]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/libsas/sas_expander.c
eca83e8d8c0d29f5dbf5d1be39db11067afbf66e
[linux-2.6-omap-h63xx.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27
28 #include "sas_internal.h"
29
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37                              u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39
40 /* ---------- SMP task management ---------- */
41
42 static void smp_task_timedout(unsigned long _task)
43 {
44         struct sas_task *task = (void *) _task;
45         unsigned long flags;
46
47         spin_lock_irqsave(&task->task_state_lock, flags);
48         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
49                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
50         spin_unlock_irqrestore(&task->task_state_lock, flags);
51
52         complete(&task->completion);
53 }
54
55 static void smp_task_done(struct sas_task *task)
56 {
57         if (!del_timer(&task->timer))
58                 return;
59         complete(&task->completion);
60 }
61
62 /* Give it some long enough timeout. In seconds. */
63 #define SMP_TIMEOUT 10
64
65 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
66                             void *resp, int resp_size)
67 {
68         int res, retry;
69         struct sas_task *task = NULL;
70         struct sas_internal *i =
71                 to_sas_internal(dev->port->ha->core.shost->transportt);
72
73         for (retry = 0; retry < 3; retry++) {
74                 task = sas_alloc_task(GFP_KERNEL);
75                 if (!task)
76                         return -ENOMEM;
77
78                 task->dev = dev;
79                 task->task_proto = dev->tproto;
80                 sg_init_one(&task->smp_task.smp_req, req, req_size);
81                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
82
83                 task->task_done = smp_task_done;
84
85                 task->timer.data = (unsigned long) task;
86                 task->timer.function = smp_task_timedout;
87                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
88                 add_timer(&task->timer);
89
90                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
91
92                 if (res) {
93                         del_timer(&task->timer);
94                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
95                         goto ex_err;
96                 }
97
98                 wait_for_completion(&task->completion);
99                 res = -ETASK;
100                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
101                         SAS_DPRINTK("smp task timed out or aborted\n");
102                         i->dft->lldd_abort_task(task);
103                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
104                                 SAS_DPRINTK("SMP task aborted and not done\n");
105                                 goto ex_err;
106                         }
107                 }
108                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109                     task->task_status.stat == SAM_GOOD) {
110                         res = 0;
111                         break;
112                 } else {
113                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
114                                     "status 0x%x\n", __FUNCTION__,
115                                     SAS_ADDR(dev->sas_addr),
116                                     task->task_status.resp,
117                                     task->task_status.stat);
118                         sas_free_task(task);
119                         task = NULL;
120                 }
121         }
122 ex_err:
123         BUG_ON(retry == 3 && task != NULL);
124         if (task != NULL) {
125                 sas_free_task(task);
126         }
127         return res;
128 }
129
130 /* ---------- Allocations ---------- */
131
132 static inline void *alloc_smp_req(int size)
133 {
134         u8 *p = kzalloc(size, GFP_KERNEL);
135         if (p)
136                 p[0] = SMP_REQUEST;
137         return p;
138 }
139
140 static inline void *alloc_smp_resp(int size)
141 {
142         return kzalloc(size, GFP_KERNEL);
143 }
144
145 /* ---------- Expander configuration ---------- */
146
147 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
148                            void *disc_resp)
149 {
150         struct expander_device *ex = &dev->ex_dev;
151         struct ex_phy *phy = &ex->ex_phy[phy_id];
152         struct smp_resp *resp = disc_resp;
153         struct discover_resp *dr = &resp->disc;
154         struct sas_rphy *rphy = dev->rphy;
155         int rediscover = (phy->phy != NULL);
156
157         if (!rediscover) {
158                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
159
160                 /* FIXME: error_handling */
161                 BUG_ON(!phy->phy);
162         }
163
164         switch (resp->result) {
165         case SMP_RESP_PHY_VACANT:
166                 phy->phy_state = PHY_VACANT;
167                 return;
168         default:
169                 phy->phy_state = PHY_NOT_PRESENT;
170                 return;
171         case SMP_RESP_FUNC_ACC:
172                 phy->phy_state = PHY_EMPTY; /* do not know yet */
173                 break;
174         }
175
176         phy->phy_id = phy_id;
177         phy->attached_dev_type = dr->attached_dev_type;
178         phy->linkrate = dr->linkrate;
179         phy->attached_sata_host = dr->attached_sata_host;
180         phy->attached_sata_dev  = dr->attached_sata_dev;
181         phy->attached_sata_ps   = dr->attached_sata_ps;
182         phy->attached_iproto = dr->iproto << 1;
183         phy->attached_tproto = dr->tproto << 1;
184         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
185         phy->attached_phy_id = dr->attached_phy_id;
186         phy->phy_change_count = dr->change_count;
187         phy->routing_attr = dr->routing_attr;
188         phy->virtual = dr->virtual;
189         phy->last_da_index = -1;
190
191         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
192         phy->phy->identify.target_port_protocols = phy->attached_tproto;
193         phy->phy->identify.phy_identifier = phy_id;
194         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
195         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
196         phy->phy->minimum_linkrate = dr->pmin_linkrate;
197         phy->phy->maximum_linkrate = dr->pmax_linkrate;
198         phy->phy->negotiated_linkrate = phy->linkrate;
199
200         if (!rediscover)
201                 sas_phy_add(phy->phy);
202
203         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
204                     SAS_ADDR(dev->sas_addr), phy->phy_id,
205                     phy->routing_attr == TABLE_ROUTING ? 'T' :
206                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
207                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
208                     SAS_ADDR(phy->attached_sas_addr));
209
210         return;
211 }
212
213 #define DISCOVER_REQ_SIZE  16
214 #define DISCOVER_RESP_SIZE 56
215
216 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
217                                       u8 *disc_resp, int single)
218 {
219         int i, res;
220
221         disc_req[9] = single;
222         for (i = 1 ; i < 3; i++) {
223                 struct discover_resp *dr;
224
225                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
226                                        disc_resp, DISCOVER_RESP_SIZE);
227                 if (res)
228                         return res;
229                 /* This is detecting a failure to transmit inital
230                  * dev to host FIS as described in section G.5 of
231                  * sas-2 r 04b */
232                 dr = &((struct smp_resp *)disc_resp)->disc;
233                 if (!(dr->attached_dev_type == 0 &&
234                       dr->attached_sata_dev))
235                         break;
236                 /* In order to generate the dev to host FIS, we
237                  * send a link reset to the expander port */
238                 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
239                 /* Wait for the reset to trigger the negotiation */
240                 msleep(500);
241         }
242         sas_set_ex_phy(dev, single, disc_resp);
243         return 0;
244 }
245
246 static int sas_ex_phy_discover(struct domain_device *dev, int single)
247 {
248         struct expander_device *ex = &dev->ex_dev;
249         int  res = 0;
250         u8   *disc_req;
251         u8   *disc_resp;
252
253         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
254         if (!disc_req)
255                 return -ENOMEM;
256
257         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
258         if (!disc_resp) {
259                 kfree(disc_req);
260                 return -ENOMEM;
261         }
262
263         disc_req[1] = SMP_DISCOVER;
264
265         if (0 <= single && single < ex->num_phys) {
266                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
267         } else {
268                 int i;
269
270                 for (i = 0; i < ex->num_phys; i++) {
271                         res = sas_ex_phy_discover_helper(dev, disc_req,
272                                                          disc_resp, i);
273                         if (res)
274                                 goto out_err;
275                 }
276         }
277 out_err:
278         kfree(disc_resp);
279         kfree(disc_req);
280         return res;
281 }
282
283 static int sas_expander_discover(struct domain_device *dev)
284 {
285         struct expander_device *ex = &dev->ex_dev;
286         int res = -ENOMEM;
287
288         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
289         if (!ex->ex_phy)
290                 return -ENOMEM;
291
292         res = sas_ex_phy_discover(dev, -1);
293         if (res)
294                 goto out_err;
295
296         return 0;
297  out_err:
298         kfree(ex->ex_phy);
299         ex->ex_phy = NULL;
300         return res;
301 }
302
303 #define MAX_EXPANDER_PHYS 128
304
305 static void ex_assign_report_general(struct domain_device *dev,
306                                             struct smp_resp *resp)
307 {
308         struct report_general_resp *rg = &resp->rg;
309
310         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
311         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
312         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
313         dev->ex_dev.conf_route_table = rg->conf_route_table;
314         dev->ex_dev.configuring = rg->configuring;
315         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
316 }
317
318 #define RG_REQ_SIZE   8
319 #define RG_RESP_SIZE 32
320
321 static int sas_ex_general(struct domain_device *dev)
322 {
323         u8 *rg_req;
324         struct smp_resp *rg_resp;
325         int res;
326         int i;
327
328         rg_req = alloc_smp_req(RG_REQ_SIZE);
329         if (!rg_req)
330                 return -ENOMEM;
331
332         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
333         if (!rg_resp) {
334                 kfree(rg_req);
335                 return -ENOMEM;
336         }
337
338         rg_req[1] = SMP_REPORT_GENERAL;
339
340         for (i = 0; i < 5; i++) {
341                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
342                                        RG_RESP_SIZE);
343
344                 if (res) {
345                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
346                                     SAS_ADDR(dev->sas_addr), res);
347                         goto out;
348                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
349                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
350                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
351                         res = rg_resp->result;
352                         goto out;
353                 }
354
355                 ex_assign_report_general(dev, rg_resp);
356
357                 if (dev->ex_dev.configuring) {
358                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
359                                     SAS_ADDR(dev->sas_addr));
360                         schedule_timeout_interruptible(5*HZ);
361                 } else
362                         break;
363         }
364 out:
365         kfree(rg_req);
366         kfree(rg_resp);
367         return res;
368 }
369
370 static void ex_assign_manuf_info(struct domain_device *dev, void
371                                         *_mi_resp)
372 {
373         u8 *mi_resp = _mi_resp;
374         struct sas_rphy *rphy = dev->rphy;
375         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
376
377         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
378         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
379         memcpy(edev->product_rev, mi_resp + 36,
380                SAS_EXPANDER_PRODUCT_REV_LEN);
381
382         if (mi_resp[8] & 1) {
383                 memcpy(edev->component_vendor_id, mi_resp + 40,
384                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
385                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
386                 edev->component_revision_id = mi_resp[50];
387         }
388 }
389
390 #define MI_REQ_SIZE   8
391 #define MI_RESP_SIZE 64
392
393 static int sas_ex_manuf_info(struct domain_device *dev)
394 {
395         u8 *mi_req;
396         u8 *mi_resp;
397         int res;
398
399         mi_req = alloc_smp_req(MI_REQ_SIZE);
400         if (!mi_req)
401                 return -ENOMEM;
402
403         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
404         if (!mi_resp) {
405                 kfree(mi_req);
406                 return -ENOMEM;
407         }
408
409         mi_req[1] = SMP_REPORT_MANUF_INFO;
410
411         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
412         if (res) {
413                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
414                             SAS_ADDR(dev->sas_addr), res);
415                 goto out;
416         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
417                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
418                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
419                 goto out;
420         }
421
422         ex_assign_manuf_info(dev, mi_resp);
423 out:
424         kfree(mi_req);
425         kfree(mi_resp);
426         return res;
427 }
428
429 #define PC_REQ_SIZE  44
430 #define PC_RESP_SIZE 8
431
432 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
433                         enum phy_func phy_func,
434                         struct sas_phy_linkrates *rates)
435 {
436         u8 *pc_req;
437         u8 *pc_resp;
438         int res;
439
440         pc_req = alloc_smp_req(PC_REQ_SIZE);
441         if (!pc_req)
442                 return -ENOMEM;
443
444         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
445         if (!pc_resp) {
446                 kfree(pc_req);
447                 return -ENOMEM;
448         }
449
450         pc_req[1] = SMP_PHY_CONTROL;
451         pc_req[9] = phy_id;
452         pc_req[10]= phy_func;
453         if (rates) {
454                 pc_req[32] = rates->minimum_linkrate << 4;
455                 pc_req[33] = rates->maximum_linkrate << 4;
456         }
457
458         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
459
460         kfree(pc_resp);
461         kfree(pc_req);
462         return res;
463 }
464
465 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
466 {
467         struct expander_device *ex = &dev->ex_dev;
468         struct ex_phy *phy = &ex->ex_phy[phy_id];
469
470         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
471         phy->linkrate = SAS_PHY_DISABLED;
472 }
473
474 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
475 {
476         struct expander_device *ex = &dev->ex_dev;
477         int i;
478
479         for (i = 0; i < ex->num_phys; i++) {
480                 struct ex_phy *phy = &ex->ex_phy[i];
481
482                 if (phy->phy_state == PHY_VACANT ||
483                     phy->phy_state == PHY_NOT_PRESENT)
484                         continue;
485
486                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
487                         sas_ex_disable_phy(dev, i);
488         }
489 }
490
491 static int sas_dev_present_in_domain(struct asd_sas_port *port,
492                                             u8 *sas_addr)
493 {
494         struct domain_device *dev;
495
496         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
497                 return 1;
498         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
499                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
500                         return 1;
501         }
502         return 0;
503 }
504
505 #define RPEL_REQ_SIZE   16
506 #define RPEL_RESP_SIZE  32
507 int sas_smp_get_phy_events(struct sas_phy *phy)
508 {
509         int res;
510         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
511         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
512         u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
513         u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
514
515         if (!resp)
516                 return -ENOMEM;
517
518         req[1] = SMP_REPORT_PHY_ERR_LOG;
519         req[9] = phy->number;
520
521         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
522                                     resp, RPEL_RESP_SIZE);
523
524         if (!res)
525                 goto out;
526
527         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
528         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
529         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
530         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
531
532  out:
533         kfree(resp);
534         return res;
535
536 }
537
538 #define RPS_REQ_SIZE  16
539 #define RPS_RESP_SIZE 60
540
541 static int sas_get_report_phy_sata(struct domain_device *dev,
542                                           int phy_id,
543                                           struct smp_resp *rps_resp)
544 {
545         int res;
546         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
547         u8 *resp = (u8 *)rps_resp;
548
549         if (!rps_req)
550                 return -ENOMEM;
551
552         rps_req[1] = SMP_REPORT_PHY_SATA;
553         rps_req[9] = phy_id;
554
555         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
556                                     rps_resp, RPS_RESP_SIZE);
557
558         /* 0x34 is the FIS type for the D2H fis.  There's a potential
559          * standards cockup here.  sas-2 explicitly specifies the FIS
560          * should be encoded so that FIS type is in resp[24].
561          * However, some expanders endian reverse this.  Undo the
562          * reversal here */
563         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
564                 int i;
565
566                 for (i = 0; i < 5; i++) {
567                         int j = 24 + (i*4);
568                         u8 a, b;
569                         a = resp[j + 0];
570                         b = resp[j + 1];
571                         resp[j + 0] = resp[j + 3];
572                         resp[j + 1] = resp[j + 2];
573                         resp[j + 2] = b;
574                         resp[j + 3] = a;
575                 }
576         }
577
578         kfree(rps_req);
579         return res;
580 }
581
582 static void sas_ex_get_linkrate(struct domain_device *parent,
583                                        struct domain_device *child,
584                                        struct ex_phy *parent_phy)
585 {
586         struct expander_device *parent_ex = &parent->ex_dev;
587         struct sas_port *port;
588         int i;
589
590         child->pathways = 0;
591
592         port = parent_phy->port;
593
594         for (i = 0; i < parent_ex->num_phys; i++) {
595                 struct ex_phy *phy = &parent_ex->ex_phy[i];
596
597                 if (phy->phy_state == PHY_VACANT ||
598                     phy->phy_state == PHY_NOT_PRESENT)
599                         continue;
600
601                 if (SAS_ADDR(phy->attached_sas_addr) ==
602                     SAS_ADDR(child->sas_addr)) {
603
604                         child->min_linkrate = min(parent->min_linkrate,
605                                                   phy->linkrate);
606                         child->max_linkrate = max(parent->max_linkrate,
607                                                   phy->linkrate);
608                         child->pathways++;
609                         sas_port_add_phy(port, phy->phy);
610                 }
611         }
612         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
613         child->pathways = min(child->pathways, parent->pathways);
614 }
615
616 static struct domain_device *sas_ex_discover_end_dev(
617         struct domain_device *parent, int phy_id)
618 {
619         struct expander_device *parent_ex = &parent->ex_dev;
620         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
621         struct domain_device *child = NULL;
622         struct sas_rphy *rphy;
623         int res;
624
625         if (phy->attached_sata_host || phy->attached_sata_ps)
626                 return NULL;
627
628         child = kzalloc(sizeof(*child), GFP_KERNEL);
629         if (!child)
630                 return NULL;
631
632         child->parent = parent;
633         child->port   = parent->port;
634         child->iproto = phy->attached_iproto;
635         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
636         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
637         if (!phy->port) {
638                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
639                 if (unlikely(!phy->port))
640                         goto out_err;
641                 if (unlikely(sas_port_add(phy->port) != 0)) {
642                         sas_port_free(phy->port);
643                         goto out_err;
644                 }
645         }
646         sas_ex_get_linkrate(parent, child, phy);
647
648         if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
649                 child->dev_type = SATA_DEV;
650                 if (phy->attached_tproto & SAS_PROTO_STP)
651                         child->tproto = phy->attached_tproto;
652                 if (phy->attached_sata_dev)
653                         child->tproto |= SATA_DEV;
654                 res = sas_get_report_phy_sata(parent, phy_id,
655                                               &child->sata_dev.rps_resp);
656                 if (res) {
657                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
658                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
659                                     phy_id, res);
660                         goto out_free;
661                 }
662                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
663                        sizeof(struct dev_to_host_fis));
664
665                 rphy = sas_end_device_alloc(phy->port);
666                 if (unlikely(!rphy))
667                         goto out_free;
668
669                 sas_init_dev(child);
670
671                 child->rphy = rphy;
672
673                 spin_lock_irq(&parent->port->dev_list_lock);
674                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
675                 spin_unlock_irq(&parent->port->dev_list_lock);
676
677                 res = sas_discover_sata(child);
678                 if (res) {
679                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
680                                     "%016llx:0x%x returned 0x%x\n",
681                                     SAS_ADDR(child->sas_addr),
682                                     SAS_ADDR(parent->sas_addr), phy_id, res);
683                         goto out_list_del;
684                 }
685         } else if (phy->attached_tproto & SAS_PROTO_SSP) {
686                 child->dev_type = SAS_END_DEV;
687                 rphy = sas_end_device_alloc(phy->port);
688                 /* FIXME: error handling */
689                 if (unlikely(!rphy))
690                         goto out_free;
691                 child->tproto = phy->attached_tproto;
692                 sas_init_dev(child);
693
694                 child->rphy = rphy;
695                 sas_fill_in_rphy(child, rphy);
696
697                 spin_lock_irq(&parent->port->dev_list_lock);
698                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
699                 spin_unlock_irq(&parent->port->dev_list_lock);
700
701                 res = sas_discover_end_dev(child);
702                 if (res) {
703                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
704                                     "at %016llx:0x%x returned 0x%x\n",
705                                     SAS_ADDR(child->sas_addr),
706                                     SAS_ADDR(parent->sas_addr), phy_id, res);
707                         goto out_list_del;
708                 }
709         } else {
710                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
711                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
712                             phy_id);
713         }
714
715         list_add_tail(&child->siblings, &parent_ex->children);
716         return child;
717
718  out_list_del:
719         sas_rphy_free(child->rphy);
720         child->rphy = NULL;
721         list_del(&child->dev_list_node);
722  out_free:
723         sas_port_delete(phy->port);
724  out_err:
725         phy->port = NULL;
726         kfree(child);
727         return NULL;
728 }
729
730 /* See if this phy is part of a wide port */
731 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
732 {
733         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
734         int i;
735
736         for (i = 0; i < parent->ex_dev.num_phys; i++) {
737                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
738
739                 if (ephy == phy)
740                         continue;
741
742                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
743                             SAS_ADDR_SIZE) && ephy->port) {
744                         sas_port_add_phy(ephy->port, phy->phy);
745                         phy->phy_state = PHY_DEVICE_DISCOVERED;
746                         return 0;
747                 }
748         }
749
750         return -ENODEV;
751 }
752
753 static struct domain_device *sas_ex_discover_expander(
754         struct domain_device *parent, int phy_id)
755 {
756         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
757         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
758         struct domain_device *child = NULL;
759         struct sas_rphy *rphy;
760         struct sas_expander_device *edev;
761         struct asd_sas_port *port;
762         int res;
763
764         if (phy->routing_attr == DIRECT_ROUTING) {
765                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
766                             "allowed\n",
767                             SAS_ADDR(parent->sas_addr), phy_id,
768                             SAS_ADDR(phy->attached_sas_addr),
769                             phy->attached_phy_id);
770                 return NULL;
771         }
772         child = kzalloc(sizeof(*child), GFP_KERNEL);
773         if (!child)
774                 return NULL;
775
776         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
777         /* FIXME: better error handling */
778         BUG_ON(sas_port_add(phy->port) != 0);
779
780
781         switch (phy->attached_dev_type) {
782         case EDGE_DEV:
783                 rphy = sas_expander_alloc(phy->port,
784                                           SAS_EDGE_EXPANDER_DEVICE);
785                 break;
786         case FANOUT_DEV:
787                 rphy = sas_expander_alloc(phy->port,
788                                           SAS_FANOUT_EXPANDER_DEVICE);
789                 break;
790         default:
791                 rphy = NULL;    /* shut gcc up */
792                 BUG();
793         }
794         port = parent->port;
795         child->rphy = rphy;
796         edev = rphy_to_expander_device(rphy);
797         child->dev_type = phy->attached_dev_type;
798         child->parent = parent;
799         child->port = port;
800         child->iproto = phy->attached_iproto;
801         child->tproto = phy->attached_tproto;
802         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
803         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
804         sas_ex_get_linkrate(parent, child, phy);
805         edev->level = parent_ex->level + 1;
806         parent->port->disc.max_level = max(parent->port->disc.max_level,
807                                            edev->level);
808         sas_init_dev(child);
809         sas_fill_in_rphy(child, rphy);
810         sas_rphy_add(rphy);
811
812         spin_lock_irq(&parent->port->dev_list_lock);
813         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
814         spin_unlock_irq(&parent->port->dev_list_lock);
815
816         res = sas_discover_expander(child);
817         if (res) {
818                 kfree(child);
819                 return NULL;
820         }
821         list_add_tail(&child->siblings, &parent->ex_dev.children);
822         return child;
823 }
824
825 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
826 {
827         struct expander_device *ex = &dev->ex_dev;
828         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
829         struct domain_device *child = NULL;
830         int res = 0;
831
832         /* Phy state */
833         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
834                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
835                         res = sas_ex_phy_discover(dev, phy_id);
836                 if (res)
837                         return res;
838         }
839
840         /* Parent and domain coherency */
841         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
842                              SAS_ADDR(dev->port->sas_addr))) {
843                 sas_add_parent_port(dev, phy_id);
844                 return 0;
845         }
846         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
847                             SAS_ADDR(dev->parent->sas_addr))) {
848                 sas_add_parent_port(dev, phy_id);
849                 if (ex_phy->routing_attr == TABLE_ROUTING)
850                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
851                 return 0;
852         }
853
854         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
855                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
856
857         if (ex_phy->attached_dev_type == NO_DEVICE) {
858                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
859                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
860                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
861                 }
862                 return 0;
863         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
864                 return 0;
865
866         if (ex_phy->attached_dev_type != SAS_END_DEV &&
867             ex_phy->attached_dev_type != FANOUT_DEV &&
868             ex_phy->attached_dev_type != EDGE_DEV) {
869                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
870                             "phy 0x%x\n", ex_phy->attached_dev_type,
871                             SAS_ADDR(dev->sas_addr),
872                             phy_id);
873                 return 0;
874         }
875
876         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
877         if (res) {
878                 SAS_DPRINTK("configure routing for dev %016llx "
879                             "reported 0x%x. Forgotten\n",
880                             SAS_ADDR(ex_phy->attached_sas_addr), res);
881                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
882                 return res;
883         }
884
885         res = sas_ex_join_wide_port(dev, phy_id);
886         if (!res) {
887                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
888                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
889                 return res;
890         }
891
892         switch (ex_phy->attached_dev_type) {
893         case SAS_END_DEV:
894                 child = sas_ex_discover_end_dev(dev, phy_id);
895                 break;
896         case FANOUT_DEV:
897                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
898                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
899                                     "attached to ex %016llx phy 0x%x\n",
900                                     SAS_ADDR(ex_phy->attached_sas_addr),
901                                     ex_phy->attached_phy_id,
902                                     SAS_ADDR(dev->sas_addr),
903                                     phy_id);
904                         sas_ex_disable_phy(dev, phy_id);
905                         break;
906                 } else
907                         memcpy(dev->port->disc.fanout_sas_addr,
908                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
909                 /* fallthrough */
910         case EDGE_DEV:
911                 child = sas_ex_discover_expander(dev, phy_id);
912                 break;
913         default:
914                 break;
915         }
916
917         if (child) {
918                 int i;
919
920                 for (i = 0; i < ex->num_phys; i++) {
921                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
922                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
923                                 continue;
924
925                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
926                             SAS_ADDR(child->sas_addr))
927                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
928                 }
929         }
930
931         return res;
932 }
933
934 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
935 {
936         struct expander_device *ex = &dev->ex_dev;
937         int i;
938
939         for (i = 0; i < ex->num_phys; i++) {
940                 struct ex_phy *phy = &ex->ex_phy[i];
941
942                 if (phy->phy_state == PHY_VACANT ||
943                     phy->phy_state == PHY_NOT_PRESENT)
944                         continue;
945
946                 if ((phy->attached_dev_type == EDGE_DEV ||
947                      phy->attached_dev_type == FANOUT_DEV) &&
948                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
949
950                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
951
952                         return 1;
953                 }
954         }
955         return 0;
956 }
957
958 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
959 {
960         struct expander_device *ex = &dev->ex_dev;
961         struct domain_device *child;
962         u8 sub_addr[8] = {0, };
963
964         list_for_each_entry(child, &ex->children, siblings) {
965                 if (child->dev_type != EDGE_DEV &&
966                     child->dev_type != FANOUT_DEV)
967                         continue;
968                 if (sub_addr[0] == 0) {
969                         sas_find_sub_addr(child, sub_addr);
970                         continue;
971                 } else {
972                         u8 s2[8];
973
974                         if (sas_find_sub_addr(child, s2) &&
975                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
976
977                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
978                                             "diverges from subtractive "
979                                             "boundary %016llx\n",
980                                             SAS_ADDR(dev->sas_addr),
981                                             SAS_ADDR(child->sas_addr),
982                                             SAS_ADDR(s2),
983                                             SAS_ADDR(sub_addr));
984
985                                 sas_ex_disable_port(child, s2);
986                         }
987                 }
988         }
989         return 0;
990 }
991 /**
992  * sas_ex_discover_devices -- discover devices attached to this expander
993  * dev: pointer to the expander domain device
994  * single: if you want to do a single phy, else set to -1;
995  *
996  * Configure this expander for use with its devices and register the
997  * devices of this expander.
998  */
999 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1000 {
1001         struct expander_device *ex = &dev->ex_dev;
1002         int i = 0, end = ex->num_phys;
1003         int res = 0;
1004
1005         if (0 <= single && single < end) {
1006                 i = single;
1007                 end = i+1;
1008         }
1009
1010         for ( ; i < end; i++) {
1011                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1012
1013                 if (ex_phy->phy_state == PHY_VACANT ||
1014                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1015                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1016                         continue;
1017
1018                 switch (ex_phy->linkrate) {
1019                 case SAS_PHY_DISABLED:
1020                 case SAS_PHY_RESET_PROBLEM:
1021                 case SAS_SATA_PORT_SELECTOR:
1022                         continue;
1023                 default:
1024                         res = sas_ex_discover_dev(dev, i);
1025                         if (res)
1026                                 break;
1027                         continue;
1028                 }
1029         }
1030
1031         if (!res)
1032                 sas_check_level_subtractive_boundary(dev);
1033
1034         return res;
1035 }
1036
1037 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1038 {
1039         struct expander_device *ex = &dev->ex_dev;
1040         int i;
1041         u8  *sub_sas_addr = NULL;
1042
1043         if (dev->dev_type != EDGE_DEV)
1044                 return 0;
1045
1046         for (i = 0; i < ex->num_phys; i++) {
1047                 struct ex_phy *phy = &ex->ex_phy[i];
1048
1049                 if (phy->phy_state == PHY_VACANT ||
1050                     phy->phy_state == PHY_NOT_PRESENT)
1051                         continue;
1052
1053                 if ((phy->attached_dev_type == FANOUT_DEV ||
1054                      phy->attached_dev_type == EDGE_DEV) &&
1055                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1056
1057                         if (!sub_sas_addr)
1058                                 sub_sas_addr = &phy->attached_sas_addr[0];
1059                         else if (SAS_ADDR(sub_sas_addr) !=
1060                                  SAS_ADDR(phy->attached_sas_addr)) {
1061
1062                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1063                                             "diverges(%016llx) on subtractive "
1064                                             "boundary(%016llx). Disabled\n",
1065                                             SAS_ADDR(dev->sas_addr), i,
1066                                             SAS_ADDR(phy->attached_sas_addr),
1067                                             SAS_ADDR(sub_sas_addr));
1068                                 sas_ex_disable_phy(dev, i);
1069                         }
1070                 }
1071         }
1072         return 0;
1073 }
1074
1075 static void sas_print_parent_topology_bug(struct domain_device *child,
1076                                                  struct ex_phy *parent_phy,
1077                                                  struct ex_phy *child_phy)
1078 {
1079         static const char ra_char[] = {
1080                 [DIRECT_ROUTING] = 'D',
1081                 [SUBTRACTIVE_ROUTING] = 'S',
1082                 [TABLE_ROUTING] = 'T',
1083         };
1084         static const char *ex_type[] = {
1085                 [EDGE_DEV] = "edge",
1086                 [FANOUT_DEV] = "fanout",
1087         };
1088         struct domain_device *parent = child->parent;
1089
1090         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1091                    "has %c:%c routing link!\n",
1092
1093                    ex_type[parent->dev_type],
1094                    SAS_ADDR(parent->sas_addr),
1095                    parent_phy->phy_id,
1096
1097                    ex_type[child->dev_type],
1098                    SAS_ADDR(child->sas_addr),
1099                    child_phy->phy_id,
1100
1101                    ra_char[parent_phy->routing_attr],
1102                    ra_char[child_phy->routing_attr]);
1103 }
1104
1105 static int sas_check_eeds(struct domain_device *child,
1106                                  struct ex_phy *parent_phy,
1107                                  struct ex_phy *child_phy)
1108 {
1109         int res = 0;
1110         struct domain_device *parent = child->parent;
1111
1112         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1113                 res = -ENODEV;
1114                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1115                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1116                             SAS_ADDR(parent->sas_addr),
1117                             parent_phy->phy_id,
1118                             SAS_ADDR(child->sas_addr),
1119                             child_phy->phy_id,
1120                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1121         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1122                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1123                        SAS_ADDR_SIZE);
1124                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1125                        SAS_ADDR_SIZE);
1126         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1127                     SAS_ADDR(parent->sas_addr)) ||
1128                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1129                     SAS_ADDR(child->sas_addr)))
1130                    &&
1131                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1132                      SAS_ADDR(parent->sas_addr)) ||
1133                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1134                      SAS_ADDR(child->sas_addr))))
1135                 ;
1136         else {
1137                 res = -ENODEV;
1138                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1139                             "phy 0x%x link forms a third EEDS!\n",
1140                             SAS_ADDR(parent->sas_addr),
1141                             parent_phy->phy_id,
1142                             SAS_ADDR(child->sas_addr),
1143                             child_phy->phy_id);
1144         }
1145
1146         return res;
1147 }
1148
1149 /* Here we spill over 80 columns.  It is intentional.
1150  */
1151 static int sas_check_parent_topology(struct domain_device *child)
1152 {
1153         struct expander_device *child_ex = &child->ex_dev;
1154         struct expander_device *parent_ex;
1155         int i;
1156         int res = 0;
1157
1158         if (!child->parent)
1159                 return 0;
1160
1161         if (child->parent->dev_type != EDGE_DEV &&
1162             child->parent->dev_type != FANOUT_DEV)
1163                 return 0;
1164
1165         parent_ex = &child->parent->ex_dev;
1166
1167         for (i = 0; i < parent_ex->num_phys; i++) {
1168                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1169                 struct ex_phy *child_phy;
1170
1171                 if (parent_phy->phy_state == PHY_VACANT ||
1172                     parent_phy->phy_state == PHY_NOT_PRESENT)
1173                         continue;
1174
1175                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1176                         continue;
1177
1178                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1179
1180                 switch (child->parent->dev_type) {
1181                 case EDGE_DEV:
1182                         if (child->dev_type == FANOUT_DEV) {
1183                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1184                                     child_phy->routing_attr != TABLE_ROUTING) {
1185                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1186                                         res = -ENODEV;
1187                                 }
1188                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1189                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1190                                         res = sas_check_eeds(child, parent_phy, child_phy);
1191                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1192                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1193                                         res = -ENODEV;
1194                                 }
1195                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1196                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1197                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1198                                 res = -ENODEV;
1199                         }
1200                         break;
1201                 case FANOUT_DEV:
1202                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1203                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1204                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1205                                 res = -ENODEV;
1206                         }
1207                         break;
1208                 default:
1209                         break;
1210                 }
1211         }
1212
1213         return res;
1214 }
1215
1216 #define RRI_REQ_SIZE  16
1217 #define RRI_RESP_SIZE 44
1218
1219 static int sas_configure_present(struct domain_device *dev, int phy_id,
1220                                  u8 *sas_addr, int *index, int *present)
1221 {
1222         int i, res = 0;
1223         struct expander_device *ex = &dev->ex_dev;
1224         struct ex_phy *phy = &ex->ex_phy[phy_id];
1225         u8 *rri_req;
1226         u8 *rri_resp;
1227
1228         *present = 0;
1229         *index = 0;
1230
1231         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1232         if (!rri_req)
1233                 return -ENOMEM;
1234
1235         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1236         if (!rri_resp) {
1237                 kfree(rri_req);
1238                 return -ENOMEM;
1239         }
1240
1241         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1242         rri_req[9] = phy_id;
1243
1244         for (i = 0; i < ex->max_route_indexes ; i++) {
1245                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1246                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1247                                        RRI_RESP_SIZE);
1248                 if (res)
1249                         goto out;
1250                 res = rri_resp[2];
1251                 if (res == SMP_RESP_NO_INDEX) {
1252                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1253                                     "phy 0x%x index 0x%x\n",
1254                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1255                         goto out;
1256                 } else if (res != SMP_RESP_FUNC_ACC) {
1257                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1258                                     "result 0x%x\n", __FUNCTION__,
1259                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1260                         goto out;
1261                 }
1262                 if (SAS_ADDR(sas_addr) != 0) {
1263                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1264                                 *index = i;
1265                                 if ((rri_resp[12] & 0x80) == 0x80)
1266                                         *present = 0;
1267                                 else
1268                                         *present = 1;
1269                                 goto out;
1270                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1271                                 *index = i;
1272                                 *present = 0;
1273                                 goto out;
1274                         }
1275                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1276                            phy->last_da_index < i) {
1277                         phy->last_da_index = i;
1278                         *index = i;
1279                         *present = 0;
1280                         goto out;
1281                 }
1282         }
1283         res = -1;
1284 out:
1285         kfree(rri_req);
1286         kfree(rri_resp);
1287         return res;
1288 }
1289
1290 #define CRI_REQ_SIZE  44
1291 #define CRI_RESP_SIZE  8
1292
1293 static int sas_configure_set(struct domain_device *dev, int phy_id,
1294                              u8 *sas_addr, int index, int include)
1295 {
1296         int res;
1297         u8 *cri_req;
1298         u8 *cri_resp;
1299
1300         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1301         if (!cri_req)
1302                 return -ENOMEM;
1303
1304         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1305         if (!cri_resp) {
1306                 kfree(cri_req);
1307                 return -ENOMEM;
1308         }
1309
1310         cri_req[1] = SMP_CONF_ROUTE_INFO;
1311         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1312         cri_req[9] = phy_id;
1313         if (SAS_ADDR(sas_addr) == 0 || !include)
1314                 cri_req[12] |= 0x80;
1315         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1316
1317         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1318                                CRI_RESP_SIZE);
1319         if (res)
1320                 goto out;
1321         res = cri_resp[2];
1322         if (res == SMP_RESP_NO_INDEX) {
1323                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1324                             "index 0x%x\n",
1325                             SAS_ADDR(dev->sas_addr), phy_id, index);
1326         }
1327 out:
1328         kfree(cri_req);
1329         kfree(cri_resp);
1330         return res;
1331 }
1332
1333 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1334                                     u8 *sas_addr, int include)
1335 {
1336         int index;
1337         int present;
1338         int res;
1339
1340         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1341         if (res)
1342                 return res;
1343         if (include ^ present)
1344                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1345
1346         return res;
1347 }
1348
1349 /**
1350  * sas_configure_parent -- configure routing table of parent
1351  * parent: parent expander
1352  * child: child expander
1353  * sas_addr: SAS port identifier of device directly attached to child
1354  */
1355 static int sas_configure_parent(struct domain_device *parent,
1356                                 struct domain_device *child,
1357                                 u8 *sas_addr, int include)
1358 {
1359         struct expander_device *ex_parent = &parent->ex_dev;
1360         int res = 0;
1361         int i;
1362
1363         if (parent->parent) {
1364                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1365                                            include);
1366                 if (res)
1367                         return res;
1368         }
1369
1370         if (ex_parent->conf_route_table == 0) {
1371                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1372                             SAS_ADDR(parent->sas_addr));
1373                 return 0;
1374         }
1375
1376         for (i = 0; i < ex_parent->num_phys; i++) {
1377                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1378
1379                 if ((phy->routing_attr == TABLE_ROUTING) &&
1380                     (SAS_ADDR(phy->attached_sas_addr) ==
1381                      SAS_ADDR(child->sas_addr))) {
1382                         res = sas_configure_phy(parent, i, sas_addr, include);
1383                         if (res)
1384                                 return res;
1385                 }
1386         }
1387
1388         return res;
1389 }
1390
1391 /**
1392  * sas_configure_routing -- configure routing
1393  * dev: expander device
1394  * sas_addr: port identifier of device directly attached to the expander device
1395  */
1396 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1397 {
1398         if (dev->parent)
1399                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1400         return 0;
1401 }
1402
1403 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1404 {
1405         if (dev->parent)
1406                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1407         return 0;
1408 }
1409
1410 /**
1411  * sas_discover_expander -- expander discovery
1412  * @ex: pointer to expander domain device
1413  *
1414  * See comment in sas_discover_sata().
1415  */
1416 static int sas_discover_expander(struct domain_device *dev)
1417 {
1418         int res;
1419
1420         res = sas_notify_lldd_dev_found(dev);
1421         if (res)
1422                 return res;
1423
1424         res = sas_ex_general(dev);
1425         if (res)
1426                 goto out_err;
1427         res = sas_ex_manuf_info(dev);
1428         if (res)
1429                 goto out_err;
1430
1431         res = sas_expander_discover(dev);
1432         if (res) {
1433                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1434                             SAS_ADDR(dev->sas_addr), res);
1435                 goto out_err;
1436         }
1437
1438         sas_check_ex_subtractive_boundary(dev);
1439         res = sas_check_parent_topology(dev);
1440         if (res)
1441                 goto out_err;
1442         return 0;
1443 out_err:
1444         sas_notify_lldd_dev_gone(dev);
1445         return res;
1446 }
1447
1448 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1449 {
1450         int res = 0;
1451         struct domain_device *dev;
1452
1453         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1454                 if (dev->dev_type == EDGE_DEV ||
1455                     dev->dev_type == FANOUT_DEV) {
1456                         struct sas_expander_device *ex =
1457                                 rphy_to_expander_device(dev->rphy);
1458
1459                         if (level == ex->level)
1460                                 res = sas_ex_discover_devices(dev, -1);
1461                         else if (level > 0)
1462                                 res = sas_ex_discover_devices(port->port_dev, -1);
1463
1464                 }
1465         }
1466
1467         return res;
1468 }
1469
1470 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1471 {
1472         int res;
1473         int level;
1474
1475         do {
1476                 level = port->disc.max_level;
1477                 res = sas_ex_level_discovery(port, level);
1478                 mb();
1479         } while (level < port->disc.max_level);
1480
1481         return res;
1482 }
1483
1484 int sas_discover_root_expander(struct domain_device *dev)
1485 {
1486         int res;
1487         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1488
1489         res = sas_rphy_add(dev->rphy);
1490         if (res)
1491                 goto out_err;
1492
1493         ex->level = dev->port->disc.max_level; /* 0 */
1494         res = sas_discover_expander(dev);
1495         if (res)
1496                 goto out_err2;
1497
1498         sas_ex_bfs_disc(dev->port);
1499
1500         return res;
1501
1502 out_err2:
1503         sas_rphy_remove(dev->rphy);
1504 out_err:
1505         return res;
1506 }
1507
1508 /* ---------- Domain revalidation ---------- */
1509
1510 static int sas_get_phy_discover(struct domain_device *dev,
1511                                 int phy_id, struct smp_resp *disc_resp)
1512 {
1513         int res;
1514         u8 *disc_req;
1515
1516         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1517         if (!disc_req)
1518                 return -ENOMEM;
1519
1520         disc_req[1] = SMP_DISCOVER;
1521         disc_req[9] = phy_id;
1522
1523         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1524                                disc_resp, DISCOVER_RESP_SIZE);
1525         if (res)
1526                 goto out;
1527         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1528                 res = disc_resp->result;
1529                 goto out;
1530         }
1531 out:
1532         kfree(disc_req);
1533         return res;
1534 }
1535
1536 static int sas_get_phy_change_count(struct domain_device *dev,
1537                                     int phy_id, int *pcc)
1538 {
1539         int res;
1540         struct smp_resp *disc_resp;
1541
1542         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1543         if (!disc_resp)
1544                 return -ENOMEM;
1545
1546         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1547         if (!res)
1548                 *pcc = disc_resp->disc.change_count;
1549
1550         kfree(disc_resp);
1551         return res;
1552 }
1553
1554 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1555                                          int phy_id, u8 *attached_sas_addr)
1556 {
1557         int res;
1558         struct smp_resp *disc_resp;
1559         struct discover_resp *dr;
1560
1561         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1562         if (!disc_resp)
1563                 return -ENOMEM;
1564         dr = &disc_resp->disc;
1565
1566         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1567         if (!res) {
1568                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1569                 if (dr->attached_dev_type == 0)
1570                         memset(attached_sas_addr, 0, 8);
1571         }
1572         kfree(disc_resp);
1573         return res;
1574 }
1575
1576 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1577                               int from_phy)
1578 {
1579         struct expander_device *ex = &dev->ex_dev;
1580         int res = 0;
1581         int i;
1582
1583         for (i = from_phy; i < ex->num_phys; i++) {
1584                 int phy_change_count = 0;
1585
1586                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1587                 if (res)
1588                         goto out;
1589                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1590                         ex->ex_phy[i].phy_change_count = phy_change_count;
1591                         *phy_id = i;
1592                         return 0;
1593                 }
1594         }
1595 out:
1596         return res;
1597 }
1598
1599 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1600 {
1601         int res;
1602         u8  *rg_req;
1603         struct smp_resp  *rg_resp;
1604
1605         rg_req = alloc_smp_req(RG_REQ_SIZE);
1606         if (!rg_req)
1607                 return -ENOMEM;
1608
1609         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1610         if (!rg_resp) {
1611                 kfree(rg_req);
1612                 return -ENOMEM;
1613         }
1614
1615         rg_req[1] = SMP_REPORT_GENERAL;
1616
1617         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1618                                RG_RESP_SIZE);
1619         if (res)
1620                 goto out;
1621         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1622                 res = rg_resp->result;
1623                 goto out;
1624         }
1625
1626         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1627 out:
1628         kfree(rg_resp);
1629         kfree(rg_req);
1630         return res;
1631 }
1632
1633 static int sas_find_bcast_dev(struct domain_device *dev,
1634                               struct domain_device **src_dev)
1635 {
1636         struct expander_device *ex = &dev->ex_dev;
1637         int ex_change_count = -1;
1638         int res;
1639
1640         res = sas_get_ex_change_count(dev, &ex_change_count);
1641         if (res)
1642                 goto out;
1643         if (ex_change_count != -1 &&
1644             ex_change_count != ex->ex_change_count) {
1645                 *src_dev = dev;
1646                 ex->ex_change_count = ex_change_count;
1647         } else {
1648                 struct domain_device *ch;
1649
1650                 list_for_each_entry(ch, &ex->children, siblings) {
1651                         if (ch->dev_type == EDGE_DEV ||
1652                             ch->dev_type == FANOUT_DEV) {
1653                                 res = sas_find_bcast_dev(ch, src_dev);
1654                                 if (src_dev)
1655                                         return res;
1656                         }
1657                 }
1658         }
1659 out:
1660         return res;
1661 }
1662
1663 static void sas_unregister_ex_tree(struct domain_device *dev)
1664 {
1665         struct expander_device *ex = &dev->ex_dev;
1666         struct domain_device *child, *n;
1667
1668         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1669                 if (child->dev_type == EDGE_DEV ||
1670                     child->dev_type == FANOUT_DEV)
1671                         sas_unregister_ex_tree(child);
1672                 else
1673                         sas_unregister_dev(child);
1674         }
1675         sas_unregister_dev(dev);
1676 }
1677
1678 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1679                                          int phy_id)
1680 {
1681         struct expander_device *ex_dev = &parent->ex_dev;
1682         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1683         struct domain_device *child, *n;
1684
1685         list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1686                 if (SAS_ADDR(child->sas_addr) ==
1687                     SAS_ADDR(phy->attached_sas_addr)) {
1688                         if (child->dev_type == EDGE_DEV ||
1689                             child->dev_type == FANOUT_DEV)
1690                                 sas_unregister_ex_tree(child);
1691                         else
1692                                 sas_unregister_dev(child);
1693                         break;
1694                 }
1695         }
1696         sas_disable_routing(parent, phy->attached_sas_addr);
1697         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1698         sas_port_delete_phy(phy->port, phy->phy);
1699         if (phy->port->num_phys == 0)
1700                 sas_port_delete(phy->port);
1701         phy->port = NULL;
1702 }
1703
1704 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1705                                           const int level)
1706 {
1707         struct expander_device *ex_root = &root->ex_dev;
1708         struct domain_device *child;
1709         int res = 0;
1710
1711         list_for_each_entry(child, &ex_root->children, siblings) {
1712                 if (child->dev_type == EDGE_DEV ||
1713                     child->dev_type == FANOUT_DEV) {
1714                         struct sas_expander_device *ex =
1715                                 rphy_to_expander_device(child->rphy);
1716
1717                         if (level > ex->level)
1718                                 res = sas_discover_bfs_by_root_level(child,
1719                                                                      level);
1720                         else if (level == ex->level)
1721                                 res = sas_ex_discover_devices(child, -1);
1722                 }
1723         }
1724         return res;
1725 }
1726
1727 static int sas_discover_bfs_by_root(struct domain_device *dev)
1728 {
1729         int res;
1730         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1731         int level = ex->level+1;
1732
1733         res = sas_ex_discover_devices(dev, -1);
1734         if (res)
1735                 goto out;
1736         do {
1737                 res = sas_discover_bfs_by_root_level(dev, level);
1738                 mb();
1739                 level += 1;
1740         } while (level <= dev->port->disc.max_level);
1741 out:
1742         return res;
1743 }
1744
1745 static int sas_discover_new(struct domain_device *dev, int phy_id)
1746 {
1747         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1748         struct domain_device *child;
1749         int res;
1750
1751         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1752                     SAS_ADDR(dev->sas_addr), phy_id);
1753         res = sas_ex_phy_discover(dev, phy_id);
1754         if (res)
1755                 goto out;
1756         res = sas_ex_discover_devices(dev, phy_id);
1757         if (res)
1758                 goto out;
1759         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1760                 if (SAS_ADDR(child->sas_addr) ==
1761                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1762                         if (child->dev_type == EDGE_DEV ||
1763                             child->dev_type == FANOUT_DEV)
1764                                 res = sas_discover_bfs_by_root(child);
1765                         break;
1766                 }
1767         }
1768 out:
1769         return res;
1770 }
1771
1772 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1773 {
1774         struct expander_device *ex = &dev->ex_dev;
1775         struct ex_phy *phy = &ex->ex_phy[phy_id];
1776         u8 attached_sas_addr[8];
1777         int res;
1778
1779         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1780         switch (res) {
1781         case SMP_RESP_NO_PHY:
1782                 phy->phy_state = PHY_NOT_PRESENT;
1783                 sas_unregister_devs_sas_addr(dev, phy_id);
1784                 goto out; break;
1785         case SMP_RESP_PHY_VACANT:
1786                 phy->phy_state = PHY_VACANT;
1787                 sas_unregister_devs_sas_addr(dev, phy_id);
1788                 goto out; break;
1789         case SMP_RESP_FUNC_ACC:
1790                 break;
1791         }
1792
1793         if (SAS_ADDR(attached_sas_addr) == 0) {
1794                 phy->phy_state = PHY_EMPTY;
1795                 sas_unregister_devs_sas_addr(dev, phy_id);
1796         } else if (SAS_ADDR(attached_sas_addr) ==
1797                    SAS_ADDR(phy->attached_sas_addr)) {
1798                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1799                             SAS_ADDR(dev->sas_addr), phy_id);
1800                 sas_ex_phy_discover(dev, phy_id);
1801         } else
1802                 res = sas_discover_new(dev, phy_id);
1803 out:
1804         return res;
1805 }
1806
1807 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1808 {
1809         struct expander_device *ex = &dev->ex_dev;
1810         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1811         int res = 0;
1812         int i;
1813
1814         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1815                     SAS_ADDR(dev->sas_addr), phy_id);
1816
1817         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1818                 for (i = 0; i < ex->num_phys; i++) {
1819                         struct ex_phy *phy = &ex->ex_phy[i];
1820
1821                         if (i == phy_id)
1822                                 continue;
1823                         if (SAS_ADDR(phy->attached_sas_addr) ==
1824                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1825                                 SAS_DPRINTK("phy%d part of wide port with "
1826                                             "phy%d\n", phy_id, i);
1827                                 goto out;
1828                         }
1829                 }
1830                 res = sas_rediscover_dev(dev, phy_id);
1831         } else
1832                 res = sas_discover_new(dev, phy_id);
1833 out:
1834         return res;
1835 }
1836
1837 /**
1838  * sas_revalidate_domain -- revalidate the domain
1839  * @port: port to the domain of interest
1840  *
1841  * NOTE: this process _must_ quit (return) as soon as any connection
1842  * errors are encountered.  Connection recovery is done elsewhere.
1843  * Discover process only interrogates devices in order to discover the
1844  * domain.
1845  */
1846 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1847 {
1848         int res;
1849         struct domain_device *dev = NULL;
1850
1851         res = sas_find_bcast_dev(port_dev, &dev);
1852         if (res)
1853                 goto out;
1854         if (dev) {
1855                 struct expander_device *ex = &dev->ex_dev;
1856                 int i = 0, phy_id;
1857
1858                 do {
1859                         phy_id = -1;
1860                         res = sas_find_bcast_phy(dev, &phy_id, i);
1861                         if (phy_id == -1)
1862                                 break;
1863                         res = sas_rediscover(dev, phy_id);
1864                         i = phy_id + 1;
1865                 } while (i < ex->num_phys);
1866         }
1867 out:
1868         return res;
1869 }
1870
1871 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1872                     struct request *req)
1873 {
1874         struct domain_device *dev;
1875         int ret, type = rphy->identify.device_type;
1876         struct request *rsp = req->next_rq;
1877
1878         if (!rsp) {
1879                 printk("%s: space for a smp response is missing\n",
1880                        __FUNCTION__);
1881                 return -EINVAL;
1882         }
1883
1884         /* seems aic94xx doesn't support */
1885         if (!rphy) {
1886                 printk("%s: can we send a smp request to a host?\n",
1887                        __FUNCTION__);
1888                 return -EINVAL;
1889         }
1890
1891         if (type != SAS_EDGE_EXPANDER_DEVICE &&
1892             type != SAS_FANOUT_EXPANDER_DEVICE) {
1893                 printk("%s: can we send a smp request to a device?\n",
1894                        __FUNCTION__);
1895                 return -EINVAL;
1896         }
1897
1898         dev = sas_find_dev_by_rphy(rphy);
1899         if (!dev) {
1900                 printk("%s: fail to find a domain_device?\n", __FUNCTION__);
1901                 return -EINVAL;
1902         }
1903
1904         /* do we need to support multiple segments? */
1905         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1906                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
1907                        __FUNCTION__, req->bio->bi_vcnt, req->data_len,
1908                        rsp->bio->bi_vcnt, rsp->data_len);
1909                 return -EINVAL;
1910         }
1911
1912         ret = smp_execute_task(dev, bio_data(req->bio), req->data_len,
1913                                bio_data(rsp->bio), rsp->data_len);
1914
1915         return ret;
1916 }