]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/megaraid/megaraid_sas.c
[SCSI] megaraid_sas: add readl to force PCI posting flush
[linux-2.6-omap-h63xx.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2  *
3  *              Linux MegaRAID driver for SAS based RAID controllers
4  *
5  * Copyright (c) 2003-2005  LSI Corporation.
6  *
7  *         This program is free software; you can redistribute it and/or
8  *         modify it under the terms of the GNU General Public License
9  *         as published by the Free Software Foundation; either version
10  *         2 of the License, or (at your option) any later version.
11  *
12  * FILE         : megaraid_sas.c
13  * Version      : v00.00.03.20-rc1
14  *
15  * Authors:
16  *      (email-id : megaraidlinux@lsi.com)
17  *      Sreenivas Bagalkote
18  *      Sumant Patro
19  *      Bo Yang
20  *
21  * List of supported controllers
22  *
23  * OEM  Product Name                    VID     DID     SSVID   SSID
24  * ---  ------------                    ---     ---     ----    ----
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/smp_lock.h>
37 #include <linux/uio.h>
38 #include <asm/uaccess.h>
39 #include <linux/fs.h>
40 #include <linux/compat.h>
41 #include <linux/blkdev.h>
42 #include <linux/mutex.h>
43
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include "megaraid_sas.h"
49
50 /*
51  * poll_mode_io:1- schedule complete completion from q cmd
52  */
53 static unsigned int poll_mode_io;
54 module_param_named(poll_mode_io, poll_mode_io, int, 0);
55 MODULE_PARM_DESC(poll_mode_io,
56         "Complete cmds from IO path, (default=0)");
57
58 MODULE_LICENSE("GPL");
59 MODULE_VERSION(MEGASAS_VERSION);
60 MODULE_AUTHOR("megaraidlinux@lsi.com");
61 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
62
63 /*
64  * PCI ID table for all supported controllers
65  */
66 static struct pci_device_id megasas_pci_table[] = {
67
68         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
69         /* xscale IOP */
70         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
71         /* ppc IOP */
72         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
73         /* ppc IOP */
74         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
75         /* xscale IOP, vega */
76         {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
77         /* xscale IOP */
78         {}
79 };
80
81 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
82
83 static int megasas_mgmt_majorno;
84 static struct megasas_mgmt_info megasas_mgmt_info;
85 static struct fasync_struct *megasas_async_queue;
86 static DEFINE_MUTEX(megasas_async_queue_mutex);
87
88 static u32 megasas_dbg_lvl;
89
90 static void
91 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
92                      u8 alt_status);
93
94 /**
95  * megasas_get_cmd -    Get a command from the free pool
96  * @instance:           Adapter soft state
97  *
98  * Returns a free command from the pool
99  */
100 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
101                                                   *instance)
102 {
103         unsigned long flags;
104         struct megasas_cmd *cmd = NULL;
105
106         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
107
108         if (!list_empty(&instance->cmd_pool)) {
109                 cmd = list_entry((&instance->cmd_pool)->next,
110                                  struct megasas_cmd, list);
111                 list_del_init(&cmd->list);
112         } else {
113                 printk(KERN_ERR "megasas: Command pool empty!\n");
114         }
115
116         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
117         return cmd;
118 }
119
120 /**
121  * megasas_return_cmd - Return a cmd to free command pool
122  * @instance:           Adapter soft state
123  * @cmd:                Command packet to be returned to free command pool
124  */
125 static inline void
126 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
127 {
128         unsigned long flags;
129
130         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
131
132         cmd->scmd = NULL;
133         list_add_tail(&cmd->list, &instance->cmd_pool);
134
135         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
136 }
137
138
139 /**
140 *       The following functions are defined for xscale 
141 *       (deviceid : 1064R, PERC5) controllers
142 */
143
144 /**
145  * megasas_enable_intr_xscale - Enables interrupts
146  * @regs:                       MFI register set
147  */
148 static inline void
149 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
150 {
151         writel(1, &(regs)->outbound_intr_mask);
152
153         /* Dummy readl to force pci flush */
154         readl(&regs->outbound_intr_mask);
155 }
156
157 /**
158  * megasas_disable_intr_xscale -Disables interrupt
159  * @regs:                       MFI register set
160  */
161 static inline void
162 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
163 {
164         u32 mask = 0x1f;
165         writel(mask, &regs->outbound_intr_mask);
166         /* Dummy readl to force pci flush */
167         readl(&regs->outbound_intr_mask);
168 }
169
170 /**
171  * megasas_read_fw_status_reg_xscale - returns the current FW status value
172  * @regs:                       MFI register set
173  */
174 static u32
175 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
176 {
177         return readl(&(regs)->outbound_msg_0);
178 }
179 /**
180  * megasas_clear_interrupt_xscale -     Check & clear interrupt
181  * @regs:                               MFI register set
182  */
183 static int 
184 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
185 {
186         u32 status;
187         /*
188          * Check if it is our interrupt
189          */
190         status = readl(&regs->outbound_intr_status);
191
192         if (!(status & MFI_OB_INTR_STATUS_MASK)) {
193                 return 1;
194         }
195
196         /*
197          * Clear the interrupt by writing back the same value
198          */
199         writel(status, &regs->outbound_intr_status);
200
201         /* Dummy readl to force pci flush */
202         readl(&regs->outbound_intr_status);
203
204         return 0;
205 }
206
207 /**
208  * megasas_fire_cmd_xscale -    Sends command to the FW
209  * @frame_phys_addr :           Physical address of cmd
210  * @frame_count :               Number of frames for the command
211  * @regs :                      MFI register set
212  */
213 static inline void 
214 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
215 {
216         writel((frame_phys_addr >> 3)|(frame_count),
217                &(regs)->inbound_queue_port);
218 }
219
220 static struct megasas_instance_template megasas_instance_template_xscale = {
221
222         .fire_cmd = megasas_fire_cmd_xscale,
223         .enable_intr = megasas_enable_intr_xscale,
224         .disable_intr = megasas_disable_intr_xscale,
225         .clear_intr = megasas_clear_intr_xscale,
226         .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
227 };
228
229 /**
230 *       This is the end of set of functions & definitions specific 
231 *       to xscale (deviceid : 1064R, PERC5) controllers
232 */
233
234 /**
235 *       The following functions are defined for ppc (deviceid : 0x60) 
236 *       controllers
237 */
238
239 /**
240  * megasas_enable_intr_ppc -    Enables interrupts
241  * @regs:                       MFI register set
242  */
243 static inline void
244 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
245 {
246         writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
247     
248         writel(~0x80000004, &(regs)->outbound_intr_mask);
249
250         /* Dummy readl to force pci flush */
251         readl(&regs->outbound_intr_mask);
252 }
253
254 /**
255  * megasas_disable_intr_ppc -   Disable interrupt
256  * @regs:                       MFI register set
257  */
258 static inline void
259 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
260 {
261         u32 mask = 0xFFFFFFFF;
262         writel(mask, &regs->outbound_intr_mask);
263         /* Dummy readl to force pci flush */
264         readl(&regs->outbound_intr_mask);
265 }
266
267 /**
268  * megasas_read_fw_status_reg_ppc - returns the current FW status value
269  * @regs:                       MFI register set
270  */
271 static u32
272 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
273 {
274         return readl(&(regs)->outbound_scratch_pad);
275 }
276
277 /**
278  * megasas_clear_interrupt_ppc -        Check & clear interrupt
279  * @regs:                               MFI register set
280  */
281 static int 
282 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
283 {
284         u32 status;
285         /*
286          * Check if it is our interrupt
287          */
288         status = readl(&regs->outbound_intr_status);
289
290         if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
291                 return 1;
292         }
293
294         /*
295          * Clear the interrupt by writing back the same value
296          */
297         writel(status, &regs->outbound_doorbell_clear);
298
299         /* Dummy readl to force pci flush */
300         readl(&regs->outbound_doorbell_clear);
301
302         return 0;
303 }
304 /**
305  * megasas_fire_cmd_ppc -       Sends command to the FW
306  * @frame_phys_addr :           Physical address of cmd
307  * @frame_count :               Number of frames for the command
308  * @regs :                      MFI register set
309  */
310 static inline void 
311 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
312 {
313         writel((frame_phys_addr | (frame_count<<1))|1, 
314                         &(regs)->inbound_queue_port);
315 }
316
317 static struct megasas_instance_template megasas_instance_template_ppc = {
318         
319         .fire_cmd = megasas_fire_cmd_ppc,
320         .enable_intr = megasas_enable_intr_ppc,
321         .disable_intr = megasas_disable_intr_ppc,
322         .clear_intr = megasas_clear_intr_ppc,
323         .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
324 };
325
326 /**
327 *       This is the end of set of functions & definitions
328 *       specific to ppc (deviceid : 0x60) controllers
329 */
330
331 /**
332  * megasas_issue_polled -       Issues a polling command
333  * @instance:                   Adapter soft state
334  * @cmd:                        Command packet to be issued 
335  *
336  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
337  */
338 static int
339 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
340 {
341         int i;
342         u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
343
344         struct megasas_header *frame_hdr = &cmd->frame->hdr;
345
346         frame_hdr->cmd_status = 0xFF;
347         frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
348
349         /*
350          * Issue the frame using inbound queue port
351          */
352         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
353
354         /*
355          * Wait for cmd_status to change
356          */
357         for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
358                 rmb();
359                 msleep(1);
360         }
361
362         if (frame_hdr->cmd_status == 0xff)
363                 return -ETIME;
364
365         return 0;
366 }
367
368 /**
369  * megasas_issue_blocked_cmd -  Synchronous wrapper around regular FW cmds
370  * @instance:                   Adapter soft state
371  * @cmd:                        Command to be issued
372  *
373  * This function waits on an event for the command to be returned from ISR.
374  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
375  * Used to issue ioctl commands.
376  */
377 static int
378 megasas_issue_blocked_cmd(struct megasas_instance *instance,
379                           struct megasas_cmd *cmd)
380 {
381         cmd->cmd_status = ENODATA;
382
383         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
384
385         wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
386                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
387
388         return 0;
389 }
390
391 /**
392  * megasas_issue_blocked_abort_cmd -    Aborts previously issued cmd
393  * @instance:                           Adapter soft state
394  * @cmd_to_abort:                       Previously issued cmd to be aborted
395  *
396  * MFI firmware can abort previously issued AEN comamnd (automatic event
397  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
398  * cmd and waits for return status.
399  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
400  */
401 static int
402 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
403                                 struct megasas_cmd *cmd_to_abort)
404 {
405         struct megasas_cmd *cmd;
406         struct megasas_abort_frame *abort_fr;
407
408         cmd = megasas_get_cmd(instance);
409
410         if (!cmd)
411                 return -1;
412
413         abort_fr = &cmd->frame->abort;
414
415         /*
416          * Prepare and issue the abort frame
417          */
418         abort_fr->cmd = MFI_CMD_ABORT;
419         abort_fr->cmd_status = 0xFF;
420         abort_fr->flags = 0;
421         abort_fr->abort_context = cmd_to_abort->index;
422         abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
423         abort_fr->abort_mfi_phys_addr_hi = 0;
424
425         cmd->sync_cmd = 1;
426         cmd->cmd_status = 0xFF;
427
428         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
429
430         /*
431          * Wait for this cmd to complete
432          */
433         wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
434                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
435
436         megasas_return_cmd(instance, cmd);
437         return 0;
438 }
439
440 /**
441  * megasas_make_sgl32 - Prepares 32-bit SGL
442  * @instance:           Adapter soft state
443  * @scp:                SCSI command from the mid-layer
444  * @mfi_sgl:            SGL to be filled in
445  *
446  * If successful, this function returns the number of SG elements. Otherwise,
447  * it returnes -1.
448  */
449 static int
450 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
451                    union megasas_sgl *mfi_sgl)
452 {
453         int i;
454         int sge_count;
455         struct scatterlist *os_sgl;
456
457         sge_count = scsi_dma_map(scp);
458         BUG_ON(sge_count < 0);
459
460         if (sge_count) {
461                 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
462                         mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
463                         mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
464                 }
465         }
466         return sge_count;
467 }
468
469 /**
470  * megasas_make_sgl64 - Prepares 64-bit SGL
471  * @instance:           Adapter soft state
472  * @scp:                SCSI command from the mid-layer
473  * @mfi_sgl:            SGL to be filled in
474  *
475  * If successful, this function returns the number of SG elements. Otherwise,
476  * it returnes -1.
477  */
478 static int
479 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
480                    union megasas_sgl *mfi_sgl)
481 {
482         int i;
483         int sge_count;
484         struct scatterlist *os_sgl;
485
486         sge_count = scsi_dma_map(scp);
487         BUG_ON(sge_count < 0);
488
489         if (sge_count) {
490                 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
491                         mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
492                         mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
493                 }
494         }
495         return sge_count;
496 }
497
498  /**
499  * megasas_get_frame_count - Computes the number of frames
500  * @frame_type          : type of frame- io or pthru frame
501  * @sge_count           : number of sg elements
502  *
503  * Returns the number of frames required for numnber of sge's (sge_count)
504  */
505
506 static u32 megasas_get_frame_count(u8 sge_count, u8 frame_type)
507 {
508         int num_cnt;
509         int sge_bytes;
510         u32 sge_sz;
511         u32 frame_count=0;
512
513         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
514             sizeof(struct megasas_sge32);
515
516         /*
517          * Main frame can contain 2 SGEs for 64-bit SGLs and
518          * 3 SGEs for 32-bit SGLs for ldio &
519          * 1 SGEs for 64-bit SGLs and
520          * 2 SGEs for 32-bit SGLs for pthru frame
521          */
522         if (unlikely(frame_type == PTHRU_FRAME)) {
523                 if (IS_DMA64)
524                         num_cnt = sge_count - 1;
525                 else
526                         num_cnt = sge_count - 2;
527         } else {
528                 if (IS_DMA64)
529                         num_cnt = sge_count - 2;
530                 else
531                         num_cnt = sge_count - 3;
532         }
533
534         if(num_cnt>0){
535                 sge_bytes = sge_sz * num_cnt;
536
537                 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
538                     ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
539         }
540         /* Main frame */
541         frame_count +=1;
542
543         if (frame_count > 7)
544                 frame_count = 8;
545         return frame_count;
546 }
547
548 /**
549  * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
550  * @instance:           Adapter soft state
551  * @scp:                SCSI command
552  * @cmd:                Command to be prepared in
553  *
554  * This function prepares CDB commands. These are typcially pass-through
555  * commands to the devices.
556  */
557 static int
558 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
559                    struct megasas_cmd *cmd)
560 {
561         u32 is_logical;
562         u32 device_id;
563         u16 flags = 0;
564         struct megasas_pthru_frame *pthru;
565
566         is_logical = MEGASAS_IS_LOGICAL(scp);
567         device_id = MEGASAS_DEV_INDEX(instance, scp);
568         pthru = (struct megasas_pthru_frame *)cmd->frame;
569
570         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
571                 flags = MFI_FRAME_DIR_WRITE;
572         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
573                 flags = MFI_FRAME_DIR_READ;
574         else if (scp->sc_data_direction == PCI_DMA_NONE)
575                 flags = MFI_FRAME_DIR_NONE;
576
577         /*
578          * Prepare the DCDB frame
579          */
580         pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
581         pthru->cmd_status = 0x0;
582         pthru->scsi_status = 0x0;
583         pthru->target_id = device_id;
584         pthru->lun = scp->device->lun;
585         pthru->cdb_len = scp->cmd_len;
586         pthru->timeout = 0;
587         pthru->flags = flags;
588         pthru->data_xfer_len = scsi_bufflen(scp);
589
590         memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
591
592         /*
593          * Construct SGL
594          */
595         if (IS_DMA64) {
596                 pthru->flags |= MFI_FRAME_SGL64;
597                 pthru->sge_count = megasas_make_sgl64(instance, scp,
598                                                       &pthru->sgl);
599         } else
600                 pthru->sge_count = megasas_make_sgl32(instance, scp,
601                                                       &pthru->sgl);
602
603         /*
604          * Sense info specific
605          */
606         pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
607         pthru->sense_buf_phys_addr_hi = 0;
608         pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
609
610         /*
611          * Compute the total number of frames this command consumes. FW uses
612          * this number to pull sufficient number of frames from host memory.
613          */
614         cmd->frame_count = megasas_get_frame_count(pthru->sge_count,
615                                                         PTHRU_FRAME);
616
617         return cmd->frame_count;
618 }
619
620 /**
621  * megasas_build_ldio - Prepares IOs to logical devices
622  * @instance:           Adapter soft state
623  * @scp:                SCSI command
624  * @cmd:                Command to to be prepared
625  *
626  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
627  */
628 static int
629 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
630                    struct megasas_cmd *cmd)
631 {
632         u32 device_id;
633         u8 sc = scp->cmnd[0];
634         u16 flags = 0;
635         struct megasas_io_frame *ldio;
636
637         device_id = MEGASAS_DEV_INDEX(instance, scp);
638         ldio = (struct megasas_io_frame *)cmd->frame;
639
640         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
641                 flags = MFI_FRAME_DIR_WRITE;
642         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
643                 flags = MFI_FRAME_DIR_READ;
644
645         /*
646          * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
647          */
648         ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
649         ldio->cmd_status = 0x0;
650         ldio->scsi_status = 0x0;
651         ldio->target_id = device_id;
652         ldio->timeout = 0;
653         ldio->reserved_0 = 0;
654         ldio->pad_0 = 0;
655         ldio->flags = flags;
656         ldio->start_lba_hi = 0;
657         ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
658
659         /*
660          * 6-byte READ(0x08) or WRITE(0x0A) cdb
661          */
662         if (scp->cmd_len == 6) {
663                 ldio->lba_count = (u32) scp->cmnd[4];
664                 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
665                     ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
666
667                 ldio->start_lba_lo &= 0x1FFFFF;
668         }
669
670         /*
671          * 10-byte READ(0x28) or WRITE(0x2A) cdb
672          */
673         else if (scp->cmd_len == 10) {
674                 ldio->lba_count = (u32) scp->cmnd[8] |
675                     ((u32) scp->cmnd[7] << 8);
676                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
677                     ((u32) scp->cmnd[3] << 16) |
678                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
679         }
680
681         /*
682          * 12-byte READ(0xA8) or WRITE(0xAA) cdb
683          */
684         else if (scp->cmd_len == 12) {
685                 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
686                     ((u32) scp->cmnd[7] << 16) |
687                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
688
689                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
690                     ((u32) scp->cmnd[3] << 16) |
691                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
692         }
693
694         /*
695          * 16-byte READ(0x88) or WRITE(0x8A) cdb
696          */
697         else if (scp->cmd_len == 16) {
698                 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
699                     ((u32) scp->cmnd[11] << 16) |
700                     ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
701
702                 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
703                     ((u32) scp->cmnd[7] << 16) |
704                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
705
706                 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
707                     ((u32) scp->cmnd[3] << 16) |
708                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
709
710         }
711
712         /*
713          * Construct SGL
714          */
715         if (IS_DMA64) {
716                 ldio->flags |= MFI_FRAME_SGL64;
717                 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
718         } else
719                 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
720
721         /*
722          * Sense info specific
723          */
724         ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
725         ldio->sense_buf_phys_addr_hi = 0;
726         ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
727
728         /*
729          * Compute the total number of frames this command consumes. FW uses
730          * this number to pull sufficient number of frames from host memory.
731          */
732         cmd->frame_count = megasas_get_frame_count(ldio->sge_count, IO_FRAME);
733
734         return cmd->frame_count;
735 }
736
737 /**
738  * megasas_is_ldio -            Checks if the cmd is for logical drive
739  * @scmd:                       SCSI command
740  *      
741  * Called by megasas_queue_command to find out if the command to be queued
742  * is a logical drive command   
743  */
744 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
745 {
746         if (!MEGASAS_IS_LOGICAL(cmd))
747                 return 0;
748         switch (cmd->cmnd[0]) {
749         case READ_10:
750         case WRITE_10:
751         case READ_12:
752         case WRITE_12:
753         case READ_6:
754         case WRITE_6:
755         case READ_16:
756         case WRITE_16:
757                 return 1;
758         default:
759                 return 0;
760         }
761 }
762
763  /**
764  * megasas_dump_pending_frames -        Dumps the frame address of all pending cmds
765  *                                      in FW
766  * @instance:                           Adapter soft state
767  */
768 static inline void
769 megasas_dump_pending_frames(struct megasas_instance *instance)
770 {
771         struct megasas_cmd *cmd;
772         int i,n;
773         union megasas_sgl *mfi_sgl;
774         struct megasas_io_frame *ldio;
775         struct megasas_pthru_frame *pthru;
776         u32 sgcount;
777         u32 max_cmd = instance->max_fw_cmds;
778
779         printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
780         printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
781         if (IS_DMA64)
782                 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
783         else
784                 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
785
786         printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
787         for (i = 0; i < max_cmd; i++) {
788                 cmd = instance->cmd_list[i];
789                 if(!cmd->scmd)
790                         continue;
791                 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
792                 if (megasas_is_ldio(cmd->scmd)){
793                         ldio = (struct megasas_io_frame *)cmd->frame;
794                         mfi_sgl = &ldio->sgl;
795                         sgcount = ldio->sge_count;
796                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
797                 }
798                 else {
799                         pthru = (struct megasas_pthru_frame *) cmd->frame;
800                         mfi_sgl = &pthru->sgl;
801                         sgcount = pthru->sge_count;
802                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
803                 }
804         if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
805                 for (n = 0; n < sgcount; n++){
806                         if (IS_DMA64)
807                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
808                         else
809                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
810                         }
811                 }
812                 printk(KERN_ERR "\n");
813         } /*for max_cmd*/
814         printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
815         for (i = 0; i < max_cmd; i++) {
816
817                 cmd = instance->cmd_list[i];
818
819                 if(cmd->sync_cmd == 1){
820                         printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
821                 }
822         }
823         printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
824 }
825
826 /**
827  * megasas_queue_command -      Queue entry point
828  * @scmd:                       SCSI command to be queued
829  * @done:                       Callback entry point
830  */
831 static int
832 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
833 {
834         u32 frame_count;
835         struct megasas_cmd *cmd;
836         struct megasas_instance *instance;
837
838         instance = (struct megasas_instance *)
839             scmd->device->host->hostdata;
840
841         /* Don't process if we have already declared adapter dead */
842         if (instance->hw_crit_error)
843                 return SCSI_MLQUEUE_HOST_BUSY;
844
845         scmd->scsi_done = done;
846         scmd->result = 0;
847
848         if (MEGASAS_IS_LOGICAL(scmd) &&
849             (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
850                 scmd->result = DID_BAD_TARGET << 16;
851                 goto out_done;
852         }
853
854         switch (scmd->cmnd[0]) {
855         case SYNCHRONIZE_CACHE:
856                 /*
857                  * FW takes care of flush cache on its own
858                  * No need to send it down
859                  */
860                 scmd->result = DID_OK << 16;
861                 goto out_done;
862         default:
863                 break;
864         }
865
866         cmd = megasas_get_cmd(instance);
867         if (!cmd)
868                 return SCSI_MLQUEUE_HOST_BUSY;
869
870         /*
871          * Logical drive command
872          */
873         if (megasas_is_ldio(scmd))
874                 frame_count = megasas_build_ldio(instance, scmd, cmd);
875         else
876                 frame_count = megasas_build_dcdb(instance, scmd, cmd);
877
878         if (!frame_count)
879                 goto out_return_cmd;
880
881         cmd->scmd = scmd;
882         scmd->SCp.ptr = (char *)cmd;
883
884         /*
885          * Issue the command to the FW
886          */
887         atomic_inc(&instance->fw_outstanding);
888
889         instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
890         /*
891          * Check if we have pend cmds to be completed
892          */
893         if (poll_mode_io && atomic_read(&instance->fw_outstanding))
894                 tasklet_schedule(&instance->isr_tasklet);
895
896
897         return 0;
898
899  out_return_cmd:
900         megasas_return_cmd(instance, cmd);
901  out_done:
902         done(scmd);
903         return 0;
904 }
905
906 static int megasas_slave_configure(struct scsi_device *sdev)
907 {
908         /*
909          * Don't export physical disk devices to the disk driver.
910          *
911          * FIXME: Currently we don't export them to the midlayer at all.
912          *        That will be fixed once LSI engineers have audited the
913          *        firmware for possible issues.
914          */
915         if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
916                 return -ENXIO;
917
918         /*
919          * The RAID firmware may require extended timeouts.
920          */
921         if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
922                 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
923         return 0;
924 }
925
926 /**
927  * megasas_complete_cmd_dpc      -      Returns FW's controller structure
928  * @instance_addr:                      Address of adapter soft state
929  *
930  * Tasklet to complete cmds
931  */
932 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
933 {
934         u32 producer;
935         u32 consumer;
936         u32 context;
937         struct megasas_cmd *cmd;
938         struct megasas_instance *instance =
939                                 (struct megasas_instance *)instance_addr;
940         unsigned long flags;
941
942         /* If we have already declared adapter dead, donot complete cmds */
943         if (instance->hw_crit_error)
944                 return;
945
946         spin_lock_irqsave(&instance->completion_lock, flags);
947
948         producer = *instance->producer;
949         consumer = *instance->consumer;
950
951         while (consumer != producer) {
952                 context = instance->reply_queue[consumer];
953
954                 cmd = instance->cmd_list[context];
955
956                 megasas_complete_cmd(instance, cmd, DID_OK);
957
958                 consumer++;
959                 if (consumer == (instance->max_fw_cmds + 1)) {
960                         consumer = 0;
961                 }
962         }
963
964         *instance->consumer = producer;
965
966         spin_unlock_irqrestore(&instance->completion_lock, flags);
967
968         /*
969          * Check if we can restore can_queue
970          */
971         if (instance->flag & MEGASAS_FW_BUSY
972                 && time_after(jiffies, instance->last_time + 5 * HZ)
973                 && atomic_read(&instance->fw_outstanding) < 17) {
974
975                 spin_lock_irqsave(instance->host->host_lock, flags);
976                 instance->flag &= ~MEGASAS_FW_BUSY;
977                 instance->host->can_queue =
978                                 instance->max_fw_cmds - MEGASAS_INT_CMDS;
979
980                 spin_unlock_irqrestore(instance->host->host_lock, flags);
981         }
982 }
983
984 /**
985  * megasas_wait_for_outstanding -       Wait for all outstanding cmds
986  * @instance:                           Adapter soft state
987  *
988  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
989  * complete all its outstanding commands. Returns error if one or more IOs
990  * are pending after this time period. It also marks the controller dead.
991  */
992 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
993 {
994         int i;
995         u32 wait_time = MEGASAS_RESET_WAIT_TIME;
996
997         for (i = 0; i < wait_time; i++) {
998
999                 int outstanding = atomic_read(&instance->fw_outstanding);
1000
1001                 if (!outstanding)
1002                         break;
1003
1004                 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
1005                         printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
1006                                "commands to complete\n",i,outstanding);
1007                         /*
1008                          * Call cmd completion routine. Cmd to be
1009                          * be completed directly without depending on isr.
1010                          */
1011                         megasas_complete_cmd_dpc((unsigned long)instance);
1012                 }
1013
1014                 msleep(1000);
1015         }
1016
1017         if (atomic_read(&instance->fw_outstanding)) {
1018                 /*
1019                 * Send signal to FW to stop processing any pending cmds.
1020                 * The controller will be taken offline by the OS now.
1021                 */
1022                 writel(MFI_STOP_ADP,
1023                                 &instance->reg_set->inbound_doorbell);
1024                 megasas_dump_pending_frames(instance);
1025                 instance->hw_crit_error = 1;
1026                 return FAILED;
1027         }
1028
1029         return SUCCESS;
1030 }
1031
1032 /**
1033  * megasas_generic_reset -      Generic reset routine
1034  * @scmd:                       Mid-layer SCSI command
1035  *
1036  * This routine implements a generic reset handler for device, bus and host
1037  * reset requests. Device, bus and host specific reset handlers can use this
1038  * function after they do their specific tasks.
1039  */
1040 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1041 {
1042         int ret_val;
1043         struct megasas_instance *instance;
1044
1045         instance = (struct megasas_instance *)scmd->device->host->hostdata;
1046
1047         scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
1048                  scmd->serial_number, scmd->cmnd[0], scmd->retries);
1049
1050         if (instance->hw_crit_error) {
1051                 printk(KERN_ERR "megasas: cannot recover from previous reset "
1052                        "failures\n");
1053                 return FAILED;
1054         }
1055
1056         ret_val = megasas_wait_for_outstanding(instance);
1057         if (ret_val == SUCCESS)
1058                 printk(KERN_NOTICE "megasas: reset successful \n");
1059         else
1060                 printk(KERN_ERR "megasas: failed to do reset\n");
1061
1062         return ret_val;
1063 }
1064
1065 /**
1066  * megasas_reset_timer - quiesce the adapter if required
1067  * @scmd:               scsi cmnd
1068  *
1069  * Sets the FW busy flag and reduces the host->can_queue if the
1070  * cmd has not been completed within the timeout period.
1071  */
1072 static enum
1073 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1074 {
1075         struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1076         struct megasas_instance *instance;
1077         unsigned long flags;
1078
1079         if (time_after(jiffies, scmd->jiffies_at_alloc +
1080                                 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1081                 return EH_NOT_HANDLED;
1082         }
1083
1084         instance = cmd->instance;
1085         if (!(instance->flag & MEGASAS_FW_BUSY)) {
1086                 /* FW is busy, throttle IO */
1087                 spin_lock_irqsave(instance->host->host_lock, flags);
1088
1089                 instance->host->can_queue = 16;
1090                 instance->last_time = jiffies;
1091                 instance->flag |= MEGASAS_FW_BUSY;
1092
1093                 spin_unlock_irqrestore(instance->host->host_lock, flags);
1094         }
1095         return EH_RESET_TIMER;
1096 }
1097
1098 /**
1099  * megasas_reset_device -       Device reset handler entry point
1100  */
1101 static int megasas_reset_device(struct scsi_cmnd *scmd)
1102 {
1103         int ret;
1104
1105         /*
1106          * First wait for all commands to complete
1107          */
1108         ret = megasas_generic_reset(scmd);
1109
1110         return ret;
1111 }
1112
1113 /**
1114  * megasas_reset_bus_host -     Bus & host reset handler entry point
1115  */
1116 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1117 {
1118         int ret;
1119
1120         /*
1121          * First wait for all commands to complete
1122          */
1123         ret = megasas_generic_reset(scmd);
1124
1125         return ret;
1126 }
1127
1128 /**
1129  * megasas_bios_param - Returns disk geometry for a disk
1130  * @sdev:               device handle
1131  * @bdev:               block device
1132  * @capacity:           drive capacity
1133  * @geom:               geometry parameters
1134  */
1135 static int
1136 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1137                  sector_t capacity, int geom[])
1138 {
1139         int heads;
1140         int sectors;
1141         sector_t cylinders;
1142         unsigned long tmp;
1143         /* Default heads (64) & sectors (32) */
1144         heads = 64;
1145         sectors = 32;
1146
1147         tmp = heads * sectors;
1148         cylinders = capacity;
1149
1150         sector_div(cylinders, tmp);
1151
1152         /*
1153          * Handle extended translation size for logical drives > 1Gb
1154          */
1155
1156         if (capacity >= 0x200000) {
1157                 heads = 255;
1158                 sectors = 63;
1159                 tmp = heads*sectors;
1160                 cylinders = capacity;
1161                 sector_div(cylinders, tmp);
1162         }
1163
1164         geom[0] = heads;
1165         geom[1] = sectors;
1166         geom[2] = cylinders;
1167
1168         return 0;
1169 }
1170
1171 /**
1172  * megasas_service_aen -        Processes an event notification
1173  * @instance:                   Adapter soft state
1174  * @cmd:                        AEN command completed by the ISR
1175  *
1176  * For AEN, driver sends a command down to FW that is held by the FW till an
1177  * event occurs. When an event of interest occurs, FW completes the command
1178  * that it was previously holding.
1179  *
1180  * This routines sends SIGIO signal to processes that have registered with the
1181  * driver for AEN.
1182  */
1183 static void
1184 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1185 {
1186         /*
1187          * Don't signal app if it is just an aborted previously registered aen
1188          */
1189         if (!cmd->abort_aen)
1190                 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1191         else
1192                 cmd->abort_aen = 0;
1193
1194         instance->aen_cmd = NULL;
1195         megasas_return_cmd(instance, cmd);
1196 }
1197
1198 /*
1199  * Scsi host template for megaraid_sas driver
1200  */
1201 static struct scsi_host_template megasas_template = {
1202
1203         .module = THIS_MODULE,
1204         .name = "LSI SAS based MegaRAID driver",
1205         .proc_name = "megaraid_sas",
1206         .slave_configure = megasas_slave_configure,
1207         .queuecommand = megasas_queue_command,
1208         .eh_device_reset_handler = megasas_reset_device,
1209         .eh_bus_reset_handler = megasas_reset_bus_host,
1210         .eh_host_reset_handler = megasas_reset_bus_host,
1211         .eh_timed_out = megasas_reset_timer,
1212         .bios_param = megasas_bios_param,
1213         .use_clustering = ENABLE_CLUSTERING,
1214 };
1215
1216 /**
1217  * megasas_complete_int_cmd -   Completes an internal command
1218  * @instance:                   Adapter soft state
1219  * @cmd:                        Command to be completed
1220  *
1221  * The megasas_issue_blocked_cmd() function waits for a command to complete
1222  * after it issues a command. This function wakes up that waiting routine by
1223  * calling wake_up() on the wait queue.
1224  */
1225 static void
1226 megasas_complete_int_cmd(struct megasas_instance *instance,
1227                          struct megasas_cmd *cmd)
1228 {
1229         cmd->cmd_status = cmd->frame->io.cmd_status;
1230
1231         if (cmd->cmd_status == ENODATA) {
1232                 cmd->cmd_status = 0;
1233         }
1234         wake_up(&instance->int_cmd_wait_q);
1235 }
1236
1237 /**
1238  * megasas_complete_abort -     Completes aborting a command
1239  * @instance:                   Adapter soft state
1240  * @cmd:                        Cmd that was issued to abort another cmd
1241  *
1242  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 
1243  * after it issues an abort on a previously issued command. This function 
1244  * wakes up all functions waiting on the same wait queue.
1245  */
1246 static void
1247 megasas_complete_abort(struct megasas_instance *instance,
1248                        struct megasas_cmd *cmd)
1249 {
1250         if (cmd->sync_cmd) {
1251                 cmd->sync_cmd = 0;
1252                 cmd->cmd_status = 0;
1253                 wake_up(&instance->abort_cmd_wait_q);
1254         }
1255
1256         return;
1257 }
1258
1259 /**
1260  * megasas_complete_cmd -       Completes a command
1261  * @instance:                   Adapter soft state
1262  * @cmd:                        Command to be completed
1263  * @alt_status:                 If non-zero, use this value as status to 
1264  *                              SCSI mid-layer instead of the value returned
1265  *                              by the FW. This should be used if caller wants
1266  *                              an alternate status (as in the case of aborted
1267  *                              commands)
1268  */
1269 static void
1270 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1271                      u8 alt_status)
1272 {
1273         int exception = 0;
1274         struct megasas_header *hdr = &cmd->frame->hdr;
1275
1276         if (cmd->scmd)
1277                 cmd->scmd->SCp.ptr = NULL;
1278
1279         switch (hdr->cmd) {
1280
1281         case MFI_CMD_PD_SCSI_IO:
1282         case MFI_CMD_LD_SCSI_IO:
1283
1284                 /*
1285                  * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1286                  * issued either through an IO path or an IOCTL path. If it
1287                  * was via IOCTL, we will send it to internal completion.
1288                  */
1289                 if (cmd->sync_cmd) {
1290                         cmd->sync_cmd = 0;
1291                         megasas_complete_int_cmd(instance, cmd);
1292                         break;
1293                 }
1294
1295         case MFI_CMD_LD_READ:
1296         case MFI_CMD_LD_WRITE:
1297
1298                 if (alt_status) {
1299                         cmd->scmd->result = alt_status << 16;
1300                         exception = 1;
1301                 }
1302
1303                 if (exception) {
1304
1305                         atomic_dec(&instance->fw_outstanding);
1306
1307                         scsi_dma_unmap(cmd->scmd);
1308                         cmd->scmd->scsi_done(cmd->scmd);
1309                         megasas_return_cmd(instance, cmd);
1310
1311                         break;
1312                 }
1313
1314                 switch (hdr->cmd_status) {
1315
1316                 case MFI_STAT_OK:
1317                         cmd->scmd->result = DID_OK << 16;
1318                         break;
1319
1320                 case MFI_STAT_SCSI_IO_FAILED:
1321                 case MFI_STAT_LD_INIT_IN_PROGRESS:
1322                         cmd->scmd->result =
1323                             (DID_ERROR << 16) | hdr->scsi_status;
1324                         break;
1325
1326                 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1327
1328                         cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1329
1330                         if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1331                                 memset(cmd->scmd->sense_buffer, 0,
1332                                        SCSI_SENSE_BUFFERSIZE);
1333                                 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1334                                        hdr->sense_len);
1335
1336                                 cmd->scmd->result |= DRIVER_SENSE << 24;
1337                         }
1338
1339                         break;
1340
1341                 case MFI_STAT_LD_OFFLINE:
1342                 case MFI_STAT_DEVICE_NOT_FOUND:
1343                         cmd->scmd->result = DID_BAD_TARGET << 16;
1344                         break;
1345
1346                 default:
1347                         printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1348                                hdr->cmd_status);
1349                         cmd->scmd->result = DID_ERROR << 16;
1350                         break;
1351                 }
1352
1353                 atomic_dec(&instance->fw_outstanding);
1354
1355                 scsi_dma_unmap(cmd->scmd);
1356                 cmd->scmd->scsi_done(cmd->scmd);
1357                 megasas_return_cmd(instance, cmd);
1358
1359                 break;
1360
1361         case MFI_CMD_SMP:
1362         case MFI_CMD_STP:
1363         case MFI_CMD_DCMD:
1364
1365                 /*
1366                  * See if got an event notification
1367                  */
1368                 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1369                         megasas_service_aen(instance, cmd);
1370                 else
1371                         megasas_complete_int_cmd(instance, cmd);
1372
1373                 break;
1374
1375         case MFI_CMD_ABORT:
1376                 /*
1377                  * Cmd issued to abort another cmd returned
1378                  */
1379                 megasas_complete_abort(instance, cmd);
1380                 break;
1381
1382         default:
1383                 printk("megasas: Unknown command completed! [0x%X]\n",
1384                        hdr->cmd);
1385                 break;
1386         }
1387 }
1388
1389 /**
1390  * megasas_deplete_reply_queue -        Processes all completed commands
1391  * @instance:                           Adapter soft state
1392  * @alt_status:                         Alternate status to be returned to
1393  *                                      SCSI mid-layer instead of the status
1394  *                                      returned by the FW
1395  */
1396 static int
1397 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1398 {
1399         /*
1400          * Check if it is our interrupt
1401          * Clear the interrupt 
1402          */
1403         if(instance->instancet->clear_intr(instance->reg_set))
1404                 return IRQ_NONE;
1405
1406         if (instance->hw_crit_error)
1407                 goto out_done;
1408         /*
1409          * Schedule the tasklet for cmd completion
1410          */
1411         tasklet_schedule(&instance->isr_tasklet);
1412 out_done:
1413         return IRQ_HANDLED;
1414 }
1415
1416 /**
1417  * megasas_isr - isr entry point
1418  */
1419 static irqreturn_t megasas_isr(int irq, void *devp)
1420 {
1421         return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1422                                            DID_OK);
1423 }
1424
1425 /**
1426  * megasas_transition_to_ready -        Move the FW to READY state
1427  * @instance:                           Adapter soft state
1428  *
1429  * During the initialization, FW passes can potentially be in any one of
1430  * several possible states. If the FW in operational, waiting-for-handshake
1431  * states, driver must take steps to bring it to ready state. Otherwise, it
1432  * has to wait for the ready state.
1433  */
1434 static int
1435 megasas_transition_to_ready(struct megasas_instance* instance)
1436 {
1437         int i;
1438         u8 max_wait;
1439         u32 fw_state;
1440         u32 cur_state;
1441
1442         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1443
1444         if (fw_state != MFI_STATE_READY)
1445                 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1446                        " state\n");
1447
1448         while (fw_state != MFI_STATE_READY) {
1449
1450                 switch (fw_state) {
1451
1452                 case MFI_STATE_FAULT:
1453
1454                         printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1455                         return -ENODEV;
1456
1457                 case MFI_STATE_WAIT_HANDSHAKE:
1458                         /*
1459                          * Set the CLR bit in inbound doorbell
1460                          */
1461                         writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1462                                 &instance->reg_set->inbound_doorbell);
1463
1464                         max_wait = 2;
1465                         cur_state = MFI_STATE_WAIT_HANDSHAKE;
1466                         break;
1467
1468                 case MFI_STATE_BOOT_MESSAGE_PENDING:
1469                         writel(MFI_INIT_HOTPLUG,
1470                                 &instance->reg_set->inbound_doorbell);
1471
1472                         max_wait = 10;
1473                         cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1474                         break;
1475
1476                 case MFI_STATE_OPERATIONAL:
1477                         /*
1478                          * Bring it to READY state; assuming max wait 10 secs
1479                          */
1480                         instance->instancet->disable_intr(instance->reg_set);
1481                         writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1482
1483                         max_wait = 60;
1484                         cur_state = MFI_STATE_OPERATIONAL;
1485                         break;
1486
1487                 case MFI_STATE_UNDEFINED:
1488                         /*
1489                          * This state should not last for more than 2 seconds
1490                          */
1491                         max_wait = 2;
1492                         cur_state = MFI_STATE_UNDEFINED;
1493                         break;
1494
1495                 case MFI_STATE_BB_INIT:
1496                         max_wait = 2;
1497                         cur_state = MFI_STATE_BB_INIT;
1498                         break;
1499
1500                 case MFI_STATE_FW_INIT:
1501                         max_wait = 20;
1502                         cur_state = MFI_STATE_FW_INIT;
1503                         break;
1504
1505                 case MFI_STATE_FW_INIT_2:
1506                         max_wait = 20;
1507                         cur_state = MFI_STATE_FW_INIT_2;
1508                         break;
1509
1510                 case MFI_STATE_DEVICE_SCAN:
1511                         max_wait = 20;
1512                         cur_state = MFI_STATE_DEVICE_SCAN;
1513                         break;
1514
1515                 case MFI_STATE_FLUSH_CACHE:
1516                         max_wait = 20;
1517                         cur_state = MFI_STATE_FLUSH_CACHE;
1518                         break;
1519
1520                 default:
1521                         printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1522                                fw_state);
1523                         return -ENODEV;
1524                 }
1525
1526                 /*
1527                  * The cur_state should not last for more than max_wait secs
1528                  */
1529                 for (i = 0; i < (max_wait * 1000); i++) {
1530                         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &  
1531                                         MFI_STATE_MASK ;
1532
1533                         if (fw_state == cur_state) {
1534                                 msleep(1);
1535                         } else
1536                                 break;
1537                 }
1538
1539                 /*
1540                  * Return error if fw_state hasn't changed after max_wait
1541                  */
1542                 if (fw_state == cur_state) {
1543                         printk(KERN_DEBUG "FW state [%d] hasn't changed "
1544                                "in %d secs\n", fw_state, max_wait);
1545                         return -ENODEV;
1546                 }
1547         };
1548         printk(KERN_INFO "megasas: FW now in Ready state\n");
1549
1550         return 0;
1551 }
1552
1553 /**
1554  * megasas_teardown_frame_pool -        Destroy the cmd frame DMA pool
1555  * @instance:                           Adapter soft state
1556  */
1557 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1558 {
1559         int i;
1560         u32 max_cmd = instance->max_fw_cmds;
1561         struct megasas_cmd *cmd;
1562
1563         if (!instance->frame_dma_pool)
1564                 return;
1565
1566         /*
1567          * Return all frames to pool
1568          */
1569         for (i = 0; i < max_cmd; i++) {
1570
1571                 cmd = instance->cmd_list[i];
1572
1573                 if (cmd->frame)
1574                         pci_pool_free(instance->frame_dma_pool, cmd->frame,
1575                                       cmd->frame_phys_addr);
1576
1577                 if (cmd->sense)
1578                         pci_pool_free(instance->sense_dma_pool, cmd->sense,
1579                                       cmd->sense_phys_addr);
1580         }
1581
1582         /*
1583          * Now destroy the pool itself
1584          */
1585         pci_pool_destroy(instance->frame_dma_pool);
1586         pci_pool_destroy(instance->sense_dma_pool);
1587
1588         instance->frame_dma_pool = NULL;
1589         instance->sense_dma_pool = NULL;
1590 }
1591
1592 /**
1593  * megasas_create_frame_pool -  Creates DMA pool for cmd frames
1594  * @instance:                   Adapter soft state
1595  *
1596  * Each command packet has an embedded DMA memory buffer that is used for
1597  * filling MFI frame and the SG list that immediately follows the frame. This
1598  * function creates those DMA memory buffers for each command packet by using
1599  * PCI pool facility.
1600  */
1601 static int megasas_create_frame_pool(struct megasas_instance *instance)
1602 {
1603         int i;
1604         u32 max_cmd;
1605         u32 sge_sz;
1606         u32 sgl_sz;
1607         u32 total_sz;
1608         u32 frame_count;
1609         struct megasas_cmd *cmd;
1610
1611         max_cmd = instance->max_fw_cmds;
1612
1613         /*
1614          * Size of our frame is 64 bytes for MFI frame, followed by max SG
1615          * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1616          */
1617         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1618             sizeof(struct megasas_sge32);
1619
1620         /*
1621          * Calculated the number of 64byte frames required for SGL
1622          */
1623         sgl_sz = sge_sz * instance->max_num_sge;
1624         frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1625
1626         /*
1627          * We need one extra frame for the MFI command
1628          */
1629         frame_count++;
1630
1631         total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1632         /*
1633          * Use DMA pool facility provided by PCI layer
1634          */
1635         instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1636                                                    instance->pdev, total_sz, 64,
1637                                                    0);
1638
1639         if (!instance->frame_dma_pool) {
1640                 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1641                 return -ENOMEM;
1642         }
1643
1644         instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1645                                                    instance->pdev, 128, 4, 0);
1646
1647         if (!instance->sense_dma_pool) {
1648                 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1649
1650                 pci_pool_destroy(instance->frame_dma_pool);
1651                 instance->frame_dma_pool = NULL;
1652
1653                 return -ENOMEM;
1654         }
1655
1656         /*
1657          * Allocate and attach a frame to each of the commands in cmd_list.
1658          * By making cmd->index as the context instead of the &cmd, we can
1659          * always use 32bit context regardless of the architecture
1660          */
1661         for (i = 0; i < max_cmd; i++) {
1662
1663                 cmd = instance->cmd_list[i];
1664
1665                 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1666                                             GFP_KERNEL, &cmd->frame_phys_addr);
1667
1668                 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1669                                             GFP_KERNEL, &cmd->sense_phys_addr);
1670
1671                 /*
1672                  * megasas_teardown_frame_pool() takes care of freeing
1673                  * whatever has been allocated
1674                  */
1675                 if (!cmd->frame || !cmd->sense) {
1676                         printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1677                         megasas_teardown_frame_pool(instance);
1678                         return -ENOMEM;
1679                 }
1680
1681                 cmd->frame->io.context = cmd->index;
1682         }
1683
1684         return 0;
1685 }
1686
1687 /**
1688  * megasas_free_cmds -  Free all the cmds in the free cmd pool
1689  * @instance:           Adapter soft state
1690  */
1691 static void megasas_free_cmds(struct megasas_instance *instance)
1692 {
1693         int i;
1694         /* First free the MFI frame pool */
1695         megasas_teardown_frame_pool(instance);
1696
1697         /* Free all the commands in the cmd_list */
1698         for (i = 0; i < instance->max_fw_cmds; i++)
1699                 kfree(instance->cmd_list[i]);
1700
1701         /* Free the cmd_list buffer itself */
1702         kfree(instance->cmd_list);
1703         instance->cmd_list = NULL;
1704
1705         INIT_LIST_HEAD(&instance->cmd_pool);
1706 }
1707
1708 /**
1709  * megasas_alloc_cmds - Allocates the command packets
1710  * @instance:           Adapter soft state
1711  *
1712  * Each command that is issued to the FW, whether IO commands from the OS or
1713  * internal commands like IOCTLs, are wrapped in local data structure called
1714  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1715  * the FW.
1716  *
1717  * Each frame has a 32-bit field called context (tag). This context is used
1718  * to get back the megasas_cmd from the frame when a frame gets completed in
1719  * the ISR. Typically the address of the megasas_cmd itself would be used as
1720  * the context. But we wanted to keep the differences between 32 and 64 bit
1721  * systems to the mininum. We always use 32 bit integers for the context. In
1722  * this driver, the 32 bit values are the indices into an array cmd_list.
1723  * This array is used only to look up the megasas_cmd given the context. The
1724  * free commands themselves are maintained in a linked list called cmd_pool.
1725  */
1726 static int megasas_alloc_cmds(struct megasas_instance *instance)
1727 {
1728         int i;
1729         int j;
1730         u32 max_cmd;
1731         struct megasas_cmd *cmd;
1732
1733         max_cmd = instance->max_fw_cmds;
1734
1735         /*
1736          * instance->cmd_list is an array of struct megasas_cmd pointers.
1737          * Allocate the dynamic array first and then allocate individual
1738          * commands.
1739          */
1740         instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1741
1742         if (!instance->cmd_list) {
1743                 printk(KERN_DEBUG "megasas: out of memory\n");
1744                 return -ENOMEM;
1745         }
1746
1747
1748         for (i = 0; i < max_cmd; i++) {
1749                 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1750                                                 GFP_KERNEL);
1751
1752                 if (!instance->cmd_list[i]) {
1753
1754                         for (j = 0; j < i; j++)
1755                                 kfree(instance->cmd_list[j]);
1756
1757                         kfree(instance->cmd_list);
1758                         instance->cmd_list = NULL;
1759
1760                         return -ENOMEM;
1761                 }
1762         }
1763
1764         /*
1765          * Add all the commands to command pool (instance->cmd_pool)
1766          */
1767         for (i = 0; i < max_cmd; i++) {
1768                 cmd = instance->cmd_list[i];
1769                 memset(cmd, 0, sizeof(struct megasas_cmd));
1770                 cmd->index = i;
1771                 cmd->instance = instance;
1772
1773                 list_add_tail(&cmd->list, &instance->cmd_pool);
1774         }
1775
1776         /*
1777          * Create a frame pool and assign one frame to each cmd
1778          */
1779         if (megasas_create_frame_pool(instance)) {
1780                 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1781                 megasas_free_cmds(instance);
1782         }
1783
1784         return 0;
1785 }
1786
1787 /**
1788  * megasas_get_controller_info -        Returns FW's controller structure
1789  * @instance:                           Adapter soft state
1790  * @ctrl_info:                          Controller information structure
1791  *
1792  * Issues an internal command (DCMD) to get the FW's controller structure.
1793  * This information is mainly used to find out the maximum IO transfer per
1794  * command supported by the FW.
1795  */
1796 static int
1797 megasas_get_ctrl_info(struct megasas_instance *instance,
1798                       struct megasas_ctrl_info *ctrl_info)
1799 {
1800         int ret = 0;
1801         struct megasas_cmd *cmd;
1802         struct megasas_dcmd_frame *dcmd;
1803         struct megasas_ctrl_info *ci;
1804         dma_addr_t ci_h = 0;
1805
1806         cmd = megasas_get_cmd(instance);
1807
1808         if (!cmd) {
1809                 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1810                 return -ENOMEM;
1811         }
1812
1813         dcmd = &cmd->frame->dcmd;
1814
1815         ci = pci_alloc_consistent(instance->pdev,
1816                                   sizeof(struct megasas_ctrl_info), &ci_h);
1817
1818         if (!ci) {
1819                 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1820                 megasas_return_cmd(instance, cmd);
1821                 return -ENOMEM;
1822         }
1823
1824         memset(ci, 0, sizeof(*ci));
1825         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1826
1827         dcmd->cmd = MFI_CMD_DCMD;
1828         dcmd->cmd_status = 0xFF;
1829         dcmd->sge_count = 1;
1830         dcmd->flags = MFI_FRAME_DIR_READ;
1831         dcmd->timeout = 0;
1832         dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1833         dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1834         dcmd->sgl.sge32[0].phys_addr = ci_h;
1835         dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1836
1837         if (!megasas_issue_polled(instance, cmd)) {
1838                 ret = 0;
1839                 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1840         } else {
1841                 ret = -1;
1842         }
1843
1844         pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1845                             ci, ci_h);
1846
1847         megasas_return_cmd(instance, cmd);
1848         return ret;
1849 }
1850
1851 /**
1852  * megasas_issue_init_mfi -     Initializes the FW
1853  * @instance:           Adapter soft state
1854  *
1855  * Issues the INIT MFI cmd
1856  */
1857 static int
1858 megasas_issue_init_mfi(struct megasas_instance *instance)
1859 {
1860         u32 context;
1861
1862         struct megasas_cmd *cmd;
1863
1864         struct megasas_init_frame *init_frame;
1865         struct megasas_init_queue_info *initq_info;
1866         dma_addr_t init_frame_h;
1867         dma_addr_t initq_info_h;
1868
1869         /*
1870          * Prepare a init frame. Note the init frame points to queue info
1871          * structure. Each frame has SGL allocated after first 64 bytes. For
1872          * this frame - since we don't need any SGL - we use SGL's space as
1873          * queue info structure
1874          *
1875          * We will not get a NULL command below. We just created the pool.
1876          */
1877         cmd = megasas_get_cmd(instance);
1878
1879         init_frame = (struct megasas_init_frame *)cmd->frame;
1880         initq_info = (struct megasas_init_queue_info *)
1881                 ((unsigned long)init_frame + 64);
1882
1883         init_frame_h = cmd->frame_phys_addr;
1884         initq_info_h = init_frame_h + 64;
1885
1886         context = init_frame->context;
1887         memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1888         memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1889         init_frame->context = context;
1890
1891         initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1892         initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1893
1894         initq_info->producer_index_phys_addr_lo = instance->producer_h;
1895         initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1896
1897         init_frame->cmd = MFI_CMD_INIT;
1898         init_frame->cmd_status = 0xFF;
1899         init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1900
1901         init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1902
1903         /*
1904          * disable the intr before firing the init frame to FW
1905          */
1906         instance->instancet->disable_intr(instance->reg_set);
1907
1908         /*
1909          * Issue the init frame in polled mode
1910          */
1911
1912         if (megasas_issue_polled(instance, cmd)) {
1913                 printk(KERN_ERR "megasas: Failed to init firmware\n");
1914                 megasas_return_cmd(instance, cmd);
1915                 goto fail_fw_init;
1916         }
1917
1918         megasas_return_cmd(instance, cmd);
1919
1920         return 0;
1921
1922 fail_fw_init:
1923         return -EINVAL;
1924 }
1925
1926 /**
1927  * megasas_start_timer - Initializes a timer object
1928  * @instance:           Adapter soft state
1929  * @timer:              timer object to be initialized
1930  * @fn:                 timer function
1931  * @interval:           time interval between timer function call
1932  */
1933 static inline void
1934 megasas_start_timer(struct megasas_instance *instance,
1935                         struct timer_list *timer,
1936                         void *fn, unsigned long interval)
1937 {
1938         init_timer(timer);
1939         timer->expires = jiffies + interval;
1940         timer->data = (unsigned long)instance;
1941         timer->function = fn;
1942         add_timer(timer);
1943 }
1944
1945 /**
1946  * megasas_io_completion_timer - Timer fn
1947  * @instance_addr:      Address of adapter soft state
1948  *
1949  * Schedules tasklet for cmd completion
1950  * if poll_mode_io is set
1951  */
1952 static void
1953 megasas_io_completion_timer(unsigned long instance_addr)
1954 {
1955         struct megasas_instance *instance =
1956                         (struct megasas_instance *)instance_addr;
1957
1958         if (atomic_read(&instance->fw_outstanding))
1959                 tasklet_schedule(&instance->isr_tasklet);
1960
1961         /* Restart timer */
1962         if (poll_mode_io)
1963                 mod_timer(&instance->io_completion_timer,
1964                         jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL);
1965 }
1966
1967 /**
1968  * megasas_init_mfi -   Initializes the FW
1969  * @instance:           Adapter soft state
1970  *
1971  * This is the main function for initializing MFI firmware.
1972  */
1973 static int megasas_init_mfi(struct megasas_instance *instance)
1974 {
1975         u32 context_sz;
1976         u32 reply_q_sz;
1977         u32 max_sectors_1;
1978         u32 max_sectors_2;
1979         u32 tmp_sectors;
1980         struct megasas_register_set __iomem *reg_set;
1981         struct megasas_ctrl_info *ctrl_info;
1982         /*
1983          * Map the message registers
1984          */
1985         instance->base_addr = pci_resource_start(instance->pdev, 0);
1986
1987         if (pci_request_regions(instance->pdev, "megasas: LSI")) {
1988                 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1989                 return -EBUSY;
1990         }
1991
1992         instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1993
1994         if (!instance->reg_set) {
1995                 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1996                 goto fail_ioremap;
1997         }
1998
1999         reg_set = instance->reg_set;
2000
2001         switch(instance->pdev->device)
2002         {
2003                 case PCI_DEVICE_ID_LSI_SAS1078R:
2004                 case PCI_DEVICE_ID_LSI_SAS1078DE:
2005                         instance->instancet = &megasas_instance_template_ppc;
2006                         break;
2007                 case PCI_DEVICE_ID_LSI_SAS1064R:
2008                 case PCI_DEVICE_ID_DELL_PERC5:
2009                 default:
2010                         instance->instancet = &megasas_instance_template_xscale;
2011                         break;
2012         }
2013
2014         /*
2015          * We expect the FW state to be READY
2016          */
2017         if (megasas_transition_to_ready(instance))
2018                 goto fail_ready_state;
2019
2020         /*
2021          * Get various operational parameters from status register
2022          */
2023         instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
2024         /*
2025          * Reduce the max supported cmds by 1. This is to ensure that the
2026          * reply_q_sz (1 more than the max cmd that driver may send)
2027          * does not exceed max cmds that the FW can support
2028          */
2029         instance->max_fw_cmds = instance->max_fw_cmds-1;
2030         instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 
2031                                         0x10;
2032         /*
2033          * Create a pool of commands
2034          */
2035         if (megasas_alloc_cmds(instance))
2036                 goto fail_alloc_cmds;
2037
2038         /*
2039          * Allocate memory for reply queue. Length of reply queue should
2040          * be _one_ more than the maximum commands handled by the firmware.
2041          *
2042          * Note: When FW completes commands, it places corresponding contex
2043          * values in this circular reply queue. This circular queue is a fairly
2044          * typical producer-consumer queue. FW is the producer (of completed
2045          * commands) and the driver is the consumer.
2046          */
2047         context_sz = sizeof(u32);
2048         reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
2049
2050         instance->reply_queue = pci_alloc_consistent(instance->pdev,
2051                                                      reply_q_sz,
2052                                                      &instance->reply_queue_h);
2053
2054         if (!instance->reply_queue) {
2055                 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
2056                 goto fail_reply_queue;
2057         }
2058
2059         if (megasas_issue_init_mfi(instance))
2060                 goto fail_fw_init;
2061
2062         ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
2063
2064         /*
2065          * Compute the max allowed sectors per IO: The controller info has two
2066          * limits on max sectors. Driver should use the minimum of these two.
2067          *
2068          * 1 << stripe_sz_ops.min = max sectors per strip
2069          *
2070          * Note that older firmwares ( < FW ver 30) didn't report information
2071          * to calculate max_sectors_1. So the number ended up as zero always.
2072          */
2073         tmp_sectors = 0;
2074         if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2075
2076                 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2077                     ctrl_info->max_strips_per_io;
2078                 max_sectors_2 = ctrl_info->max_request_size;
2079
2080                 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
2081         }
2082
2083         instance->max_sectors_per_req = instance->max_num_sge *
2084                                                 PAGE_SIZE / 512;
2085         if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
2086                 instance->max_sectors_per_req = tmp_sectors;
2087
2088         kfree(ctrl_info);
2089
2090         /*
2091         * Setup tasklet for cmd completion
2092         */
2093
2094         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2095                 (unsigned long)instance);
2096
2097         /* Initialize the cmd completion timer */
2098         if (poll_mode_io)
2099                 megasas_start_timer(instance, &instance->io_completion_timer,
2100                                 megasas_io_completion_timer,
2101                                 MEGASAS_COMPLETION_TIMER_INTERVAL);
2102         return 0;
2103
2104       fail_fw_init:
2105
2106         pci_free_consistent(instance->pdev, reply_q_sz,
2107                             instance->reply_queue, instance->reply_queue_h);
2108       fail_reply_queue:
2109         megasas_free_cmds(instance);
2110
2111       fail_alloc_cmds:
2112       fail_ready_state:
2113         iounmap(instance->reg_set);
2114
2115       fail_ioremap:
2116         pci_release_regions(instance->pdev);
2117
2118         return -EINVAL;
2119 }
2120
2121 /**
2122  * megasas_release_mfi -        Reverses the FW initialization
2123  * @intance:                    Adapter soft state
2124  */
2125 static void megasas_release_mfi(struct megasas_instance *instance)
2126 {
2127         u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2128
2129         pci_free_consistent(instance->pdev, reply_q_sz,
2130                             instance->reply_queue, instance->reply_queue_h);
2131
2132         megasas_free_cmds(instance);
2133
2134         iounmap(instance->reg_set);
2135
2136         pci_release_regions(instance->pdev);
2137 }
2138
2139 /**
2140  * megasas_get_seq_num -        Gets latest event sequence numbers
2141  * @instance:                   Adapter soft state
2142  * @eli:                        FW event log sequence numbers information
2143  *
2144  * FW maintains a log of all events in a non-volatile area. Upper layers would
2145  * usually find out the latest sequence number of the events, the seq number at
2146  * the boot etc. They would "read" all the events below the latest seq number
2147  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2148  * number), they would subsribe to AEN (asynchronous event notification) and
2149  * wait for the events to happen.
2150  */
2151 static int
2152 megasas_get_seq_num(struct megasas_instance *instance,
2153                     struct megasas_evt_log_info *eli)
2154 {
2155         struct megasas_cmd *cmd;
2156         struct megasas_dcmd_frame *dcmd;
2157         struct megasas_evt_log_info *el_info;
2158         dma_addr_t el_info_h = 0;
2159
2160         cmd = megasas_get_cmd(instance);
2161
2162         if (!cmd) {
2163                 return -ENOMEM;
2164         }
2165
2166         dcmd = &cmd->frame->dcmd;
2167         el_info = pci_alloc_consistent(instance->pdev,
2168                                        sizeof(struct megasas_evt_log_info),
2169                                        &el_info_h);
2170
2171         if (!el_info) {
2172                 megasas_return_cmd(instance, cmd);
2173                 return -ENOMEM;
2174         }
2175
2176         memset(el_info, 0, sizeof(*el_info));
2177         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2178
2179         dcmd->cmd = MFI_CMD_DCMD;
2180         dcmd->cmd_status = 0x0;
2181         dcmd->sge_count = 1;
2182         dcmd->flags = MFI_FRAME_DIR_READ;
2183         dcmd->timeout = 0;
2184         dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2185         dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2186         dcmd->sgl.sge32[0].phys_addr = el_info_h;
2187         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2188
2189         megasas_issue_blocked_cmd(instance, cmd);
2190
2191         /*
2192          * Copy the data back into callers buffer
2193          */
2194         memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2195
2196         pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2197                             el_info, el_info_h);
2198
2199         megasas_return_cmd(instance, cmd);
2200
2201         return 0;
2202 }
2203
2204 /**
2205  * megasas_register_aen -       Registers for asynchronous event notification
2206  * @instance:                   Adapter soft state
2207  * @seq_num:                    The starting sequence number
2208  * @class_locale:               Class of the event
2209  *
2210  * This function subscribes for AEN for events beyond the @seq_num. It requests
2211  * to be notified if and only if the event is of type @class_locale
2212  */
2213 static int
2214 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2215                      u32 class_locale_word)
2216 {
2217         int ret_val;
2218         struct megasas_cmd *cmd;
2219         struct megasas_dcmd_frame *dcmd;
2220         union megasas_evt_class_locale curr_aen;
2221         union megasas_evt_class_locale prev_aen;
2222
2223         /*
2224          * If there an AEN pending already (aen_cmd), check if the
2225          * class_locale of that pending AEN is inclusive of the new
2226          * AEN request we currently have. If it is, then we don't have
2227          * to do anything. In other words, whichever events the current
2228          * AEN request is subscribing to, have already been subscribed
2229          * to.
2230          *
2231          * If the old_cmd is _not_ inclusive, then we have to abort
2232          * that command, form a class_locale that is superset of both
2233          * old and current and re-issue to the FW
2234          */
2235
2236         curr_aen.word = class_locale_word;
2237
2238         if (instance->aen_cmd) {
2239
2240                 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2241
2242                 /*
2243                  * A class whose enum value is smaller is inclusive of all
2244                  * higher values. If a PROGRESS (= -1) was previously
2245                  * registered, then a new registration requests for higher
2246                  * classes need not be sent to FW. They are automatically
2247                  * included.
2248                  *
2249                  * Locale numbers don't have such hierarchy. They are bitmap
2250                  * values
2251                  */
2252                 if ((prev_aen.members.class <= curr_aen.members.class) &&
2253                     !((prev_aen.members.locale & curr_aen.members.locale) ^
2254                       curr_aen.members.locale)) {
2255                         /*
2256                          * Previously issued event registration includes
2257                          * current request. Nothing to do.
2258                          */
2259                         return 0;
2260                 } else {
2261                         curr_aen.members.locale |= prev_aen.members.locale;
2262
2263                         if (prev_aen.members.class < curr_aen.members.class)
2264                                 curr_aen.members.class = prev_aen.members.class;
2265
2266                         instance->aen_cmd->abort_aen = 1;
2267                         ret_val = megasas_issue_blocked_abort_cmd(instance,
2268                                                                   instance->
2269                                                                   aen_cmd);
2270
2271                         if (ret_val) {
2272                                 printk(KERN_DEBUG "megasas: Failed to abort "
2273                                        "previous AEN command\n");
2274                                 return ret_val;
2275                         }
2276                 }
2277         }
2278
2279         cmd = megasas_get_cmd(instance);
2280
2281         if (!cmd)
2282                 return -ENOMEM;
2283
2284         dcmd = &cmd->frame->dcmd;
2285
2286         memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2287
2288         /*
2289          * Prepare DCMD for aen registration
2290          */
2291         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2292
2293         dcmd->cmd = MFI_CMD_DCMD;
2294         dcmd->cmd_status = 0x0;
2295         dcmd->sge_count = 1;
2296         dcmd->flags = MFI_FRAME_DIR_READ;
2297         dcmd->timeout = 0;
2298         dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2299         dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2300         dcmd->mbox.w[0] = seq_num;
2301         dcmd->mbox.w[1] = curr_aen.word;
2302         dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2303         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2304
2305         /*
2306          * Store reference to the cmd used to register for AEN. When an
2307          * application wants us to register for AEN, we have to abort this
2308          * cmd and re-register with a new EVENT LOCALE supplied by that app
2309          */
2310         instance->aen_cmd = cmd;
2311
2312         /*
2313          * Issue the aen registration frame
2314          */
2315         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2316
2317         return 0;
2318 }
2319
2320 /**
2321  * megasas_start_aen -  Subscribes to AEN during driver load time
2322  * @instance:           Adapter soft state
2323  */
2324 static int megasas_start_aen(struct megasas_instance *instance)
2325 {
2326         struct megasas_evt_log_info eli;
2327         union megasas_evt_class_locale class_locale;
2328
2329         /*
2330          * Get the latest sequence number from FW
2331          */
2332         memset(&eli, 0, sizeof(eli));
2333
2334         if (megasas_get_seq_num(instance, &eli))
2335                 return -1;
2336
2337         /*
2338          * Register AEN with FW for latest sequence number plus 1
2339          */
2340         class_locale.members.reserved = 0;
2341         class_locale.members.locale = MR_EVT_LOCALE_ALL;
2342         class_locale.members.class = MR_EVT_CLASS_DEBUG;
2343
2344         return megasas_register_aen(instance, eli.newest_seq_num + 1,
2345                                     class_locale.word);
2346 }
2347
2348 /**
2349  * megasas_io_attach -  Attaches this driver to SCSI mid-layer
2350  * @instance:           Adapter soft state
2351  */
2352 static int megasas_io_attach(struct megasas_instance *instance)
2353 {
2354         struct Scsi_Host *host = instance->host;
2355
2356         /*
2357          * Export parameters required by SCSI mid-layer
2358          */
2359         host->irq = instance->pdev->irq;
2360         host->unique_id = instance->unique_id;
2361         host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2362         host->this_id = instance->init_id;
2363         host->sg_tablesize = instance->max_num_sge;
2364         host->max_sectors = instance->max_sectors_per_req;
2365         host->cmd_per_lun = 128;
2366         host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2367         host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2368         host->max_lun = MEGASAS_MAX_LUN;
2369         host->max_cmd_len = 16;
2370
2371         /*
2372          * Notify the mid-layer about the new controller
2373          */
2374         if (scsi_add_host(host, &instance->pdev->dev)) {
2375                 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2376                 return -ENODEV;
2377         }
2378
2379         /*
2380          * Trigger SCSI to scan our drives
2381          */
2382         scsi_scan_host(host);
2383         return 0;
2384 }
2385
2386 static int
2387 megasas_set_dma_mask(struct pci_dev *pdev)
2388 {
2389         /*
2390          * All our contollers are capable of performing 64-bit DMA
2391          */
2392         if (IS_DMA64) {
2393                 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2394
2395                         if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2396                                 goto fail_set_dma_mask;
2397                 }
2398         } else {
2399                 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2400                         goto fail_set_dma_mask;
2401         }
2402         return 0;
2403
2404 fail_set_dma_mask:
2405         return 1;
2406 }
2407
2408 /**
2409  * megasas_probe_one -  PCI hotplug entry point
2410  * @pdev:               PCI device structure
2411  * @id:                 PCI ids of supported hotplugged adapter 
2412  */
2413 static int __devinit
2414 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2415 {
2416         int rval;
2417         struct Scsi_Host *host;
2418         struct megasas_instance *instance;
2419
2420         /*
2421          * Announce PCI information
2422          */
2423         printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2424                pdev->vendor, pdev->device, pdev->subsystem_vendor,
2425                pdev->subsystem_device);
2426
2427         printk("bus %d:slot %d:func %d\n",
2428                pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2429
2430         /*
2431          * PCI prepping: enable device set bus mastering and dma mask
2432          */
2433         rval = pci_enable_device(pdev);
2434
2435         if (rval) {
2436                 return rval;
2437         }
2438
2439         pci_set_master(pdev);
2440
2441         if (megasas_set_dma_mask(pdev))
2442                 goto fail_set_dma_mask;
2443
2444         host = scsi_host_alloc(&megasas_template,
2445                                sizeof(struct megasas_instance));
2446
2447         if (!host) {
2448                 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2449                 goto fail_alloc_instance;
2450         }
2451
2452         instance = (struct megasas_instance *)host->hostdata;
2453         memset(instance, 0, sizeof(*instance));
2454
2455         instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2456                                                   &instance->producer_h);
2457         instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2458                                                   &instance->consumer_h);
2459
2460         if (!instance->producer || !instance->consumer) {
2461                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2462                        "producer, consumer\n");
2463                 goto fail_alloc_dma_buf;
2464         }
2465
2466         *instance->producer = 0;
2467         *instance->consumer = 0;
2468
2469         instance->evt_detail = pci_alloc_consistent(pdev,
2470                                                     sizeof(struct
2471                                                            megasas_evt_detail),
2472                                                     &instance->evt_detail_h);
2473
2474         if (!instance->evt_detail) {
2475                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2476                        "event detail structure\n");
2477                 goto fail_alloc_dma_buf;
2478         }
2479
2480         /*
2481          * Initialize locks and queues
2482          */
2483         INIT_LIST_HEAD(&instance->cmd_pool);
2484
2485         atomic_set(&instance->fw_outstanding,0);
2486
2487         init_waitqueue_head(&instance->int_cmd_wait_q);
2488         init_waitqueue_head(&instance->abort_cmd_wait_q);
2489
2490         spin_lock_init(&instance->cmd_pool_lock);
2491         spin_lock_init(&instance->completion_lock);
2492
2493         mutex_init(&instance->aen_mutex);
2494         sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2495
2496         /*
2497          * Initialize PCI related and misc parameters
2498          */
2499         instance->pdev = pdev;
2500         instance->host = host;
2501         instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2502         instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2503
2504         megasas_dbg_lvl = 0;
2505         instance->flag = 0;
2506         instance->last_time = 0;
2507
2508         /*
2509          * Initialize MFI Firmware
2510          */
2511         if (megasas_init_mfi(instance))
2512                 goto fail_init_mfi;
2513
2514         /*
2515          * Register IRQ
2516          */
2517         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2518                 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2519                 goto fail_irq;
2520         }
2521
2522         instance->instancet->enable_intr(instance->reg_set);
2523
2524         /*
2525          * Store instance in PCI softstate
2526          */
2527         pci_set_drvdata(pdev, instance);
2528
2529         /*
2530          * Add this controller to megasas_mgmt_info structure so that it
2531          * can be exported to management applications
2532          */
2533         megasas_mgmt_info.count++;
2534         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2535         megasas_mgmt_info.max_index++;
2536
2537         /*
2538          * Initiate AEN (Asynchronous Event Notification)
2539          */
2540         if (megasas_start_aen(instance)) {
2541                 printk(KERN_DEBUG "megasas: start aen failed\n");
2542                 goto fail_start_aen;
2543         }
2544
2545         /*
2546          * Register with SCSI mid-layer
2547          */
2548         if (megasas_io_attach(instance))
2549                 goto fail_io_attach;
2550
2551         return 0;
2552
2553       fail_start_aen:
2554       fail_io_attach:
2555         megasas_mgmt_info.count--;
2556         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2557         megasas_mgmt_info.max_index--;
2558
2559         pci_set_drvdata(pdev, NULL);
2560         instance->instancet->disable_intr(instance->reg_set);
2561         free_irq(instance->pdev->irq, instance);
2562
2563         megasas_release_mfi(instance);
2564
2565       fail_irq:
2566       fail_init_mfi:
2567       fail_alloc_dma_buf:
2568         if (instance->evt_detail)
2569                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2570                                     instance->evt_detail,
2571                                     instance->evt_detail_h);
2572
2573         if (instance->producer)
2574                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2575                                     instance->producer_h);
2576         if (instance->consumer)
2577                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2578                                     instance->consumer_h);
2579         scsi_host_put(host);
2580
2581       fail_alloc_instance:
2582       fail_set_dma_mask:
2583         pci_disable_device(pdev);
2584
2585         return -ENODEV;
2586 }
2587
2588 /**
2589  * megasas_flush_cache -        Requests FW to flush all its caches
2590  * @instance:                   Adapter soft state
2591  */
2592 static void megasas_flush_cache(struct megasas_instance *instance)
2593 {
2594         struct megasas_cmd *cmd;
2595         struct megasas_dcmd_frame *dcmd;
2596
2597         cmd = megasas_get_cmd(instance);
2598
2599         if (!cmd)
2600                 return;
2601
2602         dcmd = &cmd->frame->dcmd;
2603
2604         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2605
2606         dcmd->cmd = MFI_CMD_DCMD;
2607         dcmd->cmd_status = 0x0;
2608         dcmd->sge_count = 0;
2609         dcmd->flags = MFI_FRAME_DIR_NONE;
2610         dcmd->timeout = 0;
2611         dcmd->data_xfer_len = 0;
2612         dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2613         dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2614
2615         megasas_issue_blocked_cmd(instance, cmd);
2616
2617         megasas_return_cmd(instance, cmd);
2618
2619         return;
2620 }
2621
2622 /**
2623  * megasas_shutdown_controller -        Instructs FW to shutdown the controller
2624  * @instance:                           Adapter soft state
2625  * @opcode:                             Shutdown/Hibernate
2626  */
2627 static void megasas_shutdown_controller(struct megasas_instance *instance,
2628                                         u32 opcode)
2629 {
2630         struct megasas_cmd *cmd;
2631         struct megasas_dcmd_frame *dcmd;
2632
2633         cmd = megasas_get_cmd(instance);
2634
2635         if (!cmd)
2636                 return;
2637
2638         if (instance->aen_cmd)
2639                 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2640
2641         dcmd = &cmd->frame->dcmd;
2642
2643         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2644
2645         dcmd->cmd = MFI_CMD_DCMD;
2646         dcmd->cmd_status = 0x0;
2647         dcmd->sge_count = 0;
2648         dcmd->flags = MFI_FRAME_DIR_NONE;
2649         dcmd->timeout = 0;
2650         dcmd->data_xfer_len = 0;
2651         dcmd->opcode = opcode;
2652
2653         megasas_issue_blocked_cmd(instance, cmd);
2654
2655         megasas_return_cmd(instance, cmd);
2656
2657         return;
2658 }
2659
2660 #ifdef CONFIG_PM
2661 /**
2662  * megasas_suspend -    driver suspend entry point
2663  * @pdev:               PCI device structure
2664  * @state:              PCI power state to suspend routine
2665  */
2666 static int
2667 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2668 {
2669         struct Scsi_Host *host;
2670         struct megasas_instance *instance;
2671
2672         instance = pci_get_drvdata(pdev);
2673         host = instance->host;
2674
2675         if (poll_mode_io)
2676                 del_timer_sync(&instance->io_completion_timer);
2677
2678         megasas_flush_cache(instance);
2679         megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2680         tasklet_kill(&instance->isr_tasklet);
2681
2682         pci_set_drvdata(instance->pdev, instance);
2683         instance->instancet->disable_intr(instance->reg_set);
2684         free_irq(instance->pdev->irq, instance);
2685
2686         pci_save_state(pdev);
2687         pci_disable_device(pdev);
2688
2689         pci_set_power_state(pdev, pci_choose_state(pdev, state));
2690
2691         return 0;
2692 }
2693
2694 /**
2695  * megasas_resume-      driver resume entry point
2696  * @pdev:               PCI device structure
2697  */
2698 static int
2699 megasas_resume(struct pci_dev *pdev)
2700 {
2701         int rval;
2702         struct Scsi_Host *host;
2703         struct megasas_instance *instance;
2704
2705         instance = pci_get_drvdata(pdev);
2706         host = instance->host;
2707         pci_set_power_state(pdev, PCI_D0);
2708         pci_enable_wake(pdev, PCI_D0, 0);
2709         pci_restore_state(pdev);
2710
2711         /*
2712          * PCI prepping: enable device set bus mastering and dma mask
2713          */
2714         rval = pci_enable_device(pdev);
2715
2716         if (rval) {
2717                 printk(KERN_ERR "megasas: Enable device failed\n");
2718                 return rval;
2719         }
2720
2721         pci_set_master(pdev);
2722
2723         if (megasas_set_dma_mask(pdev))
2724                 goto fail_set_dma_mask;
2725
2726         /*
2727          * Initialize MFI Firmware
2728          */
2729
2730         *instance->producer = 0;
2731         *instance->consumer = 0;
2732
2733         atomic_set(&instance->fw_outstanding, 0);
2734
2735         /*
2736          * We expect the FW state to be READY
2737          */
2738         if (megasas_transition_to_ready(instance))
2739                 goto fail_ready_state;
2740
2741         if (megasas_issue_init_mfi(instance))
2742                 goto fail_init_mfi;
2743
2744         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2745                         (unsigned long)instance);
2746
2747         /*
2748          * Register IRQ
2749          */
2750         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2751                 "megasas", instance)) {
2752                 printk(KERN_ERR "megasas: Failed to register IRQ\n");
2753                 goto fail_irq;
2754         }
2755
2756         instance->instancet->enable_intr(instance->reg_set);
2757
2758         /*
2759          * Initiate AEN (Asynchronous Event Notification)
2760          */
2761         if (megasas_start_aen(instance))
2762                 printk(KERN_ERR "megasas: Start AEN failed\n");
2763
2764         /* Initialize the cmd completion timer */
2765         if (poll_mode_io)
2766                 megasas_start_timer(instance, &instance->io_completion_timer,
2767                                 megasas_io_completion_timer,
2768                                 MEGASAS_COMPLETION_TIMER_INTERVAL);
2769         return 0;
2770
2771 fail_irq:
2772 fail_init_mfi:
2773         if (instance->evt_detail)
2774                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2775                                 instance->evt_detail,
2776                                 instance->evt_detail_h);
2777
2778         if (instance->producer)
2779                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2780                                 instance->producer_h);
2781         if (instance->consumer)
2782                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2783                                 instance->consumer_h);
2784         scsi_host_put(host);
2785
2786 fail_set_dma_mask:
2787 fail_ready_state:
2788
2789         pci_disable_device(pdev);
2790
2791         return -ENODEV;
2792 }
2793 #else
2794 #define megasas_suspend NULL
2795 #define megasas_resume  NULL
2796 #endif
2797
2798 /**
2799  * megasas_detach_one - PCI hot"un"plug entry point
2800  * @pdev:               PCI device structure
2801  */
2802 static void __devexit megasas_detach_one(struct pci_dev *pdev)
2803 {
2804         int i;
2805         struct Scsi_Host *host;
2806         struct megasas_instance *instance;
2807
2808         instance = pci_get_drvdata(pdev);
2809         host = instance->host;
2810
2811         if (poll_mode_io)
2812                 del_timer_sync(&instance->io_completion_timer);
2813
2814         scsi_remove_host(instance->host);
2815         megasas_flush_cache(instance);
2816         megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2817         tasklet_kill(&instance->isr_tasklet);
2818
2819         /*
2820          * Take the instance off the instance array. Note that we will not
2821          * decrement the max_index. We let this array be sparse array
2822          */
2823         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2824                 if (megasas_mgmt_info.instance[i] == instance) {
2825                         megasas_mgmt_info.count--;
2826                         megasas_mgmt_info.instance[i] = NULL;
2827
2828                         break;
2829                 }
2830         }
2831
2832         pci_set_drvdata(instance->pdev, NULL);
2833
2834         instance->instancet->disable_intr(instance->reg_set);
2835
2836         free_irq(instance->pdev->irq, instance);
2837
2838         megasas_release_mfi(instance);
2839
2840         pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2841                             instance->evt_detail, instance->evt_detail_h);
2842
2843         pci_free_consistent(pdev, sizeof(u32), instance->producer,
2844                             instance->producer_h);
2845
2846         pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2847                             instance->consumer_h);
2848
2849         scsi_host_put(host);
2850
2851         pci_set_drvdata(pdev, NULL);
2852
2853         pci_disable_device(pdev);
2854
2855         return;
2856 }
2857
2858 /**
2859  * megasas_shutdown -   Shutdown entry point
2860  * @device:             Generic device structure
2861  */
2862 static void megasas_shutdown(struct pci_dev *pdev)
2863 {
2864         struct megasas_instance *instance = pci_get_drvdata(pdev);
2865         megasas_flush_cache(instance);
2866 }
2867
2868 /**
2869  * megasas_mgmt_open -  char node "open" entry point
2870  */
2871 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2872 {
2873         cycle_kernel_lock();
2874         /*
2875          * Allow only those users with admin rights
2876          */
2877         if (!capable(CAP_SYS_ADMIN))
2878                 return -EACCES;
2879
2880         return 0;
2881 }
2882
2883 /**
2884  * megasas_mgmt_release - char node "release" entry point
2885  */
2886 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2887 {
2888         filep->private_data = NULL;
2889         fasync_helper(-1, filep, 0, &megasas_async_queue);
2890
2891         return 0;
2892 }
2893
2894 /**
2895  * megasas_mgmt_fasync -        Async notifier registration from applications
2896  *
2897  * This function adds the calling process to a driver global queue. When an
2898  * event occurs, SIGIO will be sent to all processes in this queue.
2899  */
2900 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2901 {
2902         int rc;
2903
2904         mutex_lock(&megasas_async_queue_mutex);
2905
2906         rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2907
2908         mutex_unlock(&megasas_async_queue_mutex);
2909
2910         if (rc >= 0) {
2911                 /* For sanity check when we get ioctl */
2912                 filep->private_data = filep;
2913                 return 0;
2914         }
2915
2916         printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2917
2918         return rc;
2919 }
2920
2921 /**
2922  * megasas_mgmt_fw_ioctl -      Issues management ioctls to FW
2923  * @instance:                   Adapter soft state
2924  * @argp:                       User's ioctl packet
2925  */
2926 static int
2927 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2928                       struct megasas_iocpacket __user * user_ioc,
2929                       struct megasas_iocpacket *ioc)
2930 {
2931         struct megasas_sge32 *kern_sge32;
2932         struct megasas_cmd *cmd;
2933         void *kbuff_arr[MAX_IOCTL_SGE];
2934         dma_addr_t buf_handle = 0;
2935         int error = 0, i;
2936         void *sense = NULL;
2937         dma_addr_t sense_handle;
2938         u32 *sense_ptr;
2939
2940         memset(kbuff_arr, 0, sizeof(kbuff_arr));
2941
2942         if (ioc->sge_count > MAX_IOCTL_SGE) {
2943                 printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
2944                        ioc->sge_count, MAX_IOCTL_SGE);
2945                 return -EINVAL;
2946         }
2947
2948         cmd = megasas_get_cmd(instance);
2949         if (!cmd) {
2950                 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2951                 return -ENOMEM;
2952         }
2953
2954         /*
2955          * User's IOCTL packet has 2 frames (maximum). Copy those two
2956          * frames into our cmd's frames. cmd->frame's context will get
2957          * overwritten when we copy from user's frames. So set that value
2958          * alone separately
2959          */
2960         memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2961         cmd->frame->hdr.context = cmd->index;
2962
2963         /*
2964          * The management interface between applications and the fw uses
2965          * MFI frames. E.g, RAID configuration changes, LD property changes
2966          * etc are accomplishes through different kinds of MFI frames. The
2967          * driver needs to care only about substituting user buffers with
2968          * kernel buffers in SGLs. The location of SGL is embedded in the
2969          * struct iocpacket itself.
2970          */
2971         kern_sge32 = (struct megasas_sge32 *)
2972             ((unsigned long)cmd->frame + ioc->sgl_off);
2973
2974         /*
2975          * For each user buffer, create a mirror buffer and copy in
2976          */
2977         for (i = 0; i < ioc->sge_count; i++) {
2978                 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2979                                                     ioc->sgl[i].iov_len,
2980                                                     &buf_handle, GFP_KERNEL);
2981                 if (!kbuff_arr[i]) {
2982                         printk(KERN_DEBUG "megasas: Failed to alloc "
2983                                "kernel SGL buffer for IOCTL \n");
2984                         error = -ENOMEM;
2985                         goto out;
2986                 }
2987
2988                 /*
2989                  * We don't change the dma_coherent_mask, so
2990                  * pci_alloc_consistent only returns 32bit addresses
2991                  */
2992                 kern_sge32[i].phys_addr = (u32) buf_handle;
2993                 kern_sge32[i].length = ioc->sgl[i].iov_len;
2994
2995                 /*
2996                  * We created a kernel buffer corresponding to the
2997                  * user buffer. Now copy in from the user buffer
2998                  */
2999                 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
3000                                    (u32) (ioc->sgl[i].iov_len))) {
3001                         error = -EFAULT;
3002                         goto out;
3003                 }
3004         }
3005
3006         if (ioc->sense_len) {
3007                 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
3008                                              &sense_handle, GFP_KERNEL);
3009                 if (!sense) {
3010                         error = -ENOMEM;
3011                         goto out;
3012                 }
3013
3014                 sense_ptr =
3015                     (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
3016                 *sense_ptr = sense_handle;
3017         }
3018
3019         /*
3020          * Set the sync_cmd flag so that the ISR knows not to complete this
3021          * cmd to the SCSI mid-layer
3022          */
3023         cmd->sync_cmd = 1;
3024         megasas_issue_blocked_cmd(instance, cmd);
3025         cmd->sync_cmd = 0;
3026
3027         /*
3028          * copy out the kernel buffers to user buffers
3029          */
3030         for (i = 0; i < ioc->sge_count; i++) {
3031                 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
3032                                  ioc->sgl[i].iov_len)) {
3033                         error = -EFAULT;
3034                         goto out;
3035                 }
3036         }
3037
3038         /*
3039          * copy out the sense
3040          */
3041         if (ioc->sense_len) {
3042                 /*
3043                  * sense_ptr points to the location that has the user
3044                  * sense buffer address
3045                  */
3046                 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
3047                                      ioc->sense_off);
3048
3049                 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
3050                                  sense, ioc->sense_len)) {
3051                         printk(KERN_ERR "megasas: Failed to copy out to user "
3052                                         "sense data\n");
3053                         error = -EFAULT;
3054                         goto out;
3055                 }
3056         }
3057
3058         /*
3059          * copy the status codes returned by the fw
3060          */
3061         if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
3062                          &cmd->frame->hdr.cmd_status, sizeof(u8))) {
3063                 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
3064                 error = -EFAULT;
3065         }
3066
3067       out:
3068         if (sense) {
3069                 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
3070                                     sense, sense_handle);
3071         }
3072
3073         for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
3074                 dma_free_coherent(&instance->pdev->dev,
3075                                     kern_sge32[i].length,
3076                                     kbuff_arr[i], kern_sge32[i].phys_addr);
3077         }
3078
3079         megasas_return_cmd(instance, cmd);
3080         return error;
3081 }
3082
3083 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
3084 {
3085         int i;
3086
3087         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3088
3089                 if ((megasas_mgmt_info.instance[i]) &&
3090                     (megasas_mgmt_info.instance[i]->host->host_no == host_no))
3091                         return megasas_mgmt_info.instance[i];
3092         }
3093
3094         return NULL;
3095 }
3096
3097 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
3098 {
3099         struct megasas_iocpacket __user *user_ioc =
3100             (struct megasas_iocpacket __user *)arg;
3101         struct megasas_iocpacket *ioc;
3102         struct megasas_instance *instance;
3103         int error;
3104
3105         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
3106         if (!ioc)
3107                 return -ENOMEM;
3108
3109         if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
3110                 error = -EFAULT;
3111                 goto out_kfree_ioc;
3112         }
3113
3114         instance = megasas_lookup_instance(ioc->host_no);
3115         if (!instance) {
3116                 error = -ENODEV;
3117                 goto out_kfree_ioc;
3118         }
3119
3120         /*
3121          * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3122          */
3123         if (down_interruptible(&instance->ioctl_sem)) {
3124                 error = -ERESTARTSYS;
3125                 goto out_kfree_ioc;
3126         }
3127         error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3128         up(&instance->ioctl_sem);
3129
3130       out_kfree_ioc:
3131         kfree(ioc);
3132         return error;
3133 }
3134
3135 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3136 {
3137         struct megasas_instance *instance;
3138         struct megasas_aen aen;
3139         int error;
3140
3141         if (file->private_data != file) {
3142                 printk(KERN_DEBUG "megasas: fasync_helper was not "
3143                        "called first\n");
3144                 return -EINVAL;
3145         }
3146
3147         if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3148                 return -EFAULT;
3149
3150         instance = megasas_lookup_instance(aen.host_no);
3151
3152         if (!instance)
3153                 return -ENODEV;
3154
3155         mutex_lock(&instance->aen_mutex);
3156         error = megasas_register_aen(instance, aen.seq_num,
3157                                      aen.class_locale_word);
3158         mutex_unlock(&instance->aen_mutex);
3159         return error;
3160 }
3161
3162 /**
3163  * megasas_mgmt_ioctl - char node ioctl entry point
3164  */
3165 static long
3166 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3167 {
3168         switch (cmd) {
3169         case MEGASAS_IOC_FIRMWARE:
3170                 return megasas_mgmt_ioctl_fw(file, arg);
3171
3172         case MEGASAS_IOC_GET_AEN:
3173                 return megasas_mgmt_ioctl_aen(file, arg);
3174         }
3175
3176         return -ENOTTY;
3177 }
3178
3179 #ifdef CONFIG_COMPAT
3180 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3181 {
3182         struct compat_megasas_iocpacket __user *cioc =
3183             (struct compat_megasas_iocpacket __user *)arg;
3184         struct megasas_iocpacket __user *ioc =
3185             compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3186         int i;
3187         int error = 0;
3188
3189         if (clear_user(ioc, sizeof(*ioc)))
3190                 return -EFAULT;
3191
3192         if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3193             copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3194             copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3195             copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3196             copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3197             copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3198                 return -EFAULT;
3199
3200         for (i = 0; i < MAX_IOCTL_SGE; i++) {
3201                 compat_uptr_t ptr;
3202
3203                 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3204                     put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3205                     copy_in_user(&ioc->sgl[i].iov_len,
3206                                  &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3207                         return -EFAULT;
3208         }
3209
3210         error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3211
3212         if (copy_in_user(&cioc->frame.hdr.cmd_status,
3213                          &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3214                 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3215                 return -EFAULT;
3216         }
3217         return error;
3218 }
3219
3220 static long
3221 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3222                           unsigned long arg)
3223 {
3224         switch (cmd) {
3225         case MEGASAS_IOC_FIRMWARE32:
3226                 return megasas_mgmt_compat_ioctl_fw(file, arg);
3227         case MEGASAS_IOC_GET_AEN:
3228                 return megasas_mgmt_ioctl_aen(file, arg);
3229         }
3230
3231         return -ENOTTY;
3232 }
3233 #endif
3234
3235 /*
3236  * File operations structure for management interface
3237  */
3238 static const struct file_operations megasas_mgmt_fops = {
3239         .owner = THIS_MODULE,
3240         .open = megasas_mgmt_open,
3241         .release = megasas_mgmt_release,
3242         .fasync = megasas_mgmt_fasync,
3243         .unlocked_ioctl = megasas_mgmt_ioctl,
3244 #ifdef CONFIG_COMPAT
3245         .compat_ioctl = megasas_mgmt_compat_ioctl,
3246 #endif
3247 };
3248
3249 /*
3250  * PCI hotplug support registration structure
3251  */
3252 static struct pci_driver megasas_pci_driver = {
3253
3254         .name = "megaraid_sas",
3255         .id_table = megasas_pci_table,
3256         .probe = megasas_probe_one,
3257         .remove = __devexit_p(megasas_detach_one),
3258         .suspend = megasas_suspend,
3259         .resume = megasas_resume,
3260         .shutdown = megasas_shutdown,
3261 };
3262
3263 /*
3264  * Sysfs driver attributes
3265  */
3266 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3267 {
3268         return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3269                         MEGASAS_VERSION);
3270 }
3271
3272 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3273
3274 static ssize_t
3275 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3276 {
3277         return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3278                         MEGASAS_RELDATE);
3279 }
3280
3281 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3282                    NULL);
3283
3284 static ssize_t
3285 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3286 {
3287         return sprintf(buf, "%u\n", megasas_dbg_lvl);
3288 }
3289
3290 static ssize_t
3291 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3292 {
3293         int retval = count;
3294         if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3295                 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3296                 retval = -EINVAL;
3297         }
3298         return retval;
3299 }
3300
3301 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3302                 megasas_sysfs_set_dbg_lvl);
3303
3304 static ssize_t
3305 megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf)
3306 {
3307         return sprintf(buf, "%u\n", poll_mode_io);
3308 }
3309
3310 static ssize_t
3311 megasas_sysfs_set_poll_mode_io(struct device_driver *dd,
3312                                 const char *buf, size_t count)
3313 {
3314         int retval = count;
3315         int tmp = poll_mode_io;
3316         int i;
3317         struct megasas_instance *instance;
3318
3319         if (sscanf(buf, "%u", &poll_mode_io) < 1) {
3320                 printk(KERN_ERR "megasas: could not set poll_mode_io\n");
3321                 retval = -EINVAL;
3322         }
3323
3324         /*
3325          * Check if poll_mode_io is already set or is same as previous value
3326          */
3327         if ((tmp && poll_mode_io) || (tmp == poll_mode_io))
3328                 goto out;
3329
3330         if (poll_mode_io) {
3331                 /*
3332                  * Start timers for all adapters
3333                  */
3334                 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3335                         instance = megasas_mgmt_info.instance[i];
3336                         if (instance) {
3337                                 megasas_start_timer(instance,
3338                                         &instance->io_completion_timer,
3339                                         megasas_io_completion_timer,
3340                                         MEGASAS_COMPLETION_TIMER_INTERVAL);
3341                         }
3342                 }
3343         } else {
3344                 /*
3345                  * Delete timers for all adapters
3346                  */
3347                 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3348                         instance = megasas_mgmt_info.instance[i];
3349                         if (instance)
3350                                 del_timer_sync(&instance->io_completion_timer);
3351                 }
3352         }
3353
3354 out:
3355         return retval;
3356 }
3357
3358 static DRIVER_ATTR(poll_mode_io, S_IRUGO|S_IWUGO,
3359                 megasas_sysfs_show_poll_mode_io,
3360                 megasas_sysfs_set_poll_mode_io);
3361
3362 /**
3363  * megasas_init - Driver load entry point
3364  */
3365 static int __init megasas_init(void)
3366 {
3367         int rval;
3368
3369         /*
3370          * Announce driver version and other information
3371          */
3372         printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3373                MEGASAS_EXT_VERSION);
3374
3375         memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3376
3377         /*
3378          * Register character device node
3379          */
3380         rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3381
3382         if (rval < 0) {
3383                 printk(KERN_DEBUG "megasas: failed to open device node\n");
3384                 return rval;
3385         }
3386
3387         megasas_mgmt_majorno = rval;
3388
3389         /*
3390          * Register ourselves as PCI hotplug module
3391          */
3392         rval = pci_register_driver(&megasas_pci_driver);
3393
3394         if (rval) {
3395                 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3396                 goto err_pcidrv;
3397         }
3398
3399         rval = driver_create_file(&megasas_pci_driver.driver,
3400                                   &driver_attr_version);
3401         if (rval)
3402                 goto err_dcf_attr_ver;
3403         rval = driver_create_file(&megasas_pci_driver.driver,
3404                                   &driver_attr_release_date);
3405         if (rval)
3406                 goto err_dcf_rel_date;
3407         rval = driver_create_file(&megasas_pci_driver.driver,
3408                                   &driver_attr_dbg_lvl);
3409         if (rval)
3410                 goto err_dcf_dbg_lvl;
3411         rval = driver_create_file(&megasas_pci_driver.driver,
3412                                   &driver_attr_poll_mode_io);
3413         if (rval)
3414                 goto err_dcf_poll_mode_io;
3415
3416         return rval;
3417
3418 err_dcf_poll_mode_io:
3419         driver_remove_file(&megasas_pci_driver.driver,
3420                            &driver_attr_dbg_lvl);
3421 err_dcf_dbg_lvl:
3422         driver_remove_file(&megasas_pci_driver.driver,
3423                            &driver_attr_release_date);
3424 err_dcf_rel_date:
3425         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3426 err_dcf_attr_ver:
3427         pci_unregister_driver(&megasas_pci_driver);
3428 err_pcidrv:
3429         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3430         return rval;
3431 }
3432
3433 /**
3434  * megasas_exit - Driver unload entry point
3435  */
3436 static void __exit megasas_exit(void)
3437 {
3438         driver_remove_file(&megasas_pci_driver.driver,
3439                            &driver_attr_poll_mode_io);
3440         driver_remove_file(&megasas_pci_driver.driver,
3441                            &driver_attr_dbg_lvl);
3442         driver_remove_file(&megasas_pci_driver.driver,
3443                            &driver_attr_release_date);
3444         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3445
3446         pci_unregister_driver(&megasas_pci_driver);
3447         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3448 }
3449
3450 module_init(megasas_init);
3451 module_exit(megasas_exit);