]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/qla2xxx/qla_sup.c
[SCSI] qla2xxx: fix printk format warnings
[linux-2.6-omap-h63xx.git] / drivers / scsi / qla2xxx / qla_sup.c
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12
13 static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
14 static void qla2x00_nv_deselect(scsi_qla_host_t *);
15 static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
16
17 /*
18  * NVRAM support routines
19  */
20
21 /**
22  * qla2x00_lock_nvram_access() -
23  * @ha: HA context
24  */
25 static void
26 qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
27 {
28         uint16_t data;
29         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
30
31         if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
32                 data = RD_REG_WORD(&reg->nvram);
33                 while (data & NVR_BUSY) {
34                         udelay(100);
35                         data = RD_REG_WORD(&reg->nvram);
36                 }
37
38                 /* Lock resource */
39                 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
40                 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
41                 udelay(5);
42                 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
43                 while ((data & BIT_0) == 0) {
44                         /* Lock failed */
45                         udelay(100);
46                         WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
47                         RD_REG_WORD(&reg->u.isp2300.host_semaphore);
48                         udelay(5);
49                         data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
50                 }
51         }
52 }
53
54 /**
55  * qla2x00_unlock_nvram_access() -
56  * @ha: HA context
57  */
58 static void
59 qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
60 {
61         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
62
63         if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
64                 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
65                 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66         }
67 }
68
69 /**
70  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
71  *      request routine to get the word from NVRAM.
72  * @ha: HA context
73  * @addr: Address in NVRAM to read
74  *
75  * Returns the word read from nvram @addr.
76  */
77 static uint16_t
78 qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
79 {
80         uint16_t        data;
81         uint32_t        nv_cmd;
82
83         nv_cmd = addr << 16;
84         nv_cmd |= NV_READ_OP;
85         data = qla2x00_nvram_request(ha, nv_cmd);
86
87         return (data);
88 }
89
90 /**
91  * qla2x00_write_nvram_word() - Write NVRAM data.
92  * @ha: HA context
93  * @addr: Address in NVRAM to write
94  * @data: word to program
95  */
96 static void
97 qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
98 {
99         int count;
100         uint16_t word;
101         uint32_t nv_cmd, wait_cnt;
102         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
103
104         qla2x00_nv_write(ha, NVR_DATA_OUT);
105         qla2x00_nv_write(ha, 0);
106         qla2x00_nv_write(ha, 0);
107
108         for (word = 0; word < 8; word++)
109                 qla2x00_nv_write(ha, NVR_DATA_OUT);
110
111         qla2x00_nv_deselect(ha);
112
113         /* Write data */
114         nv_cmd = (addr << 16) | NV_WRITE_OP;
115         nv_cmd |= data;
116         nv_cmd <<= 5;
117         for (count = 0; count < 27; count++) {
118                 if (nv_cmd & BIT_31)
119                         qla2x00_nv_write(ha, NVR_DATA_OUT);
120                 else
121                         qla2x00_nv_write(ha, 0);
122
123                 nv_cmd <<= 1;
124         }
125
126         qla2x00_nv_deselect(ha);
127
128         /* Wait for NVRAM to become ready */
129         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
131         wait_cnt = NVR_WAIT_CNT;
132         do {
133                 if (!--wait_cnt) {
134                         DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
135                             __func__, ha->host_no));
136                         break;
137                 }
138                 NVRAM_DELAY();
139                 word = RD_REG_WORD(&reg->nvram);
140         } while ((word & NVR_DATA_IN) == 0);
141
142         qla2x00_nv_deselect(ha);
143
144         /* Disable writes */
145         qla2x00_nv_write(ha, NVR_DATA_OUT);
146         for (count = 0; count < 10; count++)
147                 qla2x00_nv_write(ha, 0);
148
149         qla2x00_nv_deselect(ha);
150 }
151
152 static int
153 qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
154     uint32_t tmo)
155 {
156         int ret, count;
157         uint16_t word;
158         uint32_t nv_cmd;
159         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
160
161         ret = QLA_SUCCESS;
162
163         qla2x00_nv_write(ha, NVR_DATA_OUT);
164         qla2x00_nv_write(ha, 0);
165         qla2x00_nv_write(ha, 0);
166
167         for (word = 0; word < 8; word++)
168                 qla2x00_nv_write(ha, NVR_DATA_OUT);
169
170         qla2x00_nv_deselect(ha);
171
172         /* Write data */
173         nv_cmd = (addr << 16) | NV_WRITE_OP;
174         nv_cmd |= data;
175         nv_cmd <<= 5;
176         for (count = 0; count < 27; count++) {
177                 if (nv_cmd & BIT_31)
178                         qla2x00_nv_write(ha, NVR_DATA_OUT);
179                 else
180                         qla2x00_nv_write(ha, 0);
181
182                 nv_cmd <<= 1;
183         }
184
185         qla2x00_nv_deselect(ha);
186
187         /* Wait for NVRAM to become ready */
188         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
189         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
190         do {
191                 NVRAM_DELAY();
192                 word = RD_REG_WORD(&reg->nvram);
193                 if (!--tmo) {
194                         ret = QLA_FUNCTION_FAILED;
195                         break;
196                 }
197         } while ((word & NVR_DATA_IN) == 0);
198
199         qla2x00_nv_deselect(ha);
200
201         /* Disable writes */
202         qla2x00_nv_write(ha, NVR_DATA_OUT);
203         for (count = 0; count < 10; count++)
204                 qla2x00_nv_write(ha, 0);
205
206         qla2x00_nv_deselect(ha);
207
208         return ret;
209 }
210
211 /**
212  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
213  *      NVRAM.
214  * @ha: HA context
215  * @nv_cmd: NVRAM command
216  *
217  * Bit definitions for NVRAM command:
218  *
219  *      Bit 26     = start bit
220  *      Bit 25, 24 = opcode
221  *      Bit 23-16  = address
222  *      Bit 15-0   = write data
223  *
224  * Returns the word read from nvram @addr.
225  */
226 static uint16_t
227 qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
228 {
229         uint8_t         cnt;
230         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
231         uint16_t        data = 0;
232         uint16_t        reg_data;
233
234         /* Send command to NVRAM. */
235         nv_cmd <<= 5;
236         for (cnt = 0; cnt < 11; cnt++) {
237                 if (nv_cmd & BIT_31)
238                         qla2x00_nv_write(ha, NVR_DATA_OUT);
239                 else
240                         qla2x00_nv_write(ha, 0);
241                 nv_cmd <<= 1;
242         }
243
244         /* Read data from NVRAM. */
245         for (cnt = 0; cnt < 16; cnt++) {
246                 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
247                 RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
248                 NVRAM_DELAY();
249                 data <<= 1;
250                 reg_data = RD_REG_WORD(&reg->nvram);
251                 if (reg_data & NVR_DATA_IN)
252                         data |= BIT_0;
253                 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
254                 RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
255                 NVRAM_DELAY();
256         }
257
258         /* Deselect chip. */
259         WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
260         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
261         NVRAM_DELAY();
262
263         return (data);
264 }
265
266 /**
267  * qla2x00_nv_write() - Clean NVRAM operations.
268  * @ha: HA context
269  */
270 static void
271 qla2x00_nv_deselect(scsi_qla_host_t *ha)
272 {
273         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
274
275         WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
276         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
277         NVRAM_DELAY();
278 }
279
280 /**
281  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
282  * @ha: HA context
283  * @data: Serial interface selector
284  */
285 static void
286 qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
287 {
288         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
289
290         WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
291         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
292         NVRAM_DELAY();
293         WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
294             NVR_WRT_ENABLE);
295         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
296         NVRAM_DELAY();
297         WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
298         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
299         NVRAM_DELAY();
300 }
301
302 /**
303  * qla2x00_clear_nvram_protection() -
304  * @ha: HA context
305  */
306 static int
307 qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
308 {
309         int ret, stat;
310         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
311         uint32_t word, wait_cnt;
312         uint16_t wprot, wprot_old;
313
314         /* Clear NVRAM write protection. */
315         ret = QLA_FUNCTION_FAILED;
316
317         wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318         stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319             __constant_cpu_to_le16(0x1234), 100000);
320         wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321         if (stat != QLA_SUCCESS || wprot != 0x1234) {
322                 /* Write enable. */
323                 qla2x00_nv_write(ha, NVR_DATA_OUT);
324                 qla2x00_nv_write(ha, 0);
325                 qla2x00_nv_write(ha, 0);
326                 for (word = 0; word < 8; word++)
327                         qla2x00_nv_write(ha, NVR_DATA_OUT);
328
329                 qla2x00_nv_deselect(ha);
330
331                 /* Enable protection register. */
332                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333                 qla2x00_nv_write(ha, NVR_PR_ENABLE);
334                 qla2x00_nv_write(ha, NVR_PR_ENABLE);
335                 for (word = 0; word < 8; word++)
336                         qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337
338                 qla2x00_nv_deselect(ha);
339
340                 /* Clear protection register (ffff is cleared). */
341                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344                 for (word = 0; word < 8; word++)
345                         qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346
347                 qla2x00_nv_deselect(ha);
348
349                 /* Wait for NVRAM to become ready. */
350                 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351                 RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
352                 wait_cnt = NVR_WAIT_CNT;
353                 do {
354                         if (!--wait_cnt) {
355                                 DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
356                                     "ready...\n", __func__,
357                                     ha->host_no));
358                                 break;
359                         }
360                         NVRAM_DELAY();
361                         word = RD_REG_WORD(&reg->nvram);
362                 } while ((word & NVR_DATA_IN) == 0);
363
364                 if (wait_cnt)
365                         ret = QLA_SUCCESS;
366         } else
367                 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368
369         return ret;
370 }
371
372 static void
373 qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
374 {
375         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
376         uint32_t word, wait_cnt;
377
378         if (stat != QLA_SUCCESS)
379                 return;
380
381         /* Set NVRAM write protection. */
382         /* Write enable. */
383         qla2x00_nv_write(ha, NVR_DATA_OUT);
384         qla2x00_nv_write(ha, 0);
385         qla2x00_nv_write(ha, 0);
386         for (word = 0; word < 8; word++)
387                 qla2x00_nv_write(ha, NVR_DATA_OUT);
388
389         qla2x00_nv_deselect(ha);
390
391         /* Enable protection register. */
392         qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393         qla2x00_nv_write(ha, NVR_PR_ENABLE);
394         qla2x00_nv_write(ha, NVR_PR_ENABLE);
395         for (word = 0; word < 8; word++)
396                 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397
398         qla2x00_nv_deselect(ha);
399
400         /* Enable protection register. */
401         qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402         qla2x00_nv_write(ha, NVR_PR_ENABLE);
403         qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404         for (word = 0; word < 8; word++)
405                 qla2x00_nv_write(ha, NVR_PR_ENABLE);
406
407         qla2x00_nv_deselect(ha);
408
409         /* Wait for NVRAM to become ready. */
410         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
412         wait_cnt = NVR_WAIT_CNT;
413         do {
414                 if (!--wait_cnt) {
415                         DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
416                             __func__, ha->host_no));
417                         break;
418                 }
419                 NVRAM_DELAY();
420                 word = RD_REG_WORD(&reg->nvram);
421         } while ((word & NVR_DATA_IN) == 0);
422 }
423
424
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428
429 #define OPTROM_BURST_SIZE       0x1000
430 #define OPTROM_BURST_DWORDS     (OPTROM_BURST_SIZE / 4)
431
432 static inline uint32_t
433 flash_conf_to_access_addr(uint32_t faddr)
434 {
435         return FARX_ACCESS_FLASH_CONF | faddr;
436 }
437
438 static inline uint32_t
439 flash_data_to_access_addr(uint32_t faddr)
440 {
441         return FARX_ACCESS_FLASH_DATA | faddr;
442 }
443
444 static inline uint32_t
445 nvram_conf_to_access_addr(uint32_t naddr)
446 {
447         return FARX_ACCESS_NVRAM_CONF | naddr;
448 }
449
450 static inline uint32_t
451 nvram_data_to_access_addr(uint32_t naddr)
452 {
453         return FARX_ACCESS_NVRAM_DATA | naddr;
454 }
455
456 static uint32_t
457 qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
458 {
459         int rval;
460         uint32_t cnt, data;
461         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
462
463         WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
464         /* Wait for READ cycle to complete. */
465         rval = QLA_SUCCESS;
466         for (cnt = 3000;
467             (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
468             rval == QLA_SUCCESS; cnt--) {
469                 if (cnt)
470                         udelay(10);
471                 else
472                         rval = QLA_FUNCTION_TIMEOUT;
473                 cond_resched();
474         }
475
476         /* TODO: What happens if we time out? */
477         data = 0xDEADDEAD;
478         if (rval == QLA_SUCCESS)
479                 data = RD_REG_DWORD(&reg->flash_data);
480
481         return data;
482 }
483
484 uint32_t *
485 qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
486     uint32_t dwords)
487 {
488         uint32_t i;
489
490         /* Dword reads to flash. */
491         for (i = 0; i < dwords; i++, faddr++)
492                 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
493                     flash_data_to_access_addr(faddr)));
494
495         return dwptr;
496 }
497
498 static int
499 qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
500 {
501         int rval;
502         uint32_t cnt;
503         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
504
505         WRT_REG_DWORD(&reg->flash_data, data);
506         RD_REG_DWORD(&reg->flash_data);         /* PCI Posting. */
507         WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
508         /* Wait for Write cycle to complete. */
509         rval = QLA_SUCCESS;
510         for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
511             rval == QLA_SUCCESS; cnt--) {
512                 if (cnt)
513                         udelay(10);
514                 else
515                         rval = QLA_FUNCTION_TIMEOUT;
516                 cond_resched();
517         }
518         return rval;
519 }
520
521 static void
522 qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
523     uint8_t *flash_id)
524 {
525         uint32_t ids;
526
527         ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
528         *man_id = LSB(ids);
529         *flash_id = MSB(ids);
530
531         /* Check if man_id and flash_id are valid. */
532         if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
533                 /* Read information using 0x9f opcode
534                  * Device ID, Mfg ID would be read in the format:
535                  *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
536                  * Example: ATMEL 0x00 01 45 1F
537                  * Extract MFG and Dev ID from last two bytes.
538                  */
539                 ids = qla24xx_read_flash_dword(ha,
540                     flash_data_to_access_addr(0xd009f));
541                 *man_id = LSB(ids);
542                 *flash_id = MSB(ids);
543         }
544 }
545
546 static int
547 qla2xxx_find_flt_start(scsi_qla_host_t *ha, uint32_t *start)
548 {
549         const char *loc, *locations[] = { "DEF", "PCI" };
550         uint32_t pcihdr, pcids;
551         uint32_t *dcode;
552         uint8_t *buf, *bcode, last_image;
553         uint16_t cnt, chksum, *wptr;
554         struct qla_flt_location *fltl;
555
556         /*
557          * FLT-location structure resides after the last PCI region.
558          */
559
560         /* Begin with sane defaults. */
561         loc = locations[0];
562         *start = IS_QLA24XX_TYPE(ha) ? FA_FLASH_LAYOUT_ADDR_24:
563             FA_FLASH_LAYOUT_ADDR;
564
565         /* Begin with first PCI expansion ROM header. */
566         buf = (uint8_t *)ha->request_ring;
567         dcode = (uint32_t *)ha->request_ring;
568         pcihdr = 0;
569         last_image = 1;
570         do {
571                 /* Verify PCI expansion ROM header. */
572                 qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
573                 bcode = buf + (pcihdr % 4);
574                 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
575                         goto end;
576
577                 /* Locate PCI data structure. */
578                 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
579                 qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
580                 bcode = buf + (pcihdr % 4);
581
582                 /* Validate signature of PCI data structure. */
583                 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
584                     bcode[0x2] != 'I' || bcode[0x3] != 'R')
585                         goto end;
586
587                 last_image = bcode[0x15] & BIT_7;
588
589                 /* Locate next PCI expansion ROM. */
590                 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
591         } while (!last_image);
592
593         /* Now verify FLT-location structure. */
594         fltl = (struct qla_flt_location *)ha->request_ring;
595         qla24xx_read_flash_data(ha, dcode, pcihdr >> 2,
596             sizeof(struct qla_flt_location) >> 2);
597         if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
598             fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
599                 goto end;
600
601         wptr = (uint16_t *)ha->request_ring;
602         cnt = sizeof(struct qla_flt_location) >> 1;
603         for (chksum = 0; cnt; cnt--)
604                 chksum += le16_to_cpu(*wptr++);
605         if (chksum) {
606                 qla_printk(KERN_ERR, ha,
607                     "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
608                 qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
609                 return QLA_FUNCTION_FAILED;
610         }
611
612         /* Good data.  Use specified location. */
613         loc = locations[1];
614         *start = le16_to_cpu(fltl->start_hi) << 16 |
615             le16_to_cpu(fltl->start_lo);
616 end:
617         DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
618         return QLA_SUCCESS;
619 }
620
621 static void
622 qla2xxx_get_flt_info(scsi_qla_host_t *ha, uint32_t flt_addr)
623 {
624         const char *loc, *locations[] = { "DEF", "FLT" };
625         uint16_t *wptr;
626         uint16_t cnt, chksum;
627         uint32_t start;
628         struct qla_flt_header *flt;
629         struct qla_flt_region *region;
630
631         ha->flt_region_flt = flt_addr;
632         wptr = (uint16_t *)ha->request_ring;
633         flt = (struct qla_flt_header *)ha->request_ring;
634         region = (struct qla_flt_region *)&flt[1];
635         ha->isp_ops->read_optrom(ha, (uint8_t *)ha->request_ring,
636             flt_addr << 2, OPTROM_BURST_SIZE);
637         if (*wptr == __constant_cpu_to_le16(0xffff))
638                 goto no_flash_data;
639         if (flt->version != __constant_cpu_to_le16(1)) {
640                 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
641                     "version=0x%x length=0x%x checksum=0x%x.\n",
642                     le16_to_cpu(flt->version), le16_to_cpu(flt->length),
643                     le16_to_cpu(flt->checksum)));
644                 goto no_flash_data;
645         }
646
647         cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
648         for (chksum = 0; cnt; cnt--)
649                 chksum += le16_to_cpu(*wptr++);
650         if (chksum) {
651                 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
652                     "version=0x%x length=0x%x checksum=0x%x.\n",
653                     le16_to_cpu(flt->version), le16_to_cpu(flt->length),
654                     chksum));
655                 goto no_flash_data;
656         }
657
658         loc = locations[1];
659         cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
660         for ( ; cnt; cnt--, region++) {
661                 /* Store addresses as DWORD offsets. */
662                 start = le32_to_cpu(region->start) >> 2;
663
664                 DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
665                     "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
666                     le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
667
668                 switch (le32_to_cpu(region->code)) {
669                 case FLT_REG_FW:
670                         ha->flt_region_fw = start;
671                         break;
672                 case FLT_REG_BOOT_CODE:
673                         ha->flt_region_boot = start;
674                         break;
675                 case FLT_REG_VPD_0:
676                         ha->flt_region_vpd_nvram = start;
677                         break;
678                 case FLT_REG_FDT:
679                         ha->flt_region_fdt = start;
680                         break;
681                 case FLT_REG_HW_EVENT_0:
682                         if (!PCI_FUNC(ha->pdev->devfn))
683                                 ha->flt_region_hw_event = start;
684                         break;
685                 case FLT_REG_HW_EVENT_1:
686                         if (PCI_FUNC(ha->pdev->devfn))
687                                 ha->flt_region_hw_event = start;
688                         break;
689                 case FLT_REG_NPIV_CONF_0:
690                         if (!PCI_FUNC(ha->pdev->devfn))
691                                 ha->flt_region_npiv_conf = start;
692                         break;
693                 case FLT_REG_NPIV_CONF_1:
694                         if (PCI_FUNC(ha->pdev->devfn))
695                                 ha->flt_region_npiv_conf = start;
696                         break;
697                 }
698         }
699         goto done;
700
701 no_flash_data:
702         /* Use hardcoded defaults. */
703         loc = locations[0];
704         ha->flt_region_fw = FA_RISC_CODE_ADDR;
705         ha->flt_region_boot = FA_BOOT_CODE_ADDR;
706         ha->flt_region_vpd_nvram = FA_VPD_NVRAM_ADDR;
707         ha->flt_region_fdt = IS_QLA24XX_TYPE(ha) ? FA_FLASH_DESCR_ADDR_24:
708             FA_FLASH_DESCR_ADDR;
709         ha->flt_region_hw_event = !PCI_FUNC(ha->pdev->devfn) ?
710             FA_HW_EVENT0_ADDR: FA_HW_EVENT1_ADDR;
711         ha->flt_region_npiv_conf = !PCI_FUNC(ha->pdev->devfn) ?
712             (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF0_ADDR_24: FA_NPIV_CONF0_ADDR):
713             (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF1_ADDR_24: FA_NPIV_CONF1_ADDR);
714 done:
715         DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
716             "vpd_nvram=0x%x fdt=0x%x flt=0x%x hwe=0x%x npiv=0x%x.\n", loc,
717             ha->flt_region_boot, ha->flt_region_fw, ha->flt_region_vpd_nvram,
718             ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_hw_event,
719             ha->flt_region_npiv_conf));
720 }
721
722 static void
723 qla2xxx_get_fdt_info(scsi_qla_host_t *ha)
724 {
725 #define FLASH_BLK_SIZE_32K      0x8000
726 #define FLASH_BLK_SIZE_64K      0x10000
727         const char *loc, *locations[] = { "MID", "FDT" };
728         uint16_t cnt, chksum;
729         uint16_t *wptr;
730         struct qla_fdt_layout *fdt;
731         uint8_t man_id, flash_id;
732         uint16_t mid, fid;
733
734         wptr = (uint16_t *)ha->request_ring;
735         fdt = (struct qla_fdt_layout *)ha->request_ring;
736         ha->isp_ops->read_optrom(ha, (uint8_t *)ha->request_ring,
737             ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
738         if (*wptr == __constant_cpu_to_le16(0xffff))
739                 goto no_flash_data;
740         if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
741             fdt->sig[3] != 'D')
742                 goto no_flash_data;
743
744         for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
745             cnt++)
746                 chksum += le16_to_cpu(*wptr++);
747         if (chksum) {
748                 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
749                     "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
750                     le16_to_cpu(fdt->version)));
751                 DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
752                 goto no_flash_data;
753         }
754
755         loc = locations[1];
756         mid = le16_to_cpu(fdt->man_id);
757         fid = le16_to_cpu(fdt->id);
758         ha->fdt_odd_index = mid == 0x1f;
759         ha->fdt_wrt_disable = fdt->wrt_disable_bits;
760         ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0300 | fdt->erase_cmd);
761         ha->fdt_block_size = le32_to_cpu(fdt->block_size);
762         if (fdt->unprotect_sec_cmd) {
763                 ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0300 |
764                     fdt->unprotect_sec_cmd);
765                 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
766                     flash_conf_to_access_addr(0x0300 | fdt->protect_sec_cmd):
767                     flash_conf_to_access_addr(0x0336);
768         }
769         goto done;
770 no_flash_data:
771         loc = locations[0];
772         qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
773         mid = man_id;
774         fid = flash_id;
775         ha->fdt_wrt_disable = 0x9c;
776         ha->fdt_erase_cmd = flash_conf_to_access_addr(0x03d8);
777         switch (man_id) {
778         case 0xbf: /* STT flash. */
779                 if (flash_id == 0x8e)
780                         ha->fdt_block_size = FLASH_BLK_SIZE_64K;
781                 else
782                         ha->fdt_block_size = FLASH_BLK_SIZE_32K;
783
784                 if (flash_id == 0x80)
785                         ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0352);
786                 break;
787         case 0x13: /* ST M25P80. */
788                 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
789                 break;
790         case 0x1f: /* Atmel 26DF081A. */
791                 ha->fdt_odd_index = 1;
792                 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
793                 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0320);
794                 ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0339);
795                 ha->fdt_protect_sec_cmd = flash_conf_to_access_addr(0x0336);
796                 break;
797         default:
798                 /* Default to 64 kb sector size. */
799                 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
800                 break;
801         }
802 done:
803         DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
804             "pro=%x upro=%x idx=%d wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
805             ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
806             ha->fdt_unprotect_sec_cmd, ha->fdt_odd_index, ha->fdt_wrt_disable,
807             ha->fdt_block_size));
808 }
809
810 int
811 qla2xxx_get_flash_info(scsi_qla_host_t *ha)
812 {
813         int ret;
814         uint32_t flt_addr;
815
816         if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
817                 return QLA_SUCCESS;
818
819         ret = qla2xxx_find_flt_start(ha, &flt_addr);
820         if (ret != QLA_SUCCESS)
821                 return ret;
822
823         qla2xxx_get_flt_info(ha, flt_addr);
824         qla2xxx_get_fdt_info(ha);
825
826         return QLA_SUCCESS;
827 }
828
829 void
830 qla2xxx_flash_npiv_conf(scsi_qla_host_t *ha)
831 {
832 #define NPIV_CONFIG_SIZE        (16*1024)
833         void *data;
834         uint16_t *wptr;
835         uint16_t cnt, chksum;
836         struct qla_npiv_header hdr;
837         struct qla_npiv_entry *entry;
838
839         if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
840                 return;
841
842         ha->isp_ops->read_optrom(ha, (uint8_t *)&hdr,
843             ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
844         if (hdr.version == __constant_cpu_to_le16(0xffff))
845                 return;
846         if (hdr.version != __constant_cpu_to_le16(1)) {
847                 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
848                     "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
849                     le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
850                     le16_to_cpu(hdr.checksum)));
851                 return;
852         }
853
854         data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
855         if (!data) {
856                 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
857                     "allocate memory.\n"));
858                 return;
859         }
860
861         ha->isp_ops->read_optrom(ha, (uint8_t *)data,
862             ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
863
864         cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
865             sizeof(struct qla_npiv_entry)) >> 1;
866         for (wptr = data, chksum = 0; cnt; cnt--)
867                 chksum += le16_to_cpu(*wptr++);
868         if (chksum) {
869                 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
870                     "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
871                     le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
872                     chksum));
873                 goto done;
874         }
875
876         entry = data + sizeof(struct qla_npiv_header);
877         cnt = le16_to_cpu(hdr.entries);
878         for ( ; cnt; cnt--, entry++) {
879                 uint16_t flags;
880                 struct fc_vport_identifiers vid;
881                 struct fc_vport *vport;
882
883                 flags = le16_to_cpu(entry->flags);
884                 if (flags == 0xffff)
885                         continue;
886                 if ((flags & BIT_0) == 0)
887                         continue;
888
889                 memset(&vid, 0, sizeof(vid));
890                 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
891                 vid.vport_type = FC_PORTTYPE_NPIV;
892                 vid.disable = false;
893                 vid.port_name = wwn_to_u64(entry->port_name);
894                 vid.node_name = wwn_to_u64(entry->node_name);
895
896                 DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
897                     "wwnn=%llx vf_id=0x%x qos=0x%x.\n", cnt,
898                     (unsigned long long)vid.port_name,
899                     (unsigned long long)vid.node_name,
900                     le16_to_cpu(entry->vf_id), le16_to_cpu(entry->qos)));
901
902                 vport = fc_vport_create(ha->host, 0, &vid);
903                 if (!vport)
904                         qla_printk(KERN_INFO, ha, "NPIV-Config: Failed to "
905                             "create vport [%02x]: wwpn=%llx wwnn=%llx.\n", cnt,
906                             (unsigned long long)vid.port_name,
907                             (unsigned long long)vid.node_name);
908         }
909 done:
910         kfree(data);
911 }
912
913 static void
914 qla24xx_unprotect_flash(scsi_qla_host_t *ha)
915 {
916         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
917
918         /* Enable flash write. */
919         WRT_REG_DWORD(&reg->ctrl_status,
920             RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
921         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
922
923         if (!ha->fdt_wrt_disable)
924                 return;
925
926         /* Disable flash write-protection. */
927         qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
928         /* Some flash parts need an additional zero-write to clear bits.*/
929         qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
930 }
931
932 static void
933 qla24xx_protect_flash(scsi_qla_host_t *ha)
934 {
935         uint32_t cnt;
936         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
937
938         if (!ha->fdt_wrt_disable)
939                 goto skip_wrt_protect;
940
941         /* Enable flash write-protection and wait for completion. */
942         qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101),
943             ha->fdt_wrt_disable);
944         for (cnt = 300; cnt &&
945             qla24xx_read_flash_dword(ha,
946                     flash_conf_to_access_addr(0x005)) & BIT_0;
947             cnt--) {
948                 udelay(10);
949         }
950
951 skip_wrt_protect:
952         /* Disable flash write. */
953         WRT_REG_DWORD(&reg->ctrl_status,
954             RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
955         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
956 }
957
958 static int
959 qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
960     uint32_t dwords)
961 {
962         int ret;
963         uint32_t liter, miter;
964         uint32_t sec_mask, rest_addr;
965         uint32_t fdata, findex;
966         dma_addr_t optrom_dma;
967         void *optrom = NULL;
968         uint32_t *s, *d;
969
970         ret = QLA_SUCCESS;
971
972         /* Prepare burst-capable write on supported ISPs. */
973         if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
974             dwords > OPTROM_BURST_DWORDS) {
975                 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
976                     &optrom_dma, GFP_KERNEL);
977                 if (!optrom) {
978                         qla_printk(KERN_DEBUG, ha,
979                             "Unable to allocate memory for optrom burst write "
980                             "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
981                 }
982         }
983
984         rest_addr = (ha->fdt_block_size >> 2) - 1;
985         sec_mask = 0x80000 - (ha->fdt_block_size >> 2);
986
987         qla24xx_unprotect_flash(ha);
988
989         for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
990                 if (ha->fdt_odd_index) {
991                         findex = faddr << 2;
992                         fdata = findex & sec_mask;
993                 } else {
994                         findex = faddr;
995                         fdata = (findex & sec_mask) << 2;
996                 }
997
998                 /* Are we at the beginning of a sector? */
999                 if ((findex & rest_addr) == 0) {
1000                         /* Do sector unprotect. */
1001                         if (ha->fdt_unprotect_sec_cmd)
1002                                 qla24xx_write_flash_dword(ha,
1003                                     ha->fdt_unprotect_sec_cmd,
1004                                     (fdata & 0xff00) | ((fdata << 16) &
1005                                     0xff0000) | ((fdata >> 16) & 0xff));
1006                         ret = qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1007                             (fdata & 0xff00) |((fdata << 16) &
1008                             0xff0000) | ((fdata >> 16) & 0xff));
1009                         if (ret != QLA_SUCCESS) {
1010                                 DEBUG9(printk("%s(%ld) Unable to flash "
1011                                     "sector: address=%x.\n", __func__,
1012                                     ha->host_no, faddr));
1013                                 break;
1014                         }
1015                 }
1016
1017                 /* Go with burst-write. */
1018                 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1019                         /* Copy data to DMA'ble buffer. */
1020                         for (miter = 0, s = optrom, d = dwptr;
1021                             miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
1022                                 *s = cpu_to_le32(*d);
1023
1024                         ret = qla2x00_load_ram(ha, optrom_dma,
1025                             flash_data_to_access_addr(faddr),
1026                             OPTROM_BURST_DWORDS);
1027                         if (ret != QLA_SUCCESS) {
1028                                 qla_printk(KERN_WARNING, ha,
1029                                     "Unable to burst-write optrom segment "
1030                                     "(%x/%x/%llx).\n", ret,
1031                                     flash_data_to_access_addr(faddr),
1032                                     (unsigned long long)optrom_dma);
1033                                 qla_printk(KERN_WARNING, ha,
1034                                     "Reverting to slow-write.\n");
1035
1036                                 dma_free_coherent(&ha->pdev->dev,
1037                                     OPTROM_BURST_SIZE, optrom, optrom_dma);
1038                                 optrom = NULL;
1039                         } else {
1040                                 liter += OPTROM_BURST_DWORDS - 1;
1041                                 faddr += OPTROM_BURST_DWORDS - 1;
1042                                 dwptr += OPTROM_BURST_DWORDS - 1;
1043                                 continue;
1044                         }
1045                 }
1046
1047                 ret = qla24xx_write_flash_dword(ha,
1048                     flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
1049                 if (ret != QLA_SUCCESS) {
1050                         DEBUG9(printk("%s(%ld) Unable to program flash "
1051                             "address=%x data=%x.\n", __func__,
1052                             ha->host_no, faddr, *dwptr));
1053                         break;
1054                 }
1055
1056                 /* Do sector protect. */
1057                 if (ha->fdt_unprotect_sec_cmd &&
1058                     ((faddr & rest_addr) == rest_addr))
1059                         qla24xx_write_flash_dword(ha,
1060                             ha->fdt_protect_sec_cmd,
1061                             (fdata & 0xff00) | ((fdata << 16) &
1062                             0xff0000) | ((fdata >> 16) & 0xff));
1063         }
1064
1065         qla24xx_protect_flash(ha);
1066
1067         if (optrom)
1068                 dma_free_coherent(&ha->pdev->dev,
1069                     OPTROM_BURST_SIZE, optrom, optrom_dma);
1070
1071         return ret;
1072 }
1073
1074 uint8_t *
1075 qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1076     uint32_t bytes)
1077 {
1078         uint32_t i;
1079         uint16_t *wptr;
1080
1081         /* Word reads to NVRAM via registers. */
1082         wptr = (uint16_t *)buf;
1083         qla2x00_lock_nvram_access(ha);
1084         for (i = 0; i < bytes >> 1; i++, naddr++)
1085                 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1086                     naddr));
1087         qla2x00_unlock_nvram_access(ha);
1088
1089         return buf;
1090 }
1091
1092 uint8_t *
1093 qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1094     uint32_t bytes)
1095 {
1096         uint32_t i;
1097         uint32_t *dwptr;
1098
1099         /* Dword reads to flash. */
1100         dwptr = (uint32_t *)buf;
1101         for (i = 0; i < bytes >> 2; i++, naddr++)
1102                 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1103                     nvram_data_to_access_addr(naddr)));
1104
1105         return buf;
1106 }
1107
1108 int
1109 qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1110     uint32_t bytes)
1111 {
1112         int ret, stat;
1113         uint32_t i;
1114         uint16_t *wptr;
1115         unsigned long flags;
1116
1117         ret = QLA_SUCCESS;
1118
1119         spin_lock_irqsave(&ha->hardware_lock, flags);
1120         qla2x00_lock_nvram_access(ha);
1121
1122         /* Disable NVRAM write-protection. */
1123         stat = qla2x00_clear_nvram_protection(ha);
1124
1125         wptr = (uint16_t *)buf;
1126         for (i = 0; i < bytes >> 1; i++, naddr++) {
1127                 qla2x00_write_nvram_word(ha, naddr,
1128                     cpu_to_le16(*wptr));
1129                 wptr++;
1130         }
1131
1132         /* Enable NVRAM write-protection. */
1133         qla2x00_set_nvram_protection(ha, stat);
1134
1135         qla2x00_unlock_nvram_access(ha);
1136         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1137
1138         return ret;
1139 }
1140
1141 int
1142 qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1143     uint32_t bytes)
1144 {
1145         int ret;
1146         uint32_t i;
1147         uint32_t *dwptr;
1148         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1149
1150         ret = QLA_SUCCESS;
1151
1152         /* Enable flash write. */
1153         WRT_REG_DWORD(&reg->ctrl_status,
1154             RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1155         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
1156
1157         /* Disable NVRAM write-protection. */
1158         qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1159             0);
1160         qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1161             0);
1162
1163         /* Dword writes to flash. */
1164         dwptr = (uint32_t *)buf;
1165         for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1166                 ret = qla24xx_write_flash_dword(ha,
1167                     nvram_data_to_access_addr(naddr),
1168                     cpu_to_le32(*dwptr));
1169                 if (ret != QLA_SUCCESS) {
1170                         DEBUG9(printk("%s(%ld) Unable to program "
1171                             "nvram address=%x data=%x.\n", __func__,
1172                             ha->host_no, naddr, *dwptr));
1173                         break;
1174                 }
1175         }
1176
1177         /* Enable NVRAM write-protection. */
1178         qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1179             0x8c);
1180
1181         /* Disable flash write. */
1182         WRT_REG_DWORD(&reg->ctrl_status,
1183             RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1184         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
1185
1186         return ret;
1187 }
1188
1189 uint8_t *
1190 qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1191     uint32_t bytes)
1192 {
1193         uint32_t i;
1194         uint32_t *dwptr;
1195
1196         /* Dword reads to flash. */
1197         dwptr = (uint32_t *)buf;
1198         for (i = 0; i < bytes >> 2; i++, naddr++)
1199                 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1200                     flash_data_to_access_addr(ha->flt_region_vpd_nvram |
1201                     naddr)));
1202
1203         return buf;
1204 }
1205
1206 int
1207 qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1208     uint32_t bytes)
1209 {
1210 #define RMW_BUFFER_SIZE (64 * 1024)
1211         uint8_t *dbuf;
1212
1213         dbuf = vmalloc(RMW_BUFFER_SIZE);
1214         if (!dbuf)
1215                 return QLA_MEMORY_ALLOC_FAILED;
1216         ha->isp_ops->read_optrom(ha, dbuf, ha->flt_region_vpd_nvram << 2,
1217             RMW_BUFFER_SIZE);
1218         memcpy(dbuf + (naddr << 2), buf, bytes);
1219         ha->isp_ops->write_optrom(ha, dbuf, ha->flt_region_vpd_nvram << 2,
1220             RMW_BUFFER_SIZE);
1221         vfree(dbuf);
1222
1223         return QLA_SUCCESS;
1224 }
1225
1226 static inline void
1227 qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1228 {
1229         if (IS_QLA2322(ha)) {
1230                 /* Flip all colors. */
1231                 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1232                         /* Turn off. */
1233                         ha->beacon_color_state = 0;
1234                         *pflags = GPIO_LED_ALL_OFF;
1235                 } else {
1236                         /* Turn on. */
1237                         ha->beacon_color_state = QLA_LED_ALL_ON;
1238                         *pflags = GPIO_LED_RGA_ON;
1239                 }
1240         } else {
1241                 /* Flip green led only. */
1242                 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1243                         /* Turn off. */
1244                         ha->beacon_color_state = 0;
1245                         *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1246                 } else {
1247                         /* Turn on. */
1248                         ha->beacon_color_state = QLA_LED_GRN_ON;
1249                         *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1250                 }
1251         }
1252 }
1253
1254 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1255
1256 void
1257 qla2x00_beacon_blink(struct scsi_qla_host *ha)
1258 {
1259         uint16_t gpio_enable;
1260         uint16_t gpio_data;
1261         uint16_t led_color = 0;
1262         unsigned long flags;
1263         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1264
1265         spin_lock_irqsave(&ha->hardware_lock, flags);
1266
1267         /* Save the Original GPIOE. */
1268         if (ha->pio_address) {
1269                 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1270                 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1271         } else {
1272                 gpio_enable = RD_REG_WORD(&reg->gpioe);
1273                 gpio_data = RD_REG_WORD(&reg->gpiod);
1274         }
1275
1276         /* Set the modified gpio_enable values */
1277         gpio_enable |= GPIO_LED_MASK;
1278
1279         if (ha->pio_address) {
1280                 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1281         } else {
1282                 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1283                 RD_REG_WORD(&reg->gpioe);
1284         }
1285
1286         qla2x00_flip_colors(ha, &led_color);
1287
1288         /* Clear out any previously set LED color. */
1289         gpio_data &= ~GPIO_LED_MASK;
1290
1291         /* Set the new input LED color to GPIOD. */
1292         gpio_data |= led_color;
1293
1294         /* Set the modified gpio_data values */
1295         if (ha->pio_address) {
1296                 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1297         } else {
1298                 WRT_REG_WORD(&reg->gpiod, gpio_data);
1299                 RD_REG_WORD(&reg->gpiod);
1300         }
1301
1302         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1303 }
1304
1305 int
1306 qla2x00_beacon_on(struct scsi_qla_host *ha)
1307 {
1308         uint16_t gpio_enable;
1309         uint16_t gpio_data;
1310         unsigned long flags;
1311         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1312
1313         ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1314         ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1315
1316         if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1317                 qla_printk(KERN_WARNING, ha,
1318                     "Unable to update fw options (beacon on).\n");
1319                 return QLA_FUNCTION_FAILED;
1320         }
1321
1322         /* Turn off LEDs. */
1323         spin_lock_irqsave(&ha->hardware_lock, flags);
1324         if (ha->pio_address) {
1325                 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1326                 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1327         } else {
1328                 gpio_enable = RD_REG_WORD(&reg->gpioe);
1329                 gpio_data = RD_REG_WORD(&reg->gpiod);
1330         }
1331         gpio_enable |= GPIO_LED_MASK;
1332
1333         /* Set the modified gpio_enable values. */
1334         if (ha->pio_address) {
1335                 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1336         } else {
1337                 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1338                 RD_REG_WORD(&reg->gpioe);
1339         }
1340
1341         /* Clear out previously set LED colour. */
1342         gpio_data &= ~GPIO_LED_MASK;
1343         if (ha->pio_address) {
1344                 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1345         } else {
1346                 WRT_REG_WORD(&reg->gpiod, gpio_data);
1347                 RD_REG_WORD(&reg->gpiod);
1348         }
1349         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1350
1351         /*
1352          * Let the per HBA timer kick off the blinking process based on
1353          * the following flags. No need to do anything else now.
1354          */
1355         ha->beacon_blink_led = 1;
1356         ha->beacon_color_state = 0;
1357
1358         return QLA_SUCCESS;
1359 }
1360
1361 int
1362 qla2x00_beacon_off(struct scsi_qla_host *ha)
1363 {
1364         int rval = QLA_SUCCESS;
1365
1366         ha->beacon_blink_led = 0;
1367
1368         /* Set the on flag so when it gets flipped it will be off. */
1369         if (IS_QLA2322(ha))
1370                 ha->beacon_color_state = QLA_LED_ALL_ON;
1371         else
1372                 ha->beacon_color_state = QLA_LED_GRN_ON;
1373
1374         ha->isp_ops->beacon_blink(ha);  /* This turns green LED off */
1375
1376         ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1377         ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1378
1379         rval = qla2x00_set_fw_options(ha, ha->fw_options);
1380         if (rval != QLA_SUCCESS)
1381                 qla_printk(KERN_WARNING, ha,
1382                     "Unable to update fw options (beacon off).\n");
1383         return rval;
1384 }
1385
1386
1387 static inline void
1388 qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1389 {
1390         /* Flip all colors. */
1391         if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1392                 /* Turn off. */
1393                 ha->beacon_color_state = 0;
1394                 *pflags = 0;
1395         } else {
1396                 /* Turn on. */
1397                 ha->beacon_color_state = QLA_LED_ALL_ON;
1398                 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1399         }
1400 }
1401
1402 void
1403 qla24xx_beacon_blink(struct scsi_qla_host *ha)
1404 {
1405         uint16_t led_color = 0;
1406         uint32_t gpio_data;
1407         unsigned long flags;
1408         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1409
1410         /* Save the Original GPIOD. */
1411         spin_lock_irqsave(&ha->hardware_lock, flags);
1412         gpio_data = RD_REG_DWORD(&reg->gpiod);
1413
1414         /* Enable the gpio_data reg for update. */
1415         gpio_data |= GPDX_LED_UPDATE_MASK;
1416
1417         WRT_REG_DWORD(&reg->gpiod, gpio_data);
1418         gpio_data = RD_REG_DWORD(&reg->gpiod);
1419
1420         /* Set the color bits. */
1421         qla24xx_flip_colors(ha, &led_color);
1422
1423         /* Clear out any previously set LED color. */
1424         gpio_data &= ~GPDX_LED_COLOR_MASK;
1425
1426         /* Set the new input LED color to GPIOD. */
1427         gpio_data |= led_color;
1428
1429         /* Set the modified gpio_data values. */
1430         WRT_REG_DWORD(&reg->gpiod, gpio_data);
1431         gpio_data = RD_REG_DWORD(&reg->gpiod);
1432         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1433 }
1434
1435 int
1436 qla24xx_beacon_on(struct scsi_qla_host *ha)
1437 {
1438         uint32_t gpio_data;
1439         unsigned long flags;
1440         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1441
1442         if (ha->beacon_blink_led == 0) {
1443                 /* Enable firmware for update */
1444                 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1445
1446                 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
1447                         return QLA_FUNCTION_FAILED;
1448
1449                 if (qla2x00_get_fw_options(ha, ha->fw_options) !=
1450                     QLA_SUCCESS) {
1451                         qla_printk(KERN_WARNING, ha,
1452                             "Unable to update fw options (beacon on).\n");
1453                         return QLA_FUNCTION_FAILED;
1454                 }
1455
1456                 spin_lock_irqsave(&ha->hardware_lock, flags);
1457                 gpio_data = RD_REG_DWORD(&reg->gpiod);
1458
1459                 /* Enable the gpio_data reg for update. */
1460                 gpio_data |= GPDX_LED_UPDATE_MASK;
1461                 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1462                 RD_REG_DWORD(&reg->gpiod);
1463
1464                 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1465         }
1466
1467         /* So all colors blink together. */
1468         ha->beacon_color_state = 0;
1469
1470         /* Let the per HBA timer kick off the blinking process. */
1471         ha->beacon_blink_led = 1;
1472
1473         return QLA_SUCCESS;
1474 }
1475
1476 int
1477 qla24xx_beacon_off(struct scsi_qla_host *ha)
1478 {
1479         uint32_t gpio_data;
1480         unsigned long flags;
1481         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1482
1483         ha->beacon_blink_led = 0;
1484         ha->beacon_color_state = QLA_LED_ALL_ON;
1485
1486         ha->isp_ops->beacon_blink(ha);  /* Will flip to all off. */
1487
1488         /* Give control back to firmware. */
1489         spin_lock_irqsave(&ha->hardware_lock, flags);
1490         gpio_data = RD_REG_DWORD(&reg->gpiod);
1491
1492         /* Disable the gpio_data reg for update. */
1493         gpio_data &= ~GPDX_LED_UPDATE_MASK;
1494         WRT_REG_DWORD(&reg->gpiod, gpio_data);
1495         RD_REG_DWORD(&reg->gpiod);
1496         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1497
1498         ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1499
1500         if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1501                 qla_printk(KERN_WARNING, ha,
1502                     "Unable to update fw options (beacon off).\n");
1503                 return QLA_FUNCTION_FAILED;
1504         }
1505
1506         if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1507                 qla_printk(KERN_WARNING, ha,
1508                     "Unable to get fw options (beacon off).\n");
1509                 return QLA_FUNCTION_FAILED;
1510         }
1511
1512         return QLA_SUCCESS;
1513 }
1514
1515
1516 /*
1517  * Flash support routines
1518  */
1519
1520 /**
1521  * qla2x00_flash_enable() - Setup flash for reading and writing.
1522  * @ha: HA context
1523  */
1524 static void
1525 qla2x00_flash_enable(scsi_qla_host_t *ha)
1526 {
1527         uint16_t data;
1528         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1529
1530         data = RD_REG_WORD(&reg->ctrl_status);
1531         data |= CSR_FLASH_ENABLE;
1532         WRT_REG_WORD(&reg->ctrl_status, data);
1533         RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1534 }
1535
1536 /**
1537  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1538  * @ha: HA context
1539  */
1540 static void
1541 qla2x00_flash_disable(scsi_qla_host_t *ha)
1542 {
1543         uint16_t data;
1544         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1545
1546         data = RD_REG_WORD(&reg->ctrl_status);
1547         data &= ~(CSR_FLASH_ENABLE);
1548         WRT_REG_WORD(&reg->ctrl_status, data);
1549         RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1550 }
1551
1552 /**
1553  * qla2x00_read_flash_byte() - Reads a byte from flash
1554  * @ha: HA context
1555  * @addr: Address in flash to read
1556  *
1557  * A word is read from the chip, but, only the lower byte is valid.
1558  *
1559  * Returns the byte read from flash @addr.
1560  */
1561 static uint8_t
1562 qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
1563 {
1564         uint16_t data;
1565         uint16_t bank_select;
1566         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1567
1568         bank_select = RD_REG_WORD(&reg->ctrl_status);
1569
1570         if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1571                 /* Specify 64K address range: */
1572                 /*  clear out Module Select and Flash Address bits [19:16]. */
1573                 bank_select &= ~0xf8;
1574                 bank_select |= addr >> 12 & 0xf0;
1575                 bank_select |= CSR_FLASH_64K_BANK;
1576                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1577                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1578
1579                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1580                 data = RD_REG_WORD(&reg->flash_data);
1581
1582                 return (uint8_t)data;
1583         }
1584
1585         /* Setup bit 16 of flash address. */
1586         if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1587                 bank_select |= CSR_FLASH_64K_BANK;
1588                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1589                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1590         } else if (((addr & BIT_16) == 0) &&
1591             (bank_select & CSR_FLASH_64K_BANK)) {
1592                 bank_select &= ~(CSR_FLASH_64K_BANK);
1593                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1594                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1595         }
1596
1597         /* Always perform IO mapped accesses to the FLASH registers. */
1598         if (ha->pio_address) {
1599                 uint16_t data2;
1600
1601                 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1602                 do {
1603                         data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1604                         barrier();
1605                         cpu_relax();
1606                         data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1607                 } while (data != data2);
1608         } else {
1609                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1610                 data = qla2x00_debounce_register(&reg->flash_data);
1611         }
1612
1613         return (uint8_t)data;
1614 }
1615
1616 /**
1617  * qla2x00_write_flash_byte() - Write a byte to flash
1618  * @ha: HA context
1619  * @addr: Address in flash to write
1620  * @data: Data to write
1621  */
1622 static void
1623 qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
1624 {
1625         uint16_t bank_select;
1626         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1627
1628         bank_select = RD_REG_WORD(&reg->ctrl_status);
1629         if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1630                 /* Specify 64K address range: */
1631                 /*  clear out Module Select and Flash Address bits [19:16]. */
1632                 bank_select &= ~0xf8;
1633                 bank_select |= addr >> 12 & 0xf0;
1634                 bank_select |= CSR_FLASH_64K_BANK;
1635                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1636                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1637
1638                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1639                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1640                 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1641                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1642
1643                 return;
1644         }
1645
1646         /* Setup bit 16 of flash address. */
1647         if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1648                 bank_select |= CSR_FLASH_64K_BANK;
1649                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1650                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1651         } else if (((addr & BIT_16) == 0) &&
1652             (bank_select & CSR_FLASH_64K_BANK)) {
1653                 bank_select &= ~(CSR_FLASH_64K_BANK);
1654                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1655                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1656         }
1657
1658         /* Always perform IO mapped accesses to the FLASH registers. */
1659         if (ha->pio_address) {
1660                 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1661                 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1662         } else {
1663                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1664                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1665                 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1666                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1667         }
1668 }
1669
1670 /**
1671  * qla2x00_poll_flash() - Polls flash for completion.
1672  * @ha: HA context
1673  * @addr: Address in flash to poll
1674  * @poll_data: Data to be polled
1675  * @man_id: Flash manufacturer ID
1676  * @flash_id: Flash ID
1677  *
1678  * This function polls the device until bit 7 of what is read matches data
1679  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1680  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1681  * reading bit 5 as a 1.
1682  *
1683  * Returns 0 on success, else non-zero.
1684  */
1685 static int
1686 qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
1687     uint8_t man_id, uint8_t flash_id)
1688 {
1689         int status;
1690         uint8_t flash_data;
1691         uint32_t cnt;
1692
1693         status = 1;
1694
1695         /* Wait for 30 seconds for command to finish. */
1696         poll_data &= BIT_7;
1697         for (cnt = 3000000; cnt; cnt--) {
1698                 flash_data = qla2x00_read_flash_byte(ha, addr);
1699                 if ((flash_data & BIT_7) == poll_data) {
1700                         status = 0;
1701                         break;
1702                 }
1703
1704                 if (man_id != 0x40 && man_id != 0xda) {
1705                         if ((flash_data & BIT_5) && cnt > 2)
1706                                 cnt = 2;
1707                 }
1708                 udelay(10);
1709                 barrier();
1710                 cond_resched();
1711         }
1712         return status;
1713 }
1714
1715 /**
1716  * qla2x00_program_flash_address() - Programs a flash address
1717  * @ha: HA context
1718  * @addr: Address in flash to program
1719  * @data: Data to be written in flash
1720  * @man_id: Flash manufacturer ID
1721  * @flash_id: Flash ID
1722  *
1723  * Returns 0 on success, else non-zero.
1724  */
1725 static int
1726 qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
1727     uint8_t man_id, uint8_t flash_id)
1728 {
1729         /* Write Program Command Sequence. */
1730         if (IS_OEM_001(ha)) {
1731                 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1732                 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1733                 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1734                 qla2x00_write_flash_byte(ha, addr, data);
1735         } else {
1736                 if (man_id == 0xda && flash_id == 0xc1) {
1737                         qla2x00_write_flash_byte(ha, addr, data);
1738                         if (addr & 0x7e)
1739                                 return 0;
1740                 } else {
1741                         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1742                         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1743                         qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1744                         qla2x00_write_flash_byte(ha, addr, data);
1745                 }
1746         }
1747
1748         udelay(150);
1749
1750         /* Wait for write to complete. */
1751         return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1752 }
1753
1754 /**
1755  * qla2x00_erase_flash() - Erase the flash.
1756  * @ha: HA context
1757  * @man_id: Flash manufacturer ID
1758  * @flash_id: Flash ID
1759  *
1760  * Returns 0 on success, else non-zero.
1761  */
1762 static int
1763 qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
1764 {
1765         /* Individual Sector Erase Command Sequence */
1766         if (IS_OEM_001(ha)) {
1767                 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1768                 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1769                 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1770                 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1771                 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1772                 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1773         } else {
1774                 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1775                 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1776                 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1777                 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1778                 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1779                 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1780         }
1781
1782         udelay(150);
1783
1784         /* Wait for erase to complete. */
1785         return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1786 }
1787
1788 /**
1789  * qla2x00_erase_flash_sector() - Erase a flash sector.
1790  * @ha: HA context
1791  * @addr: Flash sector to erase
1792  * @sec_mask: Sector address mask
1793  * @man_id: Flash manufacturer ID
1794  * @flash_id: Flash ID
1795  *
1796  * Returns 0 on success, else non-zero.
1797  */
1798 static int
1799 qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
1800     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1801 {
1802         /* Individual Sector Erase Command Sequence */
1803         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1804         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1805         qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1806         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1807         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1808         if (man_id == 0x1f && flash_id == 0x13)
1809                 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1810         else
1811                 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1812
1813         udelay(150);
1814
1815         /* Wait for erase to complete. */
1816         return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1817 }
1818
1819 /**
1820  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1821  * @man_id: Flash manufacturer ID
1822  * @flash_id: Flash ID
1823  */
1824 static void
1825 qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
1826     uint8_t *flash_id)
1827 {
1828         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1829         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1830         qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1831         *man_id = qla2x00_read_flash_byte(ha, 0x0000);
1832         *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1833         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1834         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1835         qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1836 }
1837
1838 static void
1839 qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
1840         uint32_t length)
1841 {
1842         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1843         uint32_t midpoint, ilength;
1844         uint8_t data;
1845
1846         midpoint = length / 2;
1847
1848         WRT_REG_WORD(&reg->nvram, 0);
1849         RD_REG_WORD(&reg->nvram);
1850         for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1851                 if (ilength == midpoint) {
1852                         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1853                         RD_REG_WORD(&reg->nvram);
1854                 }
1855                 data = qla2x00_read_flash_byte(ha, saddr);
1856                 if (saddr % 100)
1857                         udelay(10);
1858                 *tmp_buf = data;
1859                 cond_resched();
1860         }
1861 }
1862
1863 static inline void
1864 qla2x00_suspend_hba(struct scsi_qla_host *ha)
1865 {
1866         int cnt;
1867         unsigned long flags;
1868         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1869
1870         /* Suspend HBA. */
1871         scsi_block_requests(ha->host);
1872         ha->isp_ops->disable_intrs(ha);
1873         set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1874
1875         /* Pause RISC. */
1876         spin_lock_irqsave(&ha->hardware_lock, flags);
1877         WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1878         RD_REG_WORD(&reg->hccr);
1879         if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1880                 for (cnt = 0; cnt < 30000; cnt++) {
1881                         if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1882                                 break;
1883                         udelay(100);
1884                 }
1885         } else {
1886                 udelay(10);
1887         }
1888         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1889 }
1890
1891 static inline void
1892 qla2x00_resume_hba(struct scsi_qla_host *ha)
1893 {
1894         /* Resume HBA. */
1895         clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1896         set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1897         qla2xxx_wake_dpc(ha);
1898         qla2x00_wait_for_hba_online(ha);
1899         scsi_unblock_requests(ha->host);
1900 }
1901
1902 uint8_t *
1903 qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1904     uint32_t offset, uint32_t length)
1905 {
1906         uint32_t addr, midpoint;
1907         uint8_t *data;
1908         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1909
1910         /* Suspend HBA. */
1911         qla2x00_suspend_hba(ha);
1912
1913         /* Go with read. */
1914         midpoint = ha->optrom_size / 2;
1915
1916         qla2x00_flash_enable(ha);
1917         WRT_REG_WORD(&reg->nvram, 0);
1918         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
1919         for (addr = offset, data = buf; addr < length; addr++, data++) {
1920                 if (addr == midpoint) {
1921                         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1922                         RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
1923                 }
1924
1925                 *data = qla2x00_read_flash_byte(ha, addr);
1926         }
1927         qla2x00_flash_disable(ha);
1928
1929         /* Resume HBA. */
1930         qla2x00_resume_hba(ha);
1931
1932         return buf;
1933 }
1934
1935 int
1936 qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1937     uint32_t offset, uint32_t length)
1938 {
1939
1940         int rval;
1941         uint8_t man_id, flash_id, sec_number, data;
1942         uint16_t wd;
1943         uint32_t addr, liter, sec_mask, rest_addr;
1944         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1945
1946         /* Suspend HBA. */
1947         qla2x00_suspend_hba(ha);
1948
1949         rval = QLA_SUCCESS;
1950         sec_number = 0;
1951
1952         /* Reset ISP chip. */
1953         WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1954         pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1955
1956         /* Go with write. */
1957         qla2x00_flash_enable(ha);
1958         do {    /* Loop once to provide quick error exit */
1959                 /* Structure of flash memory based on manufacturer */
1960                 if (IS_OEM_001(ha)) {
1961                         /* OEM variant with special flash part. */
1962                         man_id = flash_id = 0;
1963                         rest_addr = 0xffff;
1964                         sec_mask   = 0x10000;
1965                         goto update_flash;
1966                 }
1967                 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1968                 switch (man_id) {
1969                 case 0x20: /* ST flash. */
1970                         if (flash_id == 0xd2 || flash_id == 0xe3) {
1971                                 /*
1972                                  * ST m29w008at part - 64kb sector size with
1973                                  * 32kb,8kb,8kb,16kb sectors at memory address
1974                                  * 0xf0000.
1975                                  */
1976                                 rest_addr = 0xffff;
1977                                 sec_mask = 0x10000;
1978                                 break;   
1979                         }
1980                         /*
1981                          * ST m29w010b part - 16kb sector size
1982                          * Default to 16kb sectors
1983                          */
1984                         rest_addr = 0x3fff;
1985                         sec_mask = 0x1c000;
1986                         break;
1987                 case 0x40: /* Mostel flash. */
1988                         /* Mostel v29c51001 part - 512 byte sector size. */
1989                         rest_addr = 0x1ff;
1990                         sec_mask = 0x1fe00;
1991                         break;
1992                 case 0xbf: /* SST flash. */
1993                         /* SST39sf10 part - 4kb sector size. */
1994                         rest_addr = 0xfff;
1995                         sec_mask = 0x1f000;
1996                         break;
1997                 case 0xda: /* Winbond flash. */
1998                         /* Winbond W29EE011 part - 256 byte sector size. */
1999                         rest_addr = 0x7f;
2000                         sec_mask = 0x1ff80;
2001                         break;
2002                 case 0xc2: /* Macronix flash. */
2003                         /* 64k sector size. */
2004                         if (flash_id == 0x38 || flash_id == 0x4f) {
2005                                 rest_addr = 0xffff;
2006                                 sec_mask = 0x10000;
2007                                 break;
2008                         }
2009                         /* Fall through... */
2010
2011                 case 0x1f: /* Atmel flash. */
2012                         /* 512k sector size. */
2013                         if (flash_id == 0x13) {
2014                                 rest_addr = 0x7fffffff;
2015                                 sec_mask =   0x80000000;
2016                                 break;
2017                         }
2018                         /* Fall through... */
2019
2020                 case 0x01: /* AMD flash. */
2021                         if (flash_id == 0x38 || flash_id == 0x40 ||
2022                             flash_id == 0x4f) {
2023                                 /* Am29LV081 part - 64kb sector size. */
2024                                 /* Am29LV002BT part - 64kb sector size. */
2025                                 rest_addr = 0xffff;
2026                                 sec_mask = 0x10000;
2027                                 break;
2028                         } else if (flash_id == 0x3e) {
2029                                 /*
2030                                  * Am29LV008b part - 64kb sector size with
2031                                  * 32kb,8kb,8kb,16kb sector at memory address
2032                                  * h0xf0000.
2033                                  */
2034                                 rest_addr = 0xffff;
2035                                 sec_mask = 0x10000;
2036                                 break;
2037                         } else if (flash_id == 0x20 || flash_id == 0x6e) {
2038                                 /*
2039                                  * Am29LV010 part or AM29f010 - 16kb sector
2040                                  * size.
2041                                  */
2042                                 rest_addr = 0x3fff;
2043                                 sec_mask = 0x1c000;
2044                                 break;
2045                         } else if (flash_id == 0x6d) {
2046                                 /* Am29LV001 part - 8kb sector size. */
2047                                 rest_addr = 0x1fff;
2048                                 sec_mask = 0x1e000;
2049                                 break;
2050                         }
2051                 default:
2052                         /* Default to 16 kb sector size. */
2053                         rest_addr = 0x3fff;
2054                         sec_mask = 0x1c000;
2055                         break;
2056                 }
2057
2058 update_flash:
2059                 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2060                         if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2061                                 rval = QLA_FUNCTION_FAILED;
2062                                 break;
2063                         }
2064                 }
2065
2066                 for (addr = offset, liter = 0; liter < length; liter++,
2067                     addr++) {
2068                         data = buf[liter];
2069                         /* Are we at the beginning of a sector? */
2070                         if ((addr & rest_addr) == 0) {
2071                                 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2072                                         if (addr >= 0x10000UL) {
2073                                                 if (((addr >> 12) & 0xf0) &&
2074                                                     ((man_id == 0x01 &&
2075                                                         flash_id == 0x3e) ||
2076                                                      (man_id == 0x20 &&
2077                                                          flash_id == 0xd2))) {
2078                                                         sec_number++;
2079                                                         if (sec_number == 1) {
2080                                                                 rest_addr =
2081                                                                     0x7fff;
2082                                                                 sec_mask =
2083                                                                     0x18000;
2084                                                         } else if (
2085                                                             sec_number == 2 ||
2086                                                             sec_number == 3) {
2087                                                                 rest_addr =
2088                                                                     0x1fff;
2089                                                                 sec_mask =
2090                                                                     0x1e000;
2091                                                         } else if (
2092                                                             sec_number == 4) {
2093                                                                 rest_addr =
2094                                                                     0x3fff;
2095                                                                 sec_mask =
2096                                                                     0x1c000;
2097                                                         }
2098                                                 }
2099                                         }
2100                                 } else if (addr == ha->optrom_size / 2) {
2101                                         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2102                                         RD_REG_WORD(&reg->nvram);
2103                                 }
2104
2105                                 if (flash_id == 0xda && man_id == 0xc1) {
2106                                         qla2x00_write_flash_byte(ha, 0x5555,
2107                                             0xaa);
2108                                         qla2x00_write_flash_byte(ha, 0x2aaa,
2109                                             0x55);
2110                                         qla2x00_write_flash_byte(ha, 0x5555,
2111                                             0xa0);
2112                                 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2113                                         /* Then erase it */
2114                                         if (qla2x00_erase_flash_sector(ha,
2115                                             addr, sec_mask, man_id,
2116                                             flash_id)) {
2117                                                 rval = QLA_FUNCTION_FAILED;
2118                                                 break;
2119                                         }
2120                                         if (man_id == 0x01 && flash_id == 0x6d)
2121                                                 sec_number++;
2122                                 }
2123                         }
2124
2125                         if (man_id == 0x01 && flash_id == 0x6d) {
2126                                 if (sec_number == 1 &&
2127                                     addr == (rest_addr - 1)) {
2128                                         rest_addr = 0x0fff;
2129                                         sec_mask   = 0x1f000;
2130                                 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2131                                         rest_addr = 0x3fff;
2132                                         sec_mask   = 0x1c000;
2133                                 }
2134                         }
2135
2136                         if (qla2x00_program_flash_address(ha, addr, data,
2137                             man_id, flash_id)) {
2138                                 rval = QLA_FUNCTION_FAILED;
2139                                 break;
2140                         }
2141                         cond_resched();
2142                 }
2143         } while (0);
2144         qla2x00_flash_disable(ha);
2145
2146         /* Resume HBA. */
2147         qla2x00_resume_hba(ha);
2148
2149         return rval;
2150 }
2151
2152 uint8_t *
2153 qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
2154     uint32_t offset, uint32_t length)
2155 {
2156         /* Suspend HBA. */
2157         scsi_block_requests(ha->host);
2158         set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2159
2160         /* Go with read. */
2161         qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
2162
2163         /* Resume HBA. */
2164         clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2165         scsi_unblock_requests(ha->host);
2166
2167         return buf;
2168 }
2169
2170 int
2171 qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
2172     uint32_t offset, uint32_t length)
2173 {
2174         int rval;
2175
2176         /* Suspend HBA. */
2177         scsi_block_requests(ha->host);
2178         set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2179
2180         /* Go with write. */
2181         rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
2182             length >> 2);
2183
2184         /* Resume HBA -- RISC reset needed. */
2185         clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2186         set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
2187         qla2xxx_wake_dpc(ha);
2188         qla2x00_wait_for_hba_online(ha);
2189         scsi_unblock_requests(ha->host);
2190
2191         return rval;
2192 }
2193
2194 uint8_t *
2195 qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
2196     uint32_t offset, uint32_t length)
2197 {
2198         int rval;
2199         dma_addr_t optrom_dma;
2200         void *optrom;
2201         uint8_t *pbuf;
2202         uint32_t faddr, left, burst;
2203
2204         if (offset & 0xfff)
2205                 goto slow_read;
2206         if (length < OPTROM_BURST_SIZE)
2207                 goto slow_read;
2208
2209         optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2210             &optrom_dma, GFP_KERNEL);
2211         if (!optrom) {
2212                 qla_printk(KERN_DEBUG, ha,
2213                     "Unable to allocate memory for optrom burst read "
2214                     "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2215
2216                 goto slow_read;
2217         }
2218
2219         pbuf = buf;
2220         faddr = offset >> 2;
2221         left = length >> 2;
2222         burst = OPTROM_BURST_DWORDS;
2223         while (left != 0) {
2224                 if (burst > left)
2225                         burst = left;
2226
2227                 rval = qla2x00_dump_ram(ha, optrom_dma,
2228                     flash_data_to_access_addr(faddr), burst);
2229                 if (rval) {
2230                         qla_printk(KERN_WARNING, ha,
2231                             "Unable to burst-read optrom segment "
2232                             "(%x/%x/%llx).\n", rval,
2233                             flash_data_to_access_addr(faddr),
2234                             (unsigned long long)optrom_dma);
2235                         qla_printk(KERN_WARNING, ha,
2236                             "Reverting to slow-read.\n");
2237
2238                         dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2239                             optrom, optrom_dma);
2240                         goto slow_read;
2241                 }
2242
2243                 memcpy(pbuf, optrom, burst * 4);
2244
2245                 left -= burst;
2246                 faddr += burst;
2247                 pbuf += burst * 4;
2248         }
2249
2250         dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2251             optrom_dma);
2252
2253         return buf;
2254
2255 slow_read:
2256     return qla24xx_read_optrom_data(ha, buf, offset, length);
2257 }
2258
2259 /**
2260  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2261  * @ha: HA context
2262  * @pcids: Pointer to the FCODE PCI data structure
2263  *
2264  * The process of retrieving the FCODE version information is at best
2265  * described as interesting.
2266  *
2267  * Within the first 100h bytes of the image an ASCII string is present
2268  * which contains several pieces of information including the FCODE
2269  * version.  Unfortunately it seems the only reliable way to retrieve
2270  * the version is by scanning for another sentinel within the string,
2271  * the FCODE build date:
2272  *
2273  *      ... 2.00.02 10/17/02 ...
2274  *
2275  * Returns QLA_SUCCESS on successful retrieval of version.
2276  */
2277 static void
2278 qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
2279 {
2280         int ret = QLA_FUNCTION_FAILED;
2281         uint32_t istart, iend, iter, vend;
2282         uint8_t do_next, rbyte, *vbyte;
2283
2284         memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2285
2286         /* Skip the PCI data structure. */
2287         istart = pcids +
2288             ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2289                 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2290         iend = istart + 0x100;
2291         do {
2292                 /* Scan for the sentinel date string...eeewww. */
2293                 do_next = 0;
2294                 iter = istart;
2295                 while ((iter < iend) && !do_next) {
2296                         iter++;
2297                         if (qla2x00_read_flash_byte(ha, iter) == '/') {
2298                                 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2299                                     '/')
2300                                         do_next++;
2301                                 else if (qla2x00_read_flash_byte(ha,
2302                                     iter + 3) == '/')
2303                                         do_next++;
2304                         }
2305                 }
2306                 if (!do_next)
2307                         break;
2308
2309                 /* Backtrack to previous ' ' (space). */
2310                 do_next = 0;
2311                 while ((iter > istart) && !do_next) {
2312                         iter--;
2313                         if (qla2x00_read_flash_byte(ha, iter) == ' ')
2314                                 do_next++;
2315                 }
2316                 if (!do_next)
2317                         break;
2318
2319                 /*
2320                  * Mark end of version tag, and find previous ' ' (space) or
2321                  * string length (recent FCODE images -- major hack ahead!!!).
2322                  */
2323                 vend = iter - 1;
2324                 do_next = 0;
2325                 while ((iter > istart) && !do_next) {
2326                         iter--;
2327                         rbyte = qla2x00_read_flash_byte(ha, iter);
2328                         if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2329                                 do_next++;
2330                 }
2331                 if (!do_next)
2332                         break;
2333
2334                 /* Mark beginning of version tag, and copy data. */
2335                 iter++;
2336                 if ((vend - iter) &&
2337                     ((vend - iter) < sizeof(ha->fcode_revision))) {
2338                         vbyte = ha->fcode_revision;
2339                         while (iter <= vend) {
2340                                 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2341                                 iter++;
2342                         }
2343                         ret = QLA_SUCCESS;
2344                 }
2345         } while (0);
2346
2347         if (ret != QLA_SUCCESS)
2348                 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2349 }
2350
2351 int
2352 qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2353 {
2354         int ret = QLA_SUCCESS;
2355         uint8_t code_type, last_image;
2356         uint32_t pcihdr, pcids;
2357         uint8_t *dbyte;
2358         uint16_t *dcode;
2359
2360         if (!ha->pio_address || !mbuf)
2361                 return QLA_FUNCTION_FAILED;
2362
2363         memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2364         memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2365         memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2366         memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2367
2368         qla2x00_flash_enable(ha);
2369
2370         /* Begin with first PCI expansion ROM header. */
2371         pcihdr = 0;
2372         last_image = 1;
2373         do {
2374                 /* Verify PCI expansion ROM header. */
2375                 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2376                     qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2377                         /* No signature */
2378                         DEBUG2(printk("scsi(%ld): No matching ROM "
2379                             "signature.\n", ha->host_no));
2380                         ret = QLA_FUNCTION_FAILED;
2381                         break;
2382                 }
2383
2384                 /* Locate PCI data structure. */
2385                 pcids = pcihdr +
2386                     ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2387                         qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2388
2389                 /* Validate signature of PCI data structure. */
2390                 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2391                     qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2392                     qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2393                     qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2394                         /* Incorrect header. */
2395                         DEBUG2(printk("%s(): PCI data struct not found "
2396                             "pcir_adr=%x.\n", __func__, pcids));
2397                         ret = QLA_FUNCTION_FAILED;
2398                         break;
2399                 }
2400
2401                 /* Read version */
2402                 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2403                 switch (code_type) {
2404                 case ROM_CODE_TYPE_BIOS:
2405                         /* Intel x86, PC-AT compatible. */
2406                         ha->bios_revision[0] =
2407                             qla2x00_read_flash_byte(ha, pcids + 0x12);
2408                         ha->bios_revision[1] =
2409                             qla2x00_read_flash_byte(ha, pcids + 0x13);
2410                         DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2411                             ha->bios_revision[1], ha->bios_revision[0]));
2412                         break;
2413                 case ROM_CODE_TYPE_FCODE:
2414                         /* Open Firmware standard for PCI (FCode). */
2415                         /* Eeeewww... */
2416                         qla2x00_get_fcode_version(ha, pcids);
2417                         break;
2418                 case ROM_CODE_TYPE_EFI:
2419                         /* Extensible Firmware Interface (EFI). */
2420                         ha->efi_revision[0] =
2421                             qla2x00_read_flash_byte(ha, pcids + 0x12);
2422                         ha->efi_revision[1] =
2423                             qla2x00_read_flash_byte(ha, pcids + 0x13);
2424                         DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2425                             ha->efi_revision[1], ha->efi_revision[0]));
2426                         break;
2427                 default:
2428                         DEBUG2(printk("%s(): Unrecognized code type %x at "
2429                             "pcids %x.\n", __func__, code_type, pcids));
2430                         break;
2431                 }
2432
2433                 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2434
2435                 /* Locate next PCI expansion ROM. */
2436                 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2437                     qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2438         } while (!last_image);
2439
2440         if (IS_QLA2322(ha)) {
2441                 /* Read firmware image information. */
2442                 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2443                 dbyte = mbuf;
2444                 memset(dbyte, 0, 8);
2445                 dcode = (uint16_t *)dbyte;
2446
2447                 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2448                     8);
2449                 DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
2450                     __func__, ha->host_no));
2451                 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2452
2453                 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2454                     dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2455                     (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2456                     dcode[3] == 0)) {
2457                         DEBUG2(printk("%s(): Unrecognized fw revision at "
2458                             "%x.\n", __func__, ha->flt_region_fw * 4));
2459                 } else {
2460                         /* values are in big endian */
2461                         ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2462                         ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2463                         ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2464                 }
2465         }
2466
2467         qla2x00_flash_disable(ha);
2468
2469         return ret;
2470 }
2471
2472 int
2473 qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2474 {
2475         int ret = QLA_SUCCESS;
2476         uint32_t pcihdr, pcids;
2477         uint32_t *dcode;
2478         uint8_t *bcode;
2479         uint8_t code_type, last_image;
2480         int i;
2481
2482         if (!mbuf)
2483                 return QLA_FUNCTION_FAILED;
2484
2485         memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2486         memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2487         memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2488         memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2489
2490         dcode = mbuf;
2491
2492         /* Begin with first PCI expansion ROM header. */
2493         pcihdr = ha->flt_region_boot;
2494         last_image = 1;
2495         do {
2496                 /* Verify PCI expansion ROM header. */
2497                 qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
2498                 bcode = mbuf + (pcihdr % 4);
2499                 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2500                         /* No signature */
2501                         DEBUG2(printk("scsi(%ld): No matching ROM "
2502                             "signature.\n", ha->host_no));
2503                         ret = QLA_FUNCTION_FAILED;
2504                         break;
2505                 }
2506
2507                 /* Locate PCI data structure. */
2508                 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2509
2510                 qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
2511                 bcode = mbuf + (pcihdr % 4);
2512
2513                 /* Validate signature of PCI data structure. */
2514                 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2515                     bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2516                         /* Incorrect header. */
2517                         DEBUG2(printk("%s(): PCI data struct not found "
2518                             "pcir_adr=%x.\n", __func__, pcids));
2519                         ret = QLA_FUNCTION_FAILED;
2520                         break;
2521                 }
2522
2523                 /* Read version */
2524                 code_type = bcode[0x14];
2525                 switch (code_type) {
2526                 case ROM_CODE_TYPE_BIOS:
2527                         /* Intel x86, PC-AT compatible. */
2528                         ha->bios_revision[0] = bcode[0x12];
2529                         ha->bios_revision[1] = bcode[0x13];
2530                         DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2531                             ha->bios_revision[1], ha->bios_revision[0]));
2532                         break;
2533                 case ROM_CODE_TYPE_FCODE:
2534                         /* Open Firmware standard for PCI (FCode). */
2535                         ha->fcode_revision[0] = bcode[0x12];
2536                         ha->fcode_revision[1] = bcode[0x13];
2537                         DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
2538                             ha->fcode_revision[1], ha->fcode_revision[0]));
2539                         break;
2540                 case ROM_CODE_TYPE_EFI:
2541                         /* Extensible Firmware Interface (EFI). */
2542                         ha->efi_revision[0] = bcode[0x12];
2543                         ha->efi_revision[1] = bcode[0x13];
2544                         DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2545                             ha->efi_revision[1], ha->efi_revision[0]));
2546                         break;
2547                 default:
2548                         DEBUG2(printk("%s(): Unrecognized code type %x at "
2549                             "pcids %x.\n", __func__, code_type, pcids));
2550                         break;
2551                 }
2552
2553                 last_image = bcode[0x15] & BIT_7;
2554
2555                 /* Locate next PCI expansion ROM. */
2556                 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2557         } while (!last_image);
2558
2559         /* Read firmware image information. */
2560         memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2561         dcode = mbuf;
2562
2563         qla24xx_read_flash_data(ha, dcode, ha->flt_region_fw + 4, 4);
2564         for (i = 0; i < 4; i++)
2565                 dcode[i] = be32_to_cpu(dcode[i]);
2566
2567         if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2568             dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2569             (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2570             dcode[3] == 0)) {
2571                 DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
2572                     __func__, ha->flt_region_fw));
2573         } else {
2574                 ha->fw_revision[0] = dcode[0];
2575                 ha->fw_revision[1] = dcode[1];
2576                 ha->fw_revision[2] = dcode[2];
2577                 ha->fw_revision[3] = dcode[3];
2578         }
2579
2580         return ret;
2581 }
2582
2583 static int
2584 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2585 {
2586         if (pos >= end || *pos != 0x82)
2587                 return 0;
2588
2589         pos += 3 + pos[1];
2590         if (pos >= end || *pos != 0x90)
2591                 return 0;
2592
2593         pos += 3 + pos[1];
2594         if (pos >= end || *pos != 0x78)
2595                 return 0;
2596
2597         return 1;
2598 }
2599
2600 int
2601 qla2xxx_get_vpd_field(scsi_qla_host_t *ha, char *key, char *str, size_t size)
2602 {
2603         uint8_t *pos = ha->vpd;
2604         uint8_t *end = pos + ha->vpd_size;
2605         int len = 0;
2606
2607         if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2608                 return 0;
2609
2610         while (pos < end && *pos != 0x78) {
2611                 len = (*pos == 0x82) ? pos[1] : pos[2];
2612
2613                 if (!strncmp(pos, key, strlen(key)))
2614                         break;
2615
2616                 if (*pos != 0x90 && *pos != 0x91)
2617                         pos += len;
2618
2619                 pos += 3;
2620         }
2621
2622         if (pos < end - len && *pos != 0x78)
2623                 return snprintf(str, size, "%.*s", len, pos + 3);
2624
2625         return 0;
2626 }
2627
2628 static int
2629 qla2xxx_hw_event_store(scsi_qla_host_t *ha, uint32_t *fdata)
2630 {
2631         uint32_t d[2], faddr;
2632
2633         /* Locate first empty entry. */
2634         for (;;) {
2635                 if (ha->hw_event_ptr >=
2636                     ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2637                         DEBUG2(qla_printk(KERN_WARNING, ha,
2638                             "HW event -- Log Full!\n"));
2639                         return QLA_MEMORY_ALLOC_FAILED;
2640                 }
2641
2642                 qla24xx_read_flash_data(ha, d, ha->hw_event_ptr, 2);
2643                 faddr = flash_data_to_access_addr(ha->hw_event_ptr);
2644                 ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2645                 if (d[0] == __constant_cpu_to_le32(0xffffffff) &&
2646                     d[1] == __constant_cpu_to_le32(0xffffffff)) {
2647                         qla24xx_unprotect_flash(ha);
2648
2649                         qla24xx_write_flash_dword(ha, faddr++,
2650                             cpu_to_le32(jiffies));
2651                         qla24xx_write_flash_dword(ha, faddr++, 0);
2652                         qla24xx_write_flash_dword(ha, faddr++, *fdata++);
2653                         qla24xx_write_flash_dword(ha, faddr++, *fdata);
2654
2655                         qla24xx_protect_flash(ha);
2656                         break;
2657                 }
2658         }
2659         return QLA_SUCCESS;
2660 }
2661
2662 int
2663 qla2xxx_hw_event_log(scsi_qla_host_t *ha, uint16_t code, uint16_t d1,
2664     uint16_t d2, uint16_t d3)
2665 {
2666 #define QMARK(a, b, c, d) \
2667     cpu_to_le32(LSB(a) << 24 | LSB(b) << 16 | LSB(c) << 8 | LSB(d))
2668
2669         int rval;
2670         uint32_t marker[2], fdata[4];
2671
2672         if (ha->flt_region_hw_event == 0)
2673                 return QLA_FUNCTION_FAILED;
2674
2675         DEBUG2(qla_printk(KERN_WARNING, ha,
2676             "HW event -- code=%x, d1=%x, d2=%x, d3=%x.\n", code, d1, d2, d3));
2677
2678         /* If marker not already found, locate or write.  */
2679         if (!ha->flags.hw_event_marker_found) {
2680                 /* Create marker. */
2681                 marker[0] = QMARK('L', ha->fw_major_version,
2682                     ha->fw_minor_version, ha->fw_subminor_version);
2683                 marker[1] = QMARK(QLA_DRIVER_MAJOR_VER, QLA_DRIVER_MINOR_VER,
2684                     QLA_DRIVER_PATCH_VER, QLA_DRIVER_BETA_VER);
2685
2686                 /* Locate marker. */
2687                 ha->hw_event_ptr = ha->flt_region_hw_event;
2688                 for (;;) {
2689                         qla24xx_read_flash_data(ha, fdata, ha->hw_event_ptr,
2690                             4);
2691                         if (fdata[0] == __constant_cpu_to_le32(0xffffffff) &&
2692                             fdata[1] == __constant_cpu_to_le32(0xffffffff))
2693                                 break;
2694                         ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2695                         if (ha->hw_event_ptr >=
2696                             ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2697                                 DEBUG2(qla_printk(KERN_WARNING, ha,
2698                                     "HW event -- Log Full!\n"));
2699                                 return QLA_MEMORY_ALLOC_FAILED;
2700                         }
2701                         if (fdata[2] == marker[0] && fdata[3] == marker[1]) {
2702                                 ha->flags.hw_event_marker_found = 1;
2703                                 break;
2704                         }
2705                 }
2706                 /* No marker, write it. */
2707                 if (!ha->flags.hw_event_marker_found) {
2708                         rval = qla2xxx_hw_event_store(ha, marker);
2709                         if (rval != QLA_SUCCESS) {
2710                                 DEBUG2(qla_printk(KERN_WARNING, ha,
2711                                     "HW event -- Failed marker write=%x.!\n",
2712                                     rval));
2713                                 return rval;
2714                         }
2715                         ha->flags.hw_event_marker_found = 1;
2716                 }
2717         }
2718
2719         /* Store error.  */
2720         fdata[0] = cpu_to_le32(code << 16 | d1);
2721         fdata[1] = cpu_to_le32(d2 << 16 | d3);
2722         rval = qla2xxx_hw_event_store(ha, fdata);
2723         if (rval != QLA_SUCCESS) {
2724                 DEBUG2(qla_printk(KERN_WARNING, ha,
2725                     "HW event -- Failed error write=%x.!\n",
2726                     rval));
2727         }
2728
2729         return rval;
2730 }