);
1570         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1571         blk_queue_segment_boundary(q, shost->dma_boundary);
1572
1573         if (!shost->use_clustering)
1574                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1575
1576         /*
1577          * set a reasonable default alignment on word boundaries: the
1578          * host and device may alter it using
1579          * blk_queue_update_dma_alignment() later.
1580          */
1581         blk_queue_dma_alignment(q, 0x03);
1582
1583         return q;
1584 }
1585 EXPORT_SYMBOL(__scsi_alloc_queue);
1586
1587 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1588 {
1589         struct request_queue *q;
1590
1591         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1592         if (!q)
1593                 return NULL;
1594
1595         blk_queue_prep_rq(q, scsi_prep_fn);
1596         blk_queue_softirq_done(q, scsi_softirq_done);
1597         return q;
1598 }
1599
1600 void scsi_free_queue(struct request_queue *q)
1601 {
1602         blk_cleanup_queue(q);
1603 }
1604
1605 /*
1606  * Function:    scsi_block_requests()
1607  *
1608  * Purpose:     Utility function used by low-level drivers to prevent further
1609  *              commands from being queued to the device.
1610  *
1611  * Arguments:   shost       - Host in question
1612  *
1613  * Returns:     Nothing
1614  *
1615  * Lock status: No locks are assumed held.
1616  *
1617  * Notes:       There is no timer nor any other means by which the requests
1618  *              get unblocked other than the low-level driver calling
1619  *              scsi_unblock_requests().
1620  */
1621 void scsi_block_requests(struct Scsi_Host *shost)
1622 {
1623         shost->host_self_blocked = 1;
1624 }
1625 EXPORT_SYMBOL(scsi_block_requests);
1626
1627 /*
1628  * Function:    scsi_unblock_requests()
1629  *
1630  * Purpose:     Utility function used by low-level drivers to allow further
1631  *              commands from being queued to the device.
1632  *
1633  * Arguments:   shost       - Host in question
1634  *
1635  * Returns:     Nothing
1636  *
1637  * Lock status: No locks are assumed held.
1638  *
1639  * Notes:       There is no timer nor any other means by which the requests
1640  *              get unblocked other than the low-level driver calling
1641  *              scsi_unblock_requests().
1642  *
1643  *              This is done as an API function so that changes to the
1644  *              internals of the scsi mid-layer won't require wholesale
1645  *              changes to drivers that use this feature.
1646  */
1647 void scsi_unblock_requests(struct Scsi_Host *shost)
1648 {
1649         shost->host_self_blocked = 0;
1650         scsi_run_host_queues(shost);
1651 }
1652 EXPORT_SYMBOL(scsi_unblock_requests);
1653
1654 int __init scsi_init_queue(void)
1655 {
1656         int i;
1657
1658         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1659                                         sizeof(struct scsi_io_context),
1660                                         0, 0, NULL);
1661         if (!scsi_io_context_cache) {
1662                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1663                 return -ENOMEM;
1664         }
1665
1666         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1667                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1668                 int size = sgp->size * sizeof(struct scatterlist);
1669
1670                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1671                                 SLAB_HWCACHE_ALIGN, NULL);
1672                 if (!sgp->slab) {
1673                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1674                                         sgp->name);
1675                 }
1676
1677                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1678                                                      sgp->slab);
1679                 if (!sgp->pool) {
1680                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1681                                         sgp->name);
1682                 }
1683         }
1684
1685         return 0;
1686 }
1687
1688 void scsi_exit_queue(void)
1689 {
1690         int i;
1691
1692         kmem_cache_destroy(scsi_io_context_cache);
1693
1694         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1695                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1696                 mempool_destroy(sgp->pool);
1697                 kmem_cache_destroy(sgp->slab);
1698         }
1699 }
1700
1701 /**
1702  *      scsi_mode_select - issue a mode select
1703  *      @sdev:  SCSI device to be queried
1704  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1705  *      @sp:    Save page bit (0 == don't save, 1 == save)
1706  *      @modepage: mode page being requested
1707  *      @buffer: request buffer (may not be smaller than eight bytes)
1708  *      @len:   length of request buffer.
1709  *      @timeout: command timeout
1710  *      @retries: number of retries before failing
1711  *      @data: returns a structure abstracting the mode header data
1712  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1713  *              must be SCSI_SENSE_BUFFERSIZE big.
1714  *
1715  *      Returns zero if successful; negative error number or scsi
1716  *      status on error
1717  *
1718  */
1719 int
1720 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1721                  unsigned char *buffer, int len, int timeout, int retries,
1722                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1723 {
1724         unsigned char cmd[10];
1725         unsigned char *real_buffer;
1726         int ret;
1727
1728         memset(cmd, 0, sizeof(cmd));
1729         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1730
1731         if (sdev->use_10_for_ms) {
1732                 if (len > 65535)
1733                         return -EINVAL;
1734                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1735                 if (!real_buffer)
1736                         return -ENOMEM;
1737                 memcpy(real_buffer + 8, buffer, len);
1738                 len += 8;
1739                 real_buffer[0] = 0;
1740                 real_buffer[1] = 0;
1741                 real_buffer[2] = data->medium_type;
1742                 real_buffer[3] = data->device_specific;
1743                 real_buffer[4] = data->longlba ? 0x01 : 0;
1744                 real_buffer[5] = 0;
1745                 real_buffer[6] = data->block_descriptor_length >> 8;
1746                 real_buffer[7] = data->block_descriptor_length;
1747
1748                 cmd[0] = MODE_SELECT_10;
1749                 cmd[7] = len >> 8;
1750                 cmd[8] = len;
1751         } else {
1752                 if (len > 255 || data->block_descriptor_length > 255 ||
1753                     data->longlba)
1754                         return -EINVAL;
1755
1756                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1757                 if (!real_buffer)
1758                         return -ENOMEM;
1759                 memcpy(real_buffer + 4, buffer, len);
1760                 len += 4;
1761                 real_buffer[0] = 0;
1762                 real_buffer[1] = data->medium_type;
1763                 real_buffer[2] = data->device_specific;
1764                 real_buffer[3] = data->block_descriptor_length;
1765                 
1766
1767                 cmd[0] = MODE_SELECT;
1768                 cmd[4] = len;
1769         }
1770
1771         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1772                                sshdr, timeout, retries);
1773         kfree(real_buffer);
1774         return ret;
1775 }
1776 EXPORT_SYMBOL_GPL(scsi_mode_select);
1777
1778 /**
1779  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1780  *      @sdev:  SCSI device to be queried
1781  *      @dbd:   set if mode sense will allow block descriptors to be returned
1782  *      @modepage: mode page being requested
1783  *      @buffer: request buffer (may not be smaller than eight bytes)
1784  *      @len:   length of request buffer.
1785  *      @timeout: command timeout
1786  *      @retries: number of retries before failing
1787  *      @data: returns a structure abstracting the mode header data
1788  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1789  *              must be SCSI_SENSE_BUFFERSIZE big.
1790  *
1791  *      Returns zero if unsuccessful, or the header offset (either 4
1792  *      or 8 depending on whether a six or ten byte command was
1793  *      issued) if successful.
1794  */
1795 int
1796 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1797                   unsigned char *buffer, int len, int timeout, int retries,
1798                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1799 {
1800         unsigned char cmd[12];
1801         int use_10_for_ms;
1802         int header_length;
1803         int result;
1804         struct scsi_sense_hdr my_sshdr;
1805
1806         memset(data, 0, sizeof(*data));
1807         memset(&cmd[0], 0, 12);
1808         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1809         cmd[2] = modepage;
1810
1811         /* caller might not be interested in sense, but we need it */
1812         if (!sshdr)
1813                 sshdr = &my_sshdr;
1814
1815  retry:
1816         use_10_for_ms = sdev->use_10_for_ms;
1817
1818         if (use_10_for_ms) {
1819                 if (len < 8)
1820                         len = 8;
1821
1822                 cmd[0] = MODE_SENSE_10;
1823                 cmd[8] = len;
1824                 header_length = 8;
1825         } else {
1826                 if (len < 4)
1827                         len = 4;
1828
1829                 cmd[0] = MODE_SENSE;
1830                 cmd[4] = len;
1831                 header_length = 4;
1832         }
1833
1834         memset(buffer, 0, len);
1835
1836         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1837                                   sshdr, timeout, retries);
1838
1839         /* This code looks awful: what it's doing is making sure an
1840          * ILLEGAL REQUEST sense return identifies the actual command
1841          * byte as the problem.  MODE_SENSE commands can return
1842          * ILLEGAL REQUEST if the code page isn't supported */
1843
1844         if (use_10_for_ms && !scsi_status_is_good(result) &&
1845             (driver_byte(result) & DRIVER_SENSE)) {
1846                 if (scsi_sense_valid(sshdr)) {
1847                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1848                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1849                                 /* 
1850                                  * Invalid command operation code
1851                                  */
1852                                 sdev->use_10_for_ms = 0;
1853                                 goto retry;
1854                         }
1855                 }
1856         }
1857
1858         if(scsi_status_is_good(result)) {
1859                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1860                              (modepage == 6 || modepage == 8))) {
1861                         /* Initio breakage? */
1862                         header_length = 0;
1863                         data->length = 13;
1864                         data->medium_type = 0;
1865                         data->device_specific = 0;
1866                         data->longlba = 0;
1867                         data->block_descriptor_length = 0;
1868                 } else if(use_10_for_ms) {
1869                         data->length = buffer[0]*256 + buffer[1] + 2;
1870                         data->medium_type = buffer[2];
1871                         data->device_specific = buffer[3];
1872                         data->longlba = buffer[4] & 0x01;
1873                         data->block_descriptor_length = buffer[6]*256
1874                                 + buffer[7];
1875                 } else {
1876                         data->length = buffer[0] + 1;
1877                         data->medium_type = buffer[1];
1878                         data->device_specific = buffer[2];
1879                         data->block_descriptor_length = buffer[3];
1880                 }
1881                 data->header_length = header_length;
1882         }
1883
1884         return result;
1885 }
1886 EXPORT_SYMBOL(scsi_mode_sense);
1887
1888 /**
1889  *      scsi_test_unit_ready - test if unit is ready
1890  *      @sdev:  scsi device to change the state of.
1891  *      @timeout: command timeout
1892  *      @retries: number of retries before failing
1893  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1894  *              returning sense. Make sure that this is cleared before passing
1895  *              in.
1896  *
1897  *      Returns zero if unsuccessful or an error if TUR failed.  For
1898  *      removable media, a return of NOT_READY or UNIT_ATTENTION is
1899  *      translated to success, with the ->changed flag updated.
1900  **/
1901 int
1902 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1903                      struct scsi_sense_hdr *sshdr_external)
1904 {
1905         char cmd[] = {
1906                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1907         };
1908         struct scsi_sense_hdr *sshdr;
1909         int result;
1910
1911         if (!sshdr_external)
1912                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1913         else
1914                 sshdr = sshdr_external;
1915
1916         /* try to eat the UNIT_ATTENTION if there are enough retries */
1917         do {
1918                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1919                                           timeout, retries);
1920         } while ((driver_byte(result) & DRIVER_SENSE) &&
1921                  sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1922                  --retries);
1923
1924         if (!sshdr)
1925                 /* could not allocate sense buffer, so can't process it */
1926                 return result;
1927
1928         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1929
1930                 if ((scsi_sense_valid(sshdr)) &&
1931                     ((sshdr->sense_key == UNIT_ATTENTION) ||
1932                      (sshdr->sense_key == NOT_READY))) {
1933                         sdev->changed = 1;
1934                         result = 0;
1935                 }
1936         }
1937         if (!sshdr_external)
1938                 kfree(sshdr);
1939         return result;
1940 }
1941 EXPORT_SYMBOL(scsi_test_unit_ready);
1942
1943 /**
1944  *      scsi_device_set_state - Take the given device through the device state model.
1945  *      @sdev:  scsi device to change the state of.
1946  *      @state: state to change to.
1947  *
1948  *      Returns zero if unsuccessful or an error if the requested 
1949  *      transition is illegal.
1950  */
1951 int
1952 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1953 {
1954         enum scsi_device_state oldstate = sdev->sdev_state;
1955
1956         if (state == oldstate)
1957                 return 0;
1958
1959         switch (state) {
1960         case SDEV_CREATED:
1961                 /* There are no legal states that come back to
1962                  * created.  This is the manually initialised start
1963                  * state */
1964                 goto illegal;
1965                         
1966         case SDEV_RUNNING:
1967                 switch (oldstate) {
1968                 case SDEV_CREATED:
1969                 case SDEV_OFFLINE:
1970                 case SDEV_QUIESCE:
1971                 case SDEV_BLOCK:
1972                         break;
1973                 default:
1974                         goto illegal;
1975                 }
1976                 break;
1977
1978         case SDEV_QUIESCE:
1979                 switch (oldstate) {
1980                 case SDEV_RUNNING:
1981                 case SDEV_OFFLINE:
1982                         break;
1983                 default:
1984                         goto illegal;
1985                 }
1986                 break;
1987
1988         case SDEV_OFFLINE:
1989                 switch (oldstate) {
1990                 case SDEV_CREATED:
1991                 case SDEV_RUNNING:
1992                 case SDEV_QUIESCE:
1993                 case SDEV_BLOCK:
1994                         break;
1995                 default:
1996                         goto illegal;
1997                 }
1998                 break;
1999
2000         case SDEV_BLOCK:
2001                 switch (oldstate) {
2002                 case SDEV_CREATED:
2003                 case SDEV_RUNNING:
2004                         break;
2005                 default:
2006                         goto illegal;
2007                 }
2008                 break;
2009
2010         case SDEV_CANCEL:
2011                 switch (oldstate) {
2012                 case SDEV_CREATED:
2013                 case SDEV_RUNNING:
2014                 case SDEV_QUIESCE:
2015                 case SDEV_OFFLINE:
2016                 case SDEV_BLOCK:
2017                         break;
2018                 default:
2019                         goto illegal;
2020                 }
2021                 break;
2022
2023         case SDEV_DEL:
2024                 switch (oldstate) {
2025                 case SDEV_CREATED:
2026                 case SDEV_RUNNING:
2027                 case SDEV_OFFLINE:
2028                 case SDEV_CANCEL:
2029                         break;
2030                 default:
2031                         goto illegal;
2032                 }
2033                 break;
2034
2035         }
2036         sdev->sdev_state = state;
2037         return 0;
2038
2039  illegal:
2040         SCSI_LOG_ERROR_RECOVERY(1, 
2041                                 sdev_printk(KERN_ERR, sdev,
2042                                             "Illegal state transition %s->%s\n",
2043                                             scsi_device_state_name(oldstate),
2044                                             scsi_device_state_name(state))
2045                                 );
2046         return -EINVAL;
2047 }
2048 EXPORT_SYMBOL(scsi_device_set_state);
2049
2050 /**
2051  *      sdev_evt_emit - emit a single SCSI device uevent
2052  *      @sdev: associated SCSI device
2053  *      @evt: event to emit
2054  *
2055  *      Send a single uevent (scsi_event) to the associated scsi_device.
2056  */
2057 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2058 {
2059         int idx = 0;
2060         char *envp[3];
2061
2062         switch (evt->evt_type) {
2063         case SDEV_EVT_MEDIA_CHANGE:
2064                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2065                 break;
2066
2067         default:
2068                 /* do nothing */
2069                 break;
2070         }
2071
2072         envp[idx++] = NULL;
2073
2074         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2075 }
2076
2077 /**
2078  *      sdev_evt_thread - send a uevent for each scsi event
2079  *      @work: work struct for scsi_device
2080  *
2081  *      Dispatch queued events to their associated scsi_device kobjects
2082  *      as uevents.
2083  */
2084 void scsi_evt_thread(struct work_struct *work)
2085 {
2086         struct scsi_device *sdev;
2087         LIST_HEAD(event_list);
2088
2089         sdev = container_of(work, struct scsi_device, event_work);
2090
2091         while (1) {
2092                 struct scsi_event *evt;
2093                 struct list_head *this, *tmp;
2094                 unsigned long flags;
2095
2096                 spin_lock_irqsave(&sdev->list_lock, flags);
2097                 list_splice_init(&sdev->event_list, &event_list);
2098                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2099
2100                 if (list_empty(&event_list))
2101                         break;
2102
2103                 list_for_each_safe(this, tmp, &event_list) {
2104                         evt = list_entry(this, struct scsi_event, node);
2105                         list_del(&evt->node);
2106                         scsi_evt_emit(sdev, evt);
2107                         kfree(evt);
2108                 }
2109         }
2110 }
2111
2112 /**
2113  *      sdev_evt_send - send asserted event to uevent thread
2114  *      @sdev: scsi_device event occurred on
2115  *      @evt: event to send
2116  *
2117  *      Assert scsi device event asynchronously.
2118  */
2119 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2120 {
2121         unsigned long flags;
2122
2123         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2124                 kfree(evt);
2125                 return;
2126         }
2127
2128         spin_lock_irqsave(&sdev->list_lock, flags);
2129         list_add_tail(&evt->node, &sdev->event_list);
2130         schedule_work(&sdev->event_work);
2131         spin_unlock_irqrestore(&sdev->list_lock, flags);
2132 }
2133 EXPORT_SYMBOL_GPL(sdev_evt_send);
2134
2135 /**
2136  *      sdev_evt_alloc - allocate a new scsi event
2137  *      @evt_type: type of event to allocate
2138  *      @gfpflags: GFP flags for allocation
2139  *
2140  *      Allocates and returns a new scsi_event.
2141  */
2142 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2143                                   gfp_t gfpflags)
2144 {
2145         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2146         if (!evt)
2147                 return NULL;
2148
2149         evt->evt_type = evt_type;
2150         INIT_LIST_HEAD(&evt->node);
2151
2152         /* evt_type-specific initialization, if any */
2153         switch (evt_type) {
2154         case SDEV_EVT_MEDIA_CHANGE:
2155         default:
2156                 /* do nothing */
2157                 break;
2158         }
2159
2160         return evt;
2161 }
2162 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2163
2164 /**
2165  *      sdev_evt_send_simple - send asserted event to uevent thread
2166  *      @sdev: scsi_device event occurred on
2167  *      @evt_type: type of event to send
2168  *      @gfpflags: GFP flags for allocation
2169  *
2170  *      Assert scsi device event asynchronously, given an event type.
2171  */
2172 void sdev_evt_send_simple(struct scsi_device *sdev,
2173                           enum scsi_device_event evt_type, gfp_t gfpflags)
2174 {
2175         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2176         if (!evt) {
2177                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2178                             evt_type);
2179                 return;
2180         }
2181
2182         sdev_evt_send(sdev, evt);
2183 }
2184 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2185
2186 /**
2187  *      scsi_device_quiesce - Block user issued commands.
2188  *      @sdev:  scsi device to quiesce.
2189  *
2190  *      This works by trying to transition to the SDEV_QUIESCE state
2191  *      (which must be a legal transition).  When the device is in this
2192  *      state, only special requests will be accepted, all others will
2193  *      be deferred.  Since special requests may also be requeued requests,
2194  *      a successful return doesn't guarantee the device will be 
2195  *      totally quiescent.
2196  *
2197  *      Must be called with user context, may sleep.
2198  *
2199  *      Returns zero if unsuccessful or an error if not.
2200  */
2201 int
2202 scsi_device_quiesce(struct scsi_device *sdev)
2203 {
2204         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2205         if (err)
2206                 return err;
2207
2208         scsi_run_queue(sdev->request_queue);
2209         while (sdev->device_busy) {
2210                 msleep_interruptible(200);
2211                 scsi_run_queue(sdev->request_queue);
2212         }
2213         return 0;
2214 }
2215 EXPORT_SYMBOL(scsi_device_quiesce);
2216
2217 /**
2218  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2219  *      @sdev:  scsi device to resume.
2220  *
2221  *      Moves the device from quiesced back to running and restarts the
2222  *      queues.
2223  *
2224  *      Must be called with user context, may sleep.
2225  */
2226 void
2227 scsi_device_resume(struct scsi_device *sdev)
2228 {
2229         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2230                 return;
2231         scsi_run_queue(sdev->request_queue);
2232 }
2233 EXPORT_SYMBOL(scsi_device_resume);
2234
2235 static void
2236 device_quiesce_fn(struct scsi_device *sdev, void *data)
2237 {
2238         scsi_device_quiesce(sdev);
2239 }
2240
2241 void
2242 scsi_target_quiesce(struct scsi_target *starget)
2243 {
2244         starget_for_each_device(starget, NULL, device_quiesce_fn);
2245 }
2246 EXPORT_SYMBOL(scsi_target_quiesce);
2247
2248 static void
2249 device_resume_fn(struct scsi_device *sdev, void *data)
2250 {
2251         scsi_device_resume(sdev);
2252 }
2253
2254 void
2255 scsi_target_resume(struct scsi_target *starget)
2256 {
2257         starget_for_each_device(starget, NULL, device_resume_fn);
2258 }
2259 EXPORT_SYMBOL(scsi_target_resume);
2260
2261 /**
2262  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2263  * @sdev:       device to block
2264  *
2265  * Block request made by scsi lld's to temporarily stop all
2266  * scsi commands on the specified device.  Called from interrupt
2267  * or normal process context.
2268  *
2269  * Returns zero if successful or error if not
2270  *
2271  * Notes:       
2272  *      This routine transitions the device to the SDEV_BLOCK state
2273  *      (which must be a legal transition).  When the device is in this
2274  *      state, all commands are deferred until the scsi lld reenables
2275  *      the device with scsi_device_unblock or device_block_tmo fires.
2276  *      This routine assumes the host_lock is held on entry.
2277  */
2278 int
2279 scsi_internal_device_block(struct scsi_device *sdev)
2280 {
2281         struct request_queue *q = sdev->request_queue;
2282         unsigned long flags;
2283         int err = 0;
2284
2285         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2286         if (err)
2287                 return err;
2288
2289         /* 
2290          * The device has transitioned to SDEV_BLOCK.  Stop the
2291          * block layer from calling the midlayer with this device's
2292          * request queue. 
2293          */
2294         spin_lock_irqsave(q->queue_lock, flags);
2295         blk_stop_queue(q);
2296         spin_unlock_irqrestore(q->queue_lock, flags);
2297
2298         return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2301  
2302 /**
2303  * scsi_internal_device_unblock - resume a device after a block request
2304  * @sdev:       device to resume
2305  *
2306  * Called by scsi lld's or the midlayer to restart the device queue
2307  * for the previously suspended scsi device.  Called from interrupt or
2308  * normal process context.
2309  *
2310  * Returns zero if successful or error if not.
2311  *
2312  * Notes:       
2313  *      This routine transitions the device to the SDEV_RUNNING state
2314  *      (which must be a legal transition) allowing the midlayer to
2315  *      goose the queue for this device.  This routine assumes the 
2316  *      host_lock is held upon entry.
2317  */
2318 int
2319 scsi_internal_device_unblock(struct scsi_device *sdev)
2320 {
2321         struct request_queue *q = sdev->request_queue; 
2322         int err;
2323         unsigned long flags;
2324         
2325         /* 
2326          * Try to transition the scsi device to SDEV_RUNNING
2327          * and goose the device queue if successful.  
2328          */
2329         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2330         if (err)
2331                 return err;
2332
2333         spin_lock_irqsave(q->queue_lock, flags);
2334         blk_start_queue(q);
2335         spin_unlock_irqrestore(q->queue_lock, flags);
2336
2337         return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2340
2341 static void
2342 device_block(struct scsi_device *sdev, void *data)
2343 {
2344         scsi_internal_device_block(sdev);
2345 }
2346
2347 static int
2348 target_block(struct device *dev, void *data)
2349 {
2350         if (scsi_is_target_device(dev))
2351                 starget_for_each_device(to_scsi_target(dev), NULL,
2352                                         device_block);
2353         return 0;
2354 }
2355
2356 void
2357 scsi_target_block(struct device *dev)
2358 {
2359         if (scsi_is_target_device(dev))
2360                 starget_for_each_device(to_scsi_target(dev), NULL,
2361                                         device_block);
2362         else
2363                 device_for_each_child(dev, NULL, target_block);
2364 }
2365 EXPORT_SYMBOL_GPL(scsi_target_block);
2366
2367 static void
2368 device_unblock(struct scsi_device *sdev, void *data)
2369 {
2370         scsi_internal_device_unblock(sdev);
2371 }
2372
2373 static int
2374 target_unblock(struct device *dev, void *data)
2375 {
2376         if (scsi_is_target_device(dev))
2377                 starget_for_each_device(to_scsi_target(dev), NULL,
2378                                         device_unblock);
2379         return 0;
2380 }
2381
2382 void
2383 scsi_target_unblock(struct device *dev)
2384 {
2385         if (scsi_is_target_device(dev))
2386                 starget_for_each_device(to_scsi_target(dev), NULL,
2387                                         device_unblock);
2388         else
2389                 device_for_each_child(dev, NULL, target_unblock);
2390 }
2391 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2392
2393 /**
2394  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2395  * @sgl:        scatter-gather list
2396  * @sg_count:   number of segments in sg
2397  * @offset:     offset in bytes into sg, on return offset into the mapped area
2398  * @len:        bytes to map, on return number of bytes mapped
2399  *
2400  * Returns virtual address of the start of the mapped page
2401  */
2402 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2403                           size_t *offset, size_t *len)
2404 {
2405         int i;
2406         size_t sg_len = 0, len_complete = 0;
2407         struct scatterlist *sg;
2408         struct page *page;
2409
2410         WARN_ON(!irqs_disabled());
2411
2412         for_each_sg(sgl, sg, sg_count, i) {
2413                 len_complete = sg_len; /* Complete sg-entries */
2414                 sg_len += sg->length;
2415                 if (sg_len > *offset)
2416                         break;
2417         }
2418
2419         if (unlikely(i == sg_count)) {
2420                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2421                         "elements %d\n",
2422                        __FUNCTION__, sg_len, *offset, sg_count);
2423                 WARN_ON(1);
2424                 return NULL;
2425         }
2426
2427         /* Offset starting from the beginning of first page in this sg-entry */
2428         *offset = *offset - len_complete + sg->offset;
2429
2430         /* Assumption: contiguous pages can be accessed as "page + i" */
2431         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2432         *offset &= ~PAGE_MASK;
2433
2434         /* Bytes in this sg-entry from *offset to the end of the page */
2435         sg_len = PAGE_SIZE - *offset;
2436         if (*len > sg_len)
2437                 *len = sg_len;
2438
2439         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2440 }
2441 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2442
2443 /**
2444  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2445  * @virt:       virtual address to be unmapped
2446  */
2447 void scsi_kunmap_atomic_sg(void *virt)
2448 {
2449         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2450 }
2451 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);