]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/scsi_lib.c
3b5121c4c08110f6e3b2d601d6b94809fef7a87d
[linux-2.6-omap-h63xx.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE         2
36
37 /*
38  * The maximum number of SG segments that we will put inside a scatterlist
39  * (unless chaining is used). Should ideally fit inside a single page, to
40  * avoid a higher order allocation.
41  */
42 #define SCSI_MAX_SG_SEGMENTS    128
43
44 struct scsi_host_sg_pool {
45         size_t          size;
46         char            *name;
47         struct kmem_cache       *slab;
48         mempool_t       *pool;
49 };
50
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53         SP(8),
54         SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56         SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(128),
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  */
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static struct kmem_cache *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         return blk_rq_append_bio(q, rq, bio);
267 }
268
269 static void scsi_bi_endio(struct bio *bio, int error)
270 {
271         bio_put(bio);
272 }
273
274 /**
275  * scsi_req_map_sg - map a scatterlist into a request
276  * @rq:         request to fill
277  * @sgl:        scatterlist
278  * @nsegs:      number of elements
279  * @bufflen:    len of buffer
280  * @gfp:        memory allocation flags
281  *
282  * scsi_req_map_sg maps a scatterlist into a request so that the
283  * request can be sent to the block layer. We do not trust the scatterlist
284  * sent to use, as some ULDs use that struct to only organize the pages.
285  */
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287                            int nsegs, unsigned bufflen, gfp_t gfp)
288 {
289         struct request_queue *q = rq->q;
290         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291         unsigned int data_len = bufflen, len, bytes, off;
292         struct scatterlist *sg;
293         struct page *page;
294         struct bio *bio = NULL;
295         int i, err, nr_vecs = 0;
296
297         for_each_sg(sgl, sg, nsegs, i) {
298                 page = sg_page(sg);
299                 off = sg->offset;
300                 len = sg->length;
301                 data_len += len;
302
303                 while (len > 0 && data_len > 0) {
304                         /*
305                          * sg sends a scatterlist that is larger than
306                          * the data_len it wants transferred for certain
307                          * IO sizes
308                          */
309                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310                         bytes = min(bytes, data_len);
311
312                         if (!bio) {
313                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314                                 nr_pages -= nr_vecs;
315
316                                 bio = bio_alloc(gfp, nr_vecs);
317                                 if (!bio) {
318                                         err = -ENOMEM;
319                                         goto free_bios;
320                                 }
321                                 bio->bi_end_io = scsi_bi_endio;
322                         }
323
324                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
325                             bytes) {
326                                 bio_put(bio);
327                                 err = -EINVAL;
328                                 goto free_bios;
329                         }
330
331                         if (bio->bi_vcnt >= nr_vecs) {
332                                 err = scsi_merge_bio(rq, bio);
333                                 if (err) {
334                                         bio_endio(bio, 0);
335                                         goto free_bios;
336                                 }
337                                 bio = NULL;
338                         }
339
340                         page++;
341                         len -= bytes;
342                         data_len -=bytes;
343                         off = 0;
344                 }
345         }
346
347         rq->buffer = rq->data = NULL;
348         rq->data_len = bufflen;
349         return 0;
350
351 free_bios:
352         while ((bio = rq->bio) != NULL) {
353                 rq->bio = bio->bi_next;
354                 /*
355                  * call endio instead of bio_put incase it was bounced
356                  */
357                 bio_endio(bio, 0);
358         }
359
360         return err;
361 }
362
363 /**
364  * scsi_execute_async - insert request
365  * @sdev:       scsi device
366  * @cmd:        scsi command
367  * @cmd_len:    length of scsi cdb
368  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
369  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
370  * @bufflen:    len of buffer
371  * @use_sg:     if buffer is a scatterlist this is the number of elements
372  * @timeout:    request timeout in seconds
373  * @retries:    number of times to retry request
374  * @privdata:   data passed to done()
375  * @done:       callback function when done
376  * @gfp:        memory allocation flags
377  */
378 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
379                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
380                        int use_sg, int timeout, int retries, void *privdata,
381                        void (*done)(void *, char *, int, int), gfp_t gfp)
382 {
383         struct request *req;
384         struct scsi_io_context *sioc;
385         int err = 0;
386         int write = (data_direction == DMA_TO_DEVICE);
387
388         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
389         if (!sioc)
390                 return DRIVER_ERROR << 24;
391
392         req = blk_get_request(sdev->request_queue, write, gfp);
393         if (!req)
394                 goto free_sense;
395         req->cmd_type = REQ_TYPE_BLOCK_PC;
396         req->cmd_flags |= REQ_QUIET;
397
398         if (use_sg)
399                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
400         else if (bufflen)
401                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
402
403         if (err)
404                 goto free_req;
405
406         req->cmd_len = cmd_len;
407         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
408         memcpy(req->cmd, cmd, req->cmd_len);
409         req->sense = sioc->sense;
410         req->sense_len = 0;
411         req->timeout = timeout;
412         req->retries = retries;
413         req->end_io_data = sioc;
414
415         sioc->data = privdata;
416         sioc->done = done;
417
418         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
419         return 0;
420
421 free_req:
422         blk_put_request(req);
423 free_sense:
424         kmem_cache_free(scsi_io_context_cache, sioc);
425         return DRIVER_ERROR << 24;
426 }
427 EXPORT_SYMBOL_GPL(scsi_execute_async);
428
429 /*
430  * Function:    scsi_init_cmd_errh()
431  *
432  * Purpose:     Initialize cmd fields related to error handling.
433  *
434  * Arguments:   cmd     - command that is ready to be queued.
435  *
436  * Notes:       This function has the job of initializing a number of
437  *              fields related to error handling.   Typically this will
438  *              be called once for each command, as required.
439  */
440 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
441 {
442         cmd->serial_number = 0;
443         cmd->resid = 0;
444         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
445         if (cmd->cmd_len == 0)
446                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
447 }
448
449 void scsi_device_unbusy(struct scsi_device *sdev)
450 {
451         struct Scsi_Host *shost = sdev->host;
452         unsigned long flags;
453
454         spin_lock_irqsave(shost->host_lock, flags);
455         shost->host_busy--;
456         if (unlikely(scsi_host_in_recovery(shost) &&
457                      (shost->host_failed || shost->host_eh_scheduled)))
458                 scsi_eh_wakeup(shost);
459         spin_unlock(shost->host_lock);
460         spin_lock(sdev->request_queue->queue_lock);
461         sdev->device_busy--;
462         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
463 }
464
465 /*
466  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
467  * and call blk_run_queue for all the scsi_devices on the target -
468  * including current_sdev first.
469  *
470  * Called with *no* scsi locks held.
471  */
472 static void scsi_single_lun_run(struct scsi_device *current_sdev)
473 {
474         struct Scsi_Host *shost = current_sdev->host;
475         struct scsi_device *sdev, *tmp;
476         struct scsi_target *starget = scsi_target(current_sdev);
477         unsigned long flags;
478
479         spin_lock_irqsave(shost->host_lock, flags);
480         starget->starget_sdev_user = NULL;
481         spin_unlock_irqrestore(shost->host_lock, flags);
482
483         /*
484          * Call blk_run_queue for all LUNs on the target, starting with
485          * current_sdev. We race with others (to set starget_sdev_user),
486          * but in most cases, we will be first. Ideally, each LU on the
487          * target would get some limited time or requests on the target.
488          */
489         blk_run_queue(current_sdev->request_queue);
490
491         spin_lock_irqsave(shost->host_lock, flags);
492         if (starget->starget_sdev_user)
493                 goto out;
494         list_for_each_entry_safe(sdev, tmp, &starget->devices,
495                         same_target_siblings) {
496                 if (sdev == current_sdev)
497                         continue;
498                 if (scsi_device_get(sdev))
499                         continue;
500
501                 spin_unlock_irqrestore(shost->host_lock, flags);
502                 blk_run_queue(sdev->request_queue);
503                 spin_lock_irqsave(shost->host_lock, flags);
504         
505                 scsi_device_put(sdev);
506         }
507  out:
508         spin_unlock_irqrestore(shost->host_lock, flags);
509 }
510
511 /*
512  * Function:    scsi_run_queue()
513  *
514  * Purpose:     Select a proper request queue to serve next
515  *
516  * Arguments:   q       - last request's queue
517  *
518  * Returns:     Nothing
519  *
520  * Notes:       The previous command was completely finished, start
521  *              a new one if possible.
522  */
523 static void scsi_run_queue(struct request_queue *q)
524 {
525         struct scsi_device *sdev = q->queuedata;
526         struct Scsi_Host *shost = sdev->host;
527         unsigned long flags;
528
529         if (scsi_target(sdev)->single_lun)
530                 scsi_single_lun_run(sdev);
531
532         spin_lock_irqsave(shost->host_lock, flags);
533         while (!list_empty(&shost->starved_list) &&
534                !shost->host_blocked && !shost->host_self_blocked &&
535                 !((shost->can_queue > 0) &&
536                   (shost->host_busy >= shost->can_queue))) {
537                 /*
538                  * As long as shost is accepting commands and we have
539                  * starved queues, call blk_run_queue. scsi_request_fn
540                  * drops the queue_lock and can add us back to the
541                  * starved_list.
542                  *
543                  * host_lock protects the starved_list and starved_entry.
544                  * scsi_request_fn must get the host_lock before checking
545                  * or modifying starved_list or starved_entry.
546                  */
547                 sdev = list_entry(shost->starved_list.next,
548                                           struct scsi_device, starved_entry);
549                 list_del_init(&sdev->starved_entry);
550                 spin_unlock_irqrestore(shost->host_lock, flags);
551
552
553                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
554                     !test_and_set_bit(QUEUE_FLAG_REENTER,
555                                       &sdev->request_queue->queue_flags)) {
556                         blk_run_queue(sdev->request_queue);
557                         clear_bit(QUEUE_FLAG_REENTER,
558                                   &sdev->request_queue->queue_flags);
559                 } else
560                         blk_run_queue(sdev->request_queue);
561
562                 spin_lock_irqsave(shost->host_lock, flags);
563                 if (unlikely(!list_empty(&sdev->starved_entry)))
564                         /*
565                          * sdev lost a race, and was put back on the
566                          * starved list. This is unlikely but without this
567                          * in theory we could loop forever.
568                          */
569                         break;
570         }
571         spin_unlock_irqrestore(shost->host_lock, flags);
572
573         blk_run_queue(q);
574 }
575
576 /*
577  * Function:    scsi_requeue_command()
578  *
579  * Purpose:     Handle post-processing of completed commands.
580  *
581  * Arguments:   q       - queue to operate on
582  *              cmd     - command that may need to be requeued.
583  *
584  * Returns:     Nothing
585  *
586  * Notes:       After command completion, there may be blocks left
587  *              over which weren't finished by the previous command
588  *              this can be for a number of reasons - the main one is
589  *              I/O errors in the middle of the request, in which case
590  *              we need to request the blocks that come after the bad
591  *              sector.
592  * Notes:       Upon return, cmd is a stale pointer.
593  */
594 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
595 {
596         struct request *req = cmd->request;
597         unsigned long flags;
598
599         scsi_unprep_request(req);
600         spin_lock_irqsave(q->queue_lock, flags);
601         blk_requeue_request(q, req);
602         spin_unlock_irqrestore(q->queue_lock, flags);
603
604         scsi_run_queue(q);
605 }
606
607 void scsi_next_command(struct scsi_cmnd *cmd)
608 {
609         struct scsi_device *sdev = cmd->device;
610         struct request_queue *q = sdev->request_queue;
611
612         /* need to hold a reference on the device before we let go of the cmd */
613         get_device(&sdev->sdev_gendev);
614
615         scsi_put_command(cmd);
616         scsi_run_queue(q);
617
618         /* ok to remove device now */
619         put_device(&sdev->sdev_gendev);
620 }
621
622 void scsi_run_host_queues(struct Scsi_Host *shost)
623 {
624         struct scsi_device *sdev;
625
626         shost_for_each_device(sdev, shost)
627                 scsi_run_queue(sdev->request_queue);
628 }
629
630 /*
631  * Function:    scsi_end_request()
632  *
633  * Purpose:     Post-processing of completed commands (usually invoked at end
634  *              of upper level post-processing and scsi_io_completion).
635  *
636  * Arguments:   cmd      - command that is complete.
637  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
638  *              bytes    - number of bytes of completed I/O
639  *              requeue  - indicates whether we should requeue leftovers.
640  *
641  * Lock status: Assumed that lock is not held upon entry.
642  *
643  * Returns:     cmd if requeue required, NULL otherwise.
644  *
645  * Notes:       This is called for block device requests in order to
646  *              mark some number of sectors as complete.
647  * 
648  *              We are guaranteeing that the request queue will be goosed
649  *              at some point during this call.
650  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
651  */
652 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
653                                           int bytes, int requeue)
654 {
655         struct request_queue *q = cmd->device->request_queue;
656         struct request *req = cmd->request;
657         unsigned long flags;
658
659         /*
660          * If there are blocks left over at the end, set up the command
661          * to queue the remainder of them.
662          */
663         if (end_that_request_chunk(req, uptodate, bytes)) {
664                 int leftover = (req->hard_nr_sectors << 9);
665
666                 if (blk_pc_request(req))
667                         leftover = req->data_len;
668
669                 /* kill remainder if no retrys */
670                 if (!uptodate && blk_noretry_request(req))
671                         end_that_request_chunk(req, 0, leftover);
672                 else {
673                         if (requeue) {
674                                 /*
675                                  * Bleah.  Leftovers again.  Stick the
676                                  * leftovers in the front of the
677                                  * queue, and goose the queue again.
678                                  */
679                                 scsi_requeue_command(q, cmd);
680                                 cmd = NULL;
681                         }
682                         return cmd;
683                 }
684         }
685
686         add_disk_randomness(req->rq_disk);
687
688         spin_lock_irqsave(q->queue_lock, flags);
689         if (blk_rq_tagged(req))
690                 blk_queue_end_tag(q, req);
691         end_that_request_last(req, uptodate);
692         spin_unlock_irqrestore(q->queue_lock, flags);
693
694         /*
695          * This will goose the queue request function at the end, so we don't
696          * need to worry about launching another command.
697          */
698         scsi_next_command(cmd);
699         return NULL;
700 }
701
702 /*
703  * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
704  * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
705  */
706 #define SCSI_MAX_SG_CHAIN_SEGMENTS      2048
707
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
709 {
710         unsigned int index;
711
712         switch (nents) {
713         case 1 ... 8:
714                 index = 0;
715                 break;
716         case 9 ... 16:
717                 index = 1;
718                 break;
719 #if (SCSI_MAX_SG_SEGMENTS > 16)
720         case 17 ... 32:
721                 index = 2;
722                 break;
723 #if (SCSI_MAX_SG_SEGMENTS > 32)
724         case 33 ... 64:
725                 index = 3;
726                 break;
727 #if (SCSI_MAX_SG_SEGMENTS > 64)
728         case 65 ... 128:
729                 index = 4;
730                 break;
731 #endif
732 #endif
733 #endif
734         default:
735                 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
736                 BUG();
737         }
738
739         return index;
740 }
741
742 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
743 {
744         struct scsi_host_sg_pool *sgp;
745
746         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
747         mempool_free(sgl, sgp->pool);
748 }
749
750 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
751 {
752         struct scsi_host_sg_pool *sgp;
753
754         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
755         return mempool_alloc(sgp->pool, gfp_mask);
756 }
757
758 int scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
759 {
760         int ret;
761
762         BUG_ON(!cmd->use_sg);
763
764         ret = __sg_alloc_table(&cmd->sg_table, cmd->use_sg, gfp_mask, scsi_sg_alloc);
765         if (unlikely(ret))
766                 __sg_free_table(&cmd->sg_table, scsi_sg_free);
767
768         cmd->request_buffer = cmd->sg_table.sgl;
769         return ret;
770 }
771
772 EXPORT_SYMBOL(scsi_alloc_sgtable);
773
774 void scsi_free_sgtable(struct scsi_cmnd *cmd)
775 {
776         __sg_free_table(&cmd->sg_table, scsi_sg_free);
777 }
778
779 EXPORT_SYMBOL(scsi_free_sgtable);
780
781 /*
782  * Function:    scsi_release_buffers()
783  *
784  * Purpose:     Completion processing for block device I/O requests.
785  *
786  * Arguments:   cmd     - command that we are bailing.
787  *
788  * Lock status: Assumed that no lock is held upon entry.
789  *
790  * Returns:     Nothing
791  *
792  * Notes:       In the event that an upper level driver rejects a
793  *              command, we must release resources allocated during
794  *              the __init_io() function.  Primarily this would involve
795  *              the scatter-gather table, and potentially any bounce
796  *              buffers.
797  */
798 static void scsi_release_buffers(struct scsi_cmnd *cmd)
799 {
800         if (cmd->use_sg)
801                 scsi_free_sgtable(cmd);
802
803         /*
804          * Zero these out.  They now point to freed memory, and it is
805          * dangerous to hang onto the pointers.
806          */
807         cmd->request_buffer = NULL;
808         cmd->request_bufflen = 0;
809 }
810
811 /*
812  * Function:    scsi_io_completion()
813  *
814  * Purpose:     Completion processing for block device I/O requests.
815  *
816  * Arguments:   cmd   - command that is finished.
817  *
818  * Lock status: Assumed that no lock is held upon entry.
819  *
820  * Returns:     Nothing
821  *
822  * Notes:       This function is matched in terms of capabilities to
823  *              the function that created the scatter-gather list.
824  *              In other words, if there are no bounce buffers
825  *              (the normal case for most drivers), we don't need
826  *              the logic to deal with cleaning up afterwards.
827  *
828  *              We must do one of several things here:
829  *
830  *              a) Call scsi_end_request.  This will finish off the
831  *                 specified number of sectors.  If we are done, the
832  *                 command block will be released, and the queue
833  *                 function will be goosed.  If we are not done, then
834  *                 scsi_end_request will directly goose the queue.
835  *
836  *              b) We can just use scsi_requeue_command() here.  This would
837  *                 be used if we just wanted to retry, for example.
838  */
839 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
840 {
841         int result = cmd->result;
842         int this_count = cmd->request_bufflen;
843         struct request_queue *q = cmd->device->request_queue;
844         struct request *req = cmd->request;
845         int clear_errors = 1;
846         struct scsi_sense_hdr sshdr;
847         int sense_valid = 0;
848         int sense_deferred = 0;
849
850         scsi_release_buffers(cmd);
851
852         if (result) {
853                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
854                 if (sense_valid)
855                         sense_deferred = scsi_sense_is_deferred(&sshdr);
856         }
857
858         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
859                 req->errors = result;
860                 if (result) {
861                         clear_errors = 0;
862                         if (sense_valid && req->sense) {
863                                 /*
864                                  * SG_IO wants current and deferred errors
865                                  */
866                                 int len = 8 + cmd->sense_buffer[7];
867
868                                 if (len > SCSI_SENSE_BUFFERSIZE)
869                                         len = SCSI_SENSE_BUFFERSIZE;
870                                 memcpy(req->sense, cmd->sense_buffer,  len);
871                                 req->sense_len = len;
872                         }
873                 }
874                 req->data_len = cmd->resid;
875         }
876
877         /*
878          * Next deal with any sectors which we were able to correctly
879          * handle.
880          */
881         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
882                                       "%d bytes done.\n",
883                                       req->nr_sectors, good_bytes));
884         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
885
886         if (clear_errors)
887                 req->errors = 0;
888
889         /* A number of bytes were successfully read.  If there
890          * are leftovers and there is some kind of error
891          * (result != 0), retry the rest.
892          */
893         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
894                 return;
895
896         /* good_bytes = 0, or (inclusive) there were leftovers and
897          * result = 0, so scsi_end_request couldn't retry.
898          */
899         if (sense_valid && !sense_deferred) {
900                 switch (sshdr.sense_key) {
901                 case UNIT_ATTENTION:
902                         if (cmd->device->removable) {
903                                 /* Detected disc change.  Set a bit
904                                  * and quietly refuse further access.
905                                  */
906                                 cmd->device->changed = 1;
907                                 scsi_end_request(cmd, 0, this_count, 1);
908                                 return;
909                         } else {
910                                 /* Must have been a power glitch, or a
911                                  * bus reset.  Could not have been a
912                                  * media change, so we just retry the
913                                  * request and see what happens.
914                                  */
915                                 scsi_requeue_command(q, cmd);
916                                 return;
917                         }
918                         break;
919                 case ILLEGAL_REQUEST:
920                         /* If we had an ILLEGAL REQUEST returned, then
921                          * we may have performed an unsupported
922                          * command.  The only thing this should be
923                          * would be a ten byte read where only a six
924                          * byte read was supported.  Also, on a system
925                          * where READ CAPACITY failed, we may have
926                          * read past the end of the disk.
927                          */
928                         if ((cmd->device->use_10_for_rw &&
929                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
930                             (cmd->cmnd[0] == READ_10 ||
931                              cmd->cmnd[0] == WRITE_10)) {
932                                 cmd->device->use_10_for_rw = 0;
933                                 /* This will cause a retry with a
934                                  * 6-byte command.
935                                  */
936                                 scsi_requeue_command(q, cmd);
937                                 return;
938                         } else {
939                                 scsi_end_request(cmd, 0, this_count, 1);
940                                 return;
941                         }
942                         break;
943                 case NOT_READY:
944                         /* If the device is in the process of becoming
945                          * ready, or has a temporary blockage, retry.
946                          */
947                         if (sshdr.asc == 0x04) {
948                                 switch (sshdr.ascq) {
949                                 case 0x01: /* becoming ready */
950                                 case 0x04: /* format in progress */
951                                 case 0x05: /* rebuild in progress */
952                                 case 0x06: /* recalculation in progress */
953                                 case 0x07: /* operation in progress */
954                                 case 0x08: /* Long write in progress */
955                                 case 0x09: /* self test in progress */
956                                         scsi_requeue_command(q, cmd);
957                                         return;
958                                 default:
959                                         break;
960                                 }
961                         }
962                         if (!(req->cmd_flags & REQ_QUIET))
963                                 scsi_cmd_print_sense_hdr(cmd,
964                                                          "Device not ready",
965                                                          &sshdr);
966
967                         scsi_end_request(cmd, 0, this_count, 1);
968                         return;
969                 case VOLUME_OVERFLOW:
970                         if (!(req->cmd_flags & REQ_QUIET)) {
971                                 scmd_printk(KERN_INFO, cmd,
972                                             "Volume overflow, CDB: ");
973                                 __scsi_print_command(cmd->cmnd);
974                                 scsi_print_sense("", cmd);
975                         }
976                         /* See SSC3rXX or current. */
977                         scsi_end_request(cmd, 0, this_count, 1);
978                         return;
979                 default:
980                         break;
981                 }
982         }
983         if (host_byte(result) == DID_RESET) {
984                 /* Third party bus reset or reset for error recovery
985                  * reasons.  Just retry the request and see what
986                  * happens.
987                  */
988                 scsi_requeue_command(q, cmd);
989                 return;
990         }
991         if (result) {
992                 if (!(req->cmd_flags & REQ_QUIET)) {
993                         scsi_print_result(cmd);
994                         if (driver_byte(result) & DRIVER_SENSE)
995                                 scsi_print_sense("", cmd);
996                 }
997         }
998         scsi_end_request(cmd, 0, this_count, !result);
999 }
1000
1001 /*
1002  * Function:    scsi_init_io()
1003  *
1004  * Purpose:     SCSI I/O initialize function.
1005  *
1006  * Arguments:   cmd   - Command descriptor we wish to initialize
1007  *
1008  * Returns:     0 on success
1009  *              BLKPREP_DEFER if the failure is retryable
1010  */
1011 static int scsi_init_io(struct scsi_cmnd *cmd)
1012 {
1013         struct request     *req = cmd->request;
1014         int                count;
1015
1016         /*
1017          * We used to not use scatter-gather for single segment request,
1018          * but now we do (it makes highmem I/O easier to support without
1019          * kmapping pages)
1020          */
1021         cmd->use_sg = req->nr_phys_segments;
1022
1023         /*
1024          * If sg table allocation fails, requeue request later.
1025          */
1026         if (unlikely(scsi_alloc_sgtable(cmd, GFP_ATOMIC))) {
1027                 scsi_unprep_request(req);
1028                 return BLKPREP_DEFER;
1029         }
1030
1031         req->buffer = NULL;
1032         if (blk_pc_request(req))
1033                 cmd->request_bufflen = req->data_len;
1034         else
1035                 cmd->request_bufflen = req->nr_sectors << 9;
1036
1037         /* 
1038          * Next, walk the list, and fill in the addresses and sizes of
1039          * each segment.
1040          */
1041         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1042         BUG_ON(count > cmd->use_sg);
1043         cmd->use_sg = count;
1044         return BLKPREP_OK;
1045 }
1046
1047 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1048                 struct request *req)
1049 {
1050         struct scsi_cmnd *cmd;
1051
1052         if (!req->special) {
1053                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1054                 if (unlikely(!cmd))
1055                         return NULL;
1056                 req->special = cmd;
1057         } else {
1058                 cmd = req->special;
1059         }
1060
1061         /* pull a tag out of the request if we have one */
1062         cmd->tag = req->tag;
1063         cmd->request = req;
1064
1065         return cmd;
1066 }
1067
1068 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1069 {
1070         struct scsi_cmnd *cmd;
1071         int ret = scsi_prep_state_check(sdev, req);
1072
1073         if (ret != BLKPREP_OK)
1074                 return ret;
1075
1076         cmd = scsi_get_cmd_from_req(sdev, req);
1077         if (unlikely(!cmd))
1078                 return BLKPREP_DEFER;
1079
1080         /*
1081          * BLOCK_PC requests may transfer data, in which case they must
1082          * a bio attached to them.  Or they might contain a SCSI command
1083          * that does not transfer data, in which case they may optionally
1084          * submit a request without an attached bio.
1085          */
1086         if (req->bio) {
1087                 int ret;
1088
1089                 BUG_ON(!req->nr_phys_segments);
1090
1091                 ret = scsi_init_io(cmd);
1092                 if (unlikely(ret))
1093                         return ret;
1094         } else {
1095                 BUG_ON(req->data_len);
1096                 BUG_ON(req->data);
1097
1098                 cmd->request_bufflen = 0;
1099                 cmd->request_buffer = NULL;
1100                 cmd->use_sg = 0;
1101                 req->buffer = NULL;
1102         }
1103
1104         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1105         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1106         cmd->cmd_len = req->cmd_len;
1107         if (!req->data_len)
1108                 cmd->sc_data_direction = DMA_NONE;
1109         else if (rq_data_dir(req) == WRITE)
1110                 cmd->sc_data_direction = DMA_TO_DEVICE;
1111         else
1112                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1113         
1114         cmd->transfersize = req->data_len;
1115         cmd->allowed = req->retries;
1116         cmd->timeout_per_command = req->timeout;
1117         return BLKPREP_OK;
1118 }
1119 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1120
1121 /*
1122  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1123  * from filesystems that still need to be translated to SCSI CDBs from
1124  * the ULD.
1125  */
1126 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1127 {
1128         struct scsi_cmnd *cmd;
1129         int ret = scsi_prep_state_check(sdev, req);
1130
1131         if (ret != BLKPREP_OK)
1132                 return ret;
1133         /*
1134          * Filesystem requests must transfer data.
1135          */
1136         BUG_ON(!req->nr_phys_segments);
1137
1138         cmd = scsi_get_cmd_from_req(sdev, req);
1139         if (unlikely(!cmd))
1140                 return BLKPREP_DEFER;
1141
1142         return scsi_init_io(cmd);
1143 }
1144 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1145
1146 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1147 {
1148         int ret = BLKPREP_OK;
1149
1150         /*
1151          * If the device is not in running state we will reject some
1152          * or all commands.
1153          */
1154         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1155                 switch (sdev->sdev_state) {
1156                 case SDEV_OFFLINE:
1157                         /*
1158                          * If the device is offline we refuse to process any
1159                          * commands.  The device must be brought online
1160                          * before trying any recovery commands.
1161                          */
1162                         sdev_printk(KERN_ERR, sdev,
1163                                     "rejecting I/O to offline device\n");
1164                         ret = BLKPREP_KILL;
1165                         break;
1166                 case SDEV_DEL:
1167                         /*
1168                          * If the device is fully deleted, we refuse to
1169                          * process any commands as well.
1170                          */
1171                         sdev_printk(KERN_ERR, sdev,
1172                                     "rejecting I/O to dead device\n");
1173                         ret = BLKPREP_KILL;
1174                         break;
1175                 case SDEV_QUIESCE:
1176                 case SDEV_BLOCK:
1177                         /*
1178                          * If the devices is blocked we defer normal commands.
1179                          */
1180                         if (!(req->cmd_flags & REQ_PREEMPT))
1181                                 ret = BLKPREP_DEFER;
1182                         break;
1183                 default:
1184                         /*
1185                          * For any other not fully online state we only allow
1186                          * special commands.  In particular any user initiated
1187                          * command is not allowed.
1188                          */
1189                         if (!(req->cmd_flags & REQ_PREEMPT))
1190                                 ret = BLKPREP_KILL;
1191                         break;
1192                 }
1193         }
1194         return ret;
1195 }
1196 EXPORT_SYMBOL(scsi_prep_state_check);
1197
1198 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1199 {
1200         struct scsi_device *sdev = q->queuedata;
1201
1202         switch (ret) {
1203         case BLKPREP_KILL:
1204                 req->errors = DID_NO_CONNECT << 16;
1205                 /* release the command and kill it */
1206                 if (req->special) {
1207                         struct scsi_cmnd *cmd = req->special;
1208                         scsi_release_buffers(cmd);
1209                         scsi_put_command(cmd);
1210                         req->special = NULL;
1211                 }
1212                 break;
1213         case BLKPREP_DEFER:
1214                 /*
1215                  * If we defer, the elv_next_request() returns NULL, but the
1216                  * queue must be restarted, so we plug here if no returning
1217                  * command will automatically do that.
1218                  */
1219                 if (sdev->device_busy == 0)
1220                         blk_plug_device(q);
1221                 break;
1222         default:
1223                 req->cmd_flags |= REQ_DONTPREP;
1224         }
1225
1226         return ret;
1227 }
1228 EXPORT_SYMBOL(scsi_prep_return);
1229
1230 int scsi_prep_fn(struct request_queue *q, struct request *req)
1231 {
1232         struct scsi_device *sdev = q->queuedata;
1233         int ret = BLKPREP_KILL;
1234
1235         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1236                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1237         return scsi_prep_return(q, req, ret);
1238 }
1239
1240 /*
1241  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1242  * return 0.
1243  *
1244  * Called with the queue_lock held.
1245  */
1246 static inline int scsi_dev_queue_ready(struct request_queue *q,
1247                                   struct scsi_device *sdev)
1248 {
1249         if (sdev->device_busy >= sdev->queue_depth)
1250                 return 0;
1251         if (sdev->device_busy == 0 && sdev->device_blocked) {
1252                 /*
1253                  * unblock after device_blocked iterates to zero
1254                  */
1255                 if (--sdev->device_blocked == 0) {
1256                         SCSI_LOG_MLQUEUE(3,
1257                                    sdev_printk(KERN_INFO, sdev,
1258                                    "unblocking device at zero depth\n"));
1259                 } else {
1260                         blk_plug_device(q);
1261                         return 0;
1262                 }
1263         }
1264         if (sdev->device_blocked)
1265                 return 0;
1266
1267         return 1;
1268 }
1269
1270 /*
1271  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1272  * return 0. We must end up running the queue again whenever 0 is
1273  * returned, else IO can hang.
1274  *
1275  * Called with host_lock held.
1276  */
1277 static inline int scsi_host_queue_ready(struct request_queue *q,
1278                                    struct Scsi_Host *shost,
1279                                    struct scsi_device *sdev)
1280 {
1281         if (scsi_host_in_recovery(shost))
1282                 return 0;
1283         if (shost->host_busy == 0 && shost->host_blocked) {
1284                 /*
1285                  * unblock after host_blocked iterates to zero
1286                  */
1287                 if (--shost->host_blocked == 0) {
1288                         SCSI_LOG_MLQUEUE(3,
1289                                 printk("scsi%d unblocking host at zero depth\n",
1290                                         shost->host_no));
1291                 } else {
1292                         blk_plug_device(q);
1293                         return 0;
1294                 }
1295         }
1296         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1297             shost->host_blocked || shost->host_self_blocked) {
1298                 if (list_empty(&sdev->starved_entry))
1299                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1300                 return 0;
1301         }
1302
1303         /* We're OK to process the command, so we can't be starved */
1304         if (!list_empty(&sdev->starved_entry))
1305                 list_del_init(&sdev->starved_entry);
1306
1307         return 1;
1308 }
1309
1310 /*
1311  * Kill a request for a dead device
1312  */
1313 static void scsi_kill_request(struct request *req, struct request_queue *q)
1314 {
1315         struct scsi_cmnd *cmd = req->special;
1316         struct scsi_device *sdev = cmd->device;
1317         struct Scsi_Host *shost = sdev->host;
1318
1319         blkdev_dequeue_request(req);
1320
1321         if (unlikely(cmd == NULL)) {
1322                 printk(KERN_CRIT "impossible request in %s.\n",
1323                                  __FUNCTION__);
1324                 BUG();
1325         }
1326
1327         scsi_init_cmd_errh(cmd);
1328         cmd->result = DID_NO_CONNECT << 16;
1329         atomic_inc(&cmd->device->iorequest_cnt);
1330
1331         /*
1332          * SCSI request completion path will do scsi_device_unbusy(),
1333          * bump busy counts.  To bump the counters, we need to dance
1334          * with the locks as normal issue path does.
1335          */
1336         sdev->device_busy++;
1337         spin_unlock(sdev->request_queue->queue_lock);
1338         spin_lock(shost->host_lock);
1339         shost->host_busy++;
1340         spin_unlock(shost->host_lock);
1341         spin_lock(sdev->request_queue->queue_lock);
1342
1343         __scsi_done(cmd);
1344 }
1345
1346 static void scsi_softirq_done(struct request *rq)
1347 {
1348         struct scsi_cmnd *cmd = rq->completion_data;
1349         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1350         int disposition;
1351
1352         INIT_LIST_HEAD(&cmd->eh_entry);
1353
1354         disposition = scsi_decide_disposition(cmd);
1355         if (disposition != SUCCESS &&
1356             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1357                 sdev_printk(KERN_ERR, cmd->device,
1358                             "timing out command, waited %lus\n",
1359                             wait_for/HZ);
1360                 disposition = SUCCESS;
1361         }
1362                         
1363         scsi_log_completion(cmd, disposition);
1364
1365         switch (disposition) {
1366                 case SUCCESS:
1367                         scsi_finish_command(cmd);
1368                         break;
1369                 case NEEDS_RETRY:
1370                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1371                         break;
1372                 case ADD_TO_MLQUEUE:
1373                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1374                         break;
1375                 default:
1376                         if (!scsi_eh_scmd_add(cmd, 0))
1377                                 scsi_finish_command(cmd);
1378         }
1379 }
1380
1381 /*
1382  * Function:    scsi_request_fn()
1383  *
1384  * Purpose:     Main strategy routine for SCSI.
1385  *
1386  * Arguments:   q       - Pointer to actual queue.
1387  *
1388  * Returns:     Nothing
1389  *
1390  * Lock status: IO request lock assumed to be held when called.
1391  */
1392 static void scsi_request_fn(struct request_queue *q)
1393 {
1394         struct scsi_device *sdev = q->queuedata;
1395         struct Scsi_Host *shost;
1396         struct scsi_cmnd *cmd;
1397         struct request *req;
1398
1399         if (!sdev) {
1400                 printk("scsi: killing requests for dead queue\n");
1401                 while ((req = elv_next_request(q)) != NULL)
1402                         scsi_kill_request(req, q);
1403                 return;
1404         }
1405
1406         if(!get_device(&sdev->sdev_gendev))
1407                 /* We must be tearing the block queue down already */
1408                 return;
1409
1410         /*
1411          * To start with, we keep looping until the queue is empty, or until
1412          * the host is no longer able to accept any more requests.
1413          */
1414         shost = sdev->host;
1415         while (!blk_queue_plugged(q)) {
1416                 int rtn;
1417                 /*
1418                  * get next queueable request.  We do this early to make sure
1419                  * that the request is fully prepared even if we cannot 
1420                  * accept it.
1421                  */
1422                 req = elv_next_request(q);
1423                 if (!req || !scsi_dev_queue_ready(q, sdev))
1424                         break;
1425
1426                 if (unlikely(!scsi_device_online(sdev))) {
1427                         sdev_printk(KERN_ERR, sdev,
1428                                     "rejecting I/O to offline device\n");
1429                         scsi_kill_request(req, q);
1430                         continue;
1431                 }
1432
1433
1434                 /*
1435                  * Remove the request from the request list.
1436                  */
1437                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1438                         blkdev_dequeue_request(req);
1439                 sdev->device_busy++;
1440
1441                 spin_unlock(q->queue_lock);
1442                 cmd = req->special;
1443                 if (unlikely(cmd == NULL)) {
1444                         printk(KERN_CRIT "impossible request in %s.\n"
1445                                          "please mail a stack trace to "
1446                                          "linux-scsi@vger.kernel.org\n",
1447                                          __FUNCTION__);
1448                         blk_dump_rq_flags(req, "foo");
1449                         BUG();
1450                 }
1451                 spin_lock(shost->host_lock);
1452
1453                 if (!scsi_host_queue_ready(q, shost, sdev))
1454                         goto not_ready;
1455                 if (scsi_target(sdev)->single_lun) {
1456                         if (scsi_target(sdev)->starget_sdev_user &&
1457                             scsi_target(sdev)->starget_sdev_user != sdev)
1458                                 goto not_ready;
1459                         scsi_target(sdev)->starget_sdev_user = sdev;
1460                 }
1461                 shost->host_busy++;
1462
1463                 /*
1464                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1465                  *              take the lock again.
1466                  */
1467                 spin_unlock_irq(shost->host_lock);
1468
1469                 /*
1470                  * Finally, initialize any error handling parameters, and set up
1471                  * the timers for timeouts.
1472                  */
1473                 scsi_init_cmd_errh(cmd);
1474
1475                 /*
1476                  * Dispatch the command to the low-level driver.
1477                  */
1478                 rtn = scsi_dispatch_cmd(cmd);
1479                 spin_lock_irq(q->queue_lock);
1480                 if(rtn) {
1481                         /* we're refusing the command; because of
1482                          * the way locks get dropped, we need to 
1483                          * check here if plugging is required */
1484                         if(sdev->device_busy == 0)
1485                                 blk_plug_device(q);
1486
1487                         break;
1488                 }
1489         }
1490
1491         goto out;
1492
1493  not_ready:
1494         spin_unlock_irq(shost->host_lock);
1495
1496         /*
1497          * lock q, handle tag, requeue req, and decrement device_busy. We
1498          * must return with queue_lock held.
1499          *
1500          * Decrementing device_busy without checking it is OK, as all such
1501          * cases (host limits or settings) should run the queue at some
1502          * later time.
1503          */
1504         spin_lock_irq(q->queue_lock);
1505         blk_requeue_request(q, req);
1506         sdev->device_busy--;
1507         if(sdev->device_busy == 0)
1508                 blk_plug_device(q);
1509  out:
1510         /* must be careful here...if we trigger the ->remove() function
1511          * we cannot be holding the q lock */
1512         spin_unlock_irq(q->queue_lock);
1513         put_device(&sdev->sdev_gendev);
1514         spin_lock_irq(q->queue_lock);
1515 }
1516
1517 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1518 {
1519         struct device *host_dev;
1520         u64 bounce_limit = 0xffffffff;
1521
1522         if (shost->unchecked_isa_dma)
1523                 return BLK_BOUNCE_ISA;
1524         /*
1525          * Platforms with virtual-DMA translation
1526          * hardware have no practical limit.
1527          */
1528         if (!PCI_DMA_BUS_IS_PHYS)
1529                 return BLK_BOUNCE_ANY;
1530
1531         host_dev = scsi_get_device(shost);
1532         if (host_dev && host_dev->dma_mask)
1533                 bounce_limit = *host_dev->dma_mask;
1534
1535         return bounce_limit;
1536 }
1537 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1538
1539 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1540                                          request_fn_proc *request_fn)
1541 {
1542         struct request_queue *q;
1543
1544         q = blk_init_queue(request_fn, NULL);
1545         if (!q)
1546                 return NULL;
1547
1548         /*
1549          * this limit is imposed by hardware restrictions
1550          */
1551         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1552
1553         /*
1554          * In the future, sg chaining support will be mandatory and this
1555          * ifdef can then go away. Right now we don't have all archs
1556          * converted, so better keep it safe.
1557          */
1558 #ifdef ARCH_HAS_SG_CHAIN
1559         if (shost->use_sg_chaining)
1560                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1561         else
1562                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1563 #else
1564         blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1565 #endif
1566
1567         blk_queue_max_sectors(q, shost->max_sectors);
1568         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1569         blk_queue_segment_boundary(q, shost->dma_boundary);
1570
1571         if (!shost->use_clustering)
1572                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1573
1574         /*
1575          * set a reasonable default alignment on word boundaries: the
1576          * host and device may alter it using
1577          * blk_queue_update_dma_alignment() later.
1578          */
1579         blk_queue_dma_alignment(q, 0x03);
1580
1581         return q;
1582 }
1583 EXPORT_SYMBOL(__scsi_alloc_queue);
1584
1585 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1586 {
1587         struct request_queue *q;
1588
1589         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1590         if (!q)
1591                 return NULL;
1592
1593         blk_queue_prep_rq(q, scsi_prep_fn);
1594         blk_queue_softirq_done(q, scsi_softirq_done);
1595         return q;
1596 }
1597
1598 void scsi_free_queue(struct request_queue *q)
1599 {
1600         blk_cleanup_queue(q);
1601 }
1602
1603 /*
1604  * Function:    scsi_block_requests()
1605  *
1606  * Purpose:     Utility function used by low-level drivers to prevent further
1607  *              commands from being queued to the device.
1608  *
1609  * Arguments:   shost       - Host in question
1610  *
1611  * Returns:     Nothing
1612  *
1613  * Lock status: No locks are assumed held.
1614  *
1615  * Notes:       There is no timer nor any other means by which the requests
1616  *              get unblocked other than the low-level driver calling
1617  *              scsi_unblock_requests().
1618  */
1619 void scsi_block_requests(struct Scsi_Host *shost)
1620 {
1621         shost->host_self_blocked = 1;
1622 }
1623 EXPORT_SYMBOL(scsi_block_requests);
1624
1625 /*
1626  * Function:    scsi_unblock_requests()
1627  *
1628  * Purpose:     Utility function used by low-level drivers to allow further
1629  *              commands from being queued to the device.
1630  *
1631  * Arguments:   shost       - Host in question
1632  *
1633  * Returns:     Nothing
1634  *
1635  * Lock status: No locks are assumed held.
1636  *
1637  * Notes:       There is no timer nor any other means by which the requests
1638  *              get unblocked other than the low-level driver calling
1639  *              scsi_unblock_requests().
1640  *
1641  *              This is done as an API function so that changes to the
1642  *              internals of the scsi mid-layer won't require wholesale
1643  *              changes to drivers that use this feature.
1644  */
1645 void scsi_unblock_requests(struct Scsi_Host *shost)
1646 {
1647         shost->host_self_blocked = 0;
1648         scsi_run_host_queues(shost);
1649 }
1650 EXPORT_SYMBOL(scsi_unblock_requests);
1651
1652 int __init scsi_init_queue(void)
1653 {
1654         int i;
1655
1656         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1657                                         sizeof(struct scsi_io_context),
1658                                         0, 0, NULL);
1659         if (!scsi_io_context_cache) {
1660                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1661                 return -ENOMEM;
1662         }
1663
1664         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1665                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1666                 int size = sgp->size * sizeof(struct scatterlist);
1667
1668                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1669                                 SLAB_HWCACHE_ALIGN, NULL);
1670                 if (!sgp->slab) {
1671                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1672                                         sgp->name);
1673                 }
1674
1675                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1676                                                      sgp->slab);
1677                 if (!sgp->pool) {
1678                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1679                                         sgp->name);
1680                 }
1681         }
1682
1683         return 0;
1684 }
1685
1686 void scsi_exit_queue(void)
1687 {
1688         int i;
1689
1690         kmem_cache_destroy(scsi_io_context_cache);
1691
1692         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1693                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1694                 mempool_destroy(sgp->pool);
1695                 kmem_cache_destroy(sgp->slab);
1696         }
1697 }
1698
1699 /**
1700  *      scsi_mode_select - issue a mode select
1701  *      @sdev:  SCSI device to be queried
1702  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1703  *      @sp:    Save page bit (0 == don't save, 1 == save)
1704  *      @modepage: mode page being requested
1705  *      @buffer: request buffer (may not be smaller than eight bytes)
1706  *      @len:   length of request buffer.
1707  *      @timeout: command timeout
1708  *      @retries: number of retries before failing
1709  *      @data: returns a structure abstracting the mode header data
1710  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1711  *              must be SCSI_SENSE_BUFFERSIZE big.
1712  *
1713  *      Returns zero if successful; negative error number or scsi
1714  *      status on error
1715  *
1716  */
1717 int
1718 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1719                  unsigned char *buffer, int len, int timeout, int retries,
1720                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1721 {
1722         unsigned char cmd[10];
1723         unsigned char *real_buffer;
1724         int ret;
1725
1726         memset(cmd, 0, sizeof(cmd));
1727         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1728
1729         if (sdev->use_10_for_ms) {
1730                 if (len > 65535)
1731                         return -EINVAL;
1732                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1733                 if (!real_buffer)
1734                         return -ENOMEM;
1735                 memcpy(real_buffer + 8, buffer, len);
1736                 len += 8;
1737                 real_buffer[0] = 0;
1738                 real_buffer[1] = 0;
1739                 real_buffer[2] = data->medium_type;
1740                 real_buffer[3] = data->device_specific;
1741                 real_buffer[4] = data->longlba ? 0x01 : 0;
1742                 real_buffer[5] = 0;
1743                 real_buffer[6] = data->block_descriptor_length >> 8;
1744                 real_buffer[7] = data->block_descriptor_length;
1745
1746                 cmd[0] = MODE_SELECT_10;
1747                 cmd[7] = len >> 8;
1748                 cmd[8] = len;
1749         } else {
1750                 if (len > 255 || data->block_descriptor_length > 255 ||
1751                     data->longlba)
1752                         return -EINVAL;
1753
1754                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1755                 if (!real_buffer)
1756                         return -ENOMEM;
1757                 memcpy(real_buffer + 4, buffer, len);
1758                 len += 4;
1759                 real_buffer[0] = 0;
1760                 real_buffer[1] = data->medium_type;
1761                 real_buffer[2] = data->device_specific;
1762                 real_buffer[3] = data->block_descriptor_length;
1763                 
1764
1765                 cmd[0] = MODE_SELECT;
1766                 cmd[4] = len;
1767         }
1768
1769         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1770                                sshdr, timeout, retries);
1771         kfree(real_buffer);
1772         return ret;
1773 }
1774 EXPORT_SYMBOL_GPL(scsi_mode_select);
1775
1776 /**
1777  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1778  *      @sdev:  SCSI device to be queried
1779  *      @dbd:   set if mode sense will allow block descriptors to be returned
1780  *      @modepage: mode page being requested
1781  *      @buffer: request buffer (may not be smaller than eight bytes)
1782  *      @len:   length of request buffer.
1783  *      @timeout: command timeout
1784  *      @retries: number of retries before failing
1785  *      @data: returns a structure abstracting the mode header data
1786  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1787  *              must be SCSI_SENSE_BUFFERSIZE big.
1788  *
1789  *      Returns zero if unsuccessful, or the header offset (either 4
1790  *      or 8 depending on whether a six or ten byte command was
1791  *      issued) if successful.
1792  */
1793 int
1794 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1795                   unsigned char *buffer, int len, int timeout, int retries,
1796                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1797 {
1798         unsigned char cmd[12];
1799         int use_10_for_ms;
1800         int header_length;
1801         int result;
1802         struct scsi_sense_hdr my_sshdr;
1803
1804         memset(data, 0, sizeof(*data));
1805         memset(&cmd[0], 0, 12);
1806         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1807         cmd[2] = modepage;
1808
1809         /* caller might not be interested in sense, but we need it */
1810         if (!sshdr)
1811                 sshdr = &my_sshdr;
1812
1813  retry:
1814         use_10_for_ms = sdev->use_10_for_ms;
1815
1816         if (use_10_for_ms) {
1817                 if (len < 8)
1818                         len = 8;
1819
1820                 cmd[0] = MODE_SENSE_10;
1821                 cmd[8] = len;
1822                 header_length = 8;
1823         } else {
1824                 if (len < 4)
1825                         len = 4;
1826
1827                 cmd[0] = MODE_SENSE;
1828                 cmd[4] = len;
1829                 header_length = 4;
1830         }
1831
1832         memset(buffer, 0, len);
1833
1834         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1835                                   sshdr, timeout, retries);
1836
1837         /* This code looks awful: what it's doing is making sure an
1838          * ILLEGAL REQUEST sense return identifies the actual command
1839          * byte as the problem.  MODE_SENSE commands can return
1840          * ILLEGAL REQUEST if the code page isn't supported */
1841
1842         if (use_10_for_ms && !scsi_status_is_good(result) &&
1843             (driver_byte(result) & DRIVER_SENSE)) {
1844                 if (scsi_sense_valid(sshdr)) {
1845                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1846                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1847                                 /* 
1848                                  * Invalid command operation code
1849                                  */
1850                                 sdev->use_10_for_ms = 0;
1851                                 goto retry;
1852                         }
1853                 }
1854         }
1855
1856         if(scsi_status_is_good(result)) {
1857                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1858                              (modepage == 6 || modepage == 8))) {
1859                         /* Initio breakage? */
1860                         header_length = 0;
1861                         data->length = 13;
1862                         data->medium_type = 0;
1863                         data->device_specific = 0;
1864                         data->longlba = 0;
1865                         data->block_descriptor_length = 0;
1866                 } else if(use_10_for_ms) {
1867                         data->length = buffer[0]*256 + buffer[1] + 2;
1868                         data->medium_type = buffer[2];
1869                         data->device_specific = buffer[3];
1870                         data->longlba = buffer[4] & 0x01;
1871                         data->block_descriptor_length = buffer[6]*256
1872                                 + buffer[7];
1873                 } else {
1874                         data->length = buffer[0] + 1;
1875                         data->medium_type = buffer[1];
1876                         data->device_specific = buffer[2];
1877                         data->block_descriptor_length = buffer[3];
1878                 }
1879                 data->header_length = header_length;
1880         }
1881
1882         return result;
1883 }
1884 EXPORT_SYMBOL(scsi_mode_sense);
1885
1886 /**
1887  *      scsi_test_unit_ready - test if unit is ready
1888  *      @sdev:  scsi device to change the state of.
1889  *      @timeout: command timeout
1890  *      @retries: number of retries before failing
1891  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1892  *              returning sense. Make sure that this is cleared before passing
1893  *              in.
1894  *
1895  *      Returns zero if unsuccessful or an error if TUR failed.  For
1896  *      removable media, a return of NOT_READY or UNIT_ATTENTION is
1897  *      translated to success, with the ->changed flag updated.
1898  **/
1899 int
1900 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1901                      struct scsi_sense_hdr *sshdr_external)
1902 {
1903         char cmd[] = {
1904                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1905         };
1906         struct scsi_sense_hdr *sshdr;
1907         int result;
1908
1909         if (!sshdr_external)
1910                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1911         else
1912                 sshdr = sshdr_external;
1913
1914         /* try to eat the UNIT_ATTENTION if there are enough retries */
1915         do {
1916                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1917                                           timeout, retries);
1918         } while ((driver_byte(result) & DRIVER_SENSE) &&
1919                  sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1920                  --retries);
1921
1922         if (!sshdr)
1923                 /* could not allocate sense buffer, so can't process it */
1924                 return result;
1925
1926         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1927
1928                 if ((scsi_sense_valid(sshdr)) &&
1929                     ((sshdr->sense_key == UNIT_ATTENTION) ||
1930                      (sshdr->sense_key == NOT_READY))) {
1931                         sdev->changed = 1;
1932                         result = 0;
1933                 }
1934         }
1935         if (!sshdr_external)
1936                 kfree(sshdr);
1937         return result;
1938 }
1939 EXPORT_SYMBOL(scsi_test_unit_ready);
1940
1941 /**
1942  *      scsi_device_set_state - Take the given device through the device state model.
1943  *      @sdev:  scsi device to change the state of.
1944  *      @state: state to change to.
1945  *
1946  *      Returns zero if unsuccessful or an error if the requested 
1947  *      transition is illegal.
1948  */
1949 int
1950 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1951 {
1952         enum scsi_device_state oldstate = sdev->sdev_state;
1953
1954         if (state == oldstate)
1955                 return 0;
1956
1957         switch (state) {
1958         case SDEV_CREATED:
1959                 /* There are no legal states that come back to
1960                  * created.  This is the manually initialised start
1961                  * state */
1962                 goto illegal;
1963                         
1964         case SDEV_RUNNING:
1965                 switch (oldstate) {
1966                 case SDEV_CREATED:
1967                 case SDEV_OFFLINE:
1968                 case SDEV_QUIESCE:
1969                 case SDEV_BLOCK:
1970                         break;
1971                 default:
1972                         goto illegal;
1973                 }
1974                 break;
1975
1976         case SDEV_QUIESCE:
1977                 switch (oldstate) {
1978                 case SDEV_RUNNING:
1979                 case SDEV_OFFLINE:
1980                         break;
1981                 default:
1982                         goto illegal;
1983                 }
1984                 break;
1985
1986         case SDEV_OFFLINE:
1987                 switch (oldstate) {
1988                 case SDEV_CREATED:
1989                 case SDEV_RUNNING:
1990                 case SDEV_QUIESCE:
1991                 case SDEV_BLOCK:
1992                         break;
1993                 default:
1994                         goto illegal;
1995                 }
1996                 break;
1997
1998         case SDEV_BLOCK:
1999                 switch (oldstate) {
2000                 case SDEV_CREATED:
2001                 case SDEV_RUNNING:
2002                         break;
2003                 default:
2004                         goto illegal;
2005                 }
2006                 break;
2007
2008         case SDEV_CANCEL:
2009                 switch (oldstate) {
2010                 case SDEV_CREATED:
2011                 case SDEV_RUNNING:
2012                 case SDEV_QUIESCE:
2013                 case SDEV_OFFLINE:
2014                 case SDEV_BLOCK:
2015                         break;
2016                 default:
2017                         goto illegal;
2018                 }
2019                 break;
2020
2021         case SDEV_DEL:
2022                 switch (oldstate) {
2023                 case SDEV_CREATED:
2024                 case SDEV_RUNNING:
2025                 case SDEV_OFFLINE:
2026                 case SDEV_CANCEL:
2027                         break;
2028                 default:
2029                         goto illegal;
2030                 }
2031                 break;
2032
2033         }
2034         sdev->sdev_state = state;
2035         return 0;
2036
2037  illegal:
2038         SCSI_LOG_ERROR_RECOVERY(1, 
2039                                 sdev_printk(KERN_ERR, sdev,
2040                                             "Illegal state transition %s->%s\n",
2041                                             scsi_device_state_name(oldstate),
2042                                             scsi_device_state_name(state))
2043                                 );
2044         return -EINVAL;
2045 }
2046 EXPORT_SYMBOL(scsi_device_set_state);
2047
2048 /**
2049  *      sdev_evt_emit - emit a single SCSI device uevent
2050  *      @sdev: associated SCSI device
2051  *      @evt: event to emit
2052  *
2053  *      Send a single uevent (scsi_event) to the associated scsi_device.
2054  */
2055 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2056 {
2057         int idx = 0;
2058         char *envp[3];
2059
2060         switch (evt->evt_type) {
2061         case SDEV_EVT_MEDIA_CHANGE:
2062                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2063                 break;
2064
2065         default:
2066                 /* do nothing */
2067                 break;
2068         }
2069
2070         envp[idx++] = NULL;
2071
2072         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2073 }
2074
2075 /**
2076  *      sdev_evt_thread - send a uevent for each scsi event
2077  *      @work: work struct for scsi_device
2078  *
2079  *      Dispatch queued events to their associated scsi_device kobjects
2080  *      as uevents.
2081  */
2082 void scsi_evt_thread(struct work_struct *work)
2083 {
2084         struct scsi_device *sdev;
2085         LIST_HEAD(event_list);
2086
2087         sdev = container_of(work, struct scsi_device, event_work);
2088
2089         while (1) {
2090                 struct scsi_event *evt;
2091                 struct list_head *this, *tmp;
2092                 unsigned long flags;
2093
2094                 spin_lock_irqsave(&sdev->list_lock, flags);
2095                 list_splice_init(&sdev->event_list, &event_list);
2096                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2097
2098                 if (list_empty(&event_list))
2099                         break;
2100
2101                 list_for_each_safe(this, tmp, &event_list) {
2102                         evt = list_entry(this, struct scsi_event, node);
2103                         list_del(&evt->node);
2104                         scsi_evt_emit(sdev, evt);
2105                         kfree(evt);
2106                 }
2107         }
2108 }
2109
2110 /**
2111  *      sdev_evt_send - send asserted event to uevent thread
2112  *      @sdev: scsi_device event occurred on
2113  *      @evt: event to send
2114  *
2115  *      Assert scsi device event asynchronously.
2116  */
2117 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2118 {
2119         unsigned long flags;
2120
2121         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2122                 kfree(evt);
2123                 return;
2124         }
2125
2126         spin_lock_irqsave(&sdev->list_lock, flags);
2127         list_add_tail(&evt->node, &sdev->event_list);
2128         schedule_work(&sdev->event_work);
2129         spin_unlock_irqrestore(&sdev->list_lock, flags);
2130 }
2131 EXPORT_SYMBOL_GPL(sdev_evt_send);
2132
2133 /**
2134  *      sdev_evt_alloc - allocate a new scsi event
2135  *      @evt_type: type of event to allocate
2136  *      @gfpflags: GFP flags for allocation
2137  *
2138  *      Allocates and returns a new scsi_event.
2139  */
2140 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2141                                   gfp_t gfpflags)
2142 {
2143         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2144         if (!evt)
2145                 return NULL;
2146
2147         evt->evt_type = evt_type;
2148         INIT_LIST_HEAD(&evt->node);
2149
2150         /* evt_type-specific initialization, if any */
2151         switch (evt_type) {
2152         case SDEV_EVT_MEDIA_CHANGE:
2153         default:
2154                 /* do nothing */
2155                 break;
2156         }
2157
2158         return evt;
2159 }
2160 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2161
2162 /**
2163  *      sdev_evt_send_simple - send asserted event to uevent thread
2164  *      @sdev: scsi_device event occurred on
2165  *      @evt_type: type of event to send
2166  *      @gfpflags: GFP flags for allocation
2167  *
2168  *      Assert scsi device event asynchronously, given an event type.
2169  */
2170 void sdev_evt_send_simple(struct scsi_device *sdev,
2171                           enum scsi_device_event evt_type, gfp_t gfpflags)
2172 {
2173         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2174         if (!evt) {
2175                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2176                             evt_type);
2177                 return;
2178         }
2179
2180         sdev_evt_send(sdev, evt);
2181 }
2182 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2183
2184 /**
2185  *      scsi_device_quiesce - Block user issued commands.
2186  *      @sdev:  scsi device to quiesce.
2187  *
2188  *      This works by trying to transition to the SDEV_QUIESCE state
2189  *      (which must be a legal transition).  When the device is in this
2190  *      state, only special requests will be accepted, all others will
2191  *      be deferred.  Since special requests may also be requeued requests,
2192  *      a successful return doesn't guarantee the device will be 
2193  *      totally quiescent.
2194  *
2195  *      Must be called with user context, may sleep.
2196  *
2197  *      Returns zero if unsuccessful or an error if not.
2198  */
2199 int
2200 scsi_device_quiesce(struct scsi_device *sdev)
2201 {
2202         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2203         if (err)
2204                 return err;
2205
2206         scsi_run_queue(sdev->request_queue);
2207         while (sdev->device_busy) {
2208                 msleep_interruptible(200);
2209                 scsi_run_queue(sdev->request_queue);
2210         }
2211         return 0;
2212 }
2213 EXPORT_SYMBOL(scsi_device_quiesce);
2214
2215 /**
2216  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2217  *      @sdev:  scsi device to resume.
2218  *
2219  *      Moves the device from quiesced back to running and restarts the
2220  *      queues.
2221  *
2222  *      Must be called with user context, may sleep.
2223  */
2224 void
2225 scsi_device_resume(struct scsi_device *sdev)
2226 {
2227         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2228                 return;
2229         scsi_run_queue(sdev->request_queue);
2230 }
2231 EXPORT_SYMBOL(scsi_device_resume);
2232
2233 static void
2234 device_quiesce_fn(struct scsi_device *sdev, void *data)
2235 {
2236         scsi_device_quiesce(sdev);
2237 }
2238
2239 void
2240 scsi_target_quiesce(struct scsi_target *starget)
2241 {
2242         starget_for_each_device(starget, NULL, device_quiesce_fn);
2243 }
2244 EXPORT_SYMBOL(scsi_target_quiesce);
2245
2246 static void
2247 device_resume_fn(struct scsi_device *sdev, void *data)
2248 {
2249         scsi_device_resume(sdev);
2250 }
2251
2252 void
2253 scsi_target_resume(struct scsi_target *starget)
2254 {
2255         starget_for_each_device(starget, NULL, device_resume_fn);
2256 }
2257 EXPORT_SYMBOL(scsi_target_resume);
2258
2259 /**
2260  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2261  * @sdev:       device to block
2262  *
2263  * Block request made by scsi lld's to temporarily stop all
2264  * scsi commands on the specified device.  Called from interrupt
2265  * or normal process context.
2266  *
2267  * Returns zero if successful or error if not
2268  *
2269  * Notes:       
2270  *      This routine transitions the device to the SDEV_BLOCK state
2271  *      (which must be a legal transition).  When the device is in this
2272  *      state, all commands are deferred until the scsi lld reenables
2273  *      the device with scsi_device_unblock or device_block_tmo fires.
2274  *      This routine assumes the host_lock is held on entry.
2275  */
2276 int
2277 scsi_internal_device_block(struct scsi_device *sdev)
2278 {
2279         struct request_queue *q = sdev->request_queue;
2280         unsigned long flags;
2281         int err = 0;
2282
2283         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2284         if (err)
2285                 return err;
2286
2287         /* 
2288          * The device has transitioned to SDEV_BLOCK.  Stop the
2289          * block layer from calling the midlayer with this device's
2290          * request queue. 
2291          */
2292         spin_lock_irqsave(q->queue_lock, flags);
2293         blk_stop_queue(q);
2294         spin_unlock_irqrestore(q->queue_lock, flags);
2295
2296         return 0;
2297 }
2298 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2299  
2300 /**
2301  * scsi_internal_device_unblock - resume a device after a block request
2302  * @sdev:       device to resume
2303  *
2304  * Called by scsi lld's or the midlayer to restart the device queue
2305  * for the previously suspended scsi device.  Called from interrupt or
2306  * normal process context.
2307  *
2308  * Returns zero if successful or error if not.
2309  *
2310  * Notes:       
2311  *      This routine transitions the device to the SDEV_RUNNING state
2312  *      (which must be a legal transition) allowing the midlayer to
2313  *      goose the queue for this device.  This routine assumes the 
2314  *      host_lock is held upon entry.
2315  */
2316 int
2317 scsi_internal_device_unblock(struct scsi_device *sdev)
2318 {
2319         struct request_queue *q = sdev->request_queue; 
2320         int err;
2321         unsigned long flags;
2322         
2323         /* 
2324          * Try to transition the scsi device to SDEV_RUNNING
2325          * and goose the device queue if successful.  
2326          */
2327         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2328         if (err)
2329                 return err;
2330
2331         spin_lock_irqsave(q->queue_lock, flags);
2332         blk_start_queue(q);
2333         spin_unlock_irqrestore(q->queue_lock, flags);
2334
2335         return 0;
2336 }
2337 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2338
2339 static void
2340 device_block(struct scsi_device *sdev, void *data)
2341 {
2342         scsi_internal_device_block(sdev);
2343 }
2344
2345 static int
2346 target_block(struct device *dev, void *data)
2347 {
2348         if (scsi_is_target_device(dev))
2349                 starget_for_each_device(to_scsi_target(dev), NULL,
2350                                         device_block);
2351         return 0;
2352 }
2353
2354 void
2355 scsi_target_block(struct device *dev)
2356 {
2357         if (scsi_is_target_device(dev))
2358                 starget_for_each_device(to_scsi_target(dev), NULL,
2359                                         device_block);
2360         else
2361                 device_for_each_child(dev, NULL, target_block);
2362 }
2363 EXPORT_SYMBOL_GPL(scsi_target_block);
2364
2365 static void
2366 device_unblock(struct scsi_device *sdev, void *data)
2367 {
2368         scsi_internal_device_unblock(sdev);
2369 }
2370
2371 static int
2372 target_unblock(struct device *dev, void *data)
2373 {
2374         if (scsi_is_target_device(dev))
2375                 starget_for_each_device(to_scsi_target(dev), NULL,
2376                                         device_unblock);
2377         return 0;
2378 }
2379
2380 void
2381 scsi_target_unblock(struct device *dev)
2382 {
2383         if (scsi_is_target_device(dev))
2384                 starget_for_each_device(to_scsi_target(dev), NULL,
2385                                         device_unblock);
2386         else
2387                 device_for_each_child(dev, NULL, target_unblock);
2388 }
2389 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2390
2391 /**
2392  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2393  * @sgl:        scatter-gather list
2394  * @sg_count:   number of segments in sg
2395  * @offset:     offset in bytes into sg, on return offset into the mapped area
2396  * @len:        bytes to map, on return number of bytes mapped
2397  *
2398  * Returns virtual address of the start of the mapped page
2399  */
2400 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2401                           size_t *offset, size_t *len)
2402 {
2403         int i;
2404         size_t sg_len = 0, len_complete = 0;
2405         struct scatterlist *sg;
2406         struct page *page;
2407
2408         WARN_ON(!irqs_disabled());
2409
2410         for_each_sg(sgl, sg, sg_count, i) {
2411                 len_complete = sg_len; /* Complete sg-entries */
2412                 sg_len += sg->length;
2413                 if (sg_len > *offset)
2414                         break;
2415         }
2416
2417         if (unlikely(i == sg_count)) {
2418                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2419                         "elements %d\n",
2420                        __FUNCTION__, sg_len, *offset, sg_count);
2421                 WARN_ON(1);
2422                 return NULL;
2423         }
2424
2425         /* Offset starting from the beginning of first page in this sg-entry */
2426         *offset = *offset - len_complete + sg->offset;
2427
2428         /* Assumption: contiguous pages can be accessed as "page + i" */
2429         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2430         *offset &= ~PAGE_MASK;
2431
2432         /* Bytes in this sg-entry from *offset to the end of the page */
2433         sg_len = PAGE_SIZE - *offset;
2434         if (*len > sg_len)
2435                 *len = sg_len;
2436
2437         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2438 }
2439 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2440
2441 /**
2442  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2443  * @virt:       virtual address to be unmapped
2444  */
2445 void scsi_kunmap_atomic_sg(void *virt)
2446 {
2447         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2448 }
2449 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);