]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/megaraid/megaraid_sas.c
Merge branch 'upstream-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[linux-2.6-omap-h63xx.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2  *
3  *              Linux MegaRAID driver for SAS based RAID controllers
4  *
5  * Copyright (c) 2003-2005  LSI Logic Corporation.
6  *
7  *         This program is free software; you can redistribute it and/or
8  *         modify it under the terms of the GNU General Public License
9  *         as published by the Free Software Foundation; either version
10  *         2 of the License, or (at your option) any later version.
11  *
12  * FILE         : megaraid_sas.c
13  * Version      : v00.00.03.10-rc5
14  *
15  * Authors:
16  *      (email-id : megaraidlinux@lsi.com)
17  *      Sreenivas Bagalkote
18  *      Sumant Patro
19  *      Bo Yang
20  *
21  * List of supported controllers
22  *
23  * OEM  Product Name                    VID     DID     SSVID   SSID
24  * ---  ------------                    ---     ---     ----    ----
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/uio.h>
37 #include <asm/uaccess.h>
38 #include <linux/fs.h>
39 #include <linux/compat.h>
40 #include <linux/blkdev.h>
41 #include <linux/mutex.h>
42
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47 #include "megaraid_sas.h"
48
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(MEGASAS_VERSION);
51 MODULE_AUTHOR("megaraidlinux@lsi.com");
52 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
53
54 /*
55  * PCI ID table for all supported controllers
56  */
57 static struct pci_device_id megasas_pci_table[] = {
58
59         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
60         /* xscale IOP */
61         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
62         /* ppc IOP */
63         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
64         /* xscale IOP, vega */
65         {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
66         /* xscale IOP */
67         {}
68 };
69
70 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
71
72 static int megasas_mgmt_majorno;
73 static struct megasas_mgmt_info megasas_mgmt_info;
74 static struct fasync_struct *megasas_async_queue;
75 static DEFINE_MUTEX(megasas_async_queue_mutex);
76
77 static u32 megasas_dbg_lvl;
78
79 /**
80  * megasas_get_cmd -    Get a command from the free pool
81  * @instance:           Adapter soft state
82  *
83  * Returns a free command from the pool
84  */
85 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
86                                                   *instance)
87 {
88         unsigned long flags;
89         struct megasas_cmd *cmd = NULL;
90
91         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
92
93         if (!list_empty(&instance->cmd_pool)) {
94                 cmd = list_entry((&instance->cmd_pool)->next,
95                                  struct megasas_cmd, list);
96                 list_del_init(&cmd->list);
97         } else {
98                 printk(KERN_ERR "megasas: Command pool empty!\n");
99         }
100
101         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
102         return cmd;
103 }
104
105 /**
106  * megasas_return_cmd - Return a cmd to free command pool
107  * @instance:           Adapter soft state
108  * @cmd:                Command packet to be returned to free command pool
109  */
110 static inline void
111 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
112 {
113         unsigned long flags;
114
115         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
116
117         cmd->scmd = NULL;
118         list_add_tail(&cmd->list, &instance->cmd_pool);
119
120         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
121 }
122
123
124 /**
125 *       The following functions are defined for xscale 
126 *       (deviceid : 1064R, PERC5) controllers
127 */
128
129 /**
130  * megasas_enable_intr_xscale - Enables interrupts
131  * @regs:                       MFI register set
132  */
133 static inline void
134 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
135 {
136         writel(1, &(regs)->outbound_intr_mask);
137
138         /* Dummy readl to force pci flush */
139         readl(&regs->outbound_intr_mask);
140 }
141
142 /**
143  * megasas_disable_intr_xscale -Disables interrupt
144  * @regs:                       MFI register set
145  */
146 static inline void
147 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
148 {
149         u32 mask = 0x1f;
150         writel(mask, &regs->outbound_intr_mask);
151         /* Dummy readl to force pci flush */
152         readl(&regs->outbound_intr_mask);
153 }
154
155 /**
156  * megasas_read_fw_status_reg_xscale - returns the current FW status value
157  * @regs:                       MFI register set
158  */
159 static u32
160 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
161 {
162         return readl(&(regs)->outbound_msg_0);
163 }
164 /**
165  * megasas_clear_interrupt_xscale -     Check & clear interrupt
166  * @regs:                               MFI register set
167  */
168 static int 
169 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
170 {
171         u32 status;
172         /*
173          * Check if it is our interrupt
174          */
175         status = readl(&regs->outbound_intr_status);
176
177         if (!(status & MFI_OB_INTR_STATUS_MASK)) {
178                 return 1;
179         }
180
181         /*
182          * Clear the interrupt by writing back the same value
183          */
184         writel(status, &regs->outbound_intr_status);
185
186         return 0;
187 }
188
189 /**
190  * megasas_fire_cmd_xscale -    Sends command to the FW
191  * @frame_phys_addr :           Physical address of cmd
192  * @frame_count :               Number of frames for the command
193  * @regs :                      MFI register set
194  */
195 static inline void 
196 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
197 {
198         writel((frame_phys_addr >> 3)|(frame_count),
199                &(regs)->inbound_queue_port);
200 }
201
202 static struct megasas_instance_template megasas_instance_template_xscale = {
203
204         .fire_cmd = megasas_fire_cmd_xscale,
205         .enable_intr = megasas_enable_intr_xscale,
206         .disable_intr = megasas_disable_intr_xscale,
207         .clear_intr = megasas_clear_intr_xscale,
208         .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
209 };
210
211 /**
212 *       This is the end of set of functions & definitions specific 
213 *       to xscale (deviceid : 1064R, PERC5) controllers
214 */
215
216 /**
217 *       The following functions are defined for ppc (deviceid : 0x60) 
218 *       controllers
219 */
220
221 /**
222  * megasas_enable_intr_ppc -    Enables interrupts
223  * @regs:                       MFI register set
224  */
225 static inline void
226 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
227 {
228         writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
229     
230         writel(~0x80000004, &(regs)->outbound_intr_mask);
231
232         /* Dummy readl to force pci flush */
233         readl(&regs->outbound_intr_mask);
234 }
235
236 /**
237  * megasas_disable_intr_ppc -   Disable interrupt
238  * @regs:                       MFI register set
239  */
240 static inline void
241 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
242 {
243         u32 mask = 0xFFFFFFFF;
244         writel(mask, &regs->outbound_intr_mask);
245         /* Dummy readl to force pci flush */
246         readl(&regs->outbound_intr_mask);
247 }
248
249 /**
250  * megasas_read_fw_status_reg_ppc - returns the current FW status value
251  * @regs:                       MFI register set
252  */
253 static u32
254 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
255 {
256         return readl(&(regs)->outbound_scratch_pad);
257 }
258
259 /**
260  * megasas_clear_interrupt_ppc -        Check & clear interrupt
261  * @regs:                               MFI register set
262  */
263 static int 
264 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
265 {
266         u32 status;
267         /*
268          * Check if it is our interrupt
269          */
270         status = readl(&regs->outbound_intr_status);
271
272         if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
273                 return 1;
274         }
275
276         /*
277          * Clear the interrupt by writing back the same value
278          */
279         writel(status, &regs->outbound_doorbell_clear);
280
281         return 0;
282 }
283 /**
284  * megasas_fire_cmd_ppc -       Sends command to the FW
285  * @frame_phys_addr :           Physical address of cmd
286  * @frame_count :               Number of frames for the command
287  * @regs :                      MFI register set
288  */
289 static inline void 
290 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
291 {
292         writel((frame_phys_addr | (frame_count<<1))|1, 
293                         &(regs)->inbound_queue_port);
294 }
295
296 static struct megasas_instance_template megasas_instance_template_ppc = {
297         
298         .fire_cmd = megasas_fire_cmd_ppc,
299         .enable_intr = megasas_enable_intr_ppc,
300         .disable_intr = megasas_disable_intr_ppc,
301         .clear_intr = megasas_clear_intr_ppc,
302         .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
303 };
304
305 /**
306 *       This is the end of set of functions & definitions
307 *       specific to ppc (deviceid : 0x60) controllers
308 */
309
310 /**
311  * megasas_issue_polled -       Issues a polling command
312  * @instance:                   Adapter soft state
313  * @cmd:                        Command packet to be issued 
314  *
315  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
316  */
317 static int
318 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
319 {
320         int i;
321         u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
322
323         struct megasas_header *frame_hdr = &cmd->frame->hdr;
324
325         frame_hdr->cmd_status = 0xFF;
326         frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
327
328         /*
329          * Issue the frame using inbound queue port
330          */
331         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
332
333         /*
334          * Wait for cmd_status to change
335          */
336         for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
337                 rmb();
338                 msleep(1);
339         }
340
341         if (frame_hdr->cmd_status == 0xff)
342                 return -ETIME;
343
344         return 0;
345 }
346
347 /**
348  * megasas_issue_blocked_cmd -  Synchronous wrapper around regular FW cmds
349  * @instance:                   Adapter soft state
350  * @cmd:                        Command to be issued
351  *
352  * This function waits on an event for the command to be returned from ISR.
353  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
354  * Used to issue ioctl commands.
355  */
356 static int
357 megasas_issue_blocked_cmd(struct megasas_instance *instance,
358                           struct megasas_cmd *cmd)
359 {
360         cmd->cmd_status = ENODATA;
361
362         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
363
364         wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
365                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
366
367         return 0;
368 }
369
370 /**
371  * megasas_issue_blocked_abort_cmd -    Aborts previously issued cmd
372  * @instance:                           Adapter soft state
373  * @cmd_to_abort:                       Previously issued cmd to be aborted
374  *
375  * MFI firmware can abort previously issued AEN comamnd (automatic event
376  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
377  * cmd and waits for return status.
378  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
379  */
380 static int
381 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
382                                 struct megasas_cmd *cmd_to_abort)
383 {
384         struct megasas_cmd *cmd;
385         struct megasas_abort_frame *abort_fr;
386
387         cmd = megasas_get_cmd(instance);
388
389         if (!cmd)
390                 return -1;
391
392         abort_fr = &cmd->frame->abort;
393
394         /*
395          * Prepare and issue the abort frame
396          */
397         abort_fr->cmd = MFI_CMD_ABORT;
398         abort_fr->cmd_status = 0xFF;
399         abort_fr->flags = 0;
400         abort_fr->abort_context = cmd_to_abort->index;
401         abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
402         abort_fr->abort_mfi_phys_addr_hi = 0;
403
404         cmd->sync_cmd = 1;
405         cmd->cmd_status = 0xFF;
406
407         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
408
409         /*
410          * Wait for this cmd to complete
411          */
412         wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
413                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
414
415         megasas_return_cmd(instance, cmd);
416         return 0;
417 }
418
419 /**
420  * megasas_make_sgl32 - Prepares 32-bit SGL
421  * @instance:           Adapter soft state
422  * @scp:                SCSI command from the mid-layer
423  * @mfi_sgl:            SGL to be filled in
424  *
425  * If successful, this function returns the number of SG elements. Otherwise,
426  * it returnes -1.
427  */
428 static int
429 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
430                    union megasas_sgl *mfi_sgl)
431 {
432         int i;
433         int sge_count;
434         struct scatterlist *os_sgl;
435
436         /*
437          * Return 0 if there is no data transfer
438          */
439         if (!scp->request_buffer || !scp->request_bufflen)
440                 return 0;
441
442         if (!scp->use_sg) {
443                 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
444                                                              scp->
445                                                              request_buffer,
446                                                              scp->
447                                                              request_bufflen,
448                                                              scp->
449                                                              sc_data_direction);
450                 mfi_sgl->sge32[0].length = scp->request_bufflen;
451
452                 return 1;
453         }
454
455         os_sgl = (struct scatterlist *)scp->request_buffer;
456         sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
457                                scp->sc_data_direction);
458
459         for (i = 0; i < sge_count; i++, os_sgl++) {
460                 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
461                 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
462         }
463
464         return sge_count;
465 }
466
467 /**
468  * megasas_make_sgl64 - Prepares 64-bit SGL
469  * @instance:           Adapter soft state
470  * @scp:                SCSI command from the mid-layer
471  * @mfi_sgl:            SGL to be filled in
472  *
473  * If successful, this function returns the number of SG elements. Otherwise,
474  * it returnes -1.
475  */
476 static int
477 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
478                    union megasas_sgl *mfi_sgl)
479 {
480         int i;
481         int sge_count;
482         struct scatterlist *os_sgl;
483
484         /*
485          * Return 0 if there is no data transfer
486          */
487         if (!scp->request_buffer || !scp->request_bufflen)
488                 return 0;
489
490         if (!scp->use_sg) {
491                 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
492                                                              scp->
493                                                              request_buffer,
494                                                              scp->
495                                                              request_bufflen,
496                                                              scp->
497                                                              sc_data_direction);
498
499                 mfi_sgl->sge64[0].length = scp->request_bufflen;
500
501                 return 1;
502         }
503
504         os_sgl = (struct scatterlist *)scp->request_buffer;
505         sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
506                                scp->sc_data_direction);
507
508         for (i = 0; i < sge_count; i++, os_sgl++) {
509                 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
510                 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
511         }
512
513         return sge_count;
514 }
515
516  /**
517  * megasas_get_frame_count - Computes the number of frames
518  * @sge_count           : number of sg elements
519  *
520  * Returns the number of frames required for numnber of sge's (sge_count)
521  */
522
523 static u32 megasas_get_frame_count(u8 sge_count)
524 {
525         int num_cnt;
526         int sge_bytes;
527         u32 sge_sz;
528         u32 frame_count=0;
529
530         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
531             sizeof(struct megasas_sge32);
532
533         /*
534         * Main frame can contain 2 SGEs for 64-bit SGLs and
535         * 3 SGEs for 32-bit SGLs
536         */
537         if (IS_DMA64)
538                 num_cnt = sge_count - 2;
539         else
540                 num_cnt = sge_count - 3;
541
542         if(num_cnt>0){
543                 sge_bytes = sge_sz * num_cnt;
544
545                 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
546                     ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
547         }
548         /* Main frame */
549         frame_count +=1;
550
551         if (frame_count > 7)
552                 frame_count = 8;
553         return frame_count;
554 }
555
556 /**
557  * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
558  * @instance:           Adapter soft state
559  * @scp:                SCSI command
560  * @cmd:                Command to be prepared in
561  *
562  * This function prepares CDB commands. These are typcially pass-through
563  * commands to the devices.
564  */
565 static int
566 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
567                    struct megasas_cmd *cmd)
568 {
569         u32 is_logical;
570         u32 device_id;
571         u16 flags = 0;
572         struct megasas_pthru_frame *pthru;
573
574         is_logical = MEGASAS_IS_LOGICAL(scp);
575         device_id = MEGASAS_DEV_INDEX(instance, scp);
576         pthru = (struct megasas_pthru_frame *)cmd->frame;
577
578         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
579                 flags = MFI_FRAME_DIR_WRITE;
580         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
581                 flags = MFI_FRAME_DIR_READ;
582         else if (scp->sc_data_direction == PCI_DMA_NONE)
583                 flags = MFI_FRAME_DIR_NONE;
584
585         /*
586          * Prepare the DCDB frame
587          */
588         pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
589         pthru->cmd_status = 0x0;
590         pthru->scsi_status = 0x0;
591         pthru->target_id = device_id;
592         pthru->lun = scp->device->lun;
593         pthru->cdb_len = scp->cmd_len;
594         pthru->timeout = 0;
595         pthru->flags = flags;
596         pthru->data_xfer_len = scp->request_bufflen;
597
598         memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
599
600         /*
601          * Construct SGL
602          */
603         if (IS_DMA64) {
604                 pthru->flags |= MFI_FRAME_SGL64;
605                 pthru->sge_count = megasas_make_sgl64(instance, scp,
606                                                       &pthru->sgl);
607         } else
608                 pthru->sge_count = megasas_make_sgl32(instance, scp,
609                                                       &pthru->sgl);
610
611         /*
612          * Sense info specific
613          */
614         pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
615         pthru->sense_buf_phys_addr_hi = 0;
616         pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
617
618         /*
619          * Compute the total number of frames this command consumes. FW uses
620          * this number to pull sufficient number of frames from host memory.
621          */
622         cmd->frame_count = megasas_get_frame_count(pthru->sge_count);
623
624         return cmd->frame_count;
625 }
626
627 /**
628  * megasas_build_ldio - Prepares IOs to logical devices
629  * @instance:           Adapter soft state
630  * @scp:                SCSI command
631  * @cmd:                Command to to be prepared
632  *
633  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
634  */
635 static int
636 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
637                    struct megasas_cmd *cmd)
638 {
639         u32 device_id;
640         u8 sc = scp->cmnd[0];
641         u16 flags = 0;
642         struct megasas_io_frame *ldio;
643
644         device_id = MEGASAS_DEV_INDEX(instance, scp);
645         ldio = (struct megasas_io_frame *)cmd->frame;
646
647         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
648                 flags = MFI_FRAME_DIR_WRITE;
649         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
650                 flags = MFI_FRAME_DIR_READ;
651
652         /*
653          * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
654          */
655         ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
656         ldio->cmd_status = 0x0;
657         ldio->scsi_status = 0x0;
658         ldio->target_id = device_id;
659         ldio->timeout = 0;
660         ldio->reserved_0 = 0;
661         ldio->pad_0 = 0;
662         ldio->flags = flags;
663         ldio->start_lba_hi = 0;
664         ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
665
666         /*
667          * 6-byte READ(0x08) or WRITE(0x0A) cdb
668          */
669         if (scp->cmd_len == 6) {
670                 ldio->lba_count = (u32) scp->cmnd[4];
671                 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
672                     ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
673
674                 ldio->start_lba_lo &= 0x1FFFFF;
675         }
676
677         /*
678          * 10-byte READ(0x28) or WRITE(0x2A) cdb
679          */
680         else if (scp->cmd_len == 10) {
681                 ldio->lba_count = (u32) scp->cmnd[8] |
682                     ((u32) scp->cmnd[7] << 8);
683                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
684                     ((u32) scp->cmnd[3] << 16) |
685                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
686         }
687
688         /*
689          * 12-byte READ(0xA8) or WRITE(0xAA) cdb
690          */
691         else if (scp->cmd_len == 12) {
692                 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
693                     ((u32) scp->cmnd[7] << 16) |
694                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
695
696                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
697                     ((u32) scp->cmnd[3] << 16) |
698                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
699         }
700
701         /*
702          * 16-byte READ(0x88) or WRITE(0x8A) cdb
703          */
704         else if (scp->cmd_len == 16) {
705                 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
706                     ((u32) scp->cmnd[11] << 16) |
707                     ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
708
709                 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
710                     ((u32) scp->cmnd[7] << 16) |
711                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
712
713                 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
714                     ((u32) scp->cmnd[3] << 16) |
715                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
716
717         }
718
719         /*
720          * Construct SGL
721          */
722         if (IS_DMA64) {
723                 ldio->flags |= MFI_FRAME_SGL64;
724                 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
725         } else
726                 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
727
728         /*
729          * Sense info specific
730          */
731         ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
732         ldio->sense_buf_phys_addr_hi = 0;
733         ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
734
735         /*
736          * Compute the total number of frames this command consumes. FW uses
737          * this number to pull sufficient number of frames from host memory.
738          */
739         cmd->frame_count = megasas_get_frame_count(ldio->sge_count);
740
741         return cmd->frame_count;
742 }
743
744 /**
745  * megasas_is_ldio -            Checks if the cmd is for logical drive
746  * @scmd:                       SCSI command
747  *      
748  * Called by megasas_queue_command to find out if the command to be queued
749  * is a logical drive command   
750  */
751 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
752 {
753         if (!MEGASAS_IS_LOGICAL(cmd))
754                 return 0;
755         switch (cmd->cmnd[0]) {
756         case READ_10:
757         case WRITE_10:
758         case READ_12:
759         case WRITE_12:
760         case READ_6:
761         case WRITE_6:
762         case READ_16:
763         case WRITE_16:
764                 return 1;
765         default:
766                 return 0;
767         }
768 }
769
770  /**
771  * megasas_dump_pending_frames -        Dumps the frame address of all pending cmds
772  *                                      in FW
773  * @instance:                           Adapter soft state
774  */
775 static inline void
776 megasas_dump_pending_frames(struct megasas_instance *instance)
777 {
778         struct megasas_cmd *cmd;
779         int i,n;
780         union megasas_sgl *mfi_sgl;
781         struct megasas_io_frame *ldio;
782         struct megasas_pthru_frame *pthru;
783         u32 sgcount;
784         u32 max_cmd = instance->max_fw_cmds;
785
786         printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
787         printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
788         if (IS_DMA64)
789                 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
790         else
791                 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
792
793         printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
794         for (i = 0; i < max_cmd; i++) {
795                 cmd = instance->cmd_list[i];
796                 if(!cmd->scmd)
797                         continue;
798                 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
799                 if (megasas_is_ldio(cmd->scmd)){
800                         ldio = (struct megasas_io_frame *)cmd->frame;
801                         mfi_sgl = &ldio->sgl;
802                         sgcount = ldio->sge_count;
803                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
804                 }
805                 else {
806                         pthru = (struct megasas_pthru_frame *) cmd->frame;
807                         mfi_sgl = &pthru->sgl;
808                         sgcount = pthru->sge_count;
809                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
810                 }
811         if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
812                 for (n = 0; n < sgcount; n++){
813                         if (IS_DMA64)
814                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
815                         else
816                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
817                         }
818                 }
819                 printk(KERN_ERR "\n");
820         } /*for max_cmd*/
821         printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
822         for (i = 0; i < max_cmd; i++) {
823
824                 cmd = instance->cmd_list[i];
825
826                 if(cmd->sync_cmd == 1){
827                         printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
828                 }
829         }
830         printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
831 }
832
833 /**
834  * megasas_queue_command -      Queue entry point
835  * @scmd:                       SCSI command to be queued
836  * @done:                       Callback entry point
837  */
838 static int
839 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
840 {
841         u32 frame_count;
842         struct megasas_cmd *cmd;
843         struct megasas_instance *instance;
844
845         instance = (struct megasas_instance *)
846             scmd->device->host->hostdata;
847
848         /* Don't process if we have already declared adapter dead */
849         if (instance->hw_crit_error)
850                 return SCSI_MLQUEUE_HOST_BUSY;
851
852         scmd->scsi_done = done;
853         scmd->result = 0;
854
855         if (MEGASAS_IS_LOGICAL(scmd) &&
856             (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
857                 scmd->result = DID_BAD_TARGET << 16;
858                 goto out_done;
859         }
860
861         switch (scmd->cmnd[0]) {
862         case SYNCHRONIZE_CACHE:
863                 /*
864                  * FW takes care of flush cache on its own
865                  * No need to send it down
866                  */
867                 scmd->result = DID_OK << 16;
868                 goto out_done;
869         default:
870                 break;
871         }
872
873         cmd = megasas_get_cmd(instance);
874         if (!cmd)
875                 return SCSI_MLQUEUE_HOST_BUSY;
876
877         /*
878          * Logical drive command
879          */
880         if (megasas_is_ldio(scmd))
881                 frame_count = megasas_build_ldio(instance, scmd, cmd);
882         else
883                 frame_count = megasas_build_dcdb(instance, scmd, cmd);
884
885         if (!frame_count)
886                 goto out_return_cmd;
887
888         cmd->scmd = scmd;
889         scmd->SCp.ptr = (char *)cmd;
890
891         /*
892          * Issue the command to the FW
893          */
894         atomic_inc(&instance->fw_outstanding);
895
896         instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
897
898         return 0;
899
900  out_return_cmd:
901         megasas_return_cmd(instance, cmd);
902  out_done:
903         done(scmd);
904         return 0;
905 }
906
907 static int megasas_slave_configure(struct scsi_device *sdev)
908 {
909         /*
910          * Don't export physical disk devices to the disk driver.
911          *
912          * FIXME: Currently we don't export them to the midlayer at all.
913          *        That will be fixed once LSI engineers have audited the
914          *        firmware for possible issues.
915          */
916         if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
917                 return -ENXIO;
918
919         /*
920          * The RAID firmware may require extended timeouts.
921          */
922         if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
923                 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
924         return 0;
925 }
926
927 /**
928  * megasas_wait_for_outstanding -       Wait for all outstanding cmds
929  * @instance:                           Adapter soft state
930  *
931  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
932  * complete all its outstanding commands. Returns error if one or more IOs
933  * are pending after this time period. It also marks the controller dead.
934  */
935 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
936 {
937         int i;
938         u32 wait_time = MEGASAS_RESET_WAIT_TIME;
939
940         for (i = 0; i < wait_time; i++) {
941
942                 int outstanding = atomic_read(&instance->fw_outstanding);
943
944                 if (!outstanding)
945                         break;
946
947                 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
948                         printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
949                                "commands to complete\n",i,outstanding);
950                 }
951
952                 msleep(1000);
953         }
954
955         if (atomic_read(&instance->fw_outstanding)) {
956                 /*
957                 * Send signal to FW to stop processing any pending cmds.
958                 * The controller will be taken offline by the OS now.
959                 */
960                 writel(MFI_STOP_ADP,
961                                 &instance->reg_set->inbound_doorbell);
962                 megasas_dump_pending_frames(instance);
963                 instance->hw_crit_error = 1;
964                 return FAILED;
965         }
966
967         return SUCCESS;
968 }
969
970 /**
971  * megasas_generic_reset -      Generic reset routine
972  * @scmd:                       Mid-layer SCSI command
973  *
974  * This routine implements a generic reset handler for device, bus and host
975  * reset requests. Device, bus and host specific reset handlers can use this
976  * function after they do their specific tasks.
977  */
978 static int megasas_generic_reset(struct scsi_cmnd *scmd)
979 {
980         int ret_val;
981         struct megasas_instance *instance;
982
983         instance = (struct megasas_instance *)scmd->device->host->hostdata;
984
985         scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
986                  scmd->serial_number, scmd->cmnd[0], scmd->retries);
987
988         if (instance->hw_crit_error) {
989                 printk(KERN_ERR "megasas: cannot recover from previous reset "
990                        "failures\n");
991                 return FAILED;
992         }
993
994         ret_val = megasas_wait_for_outstanding(instance);
995         if (ret_val == SUCCESS)
996                 printk(KERN_NOTICE "megasas: reset successful \n");
997         else
998                 printk(KERN_ERR "megasas: failed to do reset\n");
999
1000         return ret_val;
1001 }
1002
1003 /**
1004  * megasas_reset_timer - quiesce the adapter if required
1005  * @scmd:               scsi cmnd
1006  *
1007  * Sets the FW busy flag and reduces the host->can_queue if the
1008  * cmd has not been completed within the timeout period.
1009  */
1010 static enum
1011 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1012 {
1013         struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1014         struct megasas_instance *instance;
1015         unsigned long flags;
1016
1017         if (time_after(jiffies, scmd->jiffies_at_alloc +
1018                                 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1019                 return EH_NOT_HANDLED;
1020         }
1021
1022         instance = cmd->instance;
1023         if (!(instance->flag & MEGASAS_FW_BUSY)) {
1024                 /* FW is busy, throttle IO */
1025                 spin_lock_irqsave(instance->host->host_lock, flags);
1026
1027                 instance->host->can_queue = 16;
1028                 instance->last_time = jiffies;
1029                 instance->flag |= MEGASAS_FW_BUSY;
1030
1031                 spin_unlock_irqrestore(instance->host->host_lock, flags);
1032         }
1033         return EH_RESET_TIMER;
1034 }
1035
1036 /**
1037  * megasas_reset_device -       Device reset handler entry point
1038  */
1039 static int megasas_reset_device(struct scsi_cmnd *scmd)
1040 {
1041         int ret;
1042
1043         /*
1044          * First wait for all commands to complete
1045          */
1046         ret = megasas_generic_reset(scmd);
1047
1048         return ret;
1049 }
1050
1051 /**
1052  * megasas_reset_bus_host -     Bus & host reset handler entry point
1053  */
1054 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1055 {
1056         int ret;
1057
1058         /*
1059          * First wait for all commands to complete
1060          */
1061         ret = megasas_generic_reset(scmd);
1062
1063         return ret;
1064 }
1065
1066 /**
1067  * megasas_bios_param - Returns disk geometry for a disk
1068  * @sdev:               device handle
1069  * @bdev:               block device
1070  * @capacity:           drive capacity
1071  * @geom:               geometry parameters
1072  */
1073 static int
1074 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1075                  sector_t capacity, int geom[])
1076 {
1077         int heads;
1078         int sectors;
1079         sector_t cylinders;
1080         unsigned long tmp;
1081         /* Default heads (64) & sectors (32) */
1082         heads = 64;
1083         sectors = 32;
1084
1085         tmp = heads * sectors;
1086         cylinders = capacity;
1087
1088         sector_div(cylinders, tmp);
1089
1090         /*
1091          * Handle extended translation size for logical drives > 1Gb
1092          */
1093
1094         if (capacity >= 0x200000) {
1095                 heads = 255;
1096                 sectors = 63;
1097                 tmp = heads*sectors;
1098                 cylinders = capacity;
1099                 sector_div(cylinders, tmp);
1100         }
1101
1102         geom[0] = heads;
1103         geom[1] = sectors;
1104         geom[2] = cylinders;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * megasas_service_aen -        Processes an event notification
1111  * @instance:                   Adapter soft state
1112  * @cmd:                        AEN command completed by the ISR
1113  *
1114  * For AEN, driver sends a command down to FW that is held by the FW till an
1115  * event occurs. When an event of interest occurs, FW completes the command
1116  * that it was previously holding.
1117  *
1118  * This routines sends SIGIO signal to processes that have registered with the
1119  * driver for AEN.
1120  */
1121 static void
1122 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1123 {
1124         /*
1125          * Don't signal app if it is just an aborted previously registered aen
1126          */
1127         if (!cmd->abort_aen)
1128                 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1129         else
1130                 cmd->abort_aen = 0;
1131
1132         instance->aen_cmd = NULL;
1133         megasas_return_cmd(instance, cmd);
1134 }
1135
1136 /*
1137  * Scsi host template for megaraid_sas driver
1138  */
1139 static struct scsi_host_template megasas_template = {
1140
1141         .module = THIS_MODULE,
1142         .name = "LSI Logic SAS based MegaRAID driver",
1143         .proc_name = "megaraid_sas",
1144         .slave_configure = megasas_slave_configure,
1145         .queuecommand = megasas_queue_command,
1146         .eh_device_reset_handler = megasas_reset_device,
1147         .eh_bus_reset_handler = megasas_reset_bus_host,
1148         .eh_host_reset_handler = megasas_reset_bus_host,
1149         .eh_timed_out = megasas_reset_timer,
1150         .bios_param = megasas_bios_param,
1151         .use_clustering = ENABLE_CLUSTERING,
1152 };
1153
1154 /**
1155  * megasas_complete_int_cmd -   Completes an internal command
1156  * @instance:                   Adapter soft state
1157  * @cmd:                        Command to be completed
1158  *
1159  * The megasas_issue_blocked_cmd() function waits for a command to complete
1160  * after it issues a command. This function wakes up that waiting routine by
1161  * calling wake_up() on the wait queue.
1162  */
1163 static void
1164 megasas_complete_int_cmd(struct megasas_instance *instance,
1165                          struct megasas_cmd *cmd)
1166 {
1167         cmd->cmd_status = cmd->frame->io.cmd_status;
1168
1169         if (cmd->cmd_status == ENODATA) {
1170                 cmd->cmd_status = 0;
1171         }
1172         wake_up(&instance->int_cmd_wait_q);
1173 }
1174
1175 /**
1176  * megasas_complete_abort -     Completes aborting a command
1177  * @instance:                   Adapter soft state
1178  * @cmd:                        Cmd that was issued to abort another cmd
1179  *
1180  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 
1181  * after it issues an abort on a previously issued command. This function 
1182  * wakes up all functions waiting on the same wait queue.
1183  */
1184 static void
1185 megasas_complete_abort(struct megasas_instance *instance,
1186                        struct megasas_cmd *cmd)
1187 {
1188         if (cmd->sync_cmd) {
1189                 cmd->sync_cmd = 0;
1190                 cmd->cmd_status = 0;
1191                 wake_up(&instance->abort_cmd_wait_q);
1192         }
1193
1194         return;
1195 }
1196
1197 /**
1198  * megasas_unmap_sgbuf -        Unmap SG buffers
1199  * @instance:                   Adapter soft state
1200  * @cmd:                        Completed command
1201  */
1202 static void
1203 megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
1204 {
1205         dma_addr_t buf_h;
1206         u8 opcode;
1207
1208         if (cmd->scmd->use_sg) {
1209                 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
1210                              cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
1211                 return;
1212         }
1213
1214         if (!cmd->scmd->request_bufflen)
1215                 return;
1216
1217         opcode = cmd->frame->hdr.cmd;
1218
1219         if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
1220                 if (IS_DMA64)
1221                         buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
1222                 else
1223                         buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
1224         } else {
1225                 if (IS_DMA64)
1226                         buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
1227                 else
1228                         buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
1229         }
1230
1231         pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
1232                          cmd->scmd->sc_data_direction);
1233         return;
1234 }
1235
1236 /**
1237  * megasas_complete_cmd -       Completes a command
1238  * @instance:                   Adapter soft state
1239  * @cmd:                        Command to be completed
1240  * @alt_status:                 If non-zero, use this value as status to 
1241  *                              SCSI mid-layer instead of the value returned
1242  *                              by the FW. This should be used if caller wants
1243  *                              an alternate status (as in the case of aborted
1244  *                              commands)
1245  */
1246 static void
1247 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1248                      u8 alt_status)
1249 {
1250         int exception = 0;
1251         struct megasas_header *hdr = &cmd->frame->hdr;
1252
1253         if (cmd->scmd)
1254                 cmd->scmd->SCp.ptr = NULL;
1255
1256         switch (hdr->cmd) {
1257
1258         case MFI_CMD_PD_SCSI_IO:
1259         case MFI_CMD_LD_SCSI_IO:
1260
1261                 /*
1262                  * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1263                  * issued either through an IO path or an IOCTL path. If it
1264                  * was via IOCTL, we will send it to internal completion.
1265                  */
1266                 if (cmd->sync_cmd) {
1267                         cmd->sync_cmd = 0;
1268                         megasas_complete_int_cmd(instance, cmd);
1269                         break;
1270                 }
1271
1272         case MFI_CMD_LD_READ:
1273         case MFI_CMD_LD_WRITE:
1274
1275                 if (alt_status) {
1276                         cmd->scmd->result = alt_status << 16;
1277                         exception = 1;
1278                 }
1279
1280                 if (exception) {
1281
1282                         atomic_dec(&instance->fw_outstanding);
1283
1284                         megasas_unmap_sgbuf(instance, cmd);
1285                         cmd->scmd->scsi_done(cmd->scmd);
1286                         megasas_return_cmd(instance, cmd);
1287
1288                         break;
1289                 }
1290
1291                 switch (hdr->cmd_status) {
1292
1293                 case MFI_STAT_OK:
1294                         cmd->scmd->result = DID_OK << 16;
1295                         break;
1296
1297                 case MFI_STAT_SCSI_IO_FAILED:
1298                 case MFI_STAT_LD_INIT_IN_PROGRESS:
1299                         cmd->scmd->result =
1300                             (DID_ERROR << 16) | hdr->scsi_status;
1301                         break;
1302
1303                 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1304
1305                         cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1306
1307                         if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1308                                 memset(cmd->scmd->sense_buffer, 0,
1309                                        SCSI_SENSE_BUFFERSIZE);
1310                                 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1311                                        hdr->sense_len);
1312
1313                                 cmd->scmd->result |= DRIVER_SENSE << 24;
1314                         }
1315
1316                         break;
1317
1318                 case MFI_STAT_LD_OFFLINE:
1319                 case MFI_STAT_DEVICE_NOT_FOUND:
1320                         cmd->scmd->result = DID_BAD_TARGET << 16;
1321                         break;
1322
1323                 default:
1324                         printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1325                                hdr->cmd_status);
1326                         cmd->scmd->result = DID_ERROR << 16;
1327                         break;
1328                 }
1329
1330                 atomic_dec(&instance->fw_outstanding);
1331
1332                 megasas_unmap_sgbuf(instance, cmd);
1333                 cmd->scmd->scsi_done(cmd->scmd);
1334                 megasas_return_cmd(instance, cmd);
1335
1336                 break;
1337
1338         case MFI_CMD_SMP:
1339         case MFI_CMD_STP:
1340         case MFI_CMD_DCMD:
1341
1342                 /*
1343                  * See if got an event notification
1344                  */
1345                 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1346                         megasas_service_aen(instance, cmd);
1347                 else
1348                         megasas_complete_int_cmd(instance, cmd);
1349
1350                 break;
1351
1352         case MFI_CMD_ABORT:
1353                 /*
1354                  * Cmd issued to abort another cmd returned
1355                  */
1356                 megasas_complete_abort(instance, cmd);
1357                 break;
1358
1359         default:
1360                 printk("megasas: Unknown command completed! [0x%X]\n",
1361                        hdr->cmd);
1362                 break;
1363         }
1364 }
1365
1366 /**
1367  * megasas_deplete_reply_queue -        Processes all completed commands
1368  * @instance:                           Adapter soft state
1369  * @alt_status:                         Alternate status to be returned to
1370  *                                      SCSI mid-layer instead of the status
1371  *                                      returned by the FW
1372  */
1373 static int
1374 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1375 {
1376         /*
1377          * Check if it is our interrupt
1378          * Clear the interrupt 
1379          */
1380         if(instance->instancet->clear_intr(instance->reg_set))
1381                 return IRQ_NONE;
1382
1383         if (instance->hw_crit_error)
1384                 goto out_done;
1385         /*
1386          * Schedule the tasklet for cmd completion
1387          */
1388         tasklet_schedule(&instance->isr_tasklet);
1389 out_done:
1390         return IRQ_HANDLED;
1391 }
1392
1393 /**
1394  * megasas_isr - isr entry point
1395  */
1396 static irqreturn_t megasas_isr(int irq, void *devp)
1397 {
1398         return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1399                                            DID_OK);
1400 }
1401
1402 /**
1403  * megasas_transition_to_ready -        Move the FW to READY state
1404  * @instance:                           Adapter soft state
1405  *
1406  * During the initialization, FW passes can potentially be in any one of
1407  * several possible states. If the FW in operational, waiting-for-handshake
1408  * states, driver must take steps to bring it to ready state. Otherwise, it
1409  * has to wait for the ready state.
1410  */
1411 static int
1412 megasas_transition_to_ready(struct megasas_instance* instance)
1413 {
1414         int i;
1415         u8 max_wait;
1416         u32 fw_state;
1417         u32 cur_state;
1418
1419         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1420
1421         if (fw_state != MFI_STATE_READY)
1422                 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1423                        " state\n");
1424
1425         while (fw_state != MFI_STATE_READY) {
1426
1427                 switch (fw_state) {
1428
1429                 case MFI_STATE_FAULT:
1430
1431                         printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1432                         return -ENODEV;
1433
1434                 case MFI_STATE_WAIT_HANDSHAKE:
1435                         /*
1436                          * Set the CLR bit in inbound doorbell
1437                          */
1438                         writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1439                                 &instance->reg_set->inbound_doorbell);
1440
1441                         max_wait = 2;
1442                         cur_state = MFI_STATE_WAIT_HANDSHAKE;
1443                         break;
1444
1445                 case MFI_STATE_BOOT_MESSAGE_PENDING:
1446                         writel(MFI_INIT_HOTPLUG,
1447                                 &instance->reg_set->inbound_doorbell);
1448
1449                         max_wait = 10;
1450                         cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1451                         break;
1452
1453                 case MFI_STATE_OPERATIONAL:
1454                         /*
1455                          * Bring it to READY state; assuming max wait 10 secs
1456                          */
1457                         instance->instancet->disable_intr(instance->reg_set);
1458                         writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1459
1460                         max_wait = 10;
1461                         cur_state = MFI_STATE_OPERATIONAL;
1462                         break;
1463
1464                 case MFI_STATE_UNDEFINED:
1465                         /*
1466                          * This state should not last for more than 2 seconds
1467                          */
1468                         max_wait = 2;
1469                         cur_state = MFI_STATE_UNDEFINED;
1470                         break;
1471
1472                 case MFI_STATE_BB_INIT:
1473                         max_wait = 2;
1474                         cur_state = MFI_STATE_BB_INIT;
1475                         break;
1476
1477                 case MFI_STATE_FW_INIT:
1478                         max_wait = 20;
1479                         cur_state = MFI_STATE_FW_INIT;
1480                         break;
1481
1482                 case MFI_STATE_FW_INIT_2:
1483                         max_wait = 20;
1484                         cur_state = MFI_STATE_FW_INIT_2;
1485                         break;
1486
1487                 case MFI_STATE_DEVICE_SCAN:
1488                         max_wait = 20;
1489                         cur_state = MFI_STATE_DEVICE_SCAN;
1490                         break;
1491
1492                 case MFI_STATE_FLUSH_CACHE:
1493                         max_wait = 20;
1494                         cur_state = MFI_STATE_FLUSH_CACHE;
1495                         break;
1496
1497                 default:
1498                         printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1499                                fw_state);
1500                         return -ENODEV;
1501                 }
1502
1503                 /*
1504                  * The cur_state should not last for more than max_wait secs
1505                  */
1506                 for (i = 0; i < (max_wait * 1000); i++) {
1507                         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &  
1508                                         MFI_STATE_MASK ;
1509
1510                         if (fw_state == cur_state) {
1511                                 msleep(1);
1512                         } else
1513                                 break;
1514                 }
1515
1516                 /*
1517                  * Return error if fw_state hasn't changed after max_wait
1518                  */
1519                 if (fw_state == cur_state) {
1520                         printk(KERN_DEBUG "FW state [%d] hasn't changed "
1521                                "in %d secs\n", fw_state, max_wait);
1522                         return -ENODEV;
1523                 }
1524         };
1525         printk(KERN_INFO "megasas: FW now in Ready state\n");
1526
1527         return 0;
1528 }
1529
1530 /**
1531  * megasas_teardown_frame_pool -        Destroy the cmd frame DMA pool
1532  * @instance:                           Adapter soft state
1533  */
1534 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1535 {
1536         int i;
1537         u32 max_cmd = instance->max_fw_cmds;
1538         struct megasas_cmd *cmd;
1539
1540         if (!instance->frame_dma_pool)
1541                 return;
1542
1543         /*
1544          * Return all frames to pool
1545          */
1546         for (i = 0; i < max_cmd; i++) {
1547
1548                 cmd = instance->cmd_list[i];
1549
1550                 if (cmd->frame)
1551                         pci_pool_free(instance->frame_dma_pool, cmd->frame,
1552                                       cmd->frame_phys_addr);
1553
1554                 if (cmd->sense)
1555                         pci_pool_free(instance->sense_dma_pool, cmd->sense,
1556                                       cmd->sense_phys_addr);
1557         }
1558
1559         /*
1560          * Now destroy the pool itself
1561          */
1562         pci_pool_destroy(instance->frame_dma_pool);
1563         pci_pool_destroy(instance->sense_dma_pool);
1564
1565         instance->frame_dma_pool = NULL;
1566         instance->sense_dma_pool = NULL;
1567 }
1568
1569 /**
1570  * megasas_create_frame_pool -  Creates DMA pool for cmd frames
1571  * @instance:                   Adapter soft state
1572  *
1573  * Each command packet has an embedded DMA memory buffer that is used for
1574  * filling MFI frame and the SG list that immediately follows the frame. This
1575  * function creates those DMA memory buffers for each command packet by using
1576  * PCI pool facility.
1577  */
1578 static int megasas_create_frame_pool(struct megasas_instance *instance)
1579 {
1580         int i;
1581         u32 max_cmd;
1582         u32 sge_sz;
1583         u32 sgl_sz;
1584         u32 total_sz;
1585         u32 frame_count;
1586         struct megasas_cmd *cmd;
1587
1588         max_cmd = instance->max_fw_cmds;
1589
1590         /*
1591          * Size of our frame is 64 bytes for MFI frame, followed by max SG
1592          * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1593          */
1594         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1595             sizeof(struct megasas_sge32);
1596
1597         /*
1598          * Calculated the number of 64byte frames required for SGL
1599          */
1600         sgl_sz = sge_sz * instance->max_num_sge;
1601         frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1602
1603         /*
1604          * We need one extra frame for the MFI command
1605          */
1606         frame_count++;
1607
1608         total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1609         /*
1610          * Use DMA pool facility provided by PCI layer
1611          */
1612         instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1613                                                    instance->pdev, total_sz, 64,
1614                                                    0);
1615
1616         if (!instance->frame_dma_pool) {
1617                 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1618                 return -ENOMEM;
1619         }
1620
1621         instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1622                                                    instance->pdev, 128, 4, 0);
1623
1624         if (!instance->sense_dma_pool) {
1625                 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1626
1627                 pci_pool_destroy(instance->frame_dma_pool);
1628                 instance->frame_dma_pool = NULL;
1629
1630                 return -ENOMEM;
1631         }
1632
1633         /*
1634          * Allocate and attach a frame to each of the commands in cmd_list.
1635          * By making cmd->index as the context instead of the &cmd, we can
1636          * always use 32bit context regardless of the architecture
1637          */
1638         for (i = 0; i < max_cmd; i++) {
1639
1640                 cmd = instance->cmd_list[i];
1641
1642                 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1643                                             GFP_KERNEL, &cmd->frame_phys_addr);
1644
1645                 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1646                                             GFP_KERNEL, &cmd->sense_phys_addr);
1647
1648                 /*
1649                  * megasas_teardown_frame_pool() takes care of freeing
1650                  * whatever has been allocated
1651                  */
1652                 if (!cmd->frame || !cmd->sense) {
1653                         printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1654                         megasas_teardown_frame_pool(instance);
1655                         return -ENOMEM;
1656                 }
1657
1658                 cmd->frame->io.context = cmd->index;
1659         }
1660
1661         return 0;
1662 }
1663
1664 /**
1665  * megasas_free_cmds -  Free all the cmds in the free cmd pool
1666  * @instance:           Adapter soft state
1667  */
1668 static void megasas_free_cmds(struct megasas_instance *instance)
1669 {
1670         int i;
1671         /* First free the MFI frame pool */
1672         megasas_teardown_frame_pool(instance);
1673
1674         /* Free all the commands in the cmd_list */
1675         for (i = 0; i < instance->max_fw_cmds; i++)
1676                 kfree(instance->cmd_list[i]);
1677
1678         /* Free the cmd_list buffer itself */
1679         kfree(instance->cmd_list);
1680         instance->cmd_list = NULL;
1681
1682         INIT_LIST_HEAD(&instance->cmd_pool);
1683 }
1684
1685 /**
1686  * megasas_alloc_cmds - Allocates the command packets
1687  * @instance:           Adapter soft state
1688  *
1689  * Each command that is issued to the FW, whether IO commands from the OS or
1690  * internal commands like IOCTLs, are wrapped in local data structure called
1691  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1692  * the FW.
1693  *
1694  * Each frame has a 32-bit field called context (tag). This context is used
1695  * to get back the megasas_cmd from the frame when a frame gets completed in
1696  * the ISR. Typically the address of the megasas_cmd itself would be used as
1697  * the context. But we wanted to keep the differences between 32 and 64 bit
1698  * systems to the mininum. We always use 32 bit integers for the context. In
1699  * this driver, the 32 bit values are the indices into an array cmd_list.
1700  * This array is used only to look up the megasas_cmd given the context. The
1701  * free commands themselves are maintained in a linked list called cmd_pool.
1702  */
1703 static int megasas_alloc_cmds(struct megasas_instance *instance)
1704 {
1705         int i;
1706         int j;
1707         u32 max_cmd;
1708         struct megasas_cmd *cmd;
1709
1710         max_cmd = instance->max_fw_cmds;
1711
1712         /*
1713          * instance->cmd_list is an array of struct megasas_cmd pointers.
1714          * Allocate the dynamic array first and then allocate individual
1715          * commands.
1716          */
1717         instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1718                                      GFP_KERNEL);
1719
1720         if (!instance->cmd_list) {
1721                 printk(KERN_DEBUG "megasas: out of memory\n");
1722                 return -ENOMEM;
1723         }
1724
1725         memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1726
1727         for (i = 0; i < max_cmd; i++) {
1728                 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1729                                                 GFP_KERNEL);
1730
1731                 if (!instance->cmd_list[i]) {
1732
1733                         for (j = 0; j < i; j++)
1734                                 kfree(instance->cmd_list[j]);
1735
1736                         kfree(instance->cmd_list);
1737                         instance->cmd_list = NULL;
1738
1739                         return -ENOMEM;
1740                 }
1741         }
1742
1743         /*
1744          * Add all the commands to command pool (instance->cmd_pool)
1745          */
1746         for (i = 0; i < max_cmd; i++) {
1747                 cmd = instance->cmd_list[i];
1748                 memset(cmd, 0, sizeof(struct megasas_cmd));
1749                 cmd->index = i;
1750                 cmd->instance = instance;
1751
1752                 list_add_tail(&cmd->list, &instance->cmd_pool);
1753         }
1754
1755         /*
1756          * Create a frame pool and assign one frame to each cmd
1757          */
1758         if (megasas_create_frame_pool(instance)) {
1759                 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1760                 megasas_free_cmds(instance);
1761         }
1762
1763         return 0;
1764 }
1765
1766 /**
1767  * megasas_get_controller_info -        Returns FW's controller structure
1768  * @instance:                           Adapter soft state
1769  * @ctrl_info:                          Controller information structure
1770  *
1771  * Issues an internal command (DCMD) to get the FW's controller structure.
1772  * This information is mainly used to find out the maximum IO transfer per
1773  * command supported by the FW.
1774  */
1775 static int
1776 megasas_get_ctrl_info(struct megasas_instance *instance,
1777                       struct megasas_ctrl_info *ctrl_info)
1778 {
1779         int ret = 0;
1780         struct megasas_cmd *cmd;
1781         struct megasas_dcmd_frame *dcmd;
1782         struct megasas_ctrl_info *ci;
1783         dma_addr_t ci_h = 0;
1784
1785         cmd = megasas_get_cmd(instance);
1786
1787         if (!cmd) {
1788                 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1789                 return -ENOMEM;
1790         }
1791
1792         dcmd = &cmd->frame->dcmd;
1793
1794         ci = pci_alloc_consistent(instance->pdev,
1795                                   sizeof(struct megasas_ctrl_info), &ci_h);
1796
1797         if (!ci) {
1798                 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1799                 megasas_return_cmd(instance, cmd);
1800                 return -ENOMEM;
1801         }
1802
1803         memset(ci, 0, sizeof(*ci));
1804         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1805
1806         dcmd->cmd = MFI_CMD_DCMD;
1807         dcmd->cmd_status = 0xFF;
1808         dcmd->sge_count = 1;
1809         dcmd->flags = MFI_FRAME_DIR_READ;
1810         dcmd->timeout = 0;
1811         dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1812         dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1813         dcmd->sgl.sge32[0].phys_addr = ci_h;
1814         dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1815
1816         if (!megasas_issue_polled(instance, cmd)) {
1817                 ret = 0;
1818                 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1819         } else {
1820                 ret = -1;
1821         }
1822
1823         pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1824                             ci, ci_h);
1825
1826         megasas_return_cmd(instance, cmd);
1827         return ret;
1828 }
1829
1830 /**
1831  * megasas_complete_cmd_dpc      -      Returns FW's controller structure
1832  * @instance_addr:                      Address of adapter soft state
1833  *
1834  * Tasklet to complete cmds
1835  */
1836 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1837 {
1838         u32 producer;
1839         u32 consumer;
1840         u32 context;
1841         struct megasas_cmd *cmd;
1842         struct megasas_instance *instance = (struct megasas_instance *)instance_addr;
1843         unsigned long flags;
1844
1845         /* If we have already declared adapter dead, donot complete cmds */
1846         if (instance->hw_crit_error)
1847                 return;
1848
1849         producer = *instance->producer;
1850         consumer = *instance->consumer;
1851
1852         while (consumer != producer) {
1853                 context = instance->reply_queue[consumer];
1854
1855                 cmd = instance->cmd_list[context];
1856
1857                 megasas_complete_cmd(instance, cmd, DID_OK);
1858
1859                 consumer++;
1860                 if (consumer == (instance->max_fw_cmds + 1)) {
1861                         consumer = 0;
1862                 }
1863         }
1864
1865         *instance->consumer = producer;
1866
1867         /*
1868          * Check if we can restore can_queue
1869          */
1870         if (instance->flag & MEGASAS_FW_BUSY
1871                 && time_after(jiffies, instance->last_time + 5 * HZ)
1872                 && atomic_read(&instance->fw_outstanding) < 17) {
1873
1874                 spin_lock_irqsave(instance->host->host_lock, flags);
1875                 instance->flag &= ~MEGASAS_FW_BUSY;
1876                 instance->host->can_queue =
1877                                 instance->max_fw_cmds - MEGASAS_INT_CMDS;
1878
1879                 spin_unlock_irqrestore(instance->host->host_lock, flags);
1880         }
1881
1882 }
1883
1884 /**
1885  * megasas_init_mfi -   Initializes the FW
1886  * @instance:           Adapter soft state
1887  *
1888  * This is the main function for initializing MFI firmware.
1889  */
1890 static int megasas_init_mfi(struct megasas_instance *instance)
1891 {
1892         u32 context_sz;
1893         u32 reply_q_sz;
1894         u32 max_sectors_1;
1895         u32 max_sectors_2;
1896         struct megasas_register_set __iomem *reg_set;
1897
1898         struct megasas_cmd *cmd;
1899         struct megasas_ctrl_info *ctrl_info;
1900
1901         struct megasas_init_frame *init_frame;
1902         struct megasas_init_queue_info *initq_info;
1903         dma_addr_t init_frame_h;
1904         dma_addr_t initq_info_h;
1905
1906         /*
1907          * Map the message registers
1908          */
1909         instance->base_addr = pci_resource_start(instance->pdev, 0);
1910
1911         if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1912                 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1913                 return -EBUSY;
1914         }
1915
1916         instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1917
1918         if (!instance->reg_set) {
1919                 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1920                 goto fail_ioremap;
1921         }
1922
1923         reg_set = instance->reg_set;
1924
1925         switch(instance->pdev->device)
1926         {
1927                 case PCI_DEVICE_ID_LSI_SAS1078R:        
1928                         instance->instancet = &megasas_instance_template_ppc;
1929                         break;
1930                 case PCI_DEVICE_ID_LSI_SAS1064R:
1931                 case PCI_DEVICE_ID_DELL_PERC5:
1932                 default:
1933                         instance->instancet = &megasas_instance_template_xscale;
1934                         break;
1935         }
1936
1937         /*
1938          * We expect the FW state to be READY
1939          */
1940         if (megasas_transition_to_ready(instance))
1941                 goto fail_ready_state;
1942
1943         /*
1944          * Get various operational parameters from status register
1945          */
1946         instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
1947         /*
1948          * Reduce the max supported cmds by 1. This is to ensure that the
1949          * reply_q_sz (1 more than the max cmd that driver may send)
1950          * does not exceed max cmds that the FW can support
1951          */
1952         instance->max_fw_cmds = instance->max_fw_cmds-1;
1953         instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 
1954                                         0x10;
1955         /*
1956          * Create a pool of commands
1957          */
1958         if (megasas_alloc_cmds(instance))
1959                 goto fail_alloc_cmds;
1960
1961         /*
1962          * Allocate memory for reply queue. Length of reply queue should
1963          * be _one_ more than the maximum commands handled by the firmware.
1964          *
1965          * Note: When FW completes commands, it places corresponding contex
1966          * values in this circular reply queue. This circular queue is a fairly
1967          * typical producer-consumer queue. FW is the producer (of completed
1968          * commands) and the driver is the consumer.
1969          */
1970         context_sz = sizeof(u32);
1971         reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1972
1973         instance->reply_queue = pci_alloc_consistent(instance->pdev,
1974                                                      reply_q_sz,
1975                                                      &instance->reply_queue_h);
1976
1977         if (!instance->reply_queue) {
1978                 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1979                 goto fail_reply_queue;
1980         }
1981
1982         /*
1983          * Prepare a init frame. Note the init frame points to queue info
1984          * structure. Each frame has SGL allocated after first 64 bytes. For
1985          * this frame - since we don't need any SGL - we use SGL's space as
1986          * queue info structure
1987          *
1988          * We will not get a NULL command below. We just created the pool.
1989          */
1990         cmd = megasas_get_cmd(instance);
1991
1992         init_frame = (struct megasas_init_frame *)cmd->frame;
1993         initq_info = (struct megasas_init_queue_info *)
1994             ((unsigned long)init_frame + 64);
1995
1996         init_frame_h = cmd->frame_phys_addr;
1997         initq_info_h = init_frame_h + 64;
1998
1999         memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
2000         memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
2001
2002         initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
2003         initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
2004
2005         initq_info->producer_index_phys_addr_lo = instance->producer_h;
2006         initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
2007
2008         init_frame->cmd = MFI_CMD_INIT;
2009         init_frame->cmd_status = 0xFF;
2010         init_frame->queue_info_new_phys_addr_lo = initq_info_h;
2011
2012         init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
2013
2014         /*
2015          * disable the intr before firing the init frame to FW
2016          */
2017         instance->instancet->disable_intr(instance->reg_set);
2018
2019         /*
2020          * Issue the init frame in polled mode
2021          */
2022         if (megasas_issue_polled(instance, cmd)) {
2023                 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
2024                 goto fail_fw_init;
2025         }
2026
2027         megasas_return_cmd(instance, cmd);
2028
2029         ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
2030
2031         /*
2032          * Compute the max allowed sectors per IO: The controller info has two
2033          * limits on max sectors. Driver should use the minimum of these two.
2034          *
2035          * 1 << stripe_sz_ops.min = max sectors per strip
2036          *
2037          * Note that older firmwares ( < FW ver 30) didn't report information
2038          * to calculate max_sectors_1. So the number ended up as zero always.
2039          */
2040         if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2041
2042                 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2043                     ctrl_info->max_strips_per_io;
2044                 max_sectors_2 = ctrl_info->max_request_size;
2045
2046                 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
2047                     ? max_sectors_1 : max_sectors_2;
2048         } else
2049                 instance->max_sectors_per_req = instance->max_num_sge *
2050                     PAGE_SIZE / 512;
2051
2052         kfree(ctrl_info);
2053
2054         /*
2055         * Setup tasklet for cmd completion
2056         */
2057
2058         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2059                         (unsigned long)instance);
2060         return 0;
2061
2062       fail_fw_init:
2063         megasas_return_cmd(instance, cmd);
2064
2065         pci_free_consistent(instance->pdev, reply_q_sz,
2066                             instance->reply_queue, instance->reply_queue_h);
2067       fail_reply_queue:
2068         megasas_free_cmds(instance);
2069
2070       fail_alloc_cmds:
2071       fail_ready_state:
2072         iounmap(instance->reg_set);
2073
2074       fail_ioremap:
2075         pci_release_regions(instance->pdev);
2076
2077         return -EINVAL;
2078 }
2079
2080 /**
2081  * megasas_release_mfi -        Reverses the FW initialization
2082  * @intance:                    Adapter soft state
2083  */
2084 static void megasas_release_mfi(struct megasas_instance *instance)
2085 {
2086         u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2087
2088         pci_free_consistent(instance->pdev, reply_q_sz,
2089                             instance->reply_queue, instance->reply_queue_h);
2090
2091         megasas_free_cmds(instance);
2092
2093         iounmap(instance->reg_set);
2094
2095         pci_release_regions(instance->pdev);
2096 }
2097
2098 /**
2099  * megasas_get_seq_num -        Gets latest event sequence numbers
2100  * @instance:                   Adapter soft state
2101  * @eli:                        FW event log sequence numbers information
2102  *
2103  * FW maintains a log of all events in a non-volatile area. Upper layers would
2104  * usually find out the latest sequence number of the events, the seq number at
2105  * the boot etc. They would "read" all the events below the latest seq number
2106  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2107  * number), they would subsribe to AEN (asynchronous event notification) and
2108  * wait for the events to happen.
2109  */
2110 static int
2111 megasas_get_seq_num(struct megasas_instance *instance,
2112                     struct megasas_evt_log_info *eli)
2113 {
2114         struct megasas_cmd *cmd;
2115         struct megasas_dcmd_frame *dcmd;
2116         struct megasas_evt_log_info *el_info;
2117         dma_addr_t el_info_h = 0;
2118
2119         cmd = megasas_get_cmd(instance);
2120
2121         if (!cmd) {
2122                 return -ENOMEM;
2123         }
2124
2125         dcmd = &cmd->frame->dcmd;
2126         el_info = pci_alloc_consistent(instance->pdev,
2127                                        sizeof(struct megasas_evt_log_info),
2128                                        &el_info_h);
2129
2130         if (!el_info) {
2131                 megasas_return_cmd(instance, cmd);
2132                 return -ENOMEM;
2133         }
2134
2135         memset(el_info, 0, sizeof(*el_info));
2136         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2137
2138         dcmd->cmd = MFI_CMD_DCMD;
2139         dcmd->cmd_status = 0x0;
2140         dcmd->sge_count = 1;
2141         dcmd->flags = MFI_FRAME_DIR_READ;
2142         dcmd->timeout = 0;
2143         dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2144         dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2145         dcmd->sgl.sge32[0].phys_addr = el_info_h;
2146         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2147
2148         megasas_issue_blocked_cmd(instance, cmd);
2149
2150         /*
2151          * Copy the data back into callers buffer
2152          */
2153         memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2154
2155         pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2156                             el_info, el_info_h);
2157
2158         megasas_return_cmd(instance, cmd);
2159
2160         return 0;
2161 }
2162
2163 /**
2164  * megasas_register_aen -       Registers for asynchronous event notification
2165  * @instance:                   Adapter soft state
2166  * @seq_num:                    The starting sequence number
2167  * @class_locale:               Class of the event
2168  *
2169  * This function subscribes for AEN for events beyond the @seq_num. It requests
2170  * to be notified if and only if the event is of type @class_locale
2171  */
2172 static int
2173 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2174                      u32 class_locale_word)
2175 {
2176         int ret_val;
2177         struct megasas_cmd *cmd;
2178         struct megasas_dcmd_frame *dcmd;
2179         union megasas_evt_class_locale curr_aen;
2180         union megasas_evt_class_locale prev_aen;
2181
2182         /*
2183          * If there an AEN pending already (aen_cmd), check if the
2184          * class_locale of that pending AEN is inclusive of the new
2185          * AEN request we currently have. If it is, then we don't have
2186          * to do anything. In other words, whichever events the current
2187          * AEN request is subscribing to, have already been subscribed
2188          * to.
2189          *
2190          * If the old_cmd is _not_ inclusive, then we have to abort
2191          * that command, form a class_locale that is superset of both
2192          * old and current and re-issue to the FW
2193          */
2194
2195         curr_aen.word = class_locale_word;
2196
2197         if (instance->aen_cmd) {
2198
2199                 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2200
2201                 /*
2202                  * A class whose enum value is smaller is inclusive of all
2203                  * higher values. If a PROGRESS (= -1) was previously
2204                  * registered, then a new registration requests for higher
2205                  * classes need not be sent to FW. They are automatically
2206                  * included.
2207                  *
2208                  * Locale numbers don't have such hierarchy. They are bitmap
2209                  * values
2210                  */
2211                 if ((prev_aen.members.class <= curr_aen.members.class) &&
2212                     !((prev_aen.members.locale & curr_aen.members.locale) ^
2213                       curr_aen.members.locale)) {
2214                         /*
2215                          * Previously issued event registration includes
2216                          * current request. Nothing to do.
2217                          */
2218                         return 0;
2219                 } else {
2220                         curr_aen.members.locale |= prev_aen.members.locale;
2221
2222                         if (prev_aen.members.class < curr_aen.members.class)
2223                                 curr_aen.members.class = prev_aen.members.class;
2224
2225                         instance->aen_cmd->abort_aen = 1;
2226                         ret_val = megasas_issue_blocked_abort_cmd(instance,
2227                                                                   instance->
2228                                                                   aen_cmd);
2229
2230                         if (ret_val) {
2231                                 printk(KERN_DEBUG "megasas: Failed to abort "
2232                                        "previous AEN command\n");
2233                                 return ret_val;
2234                         }
2235                 }
2236         }
2237
2238         cmd = megasas_get_cmd(instance);
2239
2240         if (!cmd)
2241                 return -ENOMEM;
2242
2243         dcmd = &cmd->frame->dcmd;
2244
2245         memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2246
2247         /*
2248          * Prepare DCMD for aen registration
2249          */
2250         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2251
2252         dcmd->cmd = MFI_CMD_DCMD;
2253         dcmd->cmd_status = 0x0;
2254         dcmd->sge_count = 1;
2255         dcmd->flags = MFI_FRAME_DIR_READ;
2256         dcmd->timeout = 0;
2257         dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2258         dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2259         dcmd->mbox.w[0] = seq_num;
2260         dcmd->mbox.w[1] = curr_aen.word;
2261         dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2262         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2263
2264         /*
2265          * Store reference to the cmd used to register for AEN. When an
2266          * application wants us to register for AEN, we have to abort this
2267          * cmd and re-register with a new EVENT LOCALE supplied by that app
2268          */
2269         instance->aen_cmd = cmd;
2270
2271         /*
2272          * Issue the aen registration frame
2273          */
2274         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2275
2276         return 0;
2277 }
2278
2279 /**
2280  * megasas_start_aen -  Subscribes to AEN during driver load time
2281  * @instance:           Adapter soft state
2282  */
2283 static int megasas_start_aen(struct megasas_instance *instance)
2284 {
2285         struct megasas_evt_log_info eli;
2286         union megasas_evt_class_locale class_locale;
2287
2288         /*
2289          * Get the latest sequence number from FW
2290          */
2291         memset(&eli, 0, sizeof(eli));
2292
2293         if (megasas_get_seq_num(instance, &eli))
2294                 return -1;
2295
2296         /*
2297          * Register AEN with FW for latest sequence number plus 1
2298          */
2299         class_locale.members.reserved = 0;
2300         class_locale.members.locale = MR_EVT_LOCALE_ALL;
2301         class_locale.members.class = MR_EVT_CLASS_DEBUG;
2302
2303         return megasas_register_aen(instance, eli.newest_seq_num + 1,
2304                                     class_locale.word);
2305 }
2306
2307 /**
2308  * megasas_io_attach -  Attaches this driver to SCSI mid-layer
2309  * @instance:           Adapter soft state
2310  */
2311 static int megasas_io_attach(struct megasas_instance *instance)
2312 {
2313         struct Scsi_Host *host = instance->host;
2314
2315         /*
2316          * Export parameters required by SCSI mid-layer
2317          */
2318         host->irq = instance->pdev->irq;
2319         host->unique_id = instance->unique_id;
2320         host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2321         host->this_id = instance->init_id;
2322         host->sg_tablesize = instance->max_num_sge;
2323         host->max_sectors = instance->max_sectors_per_req;
2324         host->cmd_per_lun = 128;
2325         host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2326         host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2327         host->max_lun = MEGASAS_MAX_LUN;
2328         host->max_cmd_len = 16;
2329
2330         /*
2331          * Notify the mid-layer about the new controller
2332          */
2333         if (scsi_add_host(host, &instance->pdev->dev)) {
2334                 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2335                 return -ENODEV;
2336         }
2337
2338         /*
2339          * Trigger SCSI to scan our drives
2340          */
2341         scsi_scan_host(host);
2342         return 0;
2343 }
2344
2345 /**
2346  * megasas_probe_one -  PCI hotplug entry point
2347  * @pdev:               PCI device structure
2348  * @id:                 PCI ids of supported hotplugged adapter 
2349  */
2350 static int __devinit
2351 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2352 {
2353         int rval;
2354         struct Scsi_Host *host;
2355         struct megasas_instance *instance;
2356
2357         /*
2358          * Announce PCI information
2359          */
2360         printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2361                pdev->vendor, pdev->device, pdev->subsystem_vendor,
2362                pdev->subsystem_device);
2363
2364         printk("bus %d:slot %d:func %d\n",
2365                pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2366
2367         /*
2368          * PCI prepping: enable device set bus mastering and dma mask
2369          */
2370         rval = pci_enable_device(pdev);
2371
2372         if (rval) {
2373                 return rval;
2374         }
2375
2376         pci_set_master(pdev);
2377
2378         /*
2379          * All our contollers are capable of performing 64-bit DMA
2380          */
2381         if (IS_DMA64) {
2382                 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2383
2384                         if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2385                                 goto fail_set_dma_mask;
2386                 }
2387         } else {
2388                 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2389                         goto fail_set_dma_mask;
2390         }
2391
2392         host = scsi_host_alloc(&megasas_template,
2393                                sizeof(struct megasas_instance));
2394
2395         if (!host) {
2396                 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2397                 goto fail_alloc_instance;
2398         }
2399
2400         instance = (struct megasas_instance *)host->hostdata;
2401         memset(instance, 0, sizeof(*instance));
2402
2403         instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2404                                                   &instance->producer_h);
2405         instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2406                                                   &instance->consumer_h);
2407
2408         if (!instance->producer || !instance->consumer) {
2409                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2410                        "producer, consumer\n");
2411                 goto fail_alloc_dma_buf;
2412         }
2413
2414         *instance->producer = 0;
2415         *instance->consumer = 0;
2416
2417         instance->evt_detail = pci_alloc_consistent(pdev,
2418                                                     sizeof(struct
2419                                                            megasas_evt_detail),
2420                                                     &instance->evt_detail_h);
2421
2422         if (!instance->evt_detail) {
2423                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2424                        "event detail structure\n");
2425                 goto fail_alloc_dma_buf;
2426         }
2427
2428         /*
2429          * Initialize locks and queues
2430          */
2431         INIT_LIST_HEAD(&instance->cmd_pool);
2432
2433         atomic_set(&instance->fw_outstanding,0);
2434
2435         init_waitqueue_head(&instance->int_cmd_wait_q);
2436         init_waitqueue_head(&instance->abort_cmd_wait_q);
2437
2438         spin_lock_init(&instance->cmd_pool_lock);
2439
2440         sema_init(&instance->aen_mutex, 1);
2441         sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2442
2443         /*
2444          * Initialize PCI related and misc parameters
2445          */
2446         instance->pdev = pdev;
2447         instance->host = host;
2448         instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2449         instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2450
2451         megasas_dbg_lvl = 0;
2452         instance->flag = 0;
2453         instance->last_time = 0;
2454
2455         /*
2456          * Initialize MFI Firmware
2457          */
2458         if (megasas_init_mfi(instance))
2459                 goto fail_init_mfi;
2460
2461         /*
2462          * Register IRQ
2463          */
2464         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2465                 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2466                 goto fail_irq;
2467         }
2468
2469         instance->instancet->enable_intr(instance->reg_set);
2470
2471         /*
2472          * Store instance in PCI softstate
2473          */
2474         pci_set_drvdata(pdev, instance);
2475
2476         /*
2477          * Add this controller to megasas_mgmt_info structure so that it
2478          * can be exported to management applications
2479          */
2480         megasas_mgmt_info.count++;
2481         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2482         megasas_mgmt_info.max_index++;
2483
2484         /*
2485          * Initiate AEN (Asynchronous Event Notification)
2486          */
2487         if (megasas_start_aen(instance)) {
2488                 printk(KERN_DEBUG "megasas: start aen failed\n");
2489                 goto fail_start_aen;
2490         }
2491
2492         /*
2493          * Register with SCSI mid-layer
2494          */
2495         if (megasas_io_attach(instance))
2496                 goto fail_io_attach;
2497
2498         return 0;
2499
2500       fail_start_aen:
2501       fail_io_attach:
2502         megasas_mgmt_info.count--;
2503         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2504         megasas_mgmt_info.max_index--;
2505
2506         pci_set_drvdata(pdev, NULL);
2507         instance->instancet->disable_intr(instance->reg_set);
2508         free_irq(instance->pdev->irq, instance);
2509
2510         megasas_release_mfi(instance);
2511
2512       fail_irq:
2513       fail_init_mfi:
2514       fail_alloc_dma_buf:
2515         if (instance->evt_detail)
2516                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2517                                     instance->evt_detail,
2518                                     instance->evt_detail_h);
2519
2520         if (instance->producer)
2521                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2522                                     instance->producer_h);
2523         if (instance->consumer)
2524                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2525                                     instance->consumer_h);
2526         scsi_host_put(host);
2527
2528       fail_alloc_instance:
2529       fail_set_dma_mask:
2530         pci_disable_device(pdev);
2531
2532         return -ENODEV;
2533 }
2534
2535 /**
2536  * megasas_flush_cache -        Requests FW to flush all its caches
2537  * @instance:                   Adapter soft state
2538  */
2539 static void megasas_flush_cache(struct megasas_instance *instance)
2540 {
2541         struct megasas_cmd *cmd;
2542         struct megasas_dcmd_frame *dcmd;
2543
2544         cmd = megasas_get_cmd(instance);
2545
2546         if (!cmd)
2547                 return;
2548
2549         dcmd = &cmd->frame->dcmd;
2550
2551         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2552
2553         dcmd->cmd = MFI_CMD_DCMD;
2554         dcmd->cmd_status = 0x0;
2555         dcmd->sge_count = 0;
2556         dcmd->flags = MFI_FRAME_DIR_NONE;
2557         dcmd->timeout = 0;
2558         dcmd->data_xfer_len = 0;
2559         dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2560         dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2561
2562         megasas_issue_blocked_cmd(instance, cmd);
2563
2564         megasas_return_cmd(instance, cmd);
2565
2566         return;
2567 }
2568
2569 /**
2570  * megasas_shutdown_controller -        Instructs FW to shutdown the controller
2571  * @instance:                           Adapter soft state
2572  */
2573 static void megasas_shutdown_controller(struct megasas_instance *instance)
2574 {
2575         struct megasas_cmd *cmd;
2576         struct megasas_dcmd_frame *dcmd;
2577
2578         cmd = megasas_get_cmd(instance);
2579
2580         if (!cmd)
2581                 return;
2582
2583         if (instance->aen_cmd)
2584                 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2585
2586         dcmd = &cmd->frame->dcmd;
2587
2588         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2589
2590         dcmd->cmd = MFI_CMD_DCMD;
2591         dcmd->cmd_status = 0x0;
2592         dcmd->sge_count = 0;
2593         dcmd->flags = MFI_FRAME_DIR_NONE;
2594         dcmd->timeout = 0;
2595         dcmd->data_xfer_len = 0;
2596         dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2597
2598         megasas_issue_blocked_cmd(instance, cmd);
2599
2600         megasas_return_cmd(instance, cmd);
2601
2602         return;
2603 }
2604
2605 /**
2606  * megasas_detach_one - PCI hot"un"plug entry point
2607  * @pdev:               PCI device structure
2608  */
2609 static void megasas_detach_one(struct pci_dev *pdev)
2610 {
2611         int i;
2612         struct Scsi_Host *host;
2613         struct megasas_instance *instance;
2614
2615         instance = pci_get_drvdata(pdev);
2616         host = instance->host;
2617
2618         scsi_remove_host(instance->host);
2619         megasas_flush_cache(instance);
2620         megasas_shutdown_controller(instance);
2621         tasklet_kill(&instance->isr_tasklet);
2622
2623         /*
2624          * Take the instance off the instance array. Note that we will not
2625          * decrement the max_index. We let this array be sparse array
2626          */
2627         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2628                 if (megasas_mgmt_info.instance[i] == instance) {
2629                         megasas_mgmt_info.count--;
2630                         megasas_mgmt_info.instance[i] = NULL;
2631
2632                         break;
2633                 }
2634         }
2635
2636         pci_set_drvdata(instance->pdev, NULL);
2637
2638         instance->instancet->disable_intr(instance->reg_set);
2639
2640         free_irq(instance->pdev->irq, instance);
2641
2642         megasas_release_mfi(instance);
2643
2644         pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2645                             instance->evt_detail, instance->evt_detail_h);
2646
2647         pci_free_consistent(pdev, sizeof(u32), instance->producer,
2648                             instance->producer_h);
2649
2650         pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2651                             instance->consumer_h);
2652
2653         scsi_host_put(host);
2654
2655         pci_set_drvdata(pdev, NULL);
2656
2657         pci_disable_device(pdev);
2658
2659         return;
2660 }
2661
2662 /**
2663  * megasas_shutdown -   Shutdown entry point
2664  * @device:             Generic device structure
2665  */
2666 static void megasas_shutdown(struct pci_dev *pdev)
2667 {
2668         struct megasas_instance *instance = pci_get_drvdata(pdev);
2669         megasas_flush_cache(instance);
2670 }
2671
2672 /**
2673  * megasas_mgmt_open -  char node "open" entry point
2674  */
2675 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2676 {
2677         /*
2678          * Allow only those users with admin rights
2679          */
2680         if (!capable(CAP_SYS_ADMIN))
2681                 return -EACCES;
2682
2683         return 0;
2684 }
2685
2686 /**
2687  * megasas_mgmt_release - char node "release" entry point
2688  */
2689 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2690 {
2691         filep->private_data = NULL;
2692         fasync_helper(-1, filep, 0, &megasas_async_queue);
2693
2694         return 0;
2695 }
2696
2697 /**
2698  * megasas_mgmt_fasync -        Async notifier registration from applications
2699  *
2700  * This function adds the calling process to a driver global queue. When an
2701  * event occurs, SIGIO will be sent to all processes in this queue.
2702  */
2703 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2704 {
2705         int rc;
2706
2707         mutex_lock(&megasas_async_queue_mutex);
2708
2709         rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2710
2711         mutex_unlock(&megasas_async_queue_mutex);
2712
2713         if (rc >= 0) {
2714                 /* For sanity check when we get ioctl */
2715                 filep->private_data = filep;
2716                 return 0;
2717         }
2718
2719         printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2720
2721         return rc;
2722 }
2723
2724 /**
2725  * megasas_mgmt_fw_ioctl -      Issues management ioctls to FW
2726  * @instance:                   Adapter soft state
2727  * @argp:                       User's ioctl packet
2728  */
2729 static int
2730 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2731                       struct megasas_iocpacket __user * user_ioc,
2732                       struct megasas_iocpacket *ioc)
2733 {
2734         struct megasas_sge32 *kern_sge32;
2735         struct megasas_cmd *cmd;
2736         void *kbuff_arr[MAX_IOCTL_SGE];
2737         dma_addr_t buf_handle = 0;
2738         int error = 0, i;
2739         void *sense = NULL;
2740         dma_addr_t sense_handle;
2741         u32 *sense_ptr;
2742
2743         memset(kbuff_arr, 0, sizeof(kbuff_arr));
2744
2745         if (ioc->sge_count > MAX_IOCTL_SGE) {
2746                 printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
2747                        ioc->sge_count, MAX_IOCTL_SGE);
2748                 return -EINVAL;
2749         }
2750
2751         cmd = megasas_get_cmd(instance);
2752         if (!cmd) {
2753                 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2754                 return -ENOMEM;
2755         }
2756
2757         /*
2758          * User's IOCTL packet has 2 frames (maximum). Copy those two
2759          * frames into our cmd's frames. cmd->frame's context will get
2760          * overwritten when we copy from user's frames. So set that value
2761          * alone separately
2762          */
2763         memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2764         cmd->frame->hdr.context = cmd->index;
2765
2766         /*
2767          * The management interface between applications and the fw uses
2768          * MFI frames. E.g, RAID configuration changes, LD property changes
2769          * etc are accomplishes through different kinds of MFI frames. The
2770          * driver needs to care only about substituting user buffers with
2771          * kernel buffers in SGLs. The location of SGL is embedded in the
2772          * struct iocpacket itself.
2773          */
2774         kern_sge32 = (struct megasas_sge32 *)
2775             ((unsigned long)cmd->frame + ioc->sgl_off);
2776
2777         /*
2778          * For each user buffer, create a mirror buffer and copy in
2779          */
2780         for (i = 0; i < ioc->sge_count; i++) {
2781                 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2782                                                     ioc->sgl[i].iov_len,
2783                                                     &buf_handle, GFP_KERNEL);
2784                 if (!kbuff_arr[i]) {
2785                         printk(KERN_DEBUG "megasas: Failed to alloc "
2786                                "kernel SGL buffer for IOCTL \n");
2787                         error = -ENOMEM;
2788                         goto out;
2789                 }
2790
2791                 /*
2792                  * We don't change the dma_coherent_mask, so
2793                  * pci_alloc_consistent only returns 32bit addresses
2794                  */
2795                 kern_sge32[i].phys_addr = (u32) buf_handle;
2796                 kern_sge32[i].length = ioc->sgl[i].iov_len;
2797
2798                 /*
2799                  * We created a kernel buffer corresponding to the
2800                  * user buffer. Now copy in from the user buffer
2801                  */
2802                 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2803                                    (u32) (ioc->sgl[i].iov_len))) {
2804                         error = -EFAULT;
2805                         goto out;
2806                 }
2807         }
2808
2809         if (ioc->sense_len) {
2810                 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
2811                                              &sense_handle, GFP_KERNEL);
2812                 if (!sense) {
2813                         error = -ENOMEM;
2814                         goto out;
2815                 }
2816
2817                 sense_ptr =
2818                     (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2819                 *sense_ptr = sense_handle;
2820         }
2821
2822         /*
2823          * Set the sync_cmd flag so that the ISR knows not to complete this
2824          * cmd to the SCSI mid-layer
2825          */
2826         cmd->sync_cmd = 1;
2827         megasas_issue_blocked_cmd(instance, cmd);
2828         cmd->sync_cmd = 0;
2829
2830         /*
2831          * copy out the kernel buffers to user buffers
2832          */
2833         for (i = 0; i < ioc->sge_count; i++) {
2834                 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2835                                  ioc->sgl[i].iov_len)) {
2836                         error = -EFAULT;
2837                         goto out;
2838                 }
2839         }
2840
2841         /*
2842          * copy out the sense
2843          */
2844         if (ioc->sense_len) {
2845                 /*
2846                  * sense_ptr points to the location that has the user
2847                  * sense buffer address
2848                  */
2849                 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2850                                      ioc->sense_off);
2851
2852                 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2853                                  sense, ioc->sense_len)) {
2854                         error = -EFAULT;
2855                         goto out;
2856                 }
2857         }
2858
2859         /*
2860          * copy the status codes returned by the fw
2861          */
2862         if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2863                          &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2864                 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2865                 error = -EFAULT;
2866         }
2867
2868       out:
2869         if (sense) {
2870                 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
2871                                     sense, sense_handle);
2872         }
2873
2874         for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2875                 dma_free_coherent(&instance->pdev->dev,
2876                                     kern_sge32[i].length,
2877                                     kbuff_arr[i], kern_sge32[i].phys_addr);
2878         }
2879
2880         megasas_return_cmd(instance, cmd);
2881         return error;
2882 }
2883
2884 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2885 {
2886         int i;
2887
2888         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2889
2890                 if ((megasas_mgmt_info.instance[i]) &&
2891                     (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2892                         return megasas_mgmt_info.instance[i];
2893         }
2894
2895         return NULL;
2896 }
2897
2898 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2899 {
2900         struct megasas_iocpacket __user *user_ioc =
2901             (struct megasas_iocpacket __user *)arg;
2902         struct megasas_iocpacket *ioc;
2903         struct megasas_instance *instance;
2904         int error;
2905
2906         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2907         if (!ioc)
2908                 return -ENOMEM;
2909
2910         if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2911                 error = -EFAULT;
2912                 goto out_kfree_ioc;
2913         }
2914
2915         instance = megasas_lookup_instance(ioc->host_no);
2916         if (!instance) {
2917                 error = -ENODEV;
2918                 goto out_kfree_ioc;
2919         }
2920
2921         /*
2922          * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2923          */
2924         if (down_interruptible(&instance->ioctl_sem)) {
2925                 error = -ERESTARTSYS;
2926                 goto out_kfree_ioc;
2927         }
2928         error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2929         up(&instance->ioctl_sem);
2930
2931       out_kfree_ioc:
2932         kfree(ioc);
2933         return error;
2934 }
2935
2936 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2937 {
2938         struct megasas_instance *instance;
2939         struct megasas_aen aen;
2940         int error;
2941
2942         if (file->private_data != file) {
2943                 printk(KERN_DEBUG "megasas: fasync_helper was not "
2944                        "called first\n");
2945                 return -EINVAL;
2946         }
2947
2948         if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2949                 return -EFAULT;
2950
2951         instance = megasas_lookup_instance(aen.host_no);
2952
2953         if (!instance)
2954                 return -ENODEV;
2955
2956         down(&instance->aen_mutex);
2957         error = megasas_register_aen(instance, aen.seq_num,
2958                                      aen.class_locale_word);
2959         up(&instance->aen_mutex);
2960         return error;
2961 }
2962
2963 /**
2964  * megasas_mgmt_ioctl - char node ioctl entry point
2965  */
2966 static long
2967 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2968 {
2969         switch (cmd) {
2970         case MEGASAS_IOC_FIRMWARE:
2971                 return megasas_mgmt_ioctl_fw(file, arg);
2972
2973         case MEGASAS_IOC_GET_AEN:
2974                 return megasas_mgmt_ioctl_aen(file, arg);
2975         }
2976
2977         return -ENOTTY;
2978 }
2979
2980 #ifdef CONFIG_COMPAT
2981 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2982 {
2983         struct compat_megasas_iocpacket __user *cioc =
2984             (struct compat_megasas_iocpacket __user *)arg;
2985         struct megasas_iocpacket __user *ioc =
2986             compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2987         int i;
2988         int error = 0;
2989
2990         if (clear_user(ioc, sizeof(*ioc)))
2991                 return -EFAULT;
2992
2993         if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2994             copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2995             copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2996             copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2997             copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2998             copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2999                 return -EFAULT;
3000
3001         for (i = 0; i < MAX_IOCTL_SGE; i++) {
3002                 compat_uptr_t ptr;
3003
3004                 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3005                     put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3006                     copy_in_user(&ioc->sgl[i].iov_len,
3007                                  &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3008                         return -EFAULT;
3009         }
3010
3011         error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3012
3013         if (copy_in_user(&cioc->frame.hdr.cmd_status,
3014                          &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3015                 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3016                 return -EFAULT;
3017         }
3018         return error;
3019 }
3020
3021 static long
3022 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3023                           unsigned long arg)
3024 {
3025         switch (cmd) {
3026         case MEGASAS_IOC_FIRMWARE32:
3027                 return megasas_mgmt_compat_ioctl_fw(file, arg);
3028         case MEGASAS_IOC_GET_AEN:
3029                 return megasas_mgmt_ioctl_aen(file, arg);
3030         }
3031
3032         return -ENOTTY;
3033 }
3034 #endif
3035
3036 /*
3037  * File operations structure for management interface
3038  */
3039 static const struct file_operations megasas_mgmt_fops = {
3040         .owner = THIS_MODULE,
3041         .open = megasas_mgmt_open,
3042         .release = megasas_mgmt_release,
3043         .fasync = megasas_mgmt_fasync,
3044         .unlocked_ioctl = megasas_mgmt_ioctl,
3045 #ifdef CONFIG_COMPAT
3046         .compat_ioctl = megasas_mgmt_compat_ioctl,
3047 #endif
3048 };
3049
3050 /*
3051  * PCI hotplug support registration structure
3052  */
3053 static struct pci_driver megasas_pci_driver = {
3054
3055         .name = "megaraid_sas",
3056         .id_table = megasas_pci_table,
3057         .probe = megasas_probe_one,
3058         .remove = __devexit_p(megasas_detach_one),
3059         .shutdown = megasas_shutdown,
3060 };
3061
3062 /*
3063  * Sysfs driver attributes
3064  */
3065 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3066 {
3067         return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3068                         MEGASAS_VERSION);
3069 }
3070
3071 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3072
3073 static ssize_t
3074 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3075 {
3076         return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3077                         MEGASAS_RELDATE);
3078 }
3079
3080 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3081                    NULL);
3082
3083 static ssize_t
3084 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3085 {
3086         return sprintf(buf,"%u",megasas_dbg_lvl);
3087 }
3088
3089 static ssize_t
3090 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3091 {
3092         int retval = count;
3093         if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3094                 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3095                 retval = -EINVAL;
3096         }
3097         return retval;
3098 }
3099
3100 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3101                    megasas_sysfs_set_dbg_lvl);
3102
3103 /**
3104  * megasas_init - Driver load entry point
3105  */
3106 static int __init megasas_init(void)
3107 {
3108         int rval;
3109
3110         /*
3111          * Announce driver version and other information
3112          */
3113         printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3114                MEGASAS_EXT_VERSION);
3115
3116         memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3117
3118         /*
3119          * Register character device node
3120          */
3121         rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3122
3123         if (rval < 0) {
3124                 printk(KERN_DEBUG "megasas: failed to open device node\n");
3125                 return rval;
3126         }
3127
3128         megasas_mgmt_majorno = rval;
3129
3130         /*
3131          * Register ourselves as PCI hotplug module
3132          */
3133         rval = pci_register_driver(&megasas_pci_driver);
3134
3135         if (rval) {
3136                 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3137                 goto err_pcidrv;
3138         }
3139
3140         rval = driver_create_file(&megasas_pci_driver.driver,
3141                                   &driver_attr_version);
3142         if (rval)
3143                 goto err_dcf_attr_ver;
3144         rval = driver_create_file(&megasas_pci_driver.driver,
3145                                   &driver_attr_release_date);
3146         if (rval)
3147                 goto err_dcf_rel_date;
3148         rval = driver_create_file(&megasas_pci_driver.driver,
3149                                   &driver_attr_dbg_lvl);
3150         if (rval)
3151                 goto err_dcf_dbg_lvl;
3152
3153         return rval;
3154 err_dcf_dbg_lvl:
3155         driver_remove_file(&megasas_pci_driver.driver,
3156                            &driver_attr_release_date);
3157 err_dcf_rel_date:
3158         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3159 err_dcf_attr_ver:
3160         pci_unregister_driver(&megasas_pci_driver);
3161 err_pcidrv:
3162         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3163         return rval;
3164 }
3165
3166 /**
3167  * megasas_exit - Driver unload entry point
3168  */
3169 static void __exit megasas_exit(void)
3170 {
3171         driver_remove_file(&megasas_pci_driver.driver,
3172                            &driver_attr_dbg_lvl);
3173         driver_remove_file(&megasas_pci_driver.driver,
3174                            &driver_attr_release_date);
3175         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3176
3177         pci_unregister_driver(&megasas_pci_driver);
3178         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3179 }
3180
3181 module_init(megasas_init);
3182 module_exit(megasas_exit);