]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/scsi_lib.c
7e1dcc57f115e12e94b3943c47aa24c879e045d0
[linux-2.6-omap-h63xx.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE         2
36
37 struct scsi_host_sg_pool {
38         size_t          size;
39         char            *name; 
40         struct kmem_cache       *slab;
41         mempool_t       *pool;
42 };
43
44 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
45 #error SCSI_MAX_PHYS_SEGMENTS is too small
46 #endif
47
48 #define SP(x) { x, "sgpool-" #x } 
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50         SP(8),
51         SP(16),
52         SP(32),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
54         SP(64),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
56         SP(128),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
58         SP(256),
59 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
60 #error SCSI_MAX_PHYS_SEGMENTS is too large
61 #endif
62 #endif
63 #endif
64 #endif
65 };      
66 #undef SP
67
68 static void scsi_run_queue(struct request_queue *q);
69
70 /*
71  * Function:    scsi_unprep_request()
72  *
73  * Purpose:     Remove all preparation done for a request, including its
74  *              associated scsi_cmnd, so that it can be requeued.
75  *
76  * Arguments:   req     - request to unprepare
77  *
78  * Lock status: Assumed that no locks are held upon entry.
79  *
80  * Returns:     Nothing.
81  */
82 static void scsi_unprep_request(struct request *req)
83 {
84         struct scsi_cmnd *cmd = req->special;
85
86         req->cmd_flags &= ~REQ_DONTPREP;
87         req->special = NULL;
88
89         scsi_put_command(cmd);
90 }
91
92 /*
93  * Function:    scsi_queue_insert()
94  *
95  * Purpose:     Insert a command in the midlevel queue.
96  *
97  * Arguments:   cmd    - command that we are adding to queue.
98  *              reason - why we are inserting command to queue.
99  *
100  * Lock status: Assumed that lock is not held upon entry.
101  *
102  * Returns:     Nothing.
103  *
104  * Notes:       We do this for one of two cases.  Either the host is busy
105  *              and it cannot accept any more commands for the time being,
106  *              or the device returned QUEUE_FULL and can accept no more
107  *              commands.
108  * Notes:       This could be called either from an interrupt context or a
109  *              normal process context.
110  */
111 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 {
113         struct Scsi_Host *host = cmd->device->host;
114         struct scsi_device *device = cmd->device;
115         struct request_queue *q = device->request_queue;
116         unsigned long flags;
117
118         SCSI_LOG_MLQUEUE(1,
119                  printk("Inserting command %p into mlqueue\n", cmd));
120
121         /*
122          * Set the appropriate busy bit for the device/host.
123          *
124          * If the host/device isn't busy, assume that something actually
125          * completed, and that we should be able to queue a command now.
126          *
127          * Note that the prior mid-layer assumption that any host could
128          * always queue at least one command is now broken.  The mid-layer
129          * will implement a user specifiable stall (see
130          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
131          * if a command is requeued with no other commands outstanding
132          * either for the device or for the host.
133          */
134         if (reason == SCSI_MLQUEUE_HOST_BUSY)
135                 host->host_blocked = host->max_host_blocked;
136         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
137                 device->device_blocked = device->max_device_blocked;
138
139         /*
140          * Decrement the counters, since these commands are no longer
141          * active on the host/device.
142          */
143         scsi_device_unbusy(device);
144
145         /*
146          * Requeue this command.  It will go before all other commands
147          * that are already in the queue.
148          *
149          * NOTE: there is magic here about the way the queue is plugged if
150          * we have no outstanding commands.
151          * 
152          * Although we *don't* plug the queue, we call the request
153          * function.  The SCSI request function detects the blocked condition
154          * and plugs the queue appropriately.
155          */
156         spin_lock_irqsave(q->queue_lock, flags);
157         blk_requeue_request(q, cmd->request);
158         spin_unlock_irqrestore(q->queue_lock, flags);
159
160         scsi_run_queue(q);
161
162         return 0;
163 }
164
165 /**
166  * scsi_execute - insert request and wait for the result
167  * @sdev:       scsi device
168  * @cmd:        scsi command
169  * @data_direction: data direction
170  * @buffer:     data buffer
171  * @bufflen:    len of buffer
172  * @sense:      optional sense buffer
173  * @timeout:    request timeout in seconds
174  * @retries:    number of times to retry request
175  * @flags:      or into request flags;
176  *
177  * returns the req->errors value which is the scsi_cmnd result
178  * field.
179  **/
180 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
181                  int data_direction, void *buffer, unsigned bufflen,
182                  unsigned char *sense, int timeout, int retries, int flags)
183 {
184         struct request *req;
185         int write = (data_direction == DMA_TO_DEVICE);
186         int ret = DRIVER_ERROR << 24;
187
188         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
189
190         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
191                                         buffer, bufflen, __GFP_WAIT))
192                 goto out;
193
194         req->cmd_len = COMMAND_SIZE(cmd[0]);
195         memcpy(req->cmd, cmd, req->cmd_len);
196         req->sense = sense;
197         req->sense_len = 0;
198         req->retries = retries;
199         req->timeout = timeout;
200         req->cmd_type = REQ_TYPE_BLOCK_PC;
201         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
202
203         /*
204          * head injection *required* here otherwise quiesce won't work
205          */
206         blk_execute_rq(req->q, NULL, req, 1);
207
208         ret = req->errors;
209  out:
210         blk_put_request(req);
211
212         return ret;
213 }
214 EXPORT_SYMBOL(scsi_execute);
215
216
217 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
218                      int data_direction, void *buffer, unsigned bufflen,
219                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
220 {
221         char *sense = NULL;
222         int result;
223         
224         if (sshdr) {
225                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
226                 if (!sense)
227                         return DRIVER_ERROR << 24;
228         }
229         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
230                               sense, timeout, retries, 0);
231         if (sshdr)
232                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
233
234         kfree(sense);
235         return result;
236 }
237 EXPORT_SYMBOL(scsi_execute_req);
238
239 struct scsi_io_context {
240         void *data;
241         void (*done)(void *data, char *sense, int result, int resid);
242         char sense[SCSI_SENSE_BUFFERSIZE];
243 };
244
245 static struct kmem_cache *scsi_io_context_cache;
246
247 static void scsi_end_async(struct request *req, int uptodate)
248 {
249         struct scsi_io_context *sioc = req->end_io_data;
250
251         if (sioc->done)
252                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
253
254         kmem_cache_free(scsi_io_context_cache, sioc);
255         __blk_put_request(req->q, req);
256 }
257
258 static int scsi_merge_bio(struct request *rq, struct bio *bio)
259 {
260         struct request_queue *q = rq->q;
261
262         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
263         if (rq_data_dir(rq) == WRITE)
264                 bio->bi_rw |= (1 << BIO_RW);
265         blk_queue_bounce(q, &bio);
266
267         return blk_rq_append_bio(q, rq, bio);
268 }
269
270 static void scsi_bi_endio(struct bio *bio, int error)
271 {
272         bio_put(bio);
273 }
274
275 /**
276  * scsi_req_map_sg - map a scatterlist into a request
277  * @rq:         request to fill
278  * @sg:         scatterlist
279  * @nsegs:      number of elements
280  * @bufflen:    len of buffer
281  * @gfp:        memory allocation flags
282  *
283  * scsi_req_map_sg maps a scatterlist into a request so that the
284  * request can be sent to the block layer. We do not trust the scatterlist
285  * sent to use, as some ULDs use that struct to only organize the pages.
286  */
287 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
288                            int nsegs, unsigned bufflen, gfp_t gfp)
289 {
290         struct request_queue *q = rq->q;
291         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
292         unsigned int data_len = bufflen, len, bytes, off;
293         struct scatterlist *sg;
294         struct page *page;
295         struct bio *bio = NULL;
296         int i, err, nr_vecs = 0;
297
298         for_each_sg(sgl, sg, nsegs, i) {
299                 page = sg->page;
300                 off = sg->offset;
301                 len = sg->length;
302                 data_len += len;
303
304                 while (len > 0 && data_len > 0) {
305                         /*
306                          * sg sends a scatterlist that is larger than
307                          * the data_len it wants transferred for certain
308                          * IO sizes
309                          */
310                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
311                         bytes = min(bytes, data_len);
312
313                         if (!bio) {
314                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
315                                 nr_pages -= nr_vecs;
316
317                                 bio = bio_alloc(gfp, nr_vecs);
318                                 if (!bio) {
319                                         err = -ENOMEM;
320                                         goto free_bios;
321                                 }
322                                 bio->bi_end_io = scsi_bi_endio;
323                         }
324
325                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
326                             bytes) {
327                                 bio_put(bio);
328                                 err = -EINVAL;
329                                 goto free_bios;
330                         }
331
332                         if (bio->bi_vcnt >= nr_vecs) {
333                                 err = scsi_merge_bio(rq, bio);
334                                 if (err) {
335                                         bio_endio(bio, 0);
336                                         goto free_bios;
337                                 }
338                                 bio = NULL;
339                         }
340
341                         page++;
342                         len -= bytes;
343                         data_len -=bytes;
344                         off = 0;
345                 }
346         }
347
348         rq->buffer = rq->data = NULL;
349         rq->data_len = bufflen;
350         return 0;
351
352 free_bios:
353         while ((bio = rq->bio) != NULL) {
354                 rq->bio = bio->bi_next;
355                 /*
356                  * call endio instead of bio_put incase it was bounced
357                  */
358                 bio_endio(bio, 0);
359         }
360
361         return err;
362 }
363
364 /**
365  * scsi_execute_async - insert request
366  * @sdev:       scsi device
367  * @cmd:        scsi command
368  * @cmd_len:    length of scsi cdb
369  * @data_direction: data direction
370  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
371  * @bufflen:    len of buffer
372  * @use_sg:     if buffer is a scatterlist this is the number of elements
373  * @timeout:    request timeout in seconds
374  * @retries:    number of times to retry request
375  * @flags:      or into request flags
376  **/
377 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
378                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
379                        int use_sg, int timeout, int retries, void *privdata,
380                        void (*done)(void *, char *, int, int), gfp_t gfp)
381 {
382         struct request *req;
383         struct scsi_io_context *sioc;
384         int err = 0;
385         int write = (data_direction == DMA_TO_DEVICE);
386
387         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
388         if (!sioc)
389                 return DRIVER_ERROR << 24;
390
391         req = blk_get_request(sdev->request_queue, write, gfp);
392         if (!req)
393                 goto free_sense;
394         req->cmd_type = REQ_TYPE_BLOCK_PC;
395         req->cmd_flags |= REQ_QUIET;
396
397         if (use_sg)
398                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
399         else if (bufflen)
400                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
401
402         if (err)
403                 goto free_req;
404
405         req->cmd_len = cmd_len;
406         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
407         memcpy(req->cmd, cmd, req->cmd_len);
408         req->sense = sioc->sense;
409         req->sense_len = 0;
410         req->timeout = timeout;
411         req->retries = retries;
412         req->end_io_data = sioc;
413
414         sioc->data = privdata;
415         sioc->done = done;
416
417         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
418         return 0;
419
420 free_req:
421         blk_put_request(req);
422 free_sense:
423         kmem_cache_free(scsi_io_context_cache, sioc);
424         return DRIVER_ERROR << 24;
425 }
426 EXPORT_SYMBOL_GPL(scsi_execute_async);
427
428 /*
429  * Function:    scsi_init_cmd_errh()
430  *
431  * Purpose:     Initialize cmd fields related to error handling.
432  *
433  * Arguments:   cmd     - command that is ready to be queued.
434  *
435  * Notes:       This function has the job of initializing a number of
436  *              fields related to error handling.   Typically this will
437  *              be called once for each command, as required.
438  */
439 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
440 {
441         cmd->serial_number = 0;
442         cmd->resid = 0;
443         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
444         if (cmd->cmd_len == 0)
445                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
446 }
447
448 void scsi_device_unbusy(struct scsi_device *sdev)
449 {
450         struct Scsi_Host *shost = sdev->host;
451         unsigned long flags;
452
453         spin_lock_irqsave(shost->host_lock, flags);
454         shost->host_busy--;
455         if (unlikely(scsi_host_in_recovery(shost) &&
456                      (shost->host_failed || shost->host_eh_scheduled)))
457                 scsi_eh_wakeup(shost);
458         spin_unlock(shost->host_lock);
459         spin_lock(sdev->request_queue->queue_lock);
460         sdev->device_busy--;
461         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
462 }
463
464 /*
465  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
466  * and call blk_run_queue for all the scsi_devices on the target -
467  * including current_sdev first.
468  *
469  * Called with *no* scsi locks held.
470  */
471 static void scsi_single_lun_run(struct scsi_device *current_sdev)
472 {
473         struct Scsi_Host *shost = current_sdev->host;
474         struct scsi_device *sdev, *tmp;
475         struct scsi_target *starget = scsi_target(current_sdev);
476         unsigned long flags;
477
478         spin_lock_irqsave(shost->host_lock, flags);
479         starget->starget_sdev_user = NULL;
480         spin_unlock_irqrestore(shost->host_lock, flags);
481
482         /*
483          * Call blk_run_queue for all LUNs on the target, starting with
484          * current_sdev. We race with others (to set starget_sdev_user),
485          * but in most cases, we will be first. Ideally, each LU on the
486          * target would get some limited time or requests on the target.
487          */
488         blk_run_queue(current_sdev->request_queue);
489
490         spin_lock_irqsave(shost->host_lock, flags);
491         if (starget->starget_sdev_user)
492                 goto out;
493         list_for_each_entry_safe(sdev, tmp, &starget->devices,
494                         same_target_siblings) {
495                 if (sdev == current_sdev)
496                         continue;
497                 if (scsi_device_get(sdev))
498                         continue;
499
500                 spin_unlock_irqrestore(shost->host_lock, flags);
501                 blk_run_queue(sdev->request_queue);
502                 spin_lock_irqsave(shost->host_lock, flags);
503         
504                 scsi_device_put(sdev);
505         }
506  out:
507         spin_unlock_irqrestore(shost->host_lock, flags);
508 }
509
510 /*
511  * Function:    scsi_run_queue()
512  *
513  * Purpose:     Select a proper request queue to serve next
514  *
515  * Arguments:   q       - last request's queue
516  *
517  * Returns:     Nothing
518  *
519  * Notes:       The previous command was completely finished, start
520  *              a new one if possible.
521  */
522 static void scsi_run_queue(struct request_queue *q)
523 {
524         struct scsi_device *sdev = q->queuedata;
525         struct Scsi_Host *shost = sdev->host;
526         unsigned long flags;
527
528         if (sdev->single_lun)
529                 scsi_single_lun_run(sdev);
530
531         spin_lock_irqsave(shost->host_lock, flags);
532         while (!list_empty(&shost->starved_list) &&
533                !shost->host_blocked && !shost->host_self_blocked &&
534                 !((shost->can_queue > 0) &&
535                   (shost->host_busy >= shost->can_queue))) {
536                 /*
537                  * As long as shost is accepting commands and we have
538                  * starved queues, call blk_run_queue. scsi_request_fn
539                  * drops the queue_lock and can add us back to the
540                  * starved_list.
541                  *
542                  * host_lock protects the starved_list and starved_entry.
543                  * scsi_request_fn must get the host_lock before checking
544                  * or modifying starved_list or starved_entry.
545                  */
546                 sdev = list_entry(shost->starved_list.next,
547                                           struct scsi_device, starved_entry);
548                 list_del_init(&sdev->starved_entry);
549                 spin_unlock_irqrestore(shost->host_lock, flags);
550
551
552                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
553                     !test_and_set_bit(QUEUE_FLAG_REENTER,
554                                       &sdev->request_queue->queue_flags)) {
555                         blk_run_queue(sdev->request_queue);
556                         clear_bit(QUEUE_FLAG_REENTER,
557                                   &sdev->request_queue->queue_flags);
558                 } else
559                         blk_run_queue(sdev->request_queue);
560
561                 spin_lock_irqsave(shost->host_lock, flags);
562                 if (unlikely(!list_empty(&sdev->starved_entry)))
563                         /*
564                          * sdev lost a race, and was put back on the
565                          * starved list. This is unlikely but without this
566                          * in theory we could loop forever.
567                          */
568                         break;
569         }
570         spin_unlock_irqrestore(shost->host_lock, flags);
571
572         blk_run_queue(q);
573 }
574
575 /*
576  * Function:    scsi_requeue_command()
577  *
578  * Purpose:     Handle post-processing of completed commands.
579  *
580  * Arguments:   q       - queue to operate on
581  *              cmd     - command that may need to be requeued.
582  *
583  * Returns:     Nothing
584  *
585  * Notes:       After command completion, there may be blocks left
586  *              over which weren't finished by the previous command
587  *              this can be for a number of reasons - the main one is
588  *              I/O errors in the middle of the request, in which case
589  *              we need to request the blocks that come after the bad
590  *              sector.
591  * Notes:       Upon return, cmd is a stale pointer.
592  */
593 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
594 {
595         struct request *req = cmd->request;
596         unsigned long flags;
597
598         scsi_unprep_request(req);
599         spin_lock_irqsave(q->queue_lock, flags);
600         blk_requeue_request(q, req);
601         spin_unlock_irqrestore(q->queue_lock, flags);
602
603         scsi_run_queue(q);
604 }
605
606 void scsi_next_command(struct scsi_cmnd *cmd)
607 {
608         struct scsi_device *sdev = cmd->device;
609         struct request_queue *q = sdev->request_queue;
610
611         /* need to hold a reference on the device before we let go of the cmd */
612         get_device(&sdev->sdev_gendev);
613
614         scsi_put_command(cmd);
615         scsi_run_queue(q);
616
617         /* ok to remove device now */
618         put_device(&sdev->sdev_gendev);
619 }
620
621 void scsi_run_host_queues(struct Scsi_Host *shost)
622 {
623         struct scsi_device *sdev;
624
625         shost_for_each_device(sdev, shost)
626                 scsi_run_queue(sdev->request_queue);
627 }
628
629 /*
630  * Function:    scsi_end_request()
631  *
632  * Purpose:     Post-processing of completed commands (usually invoked at end
633  *              of upper level post-processing and scsi_io_completion).
634  *
635  * Arguments:   cmd      - command that is complete.
636  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
637  *              bytes    - number of bytes of completed I/O
638  *              requeue  - indicates whether we should requeue leftovers.
639  *
640  * Lock status: Assumed that lock is not held upon entry.
641  *
642  * Returns:     cmd if requeue required, NULL otherwise.
643  *
644  * Notes:       This is called for block device requests in order to
645  *              mark some number of sectors as complete.
646  * 
647  *              We are guaranteeing that the request queue will be goosed
648  *              at some point during this call.
649  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
650  */
651 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
652                                           int bytes, int requeue)
653 {
654         struct request_queue *q = cmd->device->request_queue;
655         struct request *req = cmd->request;
656         unsigned long flags;
657
658         /*
659          * If there are blocks left over at the end, set up the command
660          * to queue the remainder of them.
661          */
662         if (end_that_request_chunk(req, uptodate, bytes)) {
663                 int leftover = (req->hard_nr_sectors << 9);
664
665                 if (blk_pc_request(req))
666                         leftover = req->data_len;
667
668                 /* kill remainder if no retrys */
669                 if (!uptodate && blk_noretry_request(req))
670                         end_that_request_chunk(req, 0, leftover);
671                 else {
672                         if (requeue) {
673                                 /*
674                                  * Bleah.  Leftovers again.  Stick the
675                                  * leftovers in the front of the
676                                  * queue, and goose the queue again.
677                                  */
678                                 scsi_requeue_command(q, cmd);
679                                 cmd = NULL;
680                         }
681                         return cmd;
682                 }
683         }
684
685         add_disk_randomness(req->rq_disk);
686
687         spin_lock_irqsave(q->queue_lock, flags);
688         if (blk_rq_tagged(req))
689                 blk_queue_end_tag(q, req);
690         end_that_request_last(req, uptodate);
691         spin_unlock_irqrestore(q->queue_lock, flags);
692
693         /*
694          * This will goose the queue request function at the end, so we don't
695          * need to worry about launching another command.
696          */
697         scsi_next_command(cmd);
698         return NULL;
699 }
700
701 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
702 {
703         struct scsi_host_sg_pool *sgp;
704         struct scatterlist *sgl;
705
706         BUG_ON(!cmd->use_sg);
707
708         switch (cmd->use_sg) {
709         case 1 ... 8:
710                 cmd->sglist_len = 0;
711                 break;
712         case 9 ... 16:
713                 cmd->sglist_len = 1;
714                 break;
715         case 17 ... 32:
716                 cmd->sglist_len = 2;
717                 break;
718 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
719         case 33 ... 64:
720                 cmd->sglist_len = 3;
721                 break;
722 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
723         case 65 ... 128:
724                 cmd->sglist_len = 4;
725                 break;
726 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
727         case 129 ... 256:
728                 cmd->sglist_len = 5;
729                 break;
730 #endif
731 #endif
732 #endif
733         default:
734                 return NULL;
735         }
736
737         sgp = scsi_sg_pools + cmd->sglist_len;
738         sgl = mempool_alloc(sgp->pool, gfp_mask);
739         return sgl;
740 }
741
742 EXPORT_SYMBOL(scsi_alloc_sgtable);
743
744 void scsi_free_sgtable(struct scsi_cmnd *cmd)
745 {
746         struct scatterlist *sgl = cmd->request_buffer;
747         struct scsi_host_sg_pool *sgp;
748
749         BUG_ON(cmd->sglist_len >= SG_MEMPOOL_NR);
750
751         sgp = scsi_sg_pools + cmd->sglist_len;
752         mempool_free(sgl, sgp->pool);
753 }
754
755 EXPORT_SYMBOL(scsi_free_sgtable);
756
757 /*
758  * Function:    scsi_release_buffers()
759  *
760  * Purpose:     Completion processing for block device I/O requests.
761  *
762  * Arguments:   cmd     - command that we are bailing.
763  *
764  * Lock status: Assumed that no lock is held upon entry.
765  *
766  * Returns:     Nothing
767  *
768  * Notes:       In the event that an upper level driver rejects a
769  *              command, we must release resources allocated during
770  *              the __init_io() function.  Primarily this would involve
771  *              the scatter-gather table, and potentially any bounce
772  *              buffers.
773  */
774 static void scsi_release_buffers(struct scsi_cmnd *cmd)
775 {
776         if (cmd->use_sg)
777                 scsi_free_sgtable(cmd);
778
779         /*
780          * Zero these out.  They now point to freed memory, and it is
781          * dangerous to hang onto the pointers.
782          */
783         cmd->request_buffer = NULL;
784         cmd->request_bufflen = 0;
785 }
786
787 /*
788  * Function:    scsi_io_completion()
789  *
790  * Purpose:     Completion processing for block device I/O requests.
791  *
792  * Arguments:   cmd   - command that is finished.
793  *
794  * Lock status: Assumed that no lock is held upon entry.
795  *
796  * Returns:     Nothing
797  *
798  * Notes:       This function is matched in terms of capabilities to
799  *              the function that created the scatter-gather list.
800  *              In other words, if there are no bounce buffers
801  *              (the normal case for most drivers), we don't need
802  *              the logic to deal with cleaning up afterwards.
803  *
804  *              We must do one of several things here:
805  *
806  *              a) Call scsi_end_request.  This will finish off the
807  *                 specified number of sectors.  If we are done, the
808  *                 command block will be released, and the queue
809  *                 function will be goosed.  If we are not done, then
810  *                 scsi_end_request will directly goose the queue.
811  *
812  *              b) We can just use scsi_requeue_command() here.  This would
813  *                 be used if we just wanted to retry, for example.
814  */
815 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
816 {
817         int result = cmd->result;
818         int this_count = cmd->request_bufflen;
819         struct request_queue *q = cmd->device->request_queue;
820         struct request *req = cmd->request;
821         int clear_errors = 1;
822         struct scsi_sense_hdr sshdr;
823         int sense_valid = 0;
824         int sense_deferred = 0;
825
826         scsi_release_buffers(cmd);
827
828         if (result) {
829                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
830                 if (sense_valid)
831                         sense_deferred = scsi_sense_is_deferred(&sshdr);
832         }
833
834         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
835                 req->errors = result;
836                 if (result) {
837                         clear_errors = 0;
838                         if (sense_valid && req->sense) {
839                                 /*
840                                  * SG_IO wants current and deferred errors
841                                  */
842                                 int len = 8 + cmd->sense_buffer[7];
843
844                                 if (len > SCSI_SENSE_BUFFERSIZE)
845                                         len = SCSI_SENSE_BUFFERSIZE;
846                                 memcpy(req->sense, cmd->sense_buffer,  len);
847                                 req->sense_len = len;
848                         }
849                 }
850                 req->data_len = cmd->resid;
851         }
852
853         /*
854          * Next deal with any sectors which we were able to correctly
855          * handle.
856          */
857         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
858                                       "%d bytes done.\n",
859                                       req->nr_sectors, good_bytes));
860         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
861
862         if (clear_errors)
863                 req->errors = 0;
864
865         /* A number of bytes were successfully read.  If there
866          * are leftovers and there is some kind of error
867          * (result != 0), retry the rest.
868          */
869         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
870                 return;
871
872         /* good_bytes = 0, or (inclusive) there were leftovers and
873          * result = 0, so scsi_end_request couldn't retry.
874          */
875         if (sense_valid && !sense_deferred) {
876                 switch (sshdr.sense_key) {
877                 case UNIT_ATTENTION:
878                         if (cmd->device->removable) {
879                                 /* Detected disc change.  Set a bit
880                                  * and quietly refuse further access.
881                                  */
882                                 cmd->device->changed = 1;
883                                 scsi_end_request(cmd, 0, this_count, 1);
884                                 return;
885                         } else {
886                                 /* Must have been a power glitch, or a
887                                  * bus reset.  Could not have been a
888                                  * media change, so we just retry the
889                                  * request and see what happens.
890                                  */
891                                 scsi_requeue_command(q, cmd);
892                                 return;
893                         }
894                         break;
895                 case ILLEGAL_REQUEST:
896                         /* If we had an ILLEGAL REQUEST returned, then
897                          * we may have performed an unsupported
898                          * command.  The only thing this should be
899                          * would be a ten byte read where only a six
900                          * byte read was supported.  Also, on a system
901                          * where READ CAPACITY failed, we may have
902                          * read past the end of the disk.
903                          */
904                         if ((cmd->device->use_10_for_rw &&
905                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
906                             (cmd->cmnd[0] == READ_10 ||
907                              cmd->cmnd[0] == WRITE_10)) {
908                                 cmd->device->use_10_for_rw = 0;
909                                 /* This will cause a retry with a
910                                  * 6-byte command.
911                                  */
912                                 scsi_requeue_command(q, cmd);
913                                 return;
914                         } else {
915                                 scsi_end_request(cmd, 0, this_count, 1);
916                                 return;
917                         }
918                         break;
919                 case NOT_READY:
920                         /* If the device is in the process of becoming
921                          * ready, or has a temporary blockage, retry.
922                          */
923                         if (sshdr.asc == 0x04) {
924                                 switch (sshdr.ascq) {
925                                 case 0x01: /* becoming ready */
926                                 case 0x04: /* format in progress */
927                                 case 0x05: /* rebuild in progress */
928                                 case 0x06: /* recalculation in progress */
929                                 case 0x07: /* operation in progress */
930                                 case 0x08: /* Long write in progress */
931                                 case 0x09: /* self test in progress */
932                                         scsi_requeue_command(q, cmd);
933                                         return;
934                                 default:
935                                         break;
936                                 }
937                         }
938                         if (!(req->cmd_flags & REQ_QUIET))
939                                 scsi_cmd_print_sense_hdr(cmd,
940                                                          "Device not ready",
941                                                          &sshdr);
942
943                         scsi_end_request(cmd, 0, this_count, 1);
944                         return;
945                 case VOLUME_OVERFLOW:
946                         if (!(req->cmd_flags & REQ_QUIET)) {
947                                 scmd_printk(KERN_INFO, cmd,
948                                             "Volume overflow, CDB: ");
949                                 __scsi_print_command(cmd->cmnd);
950                                 scsi_print_sense("", cmd);
951                         }
952                         /* See SSC3rXX or current. */
953                         scsi_end_request(cmd, 0, this_count, 1);
954                         return;
955                 default:
956                         break;
957                 }
958         }
959         if (host_byte(result) == DID_RESET) {
960                 /* Third party bus reset or reset for error recovery
961                  * reasons.  Just retry the request and see what
962                  * happens.
963                  */
964                 scsi_requeue_command(q, cmd);
965                 return;
966         }
967         if (result) {
968                 if (!(req->cmd_flags & REQ_QUIET)) {
969                         scsi_print_result(cmd);
970                         if (driver_byte(result) & DRIVER_SENSE)
971                                 scsi_print_sense("", cmd);
972                 }
973         }
974         scsi_end_request(cmd, 0, this_count, !result);
975 }
976
977 /*
978  * Function:    scsi_init_io()
979  *
980  * Purpose:     SCSI I/O initialize function.
981  *
982  * Arguments:   cmd   - Command descriptor we wish to initialize
983  *
984  * Returns:     0 on success
985  *              BLKPREP_DEFER if the failure is retryable
986  *              BLKPREP_KILL if the failure is fatal
987  */
988 static int scsi_init_io(struct scsi_cmnd *cmd)
989 {
990         struct request     *req = cmd->request;
991         struct scatterlist *sgpnt;
992         int                count;
993
994         /*
995          * We used to not use scatter-gather for single segment request,
996          * but now we do (it makes highmem I/O easier to support without
997          * kmapping pages)
998          */
999         cmd->use_sg = req->nr_phys_segments;
1000
1001         /*
1002          * If sg table allocation fails, requeue request later.
1003          */
1004         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1005         if (unlikely(!sgpnt)) {
1006                 scsi_unprep_request(req);
1007                 return BLKPREP_DEFER;
1008         }
1009
1010         req->buffer = NULL;
1011         cmd->request_buffer = (char *) sgpnt;
1012         if (blk_pc_request(req))
1013                 cmd->request_bufflen = req->data_len;
1014         else
1015                 cmd->request_bufflen = req->nr_sectors << 9;
1016
1017         /* 
1018          * Next, walk the list, and fill in the addresses and sizes of
1019          * each segment.
1020          */
1021         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1022         if (likely(count <= cmd->use_sg)) {
1023                 cmd->use_sg = count;
1024                 return BLKPREP_OK;
1025         }
1026
1027         printk(KERN_ERR "Incorrect number of segments after building list\n");
1028         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1029         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1030                         req->current_nr_sectors);
1031
1032         return BLKPREP_KILL;
1033 }
1034
1035 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1036                 struct request *req)
1037 {
1038         struct scsi_cmnd *cmd;
1039
1040         if (!req->special) {
1041                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1042                 if (unlikely(!cmd))
1043                         return NULL;
1044                 req->special = cmd;
1045         } else {
1046                 cmd = req->special;
1047         }
1048
1049         /* pull a tag out of the request if we have one */
1050         cmd->tag = req->tag;
1051         cmd->request = req;
1052
1053         return cmd;
1054 }
1055
1056 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1057 {
1058         struct scsi_cmnd *cmd;
1059         int ret = scsi_prep_state_check(sdev, req);
1060
1061         if (ret != BLKPREP_OK)
1062                 return ret;
1063
1064         cmd = scsi_get_cmd_from_req(sdev, req);
1065         if (unlikely(!cmd))
1066                 return BLKPREP_DEFER;
1067
1068         /*
1069          * BLOCK_PC requests may transfer data, in which case they must
1070          * a bio attached to them.  Or they might contain a SCSI command
1071          * that does not transfer data, in which case they may optionally
1072          * submit a request without an attached bio.
1073          */
1074         if (req->bio) {
1075                 int ret;
1076
1077                 BUG_ON(!req->nr_phys_segments);
1078
1079                 ret = scsi_init_io(cmd);
1080                 if (unlikely(ret))
1081                         return ret;
1082         } else {
1083                 BUG_ON(req->data_len);
1084                 BUG_ON(req->data);
1085
1086                 cmd->request_bufflen = 0;
1087                 cmd->request_buffer = NULL;
1088                 cmd->use_sg = 0;
1089                 req->buffer = NULL;
1090         }
1091
1092         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1093         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1094         cmd->cmd_len = req->cmd_len;
1095         if (!req->data_len)
1096                 cmd->sc_data_direction = DMA_NONE;
1097         else if (rq_data_dir(req) == WRITE)
1098                 cmd->sc_data_direction = DMA_TO_DEVICE;
1099         else
1100                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1101         
1102         cmd->transfersize = req->data_len;
1103         cmd->allowed = req->retries;
1104         cmd->timeout_per_command = req->timeout;
1105         return BLKPREP_OK;
1106 }
1107 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1108
1109 /*
1110  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1111  * from filesystems that still need to be translated to SCSI CDBs from
1112  * the ULD.
1113  */
1114 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1115 {
1116         struct scsi_cmnd *cmd;
1117         int ret = scsi_prep_state_check(sdev, req);
1118
1119         if (ret != BLKPREP_OK)
1120                 return ret;
1121         /*
1122          * Filesystem requests must transfer data.
1123          */
1124         BUG_ON(!req->nr_phys_segments);
1125
1126         cmd = scsi_get_cmd_from_req(sdev, req);
1127         if (unlikely(!cmd))
1128                 return BLKPREP_DEFER;
1129
1130         return scsi_init_io(cmd);
1131 }
1132 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1133
1134 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1135 {
1136         int ret = BLKPREP_OK;
1137
1138         /*
1139          * If the device is not in running state we will reject some
1140          * or all commands.
1141          */
1142         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1143                 switch (sdev->sdev_state) {
1144                 case SDEV_OFFLINE:
1145                         /*
1146                          * If the device is offline we refuse to process any
1147                          * commands.  The device must be brought online
1148                          * before trying any recovery commands.
1149                          */
1150                         sdev_printk(KERN_ERR, sdev,
1151                                     "rejecting I/O to offline device\n");
1152                         ret = BLKPREP_KILL;
1153                         break;
1154                 case SDEV_DEL:
1155                         /*
1156                          * If the device is fully deleted, we refuse to
1157                          * process any commands as well.
1158                          */
1159                         sdev_printk(KERN_ERR, sdev,
1160                                     "rejecting I/O to dead device\n");
1161                         ret = BLKPREP_KILL;
1162                         break;
1163                 case SDEV_QUIESCE:
1164                 case SDEV_BLOCK:
1165                         /*
1166                          * If the devices is blocked we defer normal commands.
1167                          */
1168                         if (!(req->cmd_flags & REQ_PREEMPT))
1169                                 ret = BLKPREP_DEFER;
1170                         break;
1171                 default:
1172                         /*
1173                          * For any other not fully online state we only allow
1174                          * special commands.  In particular any user initiated
1175                          * command is not allowed.
1176                          */
1177                         if (!(req->cmd_flags & REQ_PREEMPT))
1178                                 ret = BLKPREP_KILL;
1179                         break;
1180                 }
1181         }
1182         return ret;
1183 }
1184 EXPORT_SYMBOL(scsi_prep_state_check);
1185
1186 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1187 {
1188         struct scsi_device *sdev = q->queuedata;
1189
1190         switch (ret) {
1191         case BLKPREP_KILL:
1192                 req->errors = DID_NO_CONNECT << 16;
1193                 /* release the command and kill it */
1194                 if (req->special) {
1195                         struct scsi_cmnd *cmd = req->special;
1196                         scsi_release_buffers(cmd);
1197                         scsi_put_command(cmd);
1198                         req->special = NULL;
1199                 }
1200                 break;
1201         case BLKPREP_DEFER:
1202                 /*
1203                  * If we defer, the elv_next_request() returns NULL, but the
1204                  * queue must be restarted, so we plug here if no returning
1205                  * command will automatically do that.
1206                  */
1207                 if (sdev->device_busy == 0)
1208                         blk_plug_device(q);
1209                 break;
1210         default:
1211                 req->cmd_flags |= REQ_DONTPREP;
1212         }
1213
1214         return ret;
1215 }
1216 EXPORT_SYMBOL(scsi_prep_return);
1217
1218 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1219 {
1220         struct scsi_device *sdev = q->queuedata;
1221         int ret = BLKPREP_KILL;
1222
1223         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1224                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1225         return scsi_prep_return(q, req, ret);
1226 }
1227
1228 /*
1229  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1230  * return 0.
1231  *
1232  * Called with the queue_lock held.
1233  */
1234 static inline int scsi_dev_queue_ready(struct request_queue *q,
1235                                   struct scsi_device *sdev)
1236 {
1237         if (sdev->device_busy >= sdev->queue_depth)
1238                 return 0;
1239         if (sdev->device_busy == 0 && sdev->device_blocked) {
1240                 /*
1241                  * unblock after device_blocked iterates to zero
1242                  */
1243                 if (--sdev->device_blocked == 0) {
1244                         SCSI_LOG_MLQUEUE(3,
1245                                    sdev_printk(KERN_INFO, sdev,
1246                                    "unblocking device at zero depth\n"));
1247                 } else {
1248                         blk_plug_device(q);
1249                         return 0;
1250                 }
1251         }
1252         if (sdev->device_blocked)
1253                 return 0;
1254
1255         return 1;
1256 }
1257
1258 /*
1259  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1260  * return 0. We must end up running the queue again whenever 0 is
1261  * returned, else IO can hang.
1262  *
1263  * Called with host_lock held.
1264  */
1265 static inline int scsi_host_queue_ready(struct request_queue *q,
1266                                    struct Scsi_Host *shost,
1267                                    struct scsi_device *sdev)
1268 {
1269         if (scsi_host_in_recovery(shost))
1270                 return 0;
1271         if (shost->host_busy == 0 && shost->host_blocked) {
1272                 /*
1273                  * unblock after host_blocked iterates to zero
1274                  */
1275                 if (--shost->host_blocked == 0) {
1276                         SCSI_LOG_MLQUEUE(3,
1277                                 printk("scsi%d unblocking host at zero depth\n",
1278                                         shost->host_no));
1279                 } else {
1280                         blk_plug_device(q);
1281                         return 0;
1282                 }
1283         }
1284         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1285             shost->host_blocked || shost->host_self_blocked) {
1286                 if (list_empty(&sdev->starved_entry))
1287                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1288                 return 0;
1289         }
1290
1291         /* We're OK to process the command, so we can't be starved */
1292         if (!list_empty(&sdev->starved_entry))
1293                 list_del_init(&sdev->starved_entry);
1294
1295         return 1;
1296 }
1297
1298 /*
1299  * Kill a request for a dead device
1300  */
1301 static void scsi_kill_request(struct request *req, struct request_queue *q)
1302 {
1303         struct scsi_cmnd *cmd = req->special;
1304         struct scsi_device *sdev = cmd->device;
1305         struct Scsi_Host *shost = sdev->host;
1306
1307         blkdev_dequeue_request(req);
1308
1309         if (unlikely(cmd == NULL)) {
1310                 printk(KERN_CRIT "impossible request in %s.\n",
1311                                  __FUNCTION__);
1312                 BUG();
1313         }
1314
1315         scsi_init_cmd_errh(cmd);
1316         cmd->result = DID_NO_CONNECT << 16;
1317         atomic_inc(&cmd->device->iorequest_cnt);
1318
1319         /*
1320          * SCSI request completion path will do scsi_device_unbusy(),
1321          * bump busy counts.  To bump the counters, we need to dance
1322          * with the locks as normal issue path does.
1323          */
1324         sdev->device_busy++;
1325         spin_unlock(sdev->request_queue->queue_lock);
1326         spin_lock(shost->host_lock);
1327         shost->host_busy++;
1328         spin_unlock(shost->host_lock);
1329         spin_lock(sdev->request_queue->queue_lock);
1330
1331         __scsi_done(cmd);
1332 }
1333
1334 static void scsi_softirq_done(struct request *rq)
1335 {
1336         struct scsi_cmnd *cmd = rq->completion_data;
1337         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1338         int disposition;
1339
1340         INIT_LIST_HEAD(&cmd->eh_entry);
1341
1342         disposition = scsi_decide_disposition(cmd);
1343         if (disposition != SUCCESS &&
1344             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1345                 sdev_printk(KERN_ERR, cmd->device,
1346                             "timing out command, waited %lus\n",
1347                             wait_for/HZ);
1348                 disposition = SUCCESS;
1349         }
1350                         
1351         scsi_log_completion(cmd, disposition);
1352
1353         switch (disposition) {
1354                 case SUCCESS:
1355                         scsi_finish_command(cmd);
1356                         break;
1357                 case NEEDS_RETRY:
1358                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1359                         break;
1360                 case ADD_TO_MLQUEUE:
1361                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1362                         break;
1363                 default:
1364                         if (!scsi_eh_scmd_add(cmd, 0))
1365                                 scsi_finish_command(cmd);
1366         }
1367 }
1368
1369 /*
1370  * Function:    scsi_request_fn()
1371  *
1372  * Purpose:     Main strategy routine for SCSI.
1373  *
1374  * Arguments:   q       - Pointer to actual queue.
1375  *
1376  * Returns:     Nothing
1377  *
1378  * Lock status: IO request lock assumed to be held when called.
1379  */
1380 static void scsi_request_fn(struct request_queue *q)
1381 {
1382         struct scsi_device *sdev = q->queuedata;
1383         struct Scsi_Host *shost;
1384         struct scsi_cmnd *cmd;
1385         struct request *req;
1386
1387         if (!sdev) {
1388                 printk("scsi: killing requests for dead queue\n");
1389                 while ((req = elv_next_request(q)) != NULL)
1390                         scsi_kill_request(req, q);
1391                 return;
1392         }
1393
1394         if(!get_device(&sdev->sdev_gendev))
1395                 /* We must be tearing the block queue down already */
1396                 return;
1397
1398         /*
1399          * To start with, we keep looping until the queue is empty, or until
1400          * the host is no longer able to accept any more requests.
1401          */
1402         shost = sdev->host;
1403         while (!blk_queue_plugged(q)) {
1404                 int rtn;
1405                 /*
1406                  * get next queueable request.  We do this early to make sure
1407                  * that the request is fully prepared even if we cannot 
1408                  * accept it.
1409                  */
1410                 req = elv_next_request(q);
1411                 if (!req || !scsi_dev_queue_ready(q, sdev))
1412                         break;
1413
1414                 if (unlikely(!scsi_device_online(sdev))) {
1415                         sdev_printk(KERN_ERR, sdev,
1416                                     "rejecting I/O to offline device\n");
1417                         scsi_kill_request(req, q);
1418                         continue;
1419                 }
1420
1421
1422                 /*
1423                  * Remove the request from the request list.
1424                  */
1425                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1426                         blkdev_dequeue_request(req);
1427                 sdev->device_busy++;
1428
1429                 spin_unlock(q->queue_lock);
1430                 cmd = req->special;
1431                 if (unlikely(cmd == NULL)) {
1432                         printk(KERN_CRIT "impossible request in %s.\n"
1433                                          "please mail a stack trace to "
1434                                          "linux-scsi@vger.kernel.org\n",
1435                                          __FUNCTION__);
1436                         blk_dump_rq_flags(req, "foo");
1437                         BUG();
1438                 }
1439                 spin_lock(shost->host_lock);
1440
1441                 if (!scsi_host_queue_ready(q, shost, sdev))
1442                         goto not_ready;
1443                 if (sdev->single_lun) {
1444                         if (scsi_target(sdev)->starget_sdev_user &&
1445                             scsi_target(sdev)->starget_sdev_user != sdev)
1446                                 goto not_ready;
1447                         scsi_target(sdev)->starget_sdev_user = sdev;
1448                 }
1449                 shost->host_busy++;
1450
1451                 /*
1452                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1453                  *              take the lock again.
1454                  */
1455                 spin_unlock_irq(shost->host_lock);
1456
1457                 /*
1458                  * Finally, initialize any error handling parameters, and set up
1459                  * the timers for timeouts.
1460                  */
1461                 scsi_init_cmd_errh(cmd);
1462
1463                 /*
1464                  * Dispatch the command to the low-level driver.
1465                  */
1466                 rtn = scsi_dispatch_cmd(cmd);
1467                 spin_lock_irq(q->queue_lock);
1468                 if(rtn) {
1469                         /* we're refusing the command; because of
1470                          * the way locks get dropped, we need to 
1471                          * check here if plugging is required */
1472                         if(sdev->device_busy == 0)
1473                                 blk_plug_device(q);
1474
1475                         break;
1476                 }
1477         }
1478
1479         goto out;
1480
1481  not_ready:
1482         spin_unlock_irq(shost->host_lock);
1483
1484         /*
1485          * lock q, handle tag, requeue req, and decrement device_busy. We
1486          * must return with queue_lock held.
1487          *
1488          * Decrementing device_busy without checking it is OK, as all such
1489          * cases (host limits or settings) should run the queue at some
1490          * later time.
1491          */
1492         spin_lock_irq(q->queue_lock);
1493         blk_requeue_request(q, req);
1494         sdev->device_busy--;
1495         if(sdev->device_busy == 0)
1496                 blk_plug_device(q);
1497  out:
1498         /* must be careful here...if we trigger the ->remove() function
1499          * we cannot be holding the q lock */
1500         spin_unlock_irq(q->queue_lock);
1501         put_device(&sdev->sdev_gendev);
1502         spin_lock_irq(q->queue_lock);
1503 }
1504
1505 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1506 {
1507         struct device *host_dev;
1508         u64 bounce_limit = 0xffffffff;
1509
1510         if (shost->unchecked_isa_dma)
1511                 return BLK_BOUNCE_ISA;
1512         /*
1513          * Platforms with virtual-DMA translation
1514          * hardware have no practical limit.
1515          */
1516         if (!PCI_DMA_BUS_IS_PHYS)
1517                 return BLK_BOUNCE_ANY;
1518
1519         host_dev = scsi_get_device(shost);
1520         if (host_dev && host_dev->dma_mask)
1521                 bounce_limit = *host_dev->dma_mask;
1522
1523         return bounce_limit;
1524 }
1525 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1526
1527 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1528                                          request_fn_proc *request_fn)
1529 {
1530         struct request_queue *q;
1531
1532         q = blk_init_queue(request_fn, NULL);
1533         if (!q)
1534                 return NULL;
1535
1536         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1537         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1538         blk_queue_max_sectors(q, shost->max_sectors);
1539         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1540         blk_queue_segment_boundary(q, shost->dma_boundary);
1541
1542         if (!shost->use_clustering)
1543                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1544         return q;
1545 }
1546 EXPORT_SYMBOL(__scsi_alloc_queue);
1547
1548 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1549 {
1550         struct request_queue *q;
1551
1552         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1553         if (!q)
1554                 return NULL;
1555
1556         blk_queue_prep_rq(q, scsi_prep_fn);
1557         blk_queue_softirq_done(q, scsi_softirq_done);
1558         return q;
1559 }
1560
1561 void scsi_free_queue(struct request_queue *q)
1562 {
1563         blk_cleanup_queue(q);
1564 }
1565
1566 /*
1567  * Function:    scsi_block_requests()
1568  *
1569  * Purpose:     Utility function used by low-level drivers to prevent further
1570  *              commands from being queued to the device.
1571  *
1572  * Arguments:   shost       - Host in question
1573  *
1574  * Returns:     Nothing
1575  *
1576  * Lock status: No locks are assumed held.
1577  *
1578  * Notes:       There is no timer nor any other means by which the requests
1579  *              get unblocked other than the low-level driver calling
1580  *              scsi_unblock_requests().
1581  */
1582 void scsi_block_requests(struct Scsi_Host *shost)
1583 {
1584         shost->host_self_blocked = 1;
1585 }
1586 EXPORT_SYMBOL(scsi_block_requests);
1587
1588 /*
1589  * Function:    scsi_unblock_requests()
1590  *
1591  * Purpose:     Utility function used by low-level drivers to allow further
1592  *              commands from being queued to the device.
1593  *
1594  * Arguments:   shost       - Host in question
1595  *
1596  * Returns:     Nothing
1597  *
1598  * Lock status: No locks are assumed held.
1599  *
1600  * Notes:       There is no timer nor any other means by which the requests
1601  *              get unblocked other than the low-level driver calling
1602  *              scsi_unblock_requests().
1603  *
1604  *              This is done as an API function so that changes to the
1605  *              internals of the scsi mid-layer won't require wholesale
1606  *              changes to drivers that use this feature.
1607  */
1608 void scsi_unblock_requests(struct Scsi_Host *shost)
1609 {
1610         shost->host_self_blocked = 0;
1611         scsi_run_host_queues(shost);
1612 }
1613 EXPORT_SYMBOL(scsi_unblock_requests);
1614
1615 int __init scsi_init_queue(void)
1616 {
1617         int i;
1618
1619         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1620                                         sizeof(struct scsi_io_context),
1621                                         0, 0, NULL);
1622         if (!scsi_io_context_cache) {
1623                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1624                 return -ENOMEM;
1625         }
1626
1627         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1628                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1629                 int size = sgp->size * sizeof(struct scatterlist);
1630
1631                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1632                                 SLAB_HWCACHE_ALIGN, NULL);
1633                 if (!sgp->slab) {
1634                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1635                                         sgp->name);
1636                 }
1637
1638                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1639                                                      sgp->slab);
1640                 if (!sgp->pool) {
1641                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1642                                         sgp->name);
1643                 }
1644         }
1645
1646         return 0;
1647 }
1648
1649 void scsi_exit_queue(void)
1650 {
1651         int i;
1652
1653         kmem_cache_destroy(scsi_io_context_cache);
1654
1655         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1656                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1657                 mempool_destroy(sgp->pool);
1658                 kmem_cache_destroy(sgp->slab);
1659         }
1660 }
1661
1662 /**
1663  *      scsi_mode_select - issue a mode select
1664  *      @sdev:  SCSI device to be queried
1665  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1666  *      @sp:    Save page bit (0 == don't save, 1 == save)
1667  *      @modepage: mode page being requested
1668  *      @buffer: request buffer (may not be smaller than eight bytes)
1669  *      @len:   length of request buffer.
1670  *      @timeout: command timeout
1671  *      @retries: number of retries before failing
1672  *      @data: returns a structure abstracting the mode header data
1673  *      @sense: place to put sense data (or NULL if no sense to be collected).
1674  *              must be SCSI_SENSE_BUFFERSIZE big.
1675  *
1676  *      Returns zero if successful; negative error number or scsi
1677  *      status on error
1678  *
1679  */
1680 int
1681 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1682                  unsigned char *buffer, int len, int timeout, int retries,
1683                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1684 {
1685         unsigned char cmd[10];
1686         unsigned char *real_buffer;
1687         int ret;
1688
1689         memset(cmd, 0, sizeof(cmd));
1690         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1691
1692         if (sdev->use_10_for_ms) {
1693                 if (len > 65535)
1694                         return -EINVAL;
1695                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1696                 if (!real_buffer)
1697                         return -ENOMEM;
1698                 memcpy(real_buffer + 8, buffer, len);
1699                 len += 8;
1700                 real_buffer[0] = 0;
1701                 real_buffer[1] = 0;
1702                 real_buffer[2] = data->medium_type;
1703                 real_buffer[3] = data->device_specific;
1704                 real_buffer[4] = data->longlba ? 0x01 : 0;
1705                 real_buffer[5] = 0;
1706                 real_buffer[6] = data->block_descriptor_length >> 8;
1707                 real_buffer[7] = data->block_descriptor_length;
1708
1709                 cmd[0] = MODE_SELECT_10;
1710                 cmd[7] = len >> 8;
1711                 cmd[8] = len;
1712         } else {
1713                 if (len > 255 || data->block_descriptor_length > 255 ||
1714                     data->longlba)
1715                         return -EINVAL;
1716
1717                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1718                 if (!real_buffer)
1719                         return -ENOMEM;
1720                 memcpy(real_buffer + 4, buffer, len);
1721                 len += 4;
1722                 real_buffer[0] = 0;
1723                 real_buffer[1] = data->medium_type;
1724                 real_buffer[2] = data->device_specific;
1725                 real_buffer[3] = data->block_descriptor_length;
1726                 
1727
1728                 cmd[0] = MODE_SELECT;
1729                 cmd[4] = len;
1730         }
1731
1732         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1733                                sshdr, timeout, retries);
1734         kfree(real_buffer);
1735         return ret;
1736 }
1737 EXPORT_SYMBOL_GPL(scsi_mode_select);
1738
1739 /**
1740  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1741  *              six bytes if necessary.
1742  *      @sdev:  SCSI device to be queried
1743  *      @dbd:   set if mode sense will allow block descriptors to be returned
1744  *      @modepage: mode page being requested
1745  *      @buffer: request buffer (may not be smaller than eight bytes)
1746  *      @len:   length of request buffer.
1747  *      @timeout: command timeout
1748  *      @retries: number of retries before failing
1749  *      @data: returns a structure abstracting the mode header data
1750  *      @sense: place to put sense data (or NULL if no sense to be collected).
1751  *              must be SCSI_SENSE_BUFFERSIZE big.
1752  *
1753  *      Returns zero if unsuccessful, or the header offset (either 4
1754  *      or 8 depending on whether a six or ten byte command was
1755  *      issued) if successful.
1756  **/
1757 int
1758 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1759                   unsigned char *buffer, int len, int timeout, int retries,
1760                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1761 {
1762         unsigned char cmd[12];
1763         int use_10_for_ms;
1764         int header_length;
1765         int result;
1766         struct scsi_sense_hdr my_sshdr;
1767
1768         memset(data, 0, sizeof(*data));
1769         memset(&cmd[0], 0, 12);
1770         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1771         cmd[2] = modepage;
1772
1773         /* caller might not be interested in sense, but we need it */
1774         if (!sshdr)
1775                 sshdr = &my_sshdr;
1776
1777  retry:
1778         use_10_for_ms = sdev->use_10_for_ms;
1779
1780         if (use_10_for_ms) {
1781                 if (len < 8)
1782                         len = 8;
1783
1784                 cmd[0] = MODE_SENSE_10;
1785                 cmd[8] = len;
1786                 header_length = 8;
1787         } else {
1788                 if (len < 4)
1789                         len = 4;
1790
1791                 cmd[0] = MODE_SENSE;
1792                 cmd[4] = len;
1793                 header_length = 4;
1794         }
1795
1796         memset(buffer, 0, len);
1797
1798         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1799                                   sshdr, timeout, retries);
1800
1801         /* This code looks awful: what it's doing is making sure an
1802          * ILLEGAL REQUEST sense return identifies the actual command
1803          * byte as the problem.  MODE_SENSE commands can return
1804          * ILLEGAL REQUEST if the code page isn't supported */
1805
1806         if (use_10_for_ms && !scsi_status_is_good(result) &&
1807             (driver_byte(result) & DRIVER_SENSE)) {
1808                 if (scsi_sense_valid(sshdr)) {
1809                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1810                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1811                                 /* 
1812                                  * Invalid command operation code
1813                                  */
1814                                 sdev->use_10_for_ms = 0;
1815                                 goto retry;
1816                         }
1817                 }
1818         }
1819
1820         if(scsi_status_is_good(result)) {
1821                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1822                              (modepage == 6 || modepage == 8))) {
1823                         /* Initio breakage? */
1824                         header_length = 0;
1825                         data->length = 13;
1826                         data->medium_type = 0;
1827                         data->device_specific = 0;
1828                         data->longlba = 0;
1829                         data->block_descriptor_length = 0;
1830                 } else if(use_10_for_ms) {
1831                         data->length = buffer[0]*256 + buffer[1] + 2;
1832                         data->medium_type = buffer[2];
1833                         data->device_specific = buffer[3];
1834                         data->longlba = buffer[4] & 0x01;
1835                         data->block_descriptor_length = buffer[6]*256
1836                                 + buffer[7];
1837                 } else {
1838                         data->length = buffer[0] + 1;
1839                         data->medium_type = buffer[1];
1840                         data->device_specific = buffer[2];
1841                         data->block_descriptor_length = buffer[3];
1842                 }
1843                 data->header_length = header_length;
1844         }
1845
1846         return result;
1847 }
1848 EXPORT_SYMBOL(scsi_mode_sense);
1849
1850 int
1851 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1852 {
1853         char cmd[] = {
1854                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1855         };
1856         struct scsi_sense_hdr sshdr;
1857         int result;
1858         
1859         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1860                                   timeout, retries);
1861
1862         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1863
1864                 if ((scsi_sense_valid(&sshdr)) &&
1865                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1866                      (sshdr.sense_key == NOT_READY))) {
1867                         sdev->changed = 1;
1868                         result = 0;
1869                 }
1870         }
1871         return result;
1872 }
1873 EXPORT_SYMBOL(scsi_test_unit_ready);
1874
1875 /**
1876  *      scsi_device_set_state - Take the given device through the device
1877  *              state model.
1878  *      @sdev:  scsi device to change the state of.
1879  *      @state: state to change to.
1880  *
1881  *      Returns zero if unsuccessful or an error if the requested 
1882  *      transition is illegal.
1883  **/
1884 int
1885 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1886 {
1887         enum scsi_device_state oldstate = sdev->sdev_state;
1888
1889         if (state == oldstate)
1890                 return 0;
1891
1892         switch (state) {
1893         case SDEV_CREATED:
1894                 /* There are no legal states that come back to
1895                  * created.  This is the manually initialised start
1896                  * state */
1897                 goto illegal;
1898                         
1899         case SDEV_RUNNING:
1900                 switch (oldstate) {
1901                 case SDEV_CREATED:
1902                 case SDEV_OFFLINE:
1903                 case SDEV_QUIESCE:
1904                 case SDEV_BLOCK:
1905                         break;
1906                 default:
1907                         goto illegal;
1908                 }
1909                 break;
1910
1911         case SDEV_QUIESCE:
1912                 switch (oldstate) {
1913                 case SDEV_RUNNING:
1914                 case SDEV_OFFLINE:
1915                         break;
1916                 default:
1917                         goto illegal;
1918                 }
1919                 break;
1920
1921         case SDEV_OFFLINE:
1922                 switch (oldstate) {
1923                 case SDEV_CREATED:
1924                 case SDEV_RUNNING:
1925                 case SDEV_QUIESCE:
1926                 case SDEV_BLOCK:
1927                         break;
1928                 default:
1929                         goto illegal;
1930                 }
1931                 break;
1932
1933         case SDEV_BLOCK:
1934                 switch (oldstate) {
1935                 case SDEV_CREATED:
1936                 case SDEV_RUNNING:
1937                         break;
1938                 default:
1939                         goto illegal;
1940                 }
1941                 break;
1942
1943         case SDEV_CANCEL:
1944                 switch (oldstate) {
1945                 case SDEV_CREATED:
1946                 case SDEV_RUNNING:
1947                 case SDEV_QUIESCE:
1948                 case SDEV_OFFLINE:
1949                 case SDEV_BLOCK:
1950                         break;
1951                 default:
1952                         goto illegal;
1953                 }
1954                 break;
1955
1956         case SDEV_DEL:
1957                 switch (oldstate) {
1958                 case SDEV_CREATED:
1959                 case SDEV_RUNNING:
1960                 case SDEV_OFFLINE:
1961                 case SDEV_CANCEL:
1962                         break;
1963                 default:
1964                         goto illegal;
1965                 }
1966                 break;
1967
1968         }
1969         sdev->sdev_state = state;
1970         return 0;
1971
1972  illegal:
1973         SCSI_LOG_ERROR_RECOVERY(1, 
1974                                 sdev_printk(KERN_ERR, sdev,
1975                                             "Illegal state transition %s->%s\n",
1976                                             scsi_device_state_name(oldstate),
1977                                             scsi_device_state_name(state))
1978                                 );
1979         return -EINVAL;
1980 }
1981 EXPORT_SYMBOL(scsi_device_set_state);
1982
1983 /**
1984  *      scsi_device_quiesce - Block user issued commands.
1985  *      @sdev:  scsi device to quiesce.
1986  *
1987  *      This works by trying to transition to the SDEV_QUIESCE state
1988  *      (which must be a legal transition).  When the device is in this
1989  *      state, only special requests will be accepted, all others will
1990  *      be deferred.  Since special requests may also be requeued requests,
1991  *      a successful return doesn't guarantee the device will be 
1992  *      totally quiescent.
1993  *
1994  *      Must be called with user context, may sleep.
1995  *
1996  *      Returns zero if unsuccessful or an error if not.
1997  **/
1998 int
1999 scsi_device_quiesce(struct scsi_device *sdev)
2000 {
2001         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2002         if (err)
2003                 return err;
2004
2005         scsi_run_queue(sdev->request_queue);
2006         while (sdev->device_busy) {
2007                 msleep_interruptible(200);
2008                 scsi_run_queue(sdev->request_queue);
2009         }
2010         return 0;
2011 }
2012 EXPORT_SYMBOL(scsi_device_quiesce);
2013
2014 /**
2015  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2016  *      @sdev:  scsi device to resume.
2017  *
2018  *      Moves the device from quiesced back to running and restarts the
2019  *      queues.
2020  *
2021  *      Must be called with user context, may sleep.
2022  **/
2023 void
2024 scsi_device_resume(struct scsi_device *sdev)
2025 {
2026         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2027                 return;
2028         scsi_run_queue(sdev->request_queue);
2029 }
2030 EXPORT_SYMBOL(scsi_device_resume);
2031
2032 static void
2033 device_quiesce_fn(struct scsi_device *sdev, void *data)
2034 {
2035         scsi_device_quiesce(sdev);
2036 }
2037
2038 void
2039 scsi_target_quiesce(struct scsi_target *starget)
2040 {
2041         starget_for_each_device(starget, NULL, device_quiesce_fn);
2042 }
2043 EXPORT_SYMBOL(scsi_target_quiesce);
2044
2045 static void
2046 device_resume_fn(struct scsi_device *sdev, void *data)
2047 {
2048         scsi_device_resume(sdev);
2049 }
2050
2051 void
2052 scsi_target_resume(struct scsi_target *starget)
2053 {
2054         starget_for_each_device(starget, NULL, device_resume_fn);
2055 }
2056 EXPORT_SYMBOL(scsi_target_resume);
2057
2058 /**
2059  * scsi_internal_device_block - internal function to put a device
2060  *                              temporarily into the SDEV_BLOCK state
2061  * @sdev:       device to block
2062  *
2063  * Block request made by scsi lld's to temporarily stop all
2064  * scsi commands on the specified device.  Called from interrupt
2065  * or normal process context.
2066  *
2067  * Returns zero if successful or error if not
2068  *
2069  * Notes:       
2070  *      This routine transitions the device to the SDEV_BLOCK state
2071  *      (which must be a legal transition).  When the device is in this
2072  *      state, all commands are deferred until the scsi lld reenables
2073  *      the device with scsi_device_unblock or device_block_tmo fires.
2074  *      This routine assumes the host_lock is held on entry.
2075  **/
2076 int
2077 scsi_internal_device_block(struct scsi_device *sdev)
2078 {
2079         struct request_queue *q = sdev->request_queue;
2080         unsigned long flags;
2081         int err = 0;
2082
2083         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2084         if (err)
2085                 return err;
2086
2087         /* 
2088          * The device has transitioned to SDEV_BLOCK.  Stop the
2089          * block layer from calling the midlayer with this device's
2090          * request queue. 
2091          */
2092         spin_lock_irqsave(q->queue_lock, flags);
2093         blk_stop_queue(q);
2094         spin_unlock_irqrestore(q->queue_lock, flags);
2095
2096         return 0;
2097 }
2098 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2099  
2100 /**
2101  * scsi_internal_device_unblock - resume a device after a block request
2102  * @sdev:       device to resume
2103  *
2104  * Called by scsi lld's or the midlayer to restart the device queue
2105  * for the previously suspended scsi device.  Called from interrupt or
2106  * normal process context.
2107  *
2108  * Returns zero if successful or error if not.
2109  *
2110  * Notes:       
2111  *      This routine transitions the device to the SDEV_RUNNING state
2112  *      (which must be a legal transition) allowing the midlayer to
2113  *      goose the queue for this device.  This routine assumes the 
2114  *      host_lock is held upon entry.
2115  **/
2116 int
2117 scsi_internal_device_unblock(struct scsi_device *sdev)
2118 {
2119         struct request_queue *q = sdev->request_queue; 
2120         int err;
2121         unsigned long flags;
2122         
2123         /* 
2124          * Try to transition the scsi device to SDEV_RUNNING
2125          * and goose the device queue if successful.  
2126          */
2127         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2128         if (err)
2129                 return err;
2130
2131         spin_lock_irqsave(q->queue_lock, flags);
2132         blk_start_queue(q);
2133         spin_unlock_irqrestore(q->queue_lock, flags);
2134
2135         return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2138
2139 static void
2140 device_block(struct scsi_device *sdev, void *data)
2141 {
2142         scsi_internal_device_block(sdev);
2143 }
2144
2145 static int
2146 target_block(struct device *dev, void *data)
2147 {
2148         if (scsi_is_target_device(dev))
2149                 starget_for_each_device(to_scsi_target(dev), NULL,
2150                                         device_block);
2151         return 0;
2152 }
2153
2154 void
2155 scsi_target_block(struct device *dev)
2156 {
2157         if (scsi_is_target_device(dev))
2158                 starget_for_each_device(to_scsi_target(dev), NULL,
2159                                         device_block);
2160         else
2161                 device_for_each_child(dev, NULL, target_block);
2162 }
2163 EXPORT_SYMBOL_GPL(scsi_target_block);
2164
2165 static void
2166 device_unblock(struct scsi_device *sdev, void *data)
2167 {
2168         scsi_internal_device_unblock(sdev);
2169 }
2170
2171 static int
2172 target_unblock(struct device *dev, void *data)
2173 {
2174         if (scsi_is_target_device(dev))
2175                 starget_for_each_device(to_scsi_target(dev), NULL,
2176                                         device_unblock);
2177         return 0;
2178 }
2179
2180 void
2181 scsi_target_unblock(struct device *dev)
2182 {
2183         if (scsi_is_target_device(dev))
2184                 starget_for_each_device(to_scsi_target(dev), NULL,
2185                                         device_unblock);
2186         else
2187                 device_for_each_child(dev, NULL, target_unblock);
2188 }
2189 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2190
2191 /**
2192  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2193  * @sg:         scatter-gather list
2194  * @sg_count:   number of segments in sg
2195  * @offset:     offset in bytes into sg, on return offset into the mapped area
2196  * @len:        bytes to map, on return number of bytes mapped
2197  *
2198  * Returns virtual address of the start of the mapped page
2199  */
2200 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2201                           size_t *offset, size_t *len)
2202 {
2203         int i;
2204         size_t sg_len = 0, len_complete = 0;
2205         struct scatterlist *sg;
2206         struct page *page;
2207
2208         WARN_ON(!irqs_disabled());
2209
2210         for_each_sg(sgl, sg, sg_count, i) {
2211                 len_complete = sg_len; /* Complete sg-entries */
2212                 sg_len += sg->length;
2213                 if (sg_len > *offset)
2214                         break;
2215         }
2216
2217         if (unlikely(i == sg_count)) {
2218                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2219                         "elements %d\n",
2220                        __FUNCTION__, sg_len, *offset, sg_count);
2221                 WARN_ON(1);
2222                 return NULL;
2223         }
2224
2225         /* Offset starting from the beginning of first page in this sg-entry */
2226         *offset = *offset - len_complete + sg->offset;
2227
2228         /* Assumption: contiguous pages can be accessed as "page + i" */
2229         page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2230         *offset &= ~PAGE_MASK;
2231
2232         /* Bytes in this sg-entry from *offset to the end of the page */
2233         sg_len = PAGE_SIZE - *offset;
2234         if (*len > sg_len)
2235                 *len = sg_len;
2236
2237         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2238 }
2239 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2240
2241 /**
2242  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2243  *                         mapped with scsi_kmap_atomic_sg
2244  * @virt:       virtual address to be unmapped
2245  */
2246 void scsi_kunmap_atomic_sg(void *virt)
2247 {
2248         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2249 }
2250 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);