]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/scsi_lib.c
[SCSI] bidirectional: fix up for the new blk_end_request code
[linux-2.6-omap-h63xx.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE         2
36
37 /*
38  * The maximum number of SG segments that we will put inside a scatterlist
39  * (unless chaining is used). Should ideally fit inside a single page, to
40  * avoid a higher order allocation.
41  */
42 #define SCSI_MAX_SG_SEGMENTS    128
43
44 struct scsi_host_sg_pool {
45         size_t          size;
46         char            *name;
47         struct kmem_cache       *slab;
48         mempool_t       *pool;
49 };
50
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53         SP(8),
54         SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56         SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(128),
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static struct kmem_cache *scsi_bidi_sdb_cache;
68
69 static void scsi_run_queue(struct request_queue *q);
70
71 /*
72  * Function:    scsi_unprep_request()
73  *
74  * Purpose:     Remove all preparation done for a request, including its
75  *              associated scsi_cmnd, so that it can be requeued.
76  *
77  * Arguments:   req     - request to unprepare
78  *
79  * Lock status: Assumed that no locks are held upon entry.
80  *
81  * Returns:     Nothing.
82  */
83 static void scsi_unprep_request(struct request *req)
84 {
85         struct scsi_cmnd *cmd = req->special;
86
87         req->cmd_flags &= ~REQ_DONTPREP;
88         req->special = NULL;
89
90         scsi_put_command(cmd);
91 }
92
93 /*
94  * Function:    scsi_queue_insert()
95  *
96  * Purpose:     Insert a command in the midlevel queue.
97  *
98  * Arguments:   cmd    - command that we are adding to queue.
99  *              reason - why we are inserting command to queue.
100  *
101  * Lock status: Assumed that lock is not held upon entry.
102  *
103  * Returns:     Nothing.
104  *
105  * Notes:       We do this for one of two cases.  Either the host is busy
106  *              and it cannot accept any more commands for the time being,
107  *              or the device returned QUEUE_FULL and can accept no more
108  *              commands.
109  * Notes:       This could be called either from an interrupt context or a
110  *              normal process context.
111  */
112 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
113 {
114         struct Scsi_Host *host = cmd->device->host;
115         struct scsi_device *device = cmd->device;
116         struct request_queue *q = device->request_queue;
117         unsigned long flags;
118
119         SCSI_LOG_MLQUEUE(1,
120                  printk("Inserting command %p into mlqueue\n", cmd));
121
122         /*
123          * Set the appropriate busy bit for the device/host.
124          *
125          * If the host/device isn't busy, assume that something actually
126          * completed, and that we should be able to queue a command now.
127          *
128          * Note that the prior mid-layer assumption that any host could
129          * always queue at least one command is now broken.  The mid-layer
130          * will implement a user specifiable stall (see
131          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132          * if a command is requeued with no other commands outstanding
133          * either for the device or for the host.
134          */
135         if (reason == SCSI_MLQUEUE_HOST_BUSY)
136                 host->host_blocked = host->max_host_blocked;
137         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
138                 device->device_blocked = device->max_device_blocked;
139
140         /*
141          * Decrement the counters, since these commands are no longer
142          * active on the host/device.
143          */
144         scsi_device_unbusy(device);
145
146         /*
147          * Requeue this command.  It will go before all other commands
148          * that are already in the queue.
149          *
150          * NOTE: there is magic here about the way the queue is plugged if
151          * we have no outstanding commands.
152          * 
153          * Although we *don't* plug the queue, we call the request
154          * function.  The SCSI request function detects the blocked condition
155          * and plugs the queue appropriately.
156          */
157         spin_lock_irqsave(q->queue_lock, flags);
158         blk_requeue_request(q, cmd->request);
159         spin_unlock_irqrestore(q->queue_lock, flags);
160
161         scsi_run_queue(q);
162
163         return 0;
164 }
165
166 /**
167  * scsi_execute - insert request and wait for the result
168  * @sdev:       scsi device
169  * @cmd:        scsi command
170  * @data_direction: data direction
171  * @buffer:     data buffer
172  * @bufflen:    len of buffer
173  * @sense:      optional sense buffer
174  * @timeout:    request timeout in seconds
175  * @retries:    number of times to retry request
176  * @flags:      or into request flags;
177  *
178  * returns the req->errors value which is the scsi_cmnd result
179  * field.
180  */
181 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
182                  int data_direction, void *buffer, unsigned bufflen,
183                  unsigned char *sense, int timeout, int retries, int flags)
184 {
185         struct request *req;
186         int write = (data_direction == DMA_TO_DEVICE);
187         int ret = DRIVER_ERROR << 24;
188
189         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
190
191         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
192                                         buffer, bufflen, __GFP_WAIT))
193                 goto out;
194
195         req->cmd_len = COMMAND_SIZE(cmd[0]);
196         memcpy(req->cmd, cmd, req->cmd_len);
197         req->sense = sense;
198         req->sense_len = 0;
199         req->retries = retries;
200         req->timeout = timeout;
201         req->cmd_type = REQ_TYPE_BLOCK_PC;
202         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
203
204         /*
205          * head injection *required* here otherwise quiesce won't work
206          */
207         blk_execute_rq(req->q, NULL, req, 1);
208
209         ret = req->errors;
210  out:
211         blk_put_request(req);
212
213         return ret;
214 }
215 EXPORT_SYMBOL(scsi_execute);
216
217
218 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
219                      int data_direction, void *buffer, unsigned bufflen,
220                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
221 {
222         char *sense = NULL;
223         int result;
224         
225         if (sshdr) {
226                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
227                 if (!sense)
228                         return DRIVER_ERROR << 24;
229         }
230         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
231                               sense, timeout, retries, 0);
232         if (sshdr)
233                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
234
235         kfree(sense);
236         return result;
237 }
238 EXPORT_SYMBOL(scsi_execute_req);
239
240 struct scsi_io_context {
241         void *data;
242         void (*done)(void *data, char *sense, int result, int resid);
243         char sense[SCSI_SENSE_BUFFERSIZE];
244 };
245
246 static struct kmem_cache *scsi_io_context_cache;
247
248 static void scsi_end_async(struct request *req, int uptodate)
249 {
250         struct scsi_io_context *sioc = req->end_io_data;
251
252         if (sioc->done)
253                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
254
255         kmem_cache_free(scsi_io_context_cache, sioc);
256         __blk_put_request(req->q, req);
257 }
258
259 static int scsi_merge_bio(struct request *rq, struct bio *bio)
260 {
261         struct request_queue *q = rq->q;
262
263         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
264         if (rq_data_dir(rq) == WRITE)
265                 bio->bi_rw |= (1 << BIO_RW);
266         blk_queue_bounce(q, &bio);
267
268         return blk_rq_append_bio(q, rq, bio);
269 }
270
271 static void scsi_bi_endio(struct bio *bio, int error)
272 {
273         bio_put(bio);
274 }
275
276 /**
277  * scsi_req_map_sg - map a scatterlist into a request
278  * @rq:         request to fill
279  * @sgl:        scatterlist
280  * @nsegs:      number of elements
281  * @bufflen:    len of buffer
282  * @gfp:        memory allocation flags
283  *
284  * scsi_req_map_sg maps a scatterlist into a request so that the
285  * request can be sent to the block layer. We do not trust the scatterlist
286  * sent to use, as some ULDs use that struct to only organize the pages.
287  */
288 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
289                            int nsegs, unsigned bufflen, gfp_t gfp)
290 {
291         struct request_queue *q = rq->q;
292         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
293         unsigned int data_len = bufflen, len, bytes, off;
294         struct scatterlist *sg;
295         struct page *page;
296         struct bio *bio = NULL;
297         int i, err, nr_vecs = 0;
298
299         for_each_sg(sgl, sg, nsegs, i) {
300                 page = sg_page(sg);
301                 off = sg->offset;
302                 len = sg->length;
303                 data_len += len;
304
305                 while (len > 0 && data_len > 0) {
306                         /*
307                          * sg sends a scatterlist that is larger than
308                          * the data_len it wants transferred for certain
309                          * IO sizes
310                          */
311                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
312                         bytes = min(bytes, data_len);
313
314                         if (!bio) {
315                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
316                                 nr_pages -= nr_vecs;
317
318                                 bio = bio_alloc(gfp, nr_vecs);
319                                 if (!bio) {
320                                         err = -ENOMEM;
321                                         goto free_bios;
322                                 }
323                                 bio->bi_end_io = scsi_bi_endio;
324                         }
325
326                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
327                             bytes) {
328                                 bio_put(bio);
329                                 err = -EINVAL;
330                                 goto free_bios;
331                         }
332
333                         if (bio->bi_vcnt >= nr_vecs) {
334                                 err = scsi_merge_bio(rq, bio);
335                                 if (err) {
336                                         bio_endio(bio, 0);
337                                         goto free_bios;
338                                 }
339                                 bio = NULL;
340                         }
341
342                         page++;
343                         len -= bytes;
344                         data_len -=bytes;
345                         off = 0;
346                 }
347         }
348
349         rq->buffer = rq->data = NULL;
350         rq->data_len = bufflen;
351         return 0;
352
353 free_bios:
354         while ((bio = rq->bio) != NULL) {
355                 rq->bio = bio->bi_next;
356                 /*
357                  * call endio instead of bio_put incase it was bounced
358                  */
359                 bio_endio(bio, 0);
360         }
361
362         return err;
363 }
364
365 /**
366  * scsi_execute_async - insert request
367  * @sdev:       scsi device
368  * @cmd:        scsi command
369  * @cmd_len:    length of scsi cdb
370  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
371  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
372  * @bufflen:    len of buffer
373  * @use_sg:     if buffer is a scatterlist this is the number of elements
374  * @timeout:    request timeout in seconds
375  * @retries:    number of times to retry request
376  * @privdata:   data passed to done()
377  * @done:       callback function when done
378  * @gfp:        memory allocation flags
379  */
380 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
381                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
382                        int use_sg, int timeout, int retries, void *privdata,
383                        void (*done)(void *, char *, int, int), gfp_t gfp)
384 {
385         struct request *req;
386         struct scsi_io_context *sioc;
387         int err = 0;
388         int write = (data_direction == DMA_TO_DEVICE);
389
390         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
391         if (!sioc)
392                 return DRIVER_ERROR << 24;
393
394         req = blk_get_request(sdev->request_queue, write, gfp);
395         if (!req)
396                 goto free_sense;
397         req->cmd_type = REQ_TYPE_BLOCK_PC;
398         req->cmd_flags |= REQ_QUIET;
399
400         if (use_sg)
401                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
402         else if (bufflen)
403                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
404
405         if (err)
406                 goto free_req;
407
408         req->cmd_len = cmd_len;
409         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
410         memcpy(req->cmd, cmd, req->cmd_len);
411         req->sense = sioc->sense;
412         req->sense_len = 0;
413         req->timeout = timeout;
414         req->retries = retries;
415         req->end_io_data = sioc;
416
417         sioc->data = privdata;
418         sioc->done = done;
419
420         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
421         return 0;
422
423 free_req:
424         blk_put_request(req);
425 free_sense:
426         kmem_cache_free(scsi_io_context_cache, sioc);
427         return DRIVER_ERROR << 24;
428 }
429 EXPORT_SYMBOL_GPL(scsi_execute_async);
430
431 /*
432  * Function:    scsi_init_cmd_errh()
433  *
434  * Purpose:     Initialize cmd fields related to error handling.
435  *
436  * Arguments:   cmd     - command that is ready to be queued.
437  *
438  * Notes:       This function has the job of initializing a number of
439  *              fields related to error handling.   Typically this will
440  *              be called once for each command, as required.
441  */
442 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
443 {
444         cmd->serial_number = 0;
445         scsi_set_resid(cmd, 0);
446         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
447         if (cmd->cmd_len == 0)
448                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449 }
450
451 void scsi_device_unbusy(struct scsi_device *sdev)
452 {
453         struct Scsi_Host *shost = sdev->host;
454         unsigned long flags;
455
456         spin_lock_irqsave(shost->host_lock, flags);
457         shost->host_busy--;
458         if (unlikely(scsi_host_in_recovery(shost) &&
459                      (shost->host_failed || shost->host_eh_scheduled)))
460                 scsi_eh_wakeup(shost);
461         spin_unlock(shost->host_lock);
462         spin_lock(sdev->request_queue->queue_lock);
463         sdev->device_busy--;
464         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465 }
466
467 /*
468  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469  * and call blk_run_queue for all the scsi_devices on the target -
470  * including current_sdev first.
471  *
472  * Called with *no* scsi locks held.
473  */
474 static void scsi_single_lun_run(struct scsi_device *current_sdev)
475 {
476         struct Scsi_Host *shost = current_sdev->host;
477         struct scsi_device *sdev, *tmp;
478         struct scsi_target *starget = scsi_target(current_sdev);
479         unsigned long flags;
480
481         spin_lock_irqsave(shost->host_lock, flags);
482         starget->starget_sdev_user = NULL;
483         spin_unlock_irqrestore(shost->host_lock, flags);
484
485         /*
486          * Call blk_run_queue for all LUNs on the target, starting with
487          * current_sdev. We race with others (to set starget_sdev_user),
488          * but in most cases, we will be first. Ideally, each LU on the
489          * target would get some limited time or requests on the target.
490          */
491         blk_run_queue(current_sdev->request_queue);
492
493         spin_lock_irqsave(shost->host_lock, flags);
494         if (starget->starget_sdev_user)
495                 goto out;
496         list_for_each_entry_safe(sdev, tmp, &starget->devices,
497                         same_target_siblings) {
498                 if (sdev == current_sdev)
499                         continue;
500                 if (scsi_device_get(sdev))
501                         continue;
502
503                 spin_unlock_irqrestore(shost->host_lock, flags);
504                 blk_run_queue(sdev->request_queue);
505                 spin_lock_irqsave(shost->host_lock, flags);
506         
507                 scsi_device_put(sdev);
508         }
509  out:
510         spin_unlock_irqrestore(shost->host_lock, flags);
511 }
512
513 /*
514  * Function:    scsi_run_queue()
515  *
516  * Purpose:     Select a proper request queue to serve next
517  *
518  * Arguments:   q       - last request's queue
519  *
520  * Returns:     Nothing
521  *
522  * Notes:       The previous command was completely finished, start
523  *              a new one if possible.
524  */
525 static void scsi_run_queue(struct request_queue *q)
526 {
527         struct scsi_device *sdev = q->queuedata;
528         struct Scsi_Host *shost = sdev->host;
529         unsigned long flags;
530
531         if (scsi_target(sdev)->single_lun)
532                 scsi_single_lun_run(sdev);
533
534         spin_lock_irqsave(shost->host_lock, flags);
535         while (!list_empty(&shost->starved_list) &&
536                !shost->host_blocked && !shost->host_self_blocked &&
537                 !((shost->can_queue > 0) &&
538                   (shost->host_busy >= shost->can_queue))) {
539                 /*
540                  * As long as shost is accepting commands and we have
541                  * starved queues, call blk_run_queue. scsi_request_fn
542                  * drops the queue_lock and can add us back to the
543                  * starved_list.
544                  *
545                  * host_lock protects the starved_list and starved_entry.
546                  * scsi_request_fn must get the host_lock before checking
547                  * or modifying starved_list or starved_entry.
548                  */
549                 sdev = list_entry(shost->starved_list.next,
550                                           struct scsi_device, starved_entry);
551                 list_del_init(&sdev->starved_entry);
552                 spin_unlock_irqrestore(shost->host_lock, flags);
553
554
555                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
556                     !test_and_set_bit(QUEUE_FLAG_REENTER,
557                                       &sdev->request_queue->queue_flags)) {
558                         blk_run_queue(sdev->request_queue);
559                         clear_bit(QUEUE_FLAG_REENTER,
560                                   &sdev->request_queue->queue_flags);
561                 } else
562                         blk_run_queue(sdev->request_queue);
563
564                 spin_lock_irqsave(shost->host_lock, flags);
565                 if (unlikely(!list_empty(&sdev->starved_entry)))
566                         /*
567                          * sdev lost a race, and was put back on the
568                          * starved list. This is unlikely but without this
569                          * in theory we could loop forever.
570                          */
571                         break;
572         }
573         spin_unlock_irqrestore(shost->host_lock, flags);
574
575         blk_run_queue(q);
576 }
577
578 /*
579  * Function:    scsi_requeue_command()
580  *
581  * Purpose:     Handle post-processing of completed commands.
582  *
583  * Arguments:   q       - queue to operate on
584  *              cmd     - command that may need to be requeued.
585  *
586  * Returns:     Nothing
587  *
588  * Notes:       After command completion, there may be blocks left
589  *              over which weren't finished by the previous command
590  *              this can be for a number of reasons - the main one is
591  *              I/O errors in the middle of the request, in which case
592  *              we need to request the blocks that come after the bad
593  *              sector.
594  * Notes:       Upon return, cmd is a stale pointer.
595  */
596 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
597 {
598         struct request *req = cmd->request;
599         unsigned long flags;
600
601         scsi_unprep_request(req);
602         spin_lock_irqsave(q->queue_lock, flags);
603         blk_requeue_request(q, req);
604         spin_unlock_irqrestore(q->queue_lock, flags);
605
606         scsi_run_queue(q);
607 }
608
609 void scsi_next_command(struct scsi_cmnd *cmd)
610 {
611         struct scsi_device *sdev = cmd->device;
612         struct request_queue *q = sdev->request_queue;
613
614         /* need to hold a reference on the device before we let go of the cmd */
615         get_device(&sdev->sdev_gendev);
616
617         scsi_put_command(cmd);
618         scsi_run_queue(q);
619
620         /* ok to remove device now */
621         put_device(&sdev->sdev_gendev);
622 }
623
624 void scsi_run_host_queues(struct Scsi_Host *shost)
625 {
626         struct scsi_device *sdev;
627
628         shost_for_each_device(sdev, shost)
629                 scsi_run_queue(sdev->request_queue);
630 }
631
632 /*
633  * Function:    scsi_end_request()
634  *
635  * Purpose:     Post-processing of completed commands (usually invoked at end
636  *              of upper level post-processing and scsi_io_completion).
637  *
638  * Arguments:   cmd      - command that is complete.
639  *              error    - 0 if I/O indicates success, < 0 for I/O error.
640  *              bytes    - number of bytes of completed I/O
641  *              requeue  - indicates whether we should requeue leftovers.
642  *
643  * Lock status: Assumed that lock is not held upon entry.
644  *
645  * Returns:     cmd if requeue required, NULL otherwise.
646  *
647  * Notes:       This is called for block device requests in order to
648  *              mark some number of sectors as complete.
649  * 
650  *              We are guaranteeing that the request queue will be goosed
651  *              at some point during this call.
652  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
653  */
654 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
655                                           int bytes, int requeue)
656 {
657         struct request_queue *q = cmd->device->request_queue;
658         struct request *req = cmd->request;
659
660         /*
661          * If there are blocks left over at the end, set up the command
662          * to queue the remainder of them.
663          */
664         if (blk_end_request(req, error, bytes)) {
665                 int leftover = (req->hard_nr_sectors << 9);
666
667                 if (blk_pc_request(req))
668                         leftover = req->data_len;
669
670                 /* kill remainder if no retrys */
671                 if (error && blk_noretry_request(req))
672                         blk_end_request(req, error, leftover);
673                 else {
674                         if (requeue) {
675                                 /*
676                                  * Bleah.  Leftovers again.  Stick the
677                                  * leftovers in the front of the
678                                  * queue, and goose the queue again.
679                                  */
680                                 scsi_requeue_command(q, cmd);
681                                 cmd = NULL;
682                         }
683                         return cmd;
684                 }
685         }
686
687         /*
688          * This will goose the queue request function at the end, so we don't
689          * need to worry about launching another command.
690          */
691         scsi_next_command(cmd);
692         return NULL;
693 }
694
695 /*
696  * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
697  * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
698  */
699 #define SCSI_MAX_SG_CHAIN_SEGMENTS      2048
700
701 static inline unsigned int scsi_sgtable_index(unsigned short nents)
702 {
703         unsigned int index;
704
705         switch (nents) {
706         case 1 ... 8:
707                 index = 0;
708                 break;
709         case 9 ... 16:
710                 index = 1;
711                 break;
712 #if (SCSI_MAX_SG_SEGMENTS > 16)
713         case 17 ... 32:
714                 index = 2;
715                 break;
716 #if (SCSI_MAX_SG_SEGMENTS > 32)
717         case 33 ... 64:
718                 index = 3;
719                 break;
720 #if (SCSI_MAX_SG_SEGMENTS > 64)
721         case 65 ... 128:
722                 index = 4;
723                 break;
724 #endif
725 #endif
726 #endif
727         default:
728                 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
729                 BUG();
730         }
731
732         return index;
733 }
734
735 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
736 {
737         struct scsi_host_sg_pool *sgp;
738
739         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
740         mempool_free(sgl, sgp->pool);
741 }
742
743 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
744 {
745         struct scsi_host_sg_pool *sgp;
746
747         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
748         return mempool_alloc(sgp->pool, gfp_mask);
749 }
750
751 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
752                               gfp_t gfp_mask)
753 {
754         int ret;
755
756         BUG_ON(!nents);
757
758         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
759                                gfp_mask, scsi_sg_alloc);
760         if (unlikely(ret))
761                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
762                                 scsi_sg_free);
763
764         return ret;
765 }
766
767 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
768 {
769         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
770 }
771
772 /*
773  * Function:    scsi_release_buffers()
774  *
775  * Purpose:     Completion processing for block device I/O requests.
776  *
777  * Arguments:   cmd     - command that we are bailing.
778  *
779  * Lock status: Assumed that no lock is held upon entry.
780  *
781  * Returns:     Nothing
782  *
783  * Notes:       In the event that an upper level driver rejects a
784  *              command, we must release resources allocated during
785  *              the __init_io() function.  Primarily this would involve
786  *              the scatter-gather table, and potentially any bounce
787  *              buffers.
788  */
789 void scsi_release_buffers(struct scsi_cmnd *cmd)
790 {
791         if (cmd->sdb.table.nents)
792                 scsi_free_sgtable(&cmd->sdb);
793
794         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
795
796         if (scsi_bidi_cmnd(cmd)) {
797                 struct scsi_data_buffer *bidi_sdb =
798                         cmd->request->next_rq->special;
799                 scsi_free_sgtable(bidi_sdb);
800                 kmem_cache_free(scsi_bidi_sdb_cache, bidi_sdb);
801                 cmd->request->next_rq->special = NULL;
802         }
803 }
804 EXPORT_SYMBOL(scsi_release_buffers);
805
806 /*
807  * Bidi commands Must be complete as a whole, both sides at once.
808  * If part of the bytes were written and lld returned
809  * scsi_in()->resid and/or scsi_out()->resid this information will be left
810  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
811  * decide what to do with this information.
812  */
813 void scsi_end_bidi_request(struct scsi_cmnd *cmd)
814 {
815         struct request *req = cmd->request;
816         unsigned int dlen = req->data_len;
817         unsigned int next_dlen = req->next_rq->data_len;
818
819         req->data_len = scsi_out(cmd)->resid;
820         req->next_rq->data_len = scsi_in(cmd)->resid;
821
822         /* The req and req->next_rq have not been completed */
823         BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
824
825         scsi_release_buffers(cmd);
826
827         /*
828          * This will goose the queue request function at the end, so we don't
829          * need to worry about launching another command.
830          */
831         scsi_next_command(cmd);
832 }
833
834 /*
835  * Function:    scsi_io_completion()
836  *
837  * Purpose:     Completion processing for block device I/O requests.
838  *
839  * Arguments:   cmd   - command that is finished.
840  *
841  * Lock status: Assumed that no lock is held upon entry.
842  *
843  * Returns:     Nothing
844  *
845  * Notes:       This function is matched in terms of capabilities to
846  *              the function that created the scatter-gather list.
847  *              In other words, if there are no bounce buffers
848  *              (the normal case for most drivers), we don't need
849  *              the logic to deal with cleaning up afterwards.
850  *
851  *              We must do one of several things here:
852  *
853  *              a) Call scsi_end_request.  This will finish off the
854  *                 specified number of sectors.  If we are done, the
855  *                 command block will be released, and the queue
856  *                 function will be goosed.  If we are not done, then
857  *                 scsi_end_request will directly goose the queue.
858  *
859  *              b) We can just use scsi_requeue_command() here.  This would
860  *                 be used if we just wanted to retry, for example.
861  */
862 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
863 {
864         int result = cmd->result;
865         int this_count = scsi_bufflen(cmd);
866         struct request_queue *q = cmd->device->request_queue;
867         struct request *req = cmd->request;
868         int clear_errors = 1;
869         struct scsi_sense_hdr sshdr;
870         int sense_valid = 0;
871         int sense_deferred = 0;
872
873         if (result) {
874                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
875                 if (sense_valid)
876                         sense_deferred = scsi_sense_is_deferred(&sshdr);
877         }
878
879         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
880                 req->errors = result;
881                 if (result) {
882                         clear_errors = 0;
883                         if (sense_valid && req->sense) {
884                                 /*
885                                  * SG_IO wants current and deferred errors
886                                  */
887                                 int len = 8 + cmd->sense_buffer[7];
888
889                                 if (len > SCSI_SENSE_BUFFERSIZE)
890                                         len = SCSI_SENSE_BUFFERSIZE;
891                                 memcpy(req->sense, cmd->sense_buffer,  len);
892                                 req->sense_len = len;
893                         }
894                 }
895                 if (scsi_bidi_cmnd(cmd)) {
896                         /* will also release_buffers */
897                         scsi_end_bidi_request(cmd);
898                         return;
899                 }
900                 req->data_len = scsi_get_resid(cmd);
901         }
902
903         BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
904         scsi_release_buffers(cmd);
905
906         /*
907          * Next deal with any sectors which we were able to correctly
908          * handle.
909          */
910         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
911                                       "%d bytes done.\n",
912                                       req->nr_sectors, good_bytes));
913
914         if (clear_errors)
915                 req->errors = 0;
916
917         /* A number of bytes were successfully read.  If there
918          * are leftovers and there is some kind of error
919          * (result != 0), retry the rest.
920          */
921         if (scsi_end_request(cmd, 0, good_bytes, result == 0) == NULL)
922                 return;
923
924         /* good_bytes = 0, or (inclusive) there were leftovers and
925          * result = 0, so scsi_end_request couldn't retry.
926          */
927         if (sense_valid && !sense_deferred) {
928                 switch (sshdr.sense_key) {
929                 case UNIT_ATTENTION:
930                         if (cmd->device->removable) {
931                                 /* Detected disc change.  Set a bit
932                                  * and quietly refuse further access.
933                                  */
934                                 cmd->device->changed = 1;
935                                 scsi_end_request(cmd, -EIO, this_count, 1);
936                                 return;
937                         } else {
938                                 /* Must have been a power glitch, or a
939                                  * bus reset.  Could not have been a
940                                  * media change, so we just retry the
941                                  * request and see what happens.
942                                  */
943                                 scsi_requeue_command(q, cmd);
944                                 return;
945                         }
946                         break;
947                 case ILLEGAL_REQUEST:
948                         /* If we had an ILLEGAL REQUEST returned, then
949                          * we may have performed an unsupported
950                          * command.  The only thing this should be
951                          * would be a ten byte read where only a six
952                          * byte read was supported.  Also, on a system
953                          * where READ CAPACITY failed, we may have
954                          * read past the end of the disk.
955                          */
956                         if ((cmd->device->use_10_for_rw &&
957                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
958                             (cmd->cmnd[0] == READ_10 ||
959                              cmd->cmnd[0] == WRITE_10)) {
960                                 cmd->device->use_10_for_rw = 0;
961                                 /* This will cause a retry with a
962                                  * 6-byte command.
963                                  */
964                                 scsi_requeue_command(q, cmd);
965                                 return;
966                         } else {
967                                 scsi_end_request(cmd, -EIO, this_count, 1);
968                                 return;
969                         }
970                         break;
971                 case NOT_READY:
972                         /* If the device is in the process of becoming
973                          * ready, or has a temporary blockage, retry.
974                          */
975                         if (sshdr.asc == 0x04) {
976                                 switch (sshdr.ascq) {
977                                 case 0x01: /* becoming ready */
978                                 case 0x04: /* format in progress */
979                                 case 0x05: /* rebuild in progress */
980                                 case 0x06: /* recalculation in progress */
981                                 case 0x07: /* operation in progress */
982                                 case 0x08: /* Long write in progress */
983                                 case 0x09: /* self test in progress */
984                                         scsi_requeue_command(q, cmd);
985                                         return;
986                                 default:
987                                         break;
988                                 }
989                         }
990                         if (!(req->cmd_flags & REQ_QUIET))
991                                 scsi_cmd_print_sense_hdr(cmd,
992                                                          "Device not ready",
993                                                          &sshdr);
994
995                         scsi_end_request(cmd, -EIO, this_count, 1);
996                         return;
997                 case VOLUME_OVERFLOW:
998                         if (!(req->cmd_flags & REQ_QUIET)) {
999                                 scmd_printk(KERN_INFO, cmd,
1000                                             "Volume overflow, CDB: ");
1001                                 __scsi_print_command(cmd->cmnd);
1002                                 scsi_print_sense("", cmd);
1003                         }
1004                         /* See SSC3rXX or current. */
1005                         scsi_end_request(cmd, -EIO, this_count, 1);
1006                         return;
1007                 default:
1008                         break;
1009                 }
1010         }
1011         if (host_byte(result) == DID_RESET) {
1012                 /* Third party bus reset or reset for error recovery
1013                  * reasons.  Just retry the request and see what
1014                  * happens.
1015                  */
1016                 scsi_requeue_command(q, cmd);
1017                 return;
1018         }
1019         if (result) {
1020                 if (!(req->cmd_flags & REQ_QUIET)) {
1021                         scsi_print_result(cmd);
1022                         if (driver_byte(result) & DRIVER_SENSE)
1023                                 scsi_print_sense("", cmd);
1024                 }
1025         }
1026         scsi_end_request(cmd, -EIO, this_count, !result);
1027 }
1028
1029 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1030                              gfp_t gfp_mask)
1031 {
1032         int count;
1033
1034         /*
1035          * If sg table allocation fails, requeue request later.
1036          */
1037         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1038                                         gfp_mask))) {
1039                 return BLKPREP_DEFER;
1040         }
1041
1042         req->buffer = NULL;
1043         if (blk_pc_request(req))
1044                 sdb->length = req->data_len;
1045         else
1046                 sdb->length = req->nr_sectors << 9;
1047
1048         /* 
1049          * Next, walk the list, and fill in the addresses and sizes of
1050          * each segment.
1051          */
1052         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1053         BUG_ON(count > sdb->table.nents);
1054         sdb->table.nents = count;
1055         return BLKPREP_OK;
1056 }
1057
1058 /*
1059  * Function:    scsi_init_io()
1060  *
1061  * Purpose:     SCSI I/O initialize function.
1062  *
1063  * Arguments:   cmd   - Command descriptor we wish to initialize
1064  *
1065  * Returns:     0 on success
1066  *              BLKPREP_DEFER if the failure is retryable
1067  *              BLKPREP_KILL if the failure is fatal
1068  */
1069 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1070 {
1071         int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1072         if (error)
1073                 goto err_exit;
1074
1075         if (blk_bidi_rq(cmd->request)) {
1076                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1077                         scsi_bidi_sdb_cache, GFP_ATOMIC);
1078                 if (!bidi_sdb) {
1079                         error = BLKPREP_DEFER;
1080                         goto err_exit;
1081                 }
1082
1083                 cmd->request->next_rq->special = bidi_sdb;
1084                 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1085                                                                     GFP_ATOMIC);
1086                 if (error)
1087                         goto err_exit;
1088         }
1089
1090         return BLKPREP_OK ;
1091
1092 err_exit:
1093         scsi_release_buffers(cmd);
1094         if (error == BLKPREP_KILL)
1095                 scsi_put_command(cmd);
1096         else /* BLKPREP_DEFER */
1097                 scsi_unprep_request(cmd->request);
1098
1099         return error;
1100 }
1101 EXPORT_SYMBOL(scsi_init_io);
1102
1103 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1104                 struct request *req)
1105 {
1106         struct scsi_cmnd *cmd;
1107
1108         if (!req->special) {
1109                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1110                 if (unlikely(!cmd))
1111                         return NULL;
1112                 req->special = cmd;
1113         } else {
1114                 cmd = req->special;
1115         }
1116
1117         /* pull a tag out of the request if we have one */
1118         cmd->tag = req->tag;
1119         cmd->request = req;
1120
1121         return cmd;
1122 }
1123
1124 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1125 {
1126         struct scsi_cmnd *cmd;
1127         int ret = scsi_prep_state_check(sdev, req);
1128
1129         if (ret != BLKPREP_OK)
1130                 return ret;
1131
1132         cmd = scsi_get_cmd_from_req(sdev, req);
1133         if (unlikely(!cmd))
1134                 return BLKPREP_DEFER;
1135
1136         /*
1137          * BLOCK_PC requests may transfer data, in which case they must
1138          * a bio attached to them.  Or they might contain a SCSI command
1139          * that does not transfer data, in which case they may optionally
1140          * submit a request without an attached bio.
1141          */
1142         if (req->bio) {
1143                 int ret;
1144
1145                 BUG_ON(!req->nr_phys_segments);
1146
1147                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1148                 if (unlikely(ret))
1149                         return ret;
1150         } else {
1151                 BUG_ON(req->data_len);
1152                 BUG_ON(req->data);
1153
1154                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1155                 req->buffer = NULL;
1156         }
1157
1158         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1159         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1160         cmd->cmd_len = req->cmd_len;
1161         if (!req->data_len)
1162                 cmd->sc_data_direction = DMA_NONE;
1163         else if (rq_data_dir(req) == WRITE)
1164                 cmd->sc_data_direction = DMA_TO_DEVICE;
1165         else
1166                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1167         
1168         cmd->transfersize = req->data_len;
1169         cmd->allowed = req->retries;
1170         cmd->timeout_per_command = req->timeout;
1171         return BLKPREP_OK;
1172 }
1173 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1174
1175 /*
1176  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1177  * from filesystems that still need to be translated to SCSI CDBs from
1178  * the ULD.
1179  */
1180 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1181 {
1182         struct scsi_cmnd *cmd;
1183         int ret = scsi_prep_state_check(sdev, req);
1184
1185         if (ret != BLKPREP_OK)
1186                 return ret;
1187         /*
1188          * Filesystem requests must transfer data.
1189          */
1190         BUG_ON(!req->nr_phys_segments);
1191
1192         cmd = scsi_get_cmd_from_req(sdev, req);
1193         if (unlikely(!cmd))
1194                 return BLKPREP_DEFER;
1195
1196         return scsi_init_io(cmd, GFP_ATOMIC);
1197 }
1198 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1199
1200 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1201 {
1202         int ret = BLKPREP_OK;
1203
1204         /*
1205          * If the device is not in running state we will reject some
1206          * or all commands.
1207          */
1208         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1209                 switch (sdev->sdev_state) {
1210                 case SDEV_OFFLINE:
1211                         /*
1212                          * If the device is offline we refuse to process any
1213                          * commands.  The device must be brought online
1214                          * before trying any recovery commands.
1215                          */
1216                         sdev_printk(KERN_ERR, sdev,
1217                                     "rejecting I/O to offline device\n");
1218                         ret = BLKPREP_KILL;
1219                         break;
1220                 case SDEV_DEL:
1221                         /*
1222                          * If the device is fully deleted, we refuse to
1223                          * process any commands as well.
1224                          */
1225                         sdev_printk(KERN_ERR, sdev,
1226                                     "rejecting I/O to dead device\n");
1227                         ret = BLKPREP_KILL;
1228                         break;
1229                 case SDEV_QUIESCE:
1230                 case SDEV_BLOCK:
1231                         /*
1232                          * If the devices is blocked we defer normal commands.
1233                          */
1234                         if (!(req->cmd_flags & REQ_PREEMPT))
1235                                 ret = BLKPREP_DEFER;
1236                         break;
1237                 default:
1238                         /*
1239                          * For any other not fully online state we only allow
1240                          * special commands.  In particular any user initiated
1241                          * command is not allowed.
1242                          */
1243                         if (!(req->cmd_flags & REQ_PREEMPT))
1244                                 ret = BLKPREP_KILL;
1245                         break;
1246                 }
1247         }
1248         return ret;
1249 }
1250 EXPORT_SYMBOL(scsi_prep_state_check);
1251
1252 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1253 {
1254         struct scsi_device *sdev = q->queuedata;
1255
1256         switch (ret) {
1257         case BLKPREP_KILL:
1258                 req->errors = DID_NO_CONNECT << 16;
1259                 /* release the command and kill it */
1260                 if (req->special) {
1261                         struct scsi_cmnd *cmd = req->special;
1262                         scsi_release_buffers(cmd);
1263                         scsi_put_command(cmd);
1264                         req->special = NULL;
1265                 }
1266                 break;
1267         case BLKPREP_DEFER:
1268                 /*
1269                  * If we defer, the elv_next_request() returns NULL, but the
1270                  * queue must be restarted, so we plug here if no returning
1271                  * command will automatically do that.
1272                  */
1273                 if (sdev->device_busy == 0)
1274                         blk_plug_device(q);
1275                 break;
1276         default:
1277                 req->cmd_flags |= REQ_DONTPREP;
1278         }
1279
1280         return ret;
1281 }
1282 EXPORT_SYMBOL(scsi_prep_return);
1283
1284 int scsi_prep_fn(struct request_queue *q, struct request *req)
1285 {
1286         struct scsi_device *sdev = q->queuedata;
1287         int ret = BLKPREP_KILL;
1288
1289         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1290                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1291         return scsi_prep_return(q, req, ret);
1292 }
1293
1294 /*
1295  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1296  * return 0.
1297  *
1298  * Called with the queue_lock held.
1299  */
1300 static inline int scsi_dev_queue_ready(struct request_queue *q,
1301                                   struct scsi_device *sdev)
1302 {
1303         if (sdev->device_busy >= sdev->queue_depth)
1304                 return 0;
1305         if (sdev->device_busy == 0 && sdev->device_blocked) {
1306                 /*
1307                  * unblock after device_blocked iterates to zero
1308                  */
1309                 if (--sdev->device_blocked == 0) {
1310                         SCSI_LOG_MLQUEUE(3,
1311                                    sdev_printk(KERN_INFO, sdev,
1312                                    "unblocking device at zero depth\n"));
1313                 } else {
1314                         blk_plug_device(q);
1315                         return 0;
1316                 }
1317         }
1318         if (sdev->device_blocked)
1319                 return 0;
1320
1321         return 1;
1322 }
1323
1324 /*
1325  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1326  * return 0. We must end up running the queue again whenever 0 is
1327  * returned, else IO can hang.
1328  *
1329  * Called with host_lock held.
1330  */
1331 static inline int scsi_host_queue_ready(struct request_queue *q,
1332                                    struct Scsi_Host *shost,
1333                                    struct scsi_device *sdev)
1334 {
1335         if (scsi_host_in_recovery(shost))
1336                 return 0;
1337         if (shost->host_busy == 0 && shost->host_blocked) {
1338                 /*
1339                  * unblock after host_blocked iterates to zero
1340                  */
1341                 if (--shost->host_blocked == 0) {
1342                         SCSI_LOG_MLQUEUE(3,
1343                                 printk("scsi%d unblocking host at zero depth\n",
1344                                         shost->host_no));
1345                 } else {
1346                         blk_plug_device(q);
1347                         return 0;
1348                 }
1349         }
1350         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1351             shost->host_blocked || shost->host_self_blocked) {
1352                 if (list_empty(&sdev->starved_entry))
1353                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1354                 return 0;
1355         }
1356
1357         /* We're OK to process the command, so we can't be starved */
1358         if (!list_empty(&sdev->starved_entry))
1359                 list_del_init(&sdev->starved_entry);
1360
1361         return 1;
1362 }
1363
1364 /*
1365  * Kill a request for a dead device
1366  */
1367 static void scsi_kill_request(struct request *req, struct request_queue *q)
1368 {
1369         struct scsi_cmnd *cmd = req->special;
1370         struct scsi_device *sdev = cmd->device;
1371         struct Scsi_Host *shost = sdev->host;
1372
1373         blkdev_dequeue_request(req);
1374
1375         if (unlikely(cmd == NULL)) {
1376                 printk(KERN_CRIT "impossible request in %s.\n",
1377                                  __FUNCTION__);
1378                 BUG();
1379         }
1380
1381         scsi_init_cmd_errh(cmd);
1382         cmd->result = DID_NO_CONNECT << 16;
1383         atomic_inc(&cmd->device->iorequest_cnt);
1384
1385         /*
1386          * SCSI request completion path will do scsi_device_unbusy(),
1387          * bump busy counts.  To bump the counters, we need to dance
1388          * with the locks as normal issue path does.
1389          */
1390         sdev->device_busy++;
1391         spin_unlock(sdev->request_queue->queue_lock);
1392         spin_lock(shost->host_lock);
1393         shost->host_busy++;
1394         spin_unlock(shost->host_lock);
1395         spin_lock(sdev->request_queue->queue_lock);
1396
1397         __scsi_done(cmd);
1398 }
1399
1400 static void scsi_softirq_done(struct request *rq)
1401 {
1402         struct scsi_cmnd *cmd = rq->completion_data;
1403         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1404         int disposition;
1405
1406         INIT_LIST_HEAD(&cmd->eh_entry);
1407
1408         disposition = scsi_decide_disposition(cmd);
1409         if (disposition != SUCCESS &&
1410             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1411                 sdev_printk(KERN_ERR, cmd->device,
1412                             "timing out command, waited %lus\n",
1413                             wait_for/HZ);
1414                 disposition = SUCCESS;
1415         }
1416                         
1417         scsi_log_completion(cmd, disposition);
1418
1419         switch (disposition) {
1420                 case SUCCESS:
1421                         scsi_finish_command(cmd);
1422                         break;
1423                 case NEEDS_RETRY:
1424                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1425                         break;
1426                 case ADD_TO_MLQUEUE:
1427                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1428                         break;
1429                 default:
1430                         if (!scsi_eh_scmd_add(cmd, 0))
1431                                 scsi_finish_command(cmd);
1432         }
1433 }
1434
1435 /*
1436  * Function:    scsi_request_fn()
1437  *
1438  * Purpose:     Main strategy routine for SCSI.
1439  *
1440  * Arguments:   q       - Pointer to actual queue.
1441  *
1442  * Returns:     Nothing
1443  *
1444  * Lock status: IO request lock assumed to be held when called.
1445  */
1446 static void scsi_request_fn(struct request_queue *q)
1447 {
1448         struct scsi_device *sdev = q->queuedata;
1449         struct Scsi_Host *shost;
1450         struct scsi_cmnd *cmd;
1451         struct request *req;
1452
1453         if (!sdev) {
1454                 printk("scsi: killing requests for dead queue\n");
1455                 while ((req = elv_next_request(q)) != NULL)
1456                         scsi_kill_request(req, q);
1457                 return;
1458         }
1459
1460         if(!get_device(&sdev->sdev_gendev))
1461                 /* We must be tearing the block queue down already */
1462                 return;
1463
1464         /*
1465          * To start with, we keep looping until the queue is empty, or until
1466          * the host is no longer able to accept any more requests.
1467          */
1468         shost = sdev->host;
1469         while (!blk_queue_plugged(q)) {
1470                 int rtn;
1471                 /*
1472                  * get next queueable request.  We do this early to make sure
1473                  * that the request is fully prepared even if we cannot 
1474                  * accept it.
1475                  */
1476                 req = elv_next_request(q);
1477                 if (!req || !scsi_dev_queue_ready(q, sdev))
1478                         break;
1479
1480                 if (unlikely(!scsi_device_online(sdev))) {
1481                         sdev_printk(KERN_ERR, sdev,
1482                                     "rejecting I/O to offline device\n");
1483                         scsi_kill_request(req, q);
1484                         continue;
1485                 }
1486
1487
1488                 /*
1489                  * Remove the request from the request list.
1490                  */
1491                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1492                         blkdev_dequeue_request(req);
1493                 sdev->device_busy++;
1494
1495                 spin_unlock(q->queue_lock);
1496                 cmd = req->special;
1497                 if (unlikely(cmd == NULL)) {
1498                         printk(KERN_CRIT "impossible request in %s.\n"
1499                                          "please mail a stack trace to "
1500                                          "linux-scsi@vger.kernel.org\n",
1501                                          __FUNCTION__);
1502                         blk_dump_rq_flags(req, "foo");
1503                         BUG();
1504                 }
1505                 spin_lock(shost->host_lock);
1506
1507                 if (!scsi_host_queue_ready(q, shost, sdev))
1508                         goto not_ready;
1509                 if (scsi_target(sdev)->single_lun) {
1510                         if (scsi_target(sdev)->starget_sdev_user &&
1511                             scsi_target(sdev)->starget_sdev_user != sdev)
1512                                 goto not_ready;
1513                         scsi_target(sdev)->starget_sdev_user = sdev;
1514                 }
1515                 shost->host_busy++;
1516
1517                 /*
1518                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1519                  *              take the lock again.
1520                  */
1521                 spin_unlock_irq(shost->host_lock);
1522
1523                 /*
1524                  * Finally, initialize any error handling parameters, and set up
1525                  * the timers for timeouts.
1526                  */
1527                 scsi_init_cmd_errh(cmd);
1528
1529                 /*
1530                  * Dispatch the command to the low-level driver.
1531                  */
1532                 rtn = scsi_dispatch_cmd(cmd);
1533                 spin_lock_irq(q->queue_lock);
1534                 if(rtn) {
1535                         /* we're refusing the command; because of
1536                          * the way locks get dropped, we need to 
1537                          * check here if plugging is required */
1538                         if(sdev->device_busy == 0)
1539                                 blk_plug_device(q);
1540
1541                         break;
1542                 }
1543         }
1544
1545         goto out;
1546
1547  not_ready:
1548         spin_unlock_irq(shost->host_lock);
1549
1550         /*
1551          * lock q, handle tag, requeue req, and decrement device_busy. We
1552          * must return with queue_lock held.
1553          *
1554          * Decrementing device_busy without checking it is OK, as all such
1555          * cases (host limits or settings) should run the queue at some
1556          * later time.
1557          */
1558         spin_lock_irq(q->queue_lock);
1559         blk_requeue_request(q, req);
1560         sdev->device_busy--;
1561         if(sdev->device_busy == 0)
1562                 blk_plug_device(q);
1563  out:
1564         /* must be careful here...if we trigger the ->remove() function
1565          * we cannot be holding the q lock */
1566         spin_unlock_irq(q->queue_lock);
1567         put_device(&sdev->sdev_gendev);
1568         spin_lock_irq(q->queue_lock);
1569 }
1570
1571 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1572 {
1573         struct device *host_dev;
1574         u64 bounce_limit = 0xffffffff;
1575
1576         if (shost->unchecked_isa_dma)
1577                 return BLK_BOUNCE_ISA;
1578         /*
1579          * Platforms with virtual-DMA translation
1580          * hardware have no practical limit.
1581          */
1582         if (!PCI_DMA_BUS_IS_PHYS)
1583                 return BLK_BOUNCE_ANY;
1584
1585         host_dev = scsi_get_device(shost);
1586         if (host_dev && host_dev->dma_mask)
1587                 bounce_limit = *host_dev->dma_mask;
1588
1589         return bounce_limit;
1590 }
1591 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1592
1593 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1594                                          request_fn_proc *request_fn)
1595 {
1596         struct request_queue *q;
1597
1598         q = blk_init_queue(request_fn, NULL);
1599         if (!q)
1600                 return NULL;
1601
1602         /*
1603          * this limit is imposed by hardware restrictions
1604          */
1605         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1606
1607         /*
1608          * In the future, sg chaining support will be mandatory and this
1609          * ifdef can then go away. Right now we don't have all archs
1610          * converted, so better keep it safe.
1611          */
1612 #ifdef ARCH_HAS_SG_CHAIN
1613         if (shost->use_sg_chaining)
1614                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1615         else
1616                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1617 #else
1618         blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1619 #endif
1620
1621         blk_queue_max_sectors(q, shost->max_sectors);
1622         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1623         blk_queue_segment_boundary(q, shost->dma_boundary);
1624
1625         if (!shost->use_clustering)
1626                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1627
1628         /*
1629          * set a reasonable default alignment on word boundaries: the
1630          * host and device may alter it using
1631          * blk_queue_update_dma_alignment() later.
1632          */
1633         blk_queue_dma_alignment(q, 0x03);
1634
1635         return q;
1636 }
1637 EXPORT_SYMBOL(__scsi_alloc_queue);
1638
1639 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1640 {
1641         struct request_queue *q;
1642
1643         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1644         if (!q)
1645                 return NULL;
1646
1647         blk_queue_prep_rq(q, scsi_prep_fn);
1648         blk_queue_softirq_done(q, scsi_softirq_done);
1649         return q;
1650 }
1651
1652 void scsi_free_queue(struct request_queue *q)
1653 {
1654         blk_cleanup_queue(q);
1655 }
1656
1657 /*
1658  * Function:    scsi_block_requests()
1659  *
1660  * Purpose:     Utility function used by low-level drivers to prevent further
1661  *              commands from being queued to the device.
1662  *
1663  * Arguments:   shost       - Host in question
1664  *
1665  * Returns:     Nothing
1666  *
1667  * Lock status: No locks are assumed held.
1668  *
1669  * Notes:       There is no timer nor any other means by which the requests
1670  *              get unblocked other than the low-level driver calling
1671  *              scsi_unblock_requests().
1672  */
1673 void scsi_block_requests(struct Scsi_Host *shost)
1674 {
1675         shost->host_self_blocked = 1;
1676 }
1677 EXPORT_SYMBOL(scsi_block_requests);
1678
1679 /*
1680  * Function:    scsi_unblock_requests()
1681  *
1682  * Purpose:     Utility function used by low-level drivers to allow further
1683  *              commands from being queued to the device.
1684  *
1685  * Arguments:   shost       - Host in question
1686  *
1687  * Returns:     Nothing
1688  *
1689  * Lock status: No locks are assumed held.
1690  *
1691  * Notes:       There is no timer nor any other means by which the requests
1692  *              get unblocked other than the low-level driver calling
1693  *              scsi_unblock_requests().
1694  *
1695  *              This is done as an API function so that changes to the
1696  *              internals of the scsi mid-layer won't require wholesale
1697  *              changes to drivers that use this feature.
1698  */
1699 void scsi_unblock_requests(struct Scsi_Host *shost)
1700 {
1701         shost->host_self_blocked = 0;
1702         scsi_run_host_queues(shost);
1703 }
1704 EXPORT_SYMBOL(scsi_unblock_requests);
1705
1706 int __init scsi_init_queue(void)
1707 {
1708         int i;
1709
1710         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1711                                         sizeof(struct scsi_io_context),
1712                                         0, 0, NULL);
1713         if (!scsi_io_context_cache) {
1714                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1715                 return -ENOMEM;
1716         }
1717
1718         scsi_bidi_sdb_cache = kmem_cache_create("scsi_bidi_sdb",
1719                                         sizeof(struct scsi_data_buffer),
1720                                         0, 0, NULL);
1721         if (!scsi_bidi_sdb_cache) {
1722                 printk(KERN_ERR "SCSI: can't init scsi bidi sdb cache\n");
1723                 return -ENOMEM;
1724         }
1725
1726         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1727                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1728                 int size = sgp->size * sizeof(struct scatterlist);
1729
1730                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1731                                 SLAB_HWCACHE_ALIGN, NULL);
1732                 if (!sgp->slab) {
1733                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1734                                         sgp->name);
1735                 }
1736
1737                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1738                                                      sgp->slab);
1739                 if (!sgp->pool) {
1740                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1741                                         sgp->name);
1742                 }
1743         }
1744
1745         return 0;
1746 }
1747
1748 void scsi_exit_queue(void)
1749 {
1750         int i;
1751
1752         kmem_cache_destroy(scsi_io_context_cache);
1753
1754         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1755                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1756                 mempool_destroy(sgp->pool);
1757                 kmem_cache_destroy(sgp->slab);
1758         }
1759 }
1760
1761 /**
1762  *      scsi_mode_select - issue a mode select
1763  *      @sdev:  SCSI device to be queried
1764  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1765  *      @sp:    Save page bit (0 == don't save, 1 == save)
1766  *      @modepage: mode page being requested
1767  *      @buffer: request buffer (may not be smaller than eight bytes)
1768  *      @len:   length of request buffer.
1769  *      @timeout: command timeout
1770  *      @retries: number of retries before failing
1771  *      @data: returns a structure abstracting the mode header data
1772  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1773  *              must be SCSI_SENSE_BUFFERSIZE big.
1774  *
1775  *      Returns zero if successful; negative error number or scsi
1776  *      status on error
1777  *
1778  */
1779 int
1780 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1781                  unsigned char *buffer, int len, int timeout, int retries,
1782                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1783 {
1784         unsigned char cmd[10];
1785         unsigned char *real_buffer;
1786         int ret;
1787
1788         memset(cmd, 0, sizeof(cmd));
1789         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1790
1791         if (sdev->use_10_for_ms) {
1792                 if (len > 65535)
1793                         return -EINVAL;
1794                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1795                 if (!real_buffer)
1796                         return -ENOMEM;
1797                 memcpy(real_buffer + 8, buffer, len);
1798                 len += 8;
1799                 real_buffer[0] = 0;
1800                 real_buffer[1] = 0;
1801                 real_buffer[2] = data->medium_type;
1802                 real_buffer[3] = data->device_specific;
1803                 real_buffer[4] = data->longlba ? 0x01 : 0;
1804                 real_buffer[5] = 0;
1805                 real_buffer[6] = data->block_descriptor_length >> 8;
1806                 real_buffer[7] = data->block_descriptor_length;
1807
1808                 cmd[0] = MODE_SELECT_10;
1809                 cmd[7] = len >> 8;
1810                 cmd[8] = len;
1811         } else {
1812                 if (len > 255 || data->block_descriptor_length > 255 ||
1813                     data->longlba)
1814                         return -EINVAL;
1815
1816                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1817                 if (!real_buffer)
1818                         return -ENOMEM;
1819                 memcpy(real_buffer + 4, buffer, len);
1820                 len += 4;
1821                 real_buffer[0] = 0;
1822                 real_buffer[1] = data->medium_type;
1823                 real_buffer[2] = data->device_specific;
1824                 real_buffer[3] = data->block_descriptor_length;
1825                 
1826
1827                 cmd[0] = MODE_SELECT;
1828                 cmd[4] = len;
1829         }
1830
1831         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1832                                sshdr, timeout, retries);
1833         kfree(real_buffer);
1834         return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(scsi_mode_select);
1837
1838 /**
1839  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1840  *      @sdev:  SCSI device to be queried
1841  *      @dbd:   set if mode sense will allow block descriptors to be returned
1842  *      @modepage: mode page being requested
1843  *      @buffer: request buffer (may not be smaller than eight bytes)
1844  *      @len:   length of request buffer.
1845  *      @timeout: command timeout
1846  *      @retries: number of retries before failing
1847  *      @data: returns a structure abstracting the mode header data
1848  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1849  *              must be SCSI_SENSE_BUFFERSIZE big.
1850  *
1851  *      Returns zero if unsuccessful, or the header offset (either 4
1852  *      or 8 depending on whether a six or ten byte command was
1853  *      issued) if successful.
1854  */
1855 int
1856 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1857                   unsigned char *buffer, int len, int timeout, int retries,
1858                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1859 {
1860         unsigned char cmd[12];
1861         int use_10_for_ms;
1862         int header_length;
1863         int result;
1864         struct scsi_sense_hdr my_sshdr;
1865
1866         memset(data, 0, sizeof(*data));
1867         memset(&cmd[0], 0, 12);
1868         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1869         cmd[2] = modepage;
1870
1871         /* caller might not be interested in sense, but we need it */
1872         if (!sshdr)
1873                 sshdr = &my_sshdr;
1874
1875  retry:
1876         use_10_for_ms = sdev->use_10_for_ms;
1877
1878         if (use_10_for_ms) {
1879                 if (len < 8)
1880                         len = 8;
1881
1882                 cmd[0] = MODE_SENSE_10;
1883                 cmd[8] = len;
1884                 header_length = 8;
1885         } else {
1886                 if (len < 4)
1887                         len = 4;
1888
1889                 cmd[0] = MODE_SENSE;
1890                 cmd[4] = len;
1891                 header_length = 4;
1892         }
1893
1894         memset(buffer, 0, len);
1895
1896         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1897                                   sshdr, timeout, retries);
1898
1899         /* This code looks awful: what it's doing is making sure an
1900          * ILLEGAL REQUEST sense return identifies the actual command
1901          * byte as the problem.  MODE_SENSE commands can return
1902          * ILLEGAL REQUEST if the code page isn't supported */
1903
1904         if (use_10_for_ms && !scsi_status_is_good(result) &&
1905             (driver_byte(result) & DRIVER_SENSE)) {
1906                 if (scsi_sense_valid(sshdr)) {
1907                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1908                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1909                                 /* 
1910                                  * Invalid command operation code
1911                                  */
1912                                 sdev->use_10_for_ms = 0;
1913                                 goto retry;
1914                         }
1915                 }
1916         }
1917
1918         if(scsi_status_is_good(result)) {
1919                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1920                              (modepage == 6 || modepage == 8))) {
1921                         /* Initio breakage? */
1922                         header_length = 0;
1923                         data->length = 13;
1924                         data->medium_type = 0;
1925                         data->device_specific = 0;
1926                         data->longlba = 0;
1927                         data->block_descriptor_length = 0;
1928                 } else if(use_10_for_ms) {
1929                         data->length = buffer[0]*256 + buffer[1] + 2;
1930                         data->medium_type = buffer[2];
1931                         data->device_specific = buffer[3];
1932                         data->longlba = buffer[4] & 0x01;
1933                         data->block_descriptor_length = buffer[6]*256
1934                                 + buffer[7];
1935                 } else {
1936                         data->length = buffer[0] + 1;
1937                         data->medium_type = buffer[1];
1938                         data->device_specific = buffer[2];
1939                         data->block_descriptor_length = buffer[3];
1940                 }
1941                 data->header_length = header_length;
1942         }
1943
1944         return result;
1945 }
1946 EXPORT_SYMBOL(scsi_mode_sense);
1947
1948 /**
1949  *      scsi_test_unit_ready - test if unit is ready
1950  *      @sdev:  scsi device to change the state of.
1951  *      @timeout: command timeout
1952  *      @retries: number of retries before failing
1953  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1954  *              returning sense. Make sure that this is cleared before passing
1955  *              in.
1956  *
1957  *      Returns zero if unsuccessful or an error if TUR failed.  For
1958  *      removable media, a return of NOT_READY or UNIT_ATTENTION is
1959  *      translated to success, with the ->changed flag updated.
1960  **/
1961 int
1962 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1963                      struct scsi_sense_hdr *sshdr_external)
1964 {
1965         char cmd[] = {
1966                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1967         };
1968         struct scsi_sense_hdr *sshdr;
1969         int result;
1970
1971         if (!sshdr_external)
1972                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1973         else
1974                 sshdr = sshdr_external;
1975
1976         /* try to eat the UNIT_ATTENTION if there are enough retries */
1977         do {
1978                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1979                                           timeout, retries);
1980         } while ((driver_byte(result) & DRIVER_SENSE) &&
1981                  sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1982                  --retries);
1983
1984         if (!sshdr)
1985                 /* could not allocate sense buffer, so can't process it */
1986                 return result;
1987
1988         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1989
1990                 if ((scsi_sense_valid(sshdr)) &&
1991                     ((sshdr->sense_key == UNIT_ATTENTION) ||
1992                      (sshdr->sense_key == NOT_READY))) {
1993                         sdev->changed = 1;
1994                         result = 0;
1995                 }
1996         }
1997         if (!sshdr_external)
1998                 kfree(sshdr);
1999         return result;
2000 }
2001 EXPORT_SYMBOL(scsi_test_unit_ready);
2002
2003 /**
2004  *      scsi_device_set_state - Take the given device through the device state model.
2005  *      @sdev:  scsi device to change the state of.
2006  *      @state: state to change to.
2007  *
2008  *      Returns zero if unsuccessful or an error if the requested 
2009  *      transition is illegal.
2010  */
2011 int
2012 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2013 {
2014         enum scsi_device_state oldstate = sdev->sdev_state;
2015
2016         if (state == oldstate)
2017                 return 0;
2018
2019         switch (state) {
2020         case SDEV_CREATED:
2021                 /* There are no legal states that come back to
2022                  * created.  This is the manually initialised start
2023                  * state */
2024                 goto illegal;
2025                         
2026         case SDEV_RUNNING:
2027                 switch (oldstate) {
2028                 case SDEV_CREATED:
2029                 case SDEV_OFFLINE:
2030                 case SDEV_QUIESCE:
2031                 case SDEV_BLOCK:
2032                         break;
2033                 default:
2034                         goto illegal;
2035                 }
2036                 break;
2037
2038         case SDEV_QUIESCE:
2039                 switch (oldstate) {
2040                 case SDEV_RUNNING:
2041                 case SDEV_OFFLINE:
2042                         break;
2043                 default:
2044                         goto illegal;
2045                 }
2046                 break;
2047
2048         case SDEV_OFFLINE:
2049                 switch (oldstate) {
2050                 case SDEV_CREATED:
2051                 case SDEV_RUNNING:
2052                 case SDEV_QUIESCE:
2053                 case SDEV_BLOCK:
2054                         break;
2055                 default:
2056                         goto illegal;
2057                 }
2058                 break;
2059
2060         case SDEV_BLOCK:
2061                 switch (oldstate) {
2062                 case SDEV_CREATED:
2063                 case SDEV_RUNNING:
2064                         break;
2065                 default:
2066                         goto illegal;
2067                 }
2068                 break;
2069
2070         case SDEV_CANCEL:
2071                 switch (oldstate) {
2072                 case SDEV_CREATED:
2073                 case SDEV_RUNNING:
2074                 case SDEV_QUIESCE:
2075                 case SDEV_OFFLINE:
2076                 case SDEV_BLOCK:
2077                         break;
2078                 default:
2079                         goto illegal;
2080                 }
2081                 break;
2082
2083         case SDEV_DEL:
2084                 switch (oldstate) {
2085                 case SDEV_CREATED:
2086                 case SDEV_RUNNING:
2087                 case SDEV_OFFLINE:
2088                 case SDEV_CANCEL:
2089                         break;
2090                 default:
2091                         goto illegal;
2092                 }
2093                 break;
2094
2095         }
2096         sdev->sdev_state = state;
2097         return 0;
2098
2099  illegal:
2100         SCSI_LOG_ERROR_RECOVERY(1, 
2101                                 sdev_printk(KERN_ERR, sdev,
2102                                             "Illegal state transition %s->%s\n",
2103                                             scsi_device_state_name(oldstate),
2104                                             scsi_device_state_name(state))
2105                                 );
2106         return -EINVAL;
2107 }
2108 EXPORT_SYMBOL(scsi_device_set_state);
2109
2110 /**
2111  *      sdev_evt_emit - emit a single SCSI device uevent
2112  *      @sdev: associated SCSI device
2113  *      @evt: event to emit
2114  *
2115  *      Send a single uevent (scsi_event) to the associated scsi_device.
2116  */
2117 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2118 {
2119         int idx = 0;
2120         char *envp[3];
2121
2122         switch (evt->evt_type) {
2123         case SDEV_EVT_MEDIA_CHANGE:
2124                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2125                 break;
2126
2127         default:
2128                 /* do nothing */
2129                 break;
2130         }
2131
2132         envp[idx++] = NULL;
2133
2134         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2135 }
2136
2137 /**
2138  *      sdev_evt_thread - send a uevent for each scsi event
2139  *      @work: work struct for scsi_device
2140  *
2141  *      Dispatch queued events to their associated scsi_device kobjects
2142  *      as uevents.
2143  */
2144 void scsi_evt_thread(struct work_struct *work)
2145 {
2146         struct scsi_device *sdev;
2147         LIST_HEAD(event_list);
2148
2149         sdev = container_of(work, struct scsi_device, event_work);
2150
2151         while (1) {
2152                 struct scsi_event *evt;
2153                 struct list_head *this, *tmp;
2154                 unsigned long flags;
2155
2156                 spin_lock_irqsave(&sdev->list_lock, flags);
2157                 list_splice_init(&sdev->event_list, &event_list);
2158                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2159
2160                 if (list_empty(&event_list))
2161                         break;
2162
2163                 list_for_each_safe(this, tmp, &event_list) {
2164                         evt = list_entry(this, struct scsi_event, node);
2165                         list_del(&evt->node);
2166                         scsi_evt_emit(sdev, evt);
2167                         kfree(evt);
2168                 }
2169         }
2170 }
2171
2172 /**
2173  *      sdev_evt_send - send asserted event to uevent thread
2174  *      @sdev: scsi_device event occurred on
2175  *      @evt: event to send
2176  *
2177  *      Assert scsi device event asynchronously.
2178  */
2179 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2180 {
2181         unsigned long flags;
2182
2183         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2184                 kfree(evt);
2185                 return;
2186         }
2187
2188         spin_lock_irqsave(&sdev->list_lock, flags);
2189         list_add_tail(&evt->node, &sdev->event_list);
2190         schedule_work(&sdev->event_work);
2191         spin_unlock_irqrestore(&sdev->list_lock, flags);
2192 }
2193 EXPORT_SYMBOL_GPL(sdev_evt_send);
2194
2195 /**
2196  *      sdev_evt_alloc - allocate a new scsi event
2197  *      @evt_type: type of event to allocate
2198  *      @gfpflags: GFP flags for allocation
2199  *
2200  *      Allocates and returns a new scsi_event.
2201  */
2202 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2203                                   gfp_t gfpflags)
2204 {
2205         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2206         if (!evt)
2207                 return NULL;
2208
2209         evt->evt_type = evt_type;
2210         INIT_LIST_HEAD(&evt->node);
2211
2212         /* evt_type-specific initialization, if any */
2213         switch (evt_type) {
2214         case SDEV_EVT_MEDIA_CHANGE:
2215         default:
2216                 /* do nothing */
2217                 break;
2218         }
2219
2220         return evt;
2221 }
2222 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2223
2224 /**
2225  *      sdev_evt_send_simple - send asserted event to uevent thread
2226  *      @sdev: scsi_device event occurred on
2227  *      @evt_type: type of event to send
2228  *      @gfpflags: GFP flags for allocation
2229  *
2230  *      Assert scsi device event asynchronously, given an event type.
2231  */
2232 void sdev_evt_send_simple(struct scsi_device *sdev,
2233                           enum scsi_device_event evt_type, gfp_t gfpflags)
2234 {
2235         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2236         if (!evt) {
2237                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2238                             evt_type);
2239                 return;
2240         }
2241
2242         sdev_evt_send(sdev, evt);
2243 }
2244 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2245
2246 /**
2247  *      scsi_device_quiesce - Block user issued commands.
2248  *      @sdev:  scsi device to quiesce.
2249  *
2250  *      This works by trying to transition to the SDEV_QUIESCE state
2251  *      (which must be a legal transition).  When the device is in this
2252  *      state, only special requests will be accepted, all others will
2253  *      be deferred.  Since special requests may also be requeued requests,
2254  *      a successful return doesn't guarantee the device will be 
2255  *      totally quiescent.
2256  *
2257  *      Must be called with user context, may sleep.
2258  *
2259  *      Returns zero if unsuccessful or an error if not.
2260  */
2261 int
2262 scsi_device_quiesce(struct scsi_device *sdev)
2263 {
2264         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2265         if (err)
2266                 return err;
2267
2268         scsi_run_queue(sdev->request_queue);
2269         while (sdev->device_busy) {
2270                 msleep_interruptible(200);
2271                 scsi_run_queue(sdev->request_queue);
2272         }
2273         return 0;
2274 }
2275 EXPORT_SYMBOL(scsi_device_quiesce);
2276
2277 /**
2278  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2279  *      @sdev:  scsi device to resume.
2280  *
2281  *      Moves the device from quiesced back to running and restarts the
2282  *      queues.
2283  *
2284  *      Must be called with user context, may sleep.
2285  */
2286 void
2287 scsi_device_resume(struct scsi_device *sdev)
2288 {
2289         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2290                 return;
2291         scsi_run_queue(sdev->request_queue);
2292 }
2293 EXPORT_SYMBOL(scsi_device_resume);
2294
2295 static void
2296 device_quiesce_fn(struct scsi_device *sdev, void *data)
2297 {
2298         scsi_device_quiesce(sdev);
2299 }
2300
2301 void
2302 scsi_target_quiesce(struct scsi_target *starget)
2303 {
2304         starget_for_each_device(starget, NULL, device_quiesce_fn);
2305 }
2306 EXPORT_SYMBOL(scsi_target_quiesce);
2307
2308 static void
2309 device_resume_fn(struct scsi_device *sdev, void *data)
2310 {
2311         scsi_device_resume(sdev);
2312 }
2313
2314 void
2315 scsi_target_resume(struct scsi_target *starget)
2316 {
2317         starget_for_each_device(starget, NULL, device_resume_fn);
2318 }
2319 EXPORT_SYMBOL(scsi_target_resume);
2320
2321 /**
2322  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2323  * @sdev:       device to block
2324  *
2325  * Block request made by scsi lld's to temporarily stop all
2326  * scsi commands on the specified device.  Called from interrupt
2327  * or normal process context.
2328  *
2329  * Returns zero if successful or error if not
2330  *
2331  * Notes:       
2332  *      This routine transitions the device to the SDEV_BLOCK state
2333  *      (which must be a legal transition).  When the device is in this
2334  *      state, all commands are deferred until the scsi lld reenables
2335  *      the device with scsi_device_unblock or device_block_tmo fires.
2336  *      This routine assumes the host_lock is held on entry.
2337  */
2338 int
2339 scsi_internal_device_block(struct scsi_device *sdev)
2340 {
2341         struct request_queue *q = sdev->request_queue;
2342         unsigned long flags;
2343         int err = 0;
2344
2345         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2346         if (err)
2347                 return err;
2348
2349         /* 
2350          * The device has transitioned to SDEV_BLOCK.  Stop the
2351          * block layer from calling the midlayer with this device's
2352          * request queue. 
2353          */
2354         spin_lock_irqsave(q->queue_lock, flags);
2355         blk_stop_queue(q);
2356         spin_unlock_irqrestore(q->queue_lock, flags);
2357
2358         return 0;
2359 }
2360 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2361  
2362 /**
2363  * scsi_internal_device_unblock - resume a device after a block request
2364  * @sdev:       device to resume
2365  *
2366  * Called by scsi lld's or the midlayer to restart the device queue
2367  * for the previously suspended scsi device.  Called from interrupt or
2368  * normal process context.
2369  *
2370  * Returns zero if successful or error if not.
2371  *
2372  * Notes:       
2373  *      This routine transitions the device to the SDEV_RUNNING state
2374  *      (which must be a legal transition) allowing the midlayer to
2375  *      goose the queue for this device.  This routine assumes the 
2376  *      host_lock is held upon entry.
2377  */
2378 int
2379 scsi_internal_device_unblock(struct scsi_device *sdev)
2380 {
2381         struct request_queue *q = sdev->request_queue; 
2382         int err;
2383         unsigned long flags;
2384         
2385         /* 
2386          * Try to transition the scsi device to SDEV_RUNNING
2387          * and goose the device queue if successful.  
2388          */
2389         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2390         if (err)
2391                 return err;
2392
2393         spin_lock_irqsave(q->queue_lock, flags);
2394         blk_start_queue(q);
2395         spin_unlock_irqrestore(q->queue_lock, flags);
2396
2397         return 0;
2398 }
2399 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2400
2401 static void
2402 device_block(struct scsi_device *sdev, void *data)
2403 {
2404         scsi_internal_device_block(sdev);
2405 }
2406
2407 static int
2408 target_block(struct device *dev, void *data)
2409 {
2410         if (scsi_is_target_device(dev))
2411                 starget_for_each_device(to_scsi_target(dev), NULL,
2412                                         device_block);
2413         return 0;
2414 }
2415
2416 void
2417 scsi_target_block(struct device *dev)
2418 {
2419         if (scsi_is_target_device(dev))
2420                 starget_for_each_device(to_scsi_target(dev), NULL,
2421                                         device_block);
2422         else
2423                 device_for_each_child(dev, NULL, target_block);
2424 }
2425 EXPORT_SYMBOL_GPL(scsi_target_block);
2426
2427 static void
2428 device_unblock(struct scsi_device *sdev, void *data)
2429 {
2430         scsi_internal_device_unblock(sdev);
2431 }
2432
2433 static int
2434 target_unblock(struct device *dev, void *data)
2435 {
2436         if (scsi_is_target_device(dev))
2437                 starget_for_each_device(to_scsi_target(dev), NULL,
2438                                         device_unblock);
2439         return 0;
2440 }
2441
2442 void
2443 scsi_target_unblock(struct device *dev)
2444 {
2445         if (scsi_is_target_device(dev))
2446                 starget_for_each_device(to_scsi_target(dev), NULL,
2447                                         device_unblock);
2448         else
2449                 device_for_each_child(dev, NULL, target_unblock);
2450 }
2451 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2452
2453 /**
2454  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2455  * @sgl:        scatter-gather list
2456  * @sg_count:   number of segments in sg
2457  * @offset:     offset in bytes into sg, on return offset into the mapped area
2458  * @len:        bytes to map, on return number of bytes mapped
2459  *
2460  * Returns virtual address of the start of the mapped page
2461  */
2462 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2463                           size_t *offset, size_t *len)
2464 {
2465         int i;
2466         size_t sg_len = 0, len_complete = 0;
2467         struct scatterlist *sg;
2468         struct page *page;
2469
2470         WARN_ON(!irqs_disabled());
2471
2472         for_each_sg(sgl, sg, sg_count, i) {
2473                 len_complete = sg_len; /* Complete sg-entries */
2474                 sg_len += sg->length;
2475                 if (sg_len > *offset)
2476                         break;
2477         }
2478
2479         if (unlikely(i == sg_count)) {
2480                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2481                         "elements %d\n",
2482                        __FUNCTION__, sg_len, *offset, sg_count);
2483                 WARN_ON(1);
2484                 return NULL;
2485         }
2486
2487         /* Offset starting from the beginning of first page in this sg-entry */
2488         *offset = *offset - len_complete + sg->offset;
2489
2490         /* Assumption: contiguous pages can be accessed as "page + i" */
2491         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2492         *offset &= ~PAGE_MASK;
2493
2494         /* Bytes in this sg-entry from *offset to the end of the page */
2495         sg_len = PAGE_SIZE - *offset;
2496         if (*len > sg_len)
2497                 *len = sg_len;
2498
2499         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2500 }
2501 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2502
2503 /**
2504  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2505  * @virt:       virtual address to be unmapped
2506  */
2507 void scsi_kunmap_atomic_sg(void *virt)
2508 {
2509         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2510 }
2511 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);