]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/aacraid/linit.c
[SCSI] aacraid: Fix jbod operations scan issues
[linux-2.6-omap-h63xx.git] / drivers / scsi / aacraid / linit.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *   linit.c
26  *
27  * Abstract: Linux Driver entry module for Adaptec RAID Array Controller
28  */
29
30
31 #include <linux/compat.h>
32 #include <linux/blkdev.h>
33 #include <linux/completion.h>
34 #include <linux/init.h>
35 #include <linux/interrupt.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/pci.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/delay.h>
44 #include <linux/kthread.h>
45
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/scsicam.h>
52 #include <scsi/scsi_eh.h>
53
54 #include "aacraid.h"
55
56 #define AAC_DRIVER_VERSION              "1.1-5"
57 #ifndef AAC_DRIVER_BRANCH
58 #define AAC_DRIVER_BRANCH               ""
59 #endif
60 #define AAC_DRIVER_BUILD_DATE           __DATE__ " " __TIME__
61 #define AAC_DRIVERNAME                  "aacraid"
62
63 #ifdef AAC_DRIVER_BUILD
64 #define _str(x) #x
65 #define str(x) _str(x)
66 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
67 #else
68 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH " " AAC_DRIVER_BUILD_DATE
69 #endif
70
71 MODULE_AUTHOR("Red Hat Inc and Adaptec");
72 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
73                    "Adaptec Advanced Raid Products, "
74                    "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
75 MODULE_LICENSE("GPL");
76 MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
77
78 static LIST_HEAD(aac_devices);
79 static int aac_cfg_major = -1;
80 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
81
82 /*
83  * Because of the way Linux names scsi devices, the order in this table has
84  * become important.  Check for on-board Raid first, add-in cards second.
85  *
86  * Note: The last field is used to index into aac_drivers below.
87  */
88 static struct pci_device_id aac_pci_tbl[] = {
89         { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
90         { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
91         { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
92         { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
93         { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
94         { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
95         { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
96         { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
97         { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
98         { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
99         { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
100         { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
101         { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
102         { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
103         { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
104         { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
105
106         { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
107         { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
108         { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
109         { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
110         { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
111         { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
112         { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
113         { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
114         { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
115         { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
116         { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
117         { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
118         { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
119         { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
120         { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
121         { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
122         { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
123         { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
124         { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
125         { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
126         { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
127         { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
128         { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
129         { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
130         { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
131         { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
132         { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
133         { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
134         { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
135         { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
136         { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
137         { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
138         { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
139         { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
140         { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
141         { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
142         { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
143         { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
144
145         { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
146         { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
147         { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
148         { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
149         { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
150
151         { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
152         { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
153         { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
154         { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
155         { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
156         { 0,}
157 };
158 MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
159
160 /*
161  * dmb - For now we add the number of channels to this structure.
162  * In the future we should add a fib that reports the number of channels
163  * for the card.  At that time we can remove the channels from here
164  */
165 static struct aac_driver_ident aac_drivers[] = {
166         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
167         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
168         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
169         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
170         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
171         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
172         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
173         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
174         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
175         { aac_rx_init, "aacraid",  "ADAPTEC ", "catapult        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
176         { aac_rx_init, "aacraid",  "ADAPTEC ", "tomcat          ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
177         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2120S   ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2120S (Crusader) */
178         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan) */
179         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
180         { aac_rx_init, "aacraid",  "Legend  ", "Legend S220     ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
181         { aac_rx_init, "aacraid",  "Legend  ", "Legend S230     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
182
183         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3230S   ", 2 }, /* Adaptec 3230S (Harrier) */
184         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3240S   ", 2 }, /* Adaptec 3240S (Tornado) */
185         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020ZCR     ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
186         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025ZCR     ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
187         { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
188         { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
189         { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2820SA      ", 1 }, /* AAR-2820SA (Intruder) */
190         { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2620SA      ", 1 }, /* AAR-2620SA (Intruder) */
191         { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2420SA      ", 1 }, /* AAR-2420SA (Intruder) */
192         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9024RO       ", 2 }, /* ICP9024RO (Lancer) */
193         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9014RO       ", 1 }, /* ICP9014RO (Lancer) */
194         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9047MA       ", 1 }, /* ICP9047MA (Lancer) */
195         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9087MA       ", 1 }, /* ICP9087MA (Lancer) */
196         { aac_rkt_init, "aacraid",  "ICP     ", "ICP5445AU       ", 1 }, /* ICP5445AU (Hurricane44) */
197         { aac_rx_init, "aacraid",  "ICP     ", "ICP9085LI       ", 1 }, /* ICP9085LI (Marauder-X) */
198         { aac_rx_init, "aacraid",  "ICP     ", "ICP5085BR       ", 1 }, /* ICP5085BR (Marauder-E) */
199         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9067MA       ", 1 }, /* ICP9067MA (Intruder-6) */
200         { NULL        , "aacraid",  "ADAPTEC ", "Themisto        ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
201         { aac_rkt_init, "aacraid",  "ADAPTEC ", "Callisto        ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
202         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020SA       ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
203         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025SA       ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
204         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
205         { aac_rx_init, "aacraid",  "DELL    ", "CERC SR2        ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
206         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
207         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
208         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2026ZCR     ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
209         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2610SA      ", 1 }, /* SATA 6Ch (Bearcat) */
210         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2240S       ", 1 }, /* ASR-2240S (SabreExpress) */
211         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4005        ", 1 }, /* ASR-4005 */
212         { aac_rx_init, "ServeRAID","IBM     ", "ServeRAID 8i    ", 1 }, /* IBM 8i (AvonPark) */
213         { aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
214         { aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
215         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4000        ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
216         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4800SAS     ", 1 }, /* ASR-4800SAS (Marauder-X) */
217         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4805SAS     ", 1 }, /* ASR-4805SAS (Marauder-E) */
218         { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-3800        ", 1 }, /* ASR-3800 (Hurricane44) */
219
220         { aac_rx_init, "percraid", "DELL    ", "PERC 320/DC     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
221         { aac_sa_init, "aacraid",  "ADAPTEC ", "Adaptec 5400S   ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
222         { aac_sa_init, "aacraid",  "ADAPTEC ", "AAC-364         ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
223         { aac_sa_init, "percraid", "DELL    ", "PERCRAID        ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
224         { aac_sa_init, "hpnraid",  "HP      ", "NetRAID         ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
225
226         { aac_rx_init, "aacraid",  "DELL    ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
227         { aac_rx_init, "aacraid",  "Legend  ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
228         { aac_rx_init, "aacraid",  "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Catch All */
229         { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Rocket Catch All */
230         { aac_nark_init, "aacraid", "ADAPTEC ", "RAID            ", 2 } /* Adaptec NEMER/ARK Catch All */
231 };
232
233 /**
234  *      aac_queuecommand        -       queue a SCSI command
235  *      @cmd:           SCSI command to queue
236  *      @done:          Function to call on command completion
237  *
238  *      Queues a command for execution by the associated Host Adapter.
239  *
240  *      TODO: unify with aac_scsi_cmd().
241  */
242
243 static int aac_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
244 {
245         struct Scsi_Host *host = cmd->device->host;
246         struct aac_dev *dev = (struct aac_dev *)host->hostdata;
247         u32 count = 0;
248         cmd->scsi_done = done;
249         for (; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
250                 struct fib * fib = &dev->fibs[count];
251                 struct scsi_cmnd * command;
252                 if (fib->hw_fib_va->header.XferState &&
253                     ((command = fib->callback_data)) &&
254                     (command == cmd) &&
255                     (cmd->SCp.phase == AAC_OWNER_FIRMWARE))
256                         return 0; /* Already owned by Adapter */
257         }
258         cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
259         return (aac_scsi_cmd(cmd) ? FAILED : 0);
260 }
261
262 /**
263  *      aac_info                -       Returns the host adapter name
264  *      @shost:         Scsi host to report on
265  *
266  *      Returns a static string describing the device in question
267  */
268
269 static const char *aac_info(struct Scsi_Host *shost)
270 {
271         struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
272         return aac_drivers[dev->cardtype].name;
273 }
274
275 /**
276  *      aac_get_driver_ident
277  *      @devtype: index into lookup table
278  *
279  *      Returns a pointer to the entry in the driver lookup table.
280  */
281
282 struct aac_driver_ident* aac_get_driver_ident(int devtype)
283 {
284         return &aac_drivers[devtype];
285 }
286
287 /**
288  *      aac_biosparm    -       return BIOS parameters for disk
289  *      @sdev: The scsi device corresponding to the disk
290  *      @bdev: the block device corresponding to the disk
291  *      @capacity: the sector capacity of the disk
292  *      @geom: geometry block to fill in
293  *
294  *      Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
295  *      The default disk geometry is 64 heads, 32 sectors, and the appropriate
296  *      number of cylinders so as not to exceed drive capacity.  In order for
297  *      disks equal to or larger than 1 GB to be addressable by the BIOS
298  *      without exceeding the BIOS limitation of 1024 cylinders, Extended
299  *      Translation should be enabled.   With Extended Translation enabled,
300  *      drives between 1 GB inclusive and 2 GB exclusive are given a disk
301  *      geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
302  *      are given a disk geometry of 255 heads and 63 sectors.  However, if
303  *      the BIOS detects that the Extended Translation setting does not match
304  *      the geometry in the partition table, then the translation inferred
305  *      from the partition table will be used by the BIOS, and a warning may
306  *      be displayed.
307  */
308
309 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
310                         sector_t capacity, int *geom)
311 {
312         struct diskparm *param = (struct diskparm *)geom;
313         unsigned char *buf;
314
315         dprintk((KERN_DEBUG "aac_biosparm.\n"));
316
317         /*
318          *      Assuming extended translation is enabled - #REVISIT#
319          */
320         if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
321                 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
322                         param->heads = 255;
323                         param->sectors = 63;
324                 } else {
325                         param->heads = 128;
326                         param->sectors = 32;
327                 }
328         } else {
329                 param->heads = 64;
330                 param->sectors = 32;
331         }
332
333         param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
334
335         /*
336          *      Read the first 1024 bytes from the disk device, if the boot
337          *      sector partition table is valid, search for a partition table
338          *      entry whose end_head matches one of the standard geometry
339          *      translations ( 64/32, 128/32, 255/63 ).
340          */
341         buf = scsi_bios_ptable(bdev);
342         if (!buf)
343                 return 0;
344         if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
345                 struct partition *first = (struct partition * )buf;
346                 struct partition *entry = first;
347                 int saved_cylinders = param->cylinders;
348                 int num;
349                 unsigned char end_head, end_sec;
350
351                 for(num = 0; num < 4; num++) {
352                         end_head = entry->end_head;
353                         end_sec = entry->end_sector & 0x3f;
354
355                         if(end_head == 63) {
356                                 param->heads = 64;
357                                 param->sectors = 32;
358                                 break;
359                         } else if(end_head == 127) {
360                                 param->heads = 128;
361                                 param->sectors = 32;
362                                 break;
363                         } else if(end_head == 254) {
364                                 param->heads = 255;
365                                 param->sectors = 63;
366                                 break;
367                         }
368                         entry++;
369                 }
370
371                 if (num == 4) {
372                         end_head = first->end_head;
373                         end_sec = first->end_sector & 0x3f;
374                 }
375
376                 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
377                 if (num < 4 && end_sec == param->sectors) {
378                         if (param->cylinders != saved_cylinders)
379                                 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
380                                         param->heads, param->sectors, num));
381                 } else if (end_head > 0 || end_sec > 0) {
382                         dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
383                                 end_head + 1, end_sec, num));
384                         dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
385                                         param->heads, param->sectors));
386                 }
387         }
388         kfree(buf);
389         return 0;
390 }
391
392 /**
393  *      aac_slave_configure             -       compute queue depths
394  *      @sdev:  SCSI device we are considering
395  *
396  *      Selects queue depths for each target device based on the host adapter's
397  *      total capacity and the queue depth supported by the target device.
398  *      A queue depth of one automatically disables tagged queueing.
399  */
400
401 static int aac_slave_configure(struct scsi_device *sdev)
402 {
403         struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
404         if (aac->jbod && (sdev->type == TYPE_DISK))
405                 sdev->removable = 1;
406         if ((sdev->type == TYPE_DISK) &&
407                         (sdev_channel(sdev) != CONTAINER_CHANNEL) &&
408                         (!aac->jbod || sdev->inq_periph_qual) &&
409                         (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) {
410                 if (expose_physicals == 0)
411                         return -ENXIO;
412                 if (expose_physicals < 0)
413                         sdev->no_uld_attach = 1;
414         }
415         if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
416                         (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) &&
417                         !sdev->no_uld_attach) {
418                 struct scsi_device * dev;
419                 struct Scsi_Host *host = sdev->host;
420                 unsigned num_lsu = 0;
421                 unsigned num_one = 0;
422                 unsigned depth;
423                 unsigned cid;
424
425                 /*
426                  * Firmware has an individual device recovery time typically
427                  * of 35 seconds, give us a margin.
428                  */
429                 if (sdev->timeout < (45 * HZ))
430                         sdev->timeout = 45 * HZ;
431                 for (cid = 0; cid < aac->maximum_num_containers; ++cid)
432                         if (aac->fsa_dev[cid].valid)
433                                 ++num_lsu;
434                 __shost_for_each_device(dev, host) {
435                         if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
436                                         (!aac->raid_scsi_mode ||
437                                                 (sdev_channel(sdev) != 2)) &&
438                                         !dev->no_uld_attach) {
439                                 if ((sdev_channel(dev) != CONTAINER_CHANNEL)
440                                  || !aac->fsa_dev[sdev_id(dev)].valid)
441                                         ++num_lsu;
442                         } else
443                                 ++num_one;
444                 }
445                 if (num_lsu == 0)
446                         ++num_lsu;
447                 depth = (host->can_queue - num_one) / num_lsu;
448                 if (depth > 256)
449                         depth = 256;
450                 else if (depth < 2)
451                         depth = 2;
452                 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
453         } else
454                 scsi_adjust_queue_depth(sdev, 0, 1);
455
456         return 0;
457 }
458
459 /**
460  *      aac_change_queue_depth          -       alter queue depths
461  *      @sdev:  SCSI device we are considering
462  *      @depth: desired queue depth
463  *
464  *      Alters queue depths for target device based on the host adapter's
465  *      total capacity and the queue depth supported by the target device.
466  */
467
468 static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
469 {
470         if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
471             (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
472                 struct scsi_device * dev;
473                 struct Scsi_Host *host = sdev->host;
474                 unsigned num = 0;
475
476                 __shost_for_each_device(dev, host) {
477                         if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
478                             (sdev_channel(dev) == CONTAINER_CHANNEL))
479                                 ++num;
480                         ++num;
481                 }
482                 if (num >= host->can_queue)
483                         num = host->can_queue - 1;
484                 if (depth > (host->can_queue - num))
485                         depth = host->can_queue - num;
486                 if (depth > 256)
487                         depth = 256;
488                 else if (depth < 2)
489                         depth = 2;
490                 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
491         } else
492                 scsi_adjust_queue_depth(sdev, 0, 1);
493         return sdev->queue_depth;
494 }
495
496 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf)
497 {
498         struct scsi_device *sdev = to_scsi_device(dev);
499         struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
500         if (sdev_channel(sdev) != CONTAINER_CHANNEL)
501                 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach
502                   ? "Hidden\n" :
503                   ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : ""));
504         return snprintf(buf, PAGE_SIZE, "%s\n",
505           get_container_type(aac->fsa_dev[sdev_id(sdev)].type));
506 }
507
508 static struct device_attribute aac_raid_level_attr = {
509         .attr = {
510                 .name = "level",
511                 .mode = S_IRUGO,
512         },
513         .show = aac_show_raid_level
514 };
515
516 static struct device_attribute *aac_dev_attrs[] = {
517         &aac_raid_level_attr,
518         NULL,
519 };
520
521 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg)
522 {
523         struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
524         if (!capable(CAP_SYS_RAWIO))
525                 return -EPERM;
526         return aac_do_ioctl(dev, cmd, arg);
527 }
528
529 static int aac_eh_abort(struct scsi_cmnd* cmd)
530 {
531         struct scsi_device * dev = cmd->device;
532         struct Scsi_Host * host = dev->host;
533         struct aac_dev * aac = (struct aac_dev *)host->hostdata;
534         int count;
535         int ret = FAILED;
536
537         printk(KERN_ERR "%s: Host adapter abort request (%d,%d,%d,%d)\n",
538                 AAC_DRIVERNAME,
539                 host->host_no, sdev_channel(dev), sdev_id(dev), dev->lun);
540         switch (cmd->cmnd[0]) {
541         case SERVICE_ACTION_IN:
542                 if (!(aac->raw_io_interface) ||
543                     !(aac->raw_io_64) ||
544                     ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
545                         break;
546         case INQUIRY:
547         case READ_CAPACITY:
548                 /* Mark associated FIB to not complete, eh handler does this */
549                 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
550                         struct fib * fib = &aac->fibs[count];
551                         if (fib->hw_fib_va->header.XferState &&
552                           (fib->flags & FIB_CONTEXT_FLAG) &&
553                           (fib->callback_data == cmd)) {
554                                 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
555                                 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
556                                 ret = SUCCESS;
557                         }
558                 }
559                 break;
560         case TEST_UNIT_READY:
561                 /* Mark associated FIB to not complete, eh handler does this */
562                 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
563                         struct scsi_cmnd * command;
564                         struct fib * fib = &aac->fibs[count];
565                         if ((fib->hw_fib_va->header.XferState & cpu_to_le32(Async | NoResponseExpected)) &&
566                           (fib->flags & FIB_CONTEXT_FLAG) &&
567                           ((command = fib->callback_data)) &&
568                           (command->device == cmd->device)) {
569                                 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
570                                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
571                                 if (command == cmd)
572                                         ret = SUCCESS;
573                         }
574                 }
575         }
576         return ret;
577 }
578
579 /*
580  *      aac_eh_reset    - Reset command handling
581  *      @scsi_cmd:      SCSI command block causing the reset
582  *
583  */
584 static int aac_eh_reset(struct scsi_cmnd* cmd)
585 {
586         struct scsi_device * dev = cmd->device;
587         struct Scsi_Host * host = dev->host;
588         struct scsi_cmnd * command;
589         int count;
590         struct aac_dev * aac = (struct aac_dev *)host->hostdata;
591         unsigned long flags;
592
593         /* Mark the associated FIB to not complete, eh handler does this */
594         for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
595                 struct fib * fib = &aac->fibs[count];
596                 if (fib->hw_fib_va->header.XferState &&
597                   (fib->flags & FIB_CONTEXT_FLAG) &&
598                   (fib->callback_data == cmd)) {
599                         fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
600                         cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
601                 }
602         }
603         printk(KERN_ERR "%s: Host adapter reset request. SCSI hang ?\n",
604                                         AAC_DRIVERNAME);
605
606         if ((count = aac_check_health(aac)))
607                 return count;
608         /*
609          * Wait for all commands to complete to this specific
610          * target (block maximum 60 seconds).
611          */
612         for (count = 60; count; --count) {
613                 int active = aac->in_reset;
614
615                 if (active == 0)
616                 __shost_for_each_device(dev, host) {
617                         spin_lock_irqsave(&dev->list_lock, flags);
618                         list_for_each_entry(command, &dev->cmd_list, list) {
619                                 if ((command != cmd) &&
620                                     (command->SCp.phase == AAC_OWNER_FIRMWARE)) {
621                                         active++;
622                                         break;
623                                 }
624                         }
625                         spin_unlock_irqrestore(&dev->list_lock, flags);
626                         if (active)
627                                 break;
628
629                 }
630                 /*
631                  * We can exit If all the commands are complete
632                  */
633                 if (active == 0)
634                         return SUCCESS;
635                 ssleep(1);
636         }
637         printk(KERN_ERR "%s: SCSI bus appears hung\n", AAC_DRIVERNAME);
638         /*
639          * This adapter needs a blind reset, only do so for Adapters that
640          * support a register, instead of a commanded, reset.
641          */
642         if ((aac->supplement_adapter_info.SupportedOptions2 &
643            AAC_OPTION_MU_RESET) &&
644           aac_check_reset &&
645           ((aac_check_reset != 1) ||
646            !(aac->supplement_adapter_info.SupportedOptions2 &
647             AAC_OPTION_IGNORE_RESET)))
648                 aac_reset_adapter(aac, 2); /* Bypass wait for command quiesce */
649         return SUCCESS; /* Cause an immediate retry of the command with a ten second delay after successful tur */
650 }
651
652 /**
653  *      aac_cfg_open            -       open a configuration file
654  *      @inode: inode being opened
655  *      @file: file handle attached
656  *
657  *      Called when the configuration device is opened. Does the needed
658  *      set up on the handle and then returns
659  *
660  *      Bugs: This needs extending to check a given adapter is present
661  *      so we can support hot plugging, and to ref count adapters.
662  */
663
664 static int aac_cfg_open(struct inode *inode, struct file *file)
665 {
666         struct aac_dev *aac;
667         unsigned minor_number = iminor(inode);
668         int err = -ENODEV;
669
670         list_for_each_entry(aac, &aac_devices, entry) {
671                 if (aac->id == minor_number) {
672                         file->private_data = aac;
673                         err = 0;
674                         break;
675                 }
676         }
677
678         return err;
679 }
680
681 /**
682  *      aac_cfg_ioctl           -       AAC configuration request
683  *      @inode: inode of device
684  *      @file: file handle
685  *      @cmd: ioctl command code
686  *      @arg: argument
687  *
688  *      Handles a configuration ioctl. Currently this involves wrapping it
689  *      up and feeding it into the nasty windowsalike glue layer.
690  *
691  *      Bugs: Needs locking against parallel ioctls lower down
692  *      Bugs: Needs to handle hot plugging
693  */
694
695 static int aac_cfg_ioctl(struct inode *inode, struct file *file,
696                 unsigned int cmd, unsigned long arg)
697 {
698         if (!capable(CAP_SYS_RAWIO))
699                 return -EPERM;
700         return aac_do_ioctl(file->private_data, cmd, (void __user *)arg);
701 }
702
703 #ifdef CONFIG_COMPAT
704 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
705 {
706         long ret;
707         lock_kernel();
708         switch (cmd) {
709         case FSACTL_MINIPORT_REV_CHECK:
710         case FSACTL_SENDFIB:
711         case FSACTL_OPEN_GET_ADAPTER_FIB:
712         case FSACTL_CLOSE_GET_ADAPTER_FIB:
713         case FSACTL_SEND_RAW_SRB:
714         case FSACTL_GET_PCI_INFO:
715         case FSACTL_QUERY_DISK:
716         case FSACTL_DELETE_DISK:
717         case FSACTL_FORCE_DELETE_DISK:
718         case FSACTL_GET_CONTAINERS:
719         case FSACTL_SEND_LARGE_FIB:
720                 ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
721                 break;
722
723         case FSACTL_GET_NEXT_ADAPTER_FIB: {
724                 struct fib_ioctl __user *f;
725
726                 f = compat_alloc_user_space(sizeof(*f));
727                 ret = 0;
728                 if (clear_user(f, sizeof(*f)))
729                         ret = -EFAULT;
730                 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
731                         ret = -EFAULT;
732                 if (!ret)
733                         ret = aac_do_ioctl(dev, cmd, f);
734                 break;
735         }
736
737         default:
738                 ret = -ENOIOCTLCMD;
739                 break;
740         }
741         unlock_kernel();
742         return ret;
743 }
744
745 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg)
746 {
747         struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
748         return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
749 }
750
751 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
752 {
753         if (!capable(CAP_SYS_RAWIO))
754                 return -EPERM;
755         return aac_compat_do_ioctl((struct aac_dev *)file->private_data, cmd, arg);
756 }
757 #endif
758
759 static ssize_t aac_show_model(struct device *device,
760                               struct device_attribute *attr, char *buf)
761 {
762         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
763         int len;
764
765         if (dev->supplement_adapter_info.AdapterTypeText[0]) {
766                 char * cp = dev->supplement_adapter_info.AdapterTypeText;
767                 while (*cp && *cp != ' ')
768                         ++cp;
769                 while (*cp == ' ')
770                         ++cp;
771                 len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
772         } else
773                 len = snprintf(buf, PAGE_SIZE, "%s\n",
774                   aac_drivers[dev->cardtype].model);
775         return len;
776 }
777
778 static ssize_t aac_show_vendor(struct device *device,
779                                struct device_attribute *attr, char *buf)
780 {
781         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
782         int len;
783
784         if (dev->supplement_adapter_info.AdapterTypeText[0]) {
785                 char * cp = dev->supplement_adapter_info.AdapterTypeText;
786                 while (*cp && *cp != ' ')
787                         ++cp;
788                 len = snprintf(buf, PAGE_SIZE, "%.*s\n",
789                   (int)(cp - (char *)dev->supplement_adapter_info.AdapterTypeText),
790                   dev->supplement_adapter_info.AdapterTypeText);
791         } else
792                 len = snprintf(buf, PAGE_SIZE, "%s\n",
793                   aac_drivers[dev->cardtype].vname);
794         return len;
795 }
796
797 static ssize_t aac_show_flags(struct device *cdev,
798                               struct device_attribute *attr, char *buf)
799 {
800         int len = 0;
801         struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata;
802
803         if (nblank(dprintk(x)))
804                 len = snprintf(buf, PAGE_SIZE, "dprintk\n");
805 #ifdef AAC_DETAILED_STATUS_INFO
806         len += snprintf(buf + len, PAGE_SIZE - len,
807                         "AAC_DETAILED_STATUS_INFO\n");
808 #endif
809         if (dev->raw_io_interface && dev->raw_io_64)
810                 len += snprintf(buf + len, PAGE_SIZE - len,
811                                 "SAI_READ_CAPACITY_16\n");
812         if (dev->jbod)
813                 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n");
814         return len;
815 }
816
817 static ssize_t aac_show_kernel_version(struct device *device,
818                                        struct device_attribute *attr,
819                                        char *buf)
820 {
821         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
822         int len, tmp;
823
824         tmp = le32_to_cpu(dev->adapter_info.kernelrev);
825         len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
826           tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
827           le32_to_cpu(dev->adapter_info.kernelbuild));
828         return len;
829 }
830
831 static ssize_t aac_show_monitor_version(struct device *device,
832                                         struct device_attribute *attr,
833                                         char *buf)
834 {
835         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
836         int len, tmp;
837
838         tmp = le32_to_cpu(dev->adapter_info.monitorrev);
839         len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
840           tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
841           le32_to_cpu(dev->adapter_info.monitorbuild));
842         return len;
843 }
844
845 static ssize_t aac_show_bios_version(struct device *device,
846                                      struct device_attribute *attr,
847                                      char *buf)
848 {
849         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
850         int len, tmp;
851
852         tmp = le32_to_cpu(dev->adapter_info.biosrev);
853         len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
854           tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
855           le32_to_cpu(dev->adapter_info.biosbuild));
856         return len;
857 }
858
859 ssize_t aac_show_serial_number(struct device *device,
860                                struct device_attribute *attr, char *buf)
861 {
862         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
863         int len = 0;
864
865         if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
866                 len = snprintf(buf, PAGE_SIZE, "%06X\n",
867                   le32_to_cpu(dev->adapter_info.serial[0]));
868         if (len &&
869           !memcmp(&dev->supplement_adapter_info.MfgPcbaSerialNo[
870             sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo)-len],
871           buf, len-1))
872                 len = snprintf(buf, PAGE_SIZE, "%.*s\n",
873                   (int)sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo),
874                   dev->supplement_adapter_info.MfgPcbaSerialNo);
875         return len;
876 }
877
878 static ssize_t aac_show_max_channel(struct device *device,
879                                     struct device_attribute *attr, char *buf)
880 {
881         return snprintf(buf, PAGE_SIZE, "%d\n",
882           class_to_shost(device)->max_channel);
883 }
884
885 static ssize_t aac_show_max_id(struct device *device,
886                                struct device_attribute *attr, char *buf)
887 {
888         return snprintf(buf, PAGE_SIZE, "%d\n",
889           class_to_shost(device)->max_id);
890 }
891
892 static ssize_t aac_store_reset_adapter(struct device *device,
893                                        struct device_attribute *attr,
894                                        const char *buf, size_t count)
895 {
896         int retval = -EACCES;
897
898         if (!capable(CAP_SYS_ADMIN))
899                 return retval;
900         retval = aac_reset_adapter((struct aac_dev*)class_to_shost(device)->hostdata, buf[0] == '!');
901         if (retval >= 0)
902                 retval = count;
903         return retval;
904 }
905
906 static ssize_t aac_show_reset_adapter(struct device *device,
907                                       struct device_attribute *attr,
908                                       char *buf)
909 {
910         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
911         int len, tmp;
912
913         tmp = aac_adapter_check_health(dev);
914         if ((tmp == 0) && dev->in_reset)
915                 tmp = -EBUSY;
916         len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
917         return len;
918 }
919
920 static struct device_attribute aac_model = {
921         .attr = {
922                 .name = "model",
923                 .mode = S_IRUGO,
924         },
925         .show = aac_show_model,
926 };
927 static struct device_attribute aac_vendor = {
928         .attr = {
929                 .name = "vendor",
930                 .mode = S_IRUGO,
931         },
932         .show = aac_show_vendor,
933 };
934 static struct device_attribute aac_flags = {
935         .attr = {
936                 .name = "flags",
937                 .mode = S_IRUGO,
938         },
939         .show = aac_show_flags,
940 };
941 static struct device_attribute aac_kernel_version = {
942         .attr = {
943                 .name = "hba_kernel_version",
944                 .mode = S_IRUGO,
945         },
946         .show = aac_show_kernel_version,
947 };
948 static struct device_attribute aac_monitor_version = {
949         .attr = {
950                 .name = "hba_monitor_version",
951                 .mode = S_IRUGO,
952         },
953         .show = aac_show_monitor_version,
954 };
955 static struct device_attribute aac_bios_version = {
956         .attr = {
957                 .name = "hba_bios_version",
958                 .mode = S_IRUGO,
959         },
960         .show = aac_show_bios_version,
961 };
962 static struct device_attribute aac_serial_number = {
963         .attr = {
964                 .name = "serial_number",
965                 .mode = S_IRUGO,
966         },
967         .show = aac_show_serial_number,
968 };
969 static struct device_attribute aac_max_channel = {
970         .attr = {
971                 .name = "max_channel",
972                 .mode = S_IRUGO,
973         },
974         .show = aac_show_max_channel,
975 };
976 static struct device_attribute aac_max_id = {
977         .attr = {
978                 .name = "max_id",
979                 .mode = S_IRUGO,
980         },
981         .show = aac_show_max_id,
982 };
983 static struct device_attribute aac_reset = {
984         .attr = {
985                 .name = "reset_host",
986                 .mode = S_IWUSR|S_IRUGO,
987         },
988         .store = aac_store_reset_adapter,
989         .show = aac_show_reset_adapter,
990 };
991
992 static struct device_attribute *aac_attrs[] = {
993         &aac_model,
994         &aac_vendor,
995         &aac_flags,
996         &aac_kernel_version,
997         &aac_monitor_version,
998         &aac_bios_version,
999         &aac_serial_number,
1000         &aac_max_channel,
1001         &aac_max_id,
1002         &aac_reset,
1003         NULL
1004 };
1005
1006 ssize_t aac_get_serial_number(struct device *device, char *buf)
1007 {
1008         return aac_show_serial_number(device, &aac_serial_number, buf);
1009 }
1010
1011 static const struct file_operations aac_cfg_fops = {
1012         .owner          = THIS_MODULE,
1013         .ioctl          = aac_cfg_ioctl,
1014 #ifdef CONFIG_COMPAT
1015         .compat_ioctl   = aac_compat_cfg_ioctl,
1016 #endif
1017         .open           = aac_cfg_open,
1018 };
1019
1020 static struct scsi_host_template aac_driver_template = {
1021         .module                         = THIS_MODULE,
1022         .name                           = "AAC",
1023         .proc_name                      = AAC_DRIVERNAME,
1024         .info                           = aac_info,
1025         .ioctl                          = aac_ioctl,
1026 #ifdef CONFIG_COMPAT
1027         .compat_ioctl                   = aac_compat_ioctl,
1028 #endif
1029         .queuecommand                   = aac_queuecommand,
1030         .bios_param                     = aac_biosparm,
1031         .shost_attrs                    = aac_attrs,
1032         .slave_configure                = aac_slave_configure,
1033         .change_queue_depth             = aac_change_queue_depth,
1034         .sdev_attrs                     = aac_dev_attrs,
1035         .eh_abort_handler               = aac_eh_abort,
1036         .eh_host_reset_handler          = aac_eh_reset,
1037         .can_queue                      = AAC_NUM_IO_FIB,
1038         .this_id                        = MAXIMUM_NUM_CONTAINERS,
1039         .sg_tablesize                   = 16,
1040         .max_sectors                    = 128,
1041 #if (AAC_NUM_IO_FIB > 256)
1042         .cmd_per_lun                    = 256,
1043 #else
1044         .cmd_per_lun                    = AAC_NUM_IO_FIB,
1045 #endif
1046         .use_clustering                 = ENABLE_CLUSTERING,
1047         .emulated                       = 1,
1048 };
1049
1050 static void __aac_shutdown(struct aac_dev * aac)
1051 {
1052         if (aac->aif_thread)
1053                 kthread_stop(aac->thread);
1054         aac_send_shutdown(aac);
1055         aac_adapter_disable_int(aac);
1056         free_irq(aac->pdev->irq, aac);
1057         if (aac->msi)
1058                 pci_disable_msi(aac->pdev);
1059 }
1060
1061 static int __devinit aac_probe_one(struct pci_dev *pdev,
1062                 const struct pci_device_id *id)
1063 {
1064         unsigned index = id->driver_data;
1065         struct Scsi_Host *shost;
1066         struct aac_dev *aac;
1067         struct list_head *insert = &aac_devices;
1068         int error = -ENODEV;
1069         int unique_id = 0;
1070
1071         list_for_each_entry(aac, &aac_devices, entry) {
1072                 if (aac->id > unique_id)
1073                         break;
1074                 insert = &aac->entry;
1075                 unique_id++;
1076         }
1077
1078         error = pci_enable_device(pdev);
1079         if (error)
1080                 goto out;
1081         error = -ENODEV;
1082
1083         if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) ||
1084                         pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))
1085                 goto out_disable_pdev;
1086         /*
1087          * If the quirk31 bit is set, the adapter needs adapter
1088          * to driver communication memory to be allocated below 2gig
1089          */
1090         if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
1091                 if (pci_set_dma_mask(pdev, DMA_31BIT_MASK) ||
1092                                 pci_set_consistent_dma_mask(pdev, DMA_31BIT_MASK))
1093                         goto out_disable_pdev;
1094
1095         pci_set_master(pdev);
1096
1097         shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
1098         if (!shost)
1099                 goto out_disable_pdev;
1100
1101         shost->irq = pdev->irq;
1102         shost->base = pci_resource_start(pdev, 0);
1103         shost->unique_id = unique_id;
1104         shost->max_cmd_len = 16;
1105
1106         aac = (struct aac_dev *)shost->hostdata;
1107         aac->scsi_host_ptr = shost;
1108         aac->pdev = pdev;
1109         aac->name = aac_driver_template.name;
1110         aac->id = shost->unique_id;
1111         aac->cardtype = index;
1112         INIT_LIST_HEAD(&aac->entry);
1113
1114         aac->fibs = kmalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL);
1115         if (!aac->fibs)
1116                 goto out_free_host;
1117         spin_lock_init(&aac->fib_lock);
1118
1119         /*
1120          *      Map in the registers from the adapter.
1121          */
1122         aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
1123         if ((*aac_drivers[index].init)(aac))
1124                 goto out_unmap;
1125
1126         /*
1127          *      Start any kernel threads needed
1128          */
1129         aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
1130         if (IS_ERR(aac->thread)) {
1131                 printk(KERN_ERR "aacraid: Unable to create command thread.\n");
1132                 error = PTR_ERR(aac->thread);
1133                 goto out_deinit;
1134         }
1135
1136         /*
1137          * If we had set a smaller DMA mask earlier, set it to 4gig
1138          * now since the adapter can dma data to at least a 4gig
1139          * address space.
1140          */
1141         if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
1142                 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK))
1143                         goto out_deinit;
1144
1145         aac->maximum_num_channels = aac_drivers[index].channels;
1146         error = aac_get_adapter_info(aac);
1147         if (error < 0)
1148                 goto out_deinit;
1149
1150         /*
1151          * Lets override negotiations and drop the maximum SG limit to 34
1152          */
1153         if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
1154                         (shost->sg_tablesize > 34)) {
1155                 shost->sg_tablesize = 34;
1156                 shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1157         }
1158
1159         if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
1160                         (shost->sg_tablesize > 17)) {
1161                 shost->sg_tablesize = 17;
1162                 shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1163         }
1164
1165         error = pci_set_dma_max_seg_size(pdev,
1166                 (aac->adapter_info.options & AAC_OPT_NEW_COMM) ?
1167                         (shost->max_sectors << 9) : 65536);
1168         if (error)
1169                 goto out_deinit;
1170
1171         /*
1172          * Firmware printf works only with older firmware.
1173          */
1174         if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
1175                 aac->printf_enabled = 1;
1176         else
1177                 aac->printf_enabled = 0;
1178
1179         /*
1180          * max channel will be the physical channels plus 1 virtual channel
1181          * all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
1182          * physical channels are address by their actual physical number+1
1183          */
1184         if (aac->nondasd_support || expose_physicals || aac->jbod)
1185                 shost->max_channel = aac->maximum_num_channels;
1186         else
1187                 shost->max_channel = 0;
1188
1189         aac_get_config_status(aac, 0);
1190         aac_get_containers(aac);
1191         list_add(&aac->entry, insert);
1192
1193         shost->max_id = aac->maximum_num_containers;
1194         if (shost->max_id < aac->maximum_num_physicals)
1195                 shost->max_id = aac->maximum_num_physicals;
1196         if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
1197                 shost->max_id = MAXIMUM_NUM_CONTAINERS;
1198         else
1199                 shost->this_id = shost->max_id;
1200
1201         /*
1202          * dmb - we may need to move the setting of these parms somewhere else once
1203          * we get a fib that can report the actual numbers
1204          */
1205         shost->max_lun = AAC_MAX_LUN;
1206
1207         pci_set_drvdata(pdev, shost);
1208
1209         error = scsi_add_host(shost, &pdev->dev);
1210         if (error)
1211                 goto out_deinit;
1212         scsi_scan_host(shost);
1213
1214         return 0;
1215
1216  out_deinit:
1217         __aac_shutdown(aac);
1218  out_unmap:
1219         aac_fib_map_free(aac);
1220         if (aac->comm_addr)
1221                 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
1222                   aac->comm_phys);
1223         kfree(aac->queues);
1224         aac_adapter_ioremap(aac, 0);
1225         kfree(aac->fibs);
1226         kfree(aac->fsa_dev);
1227  out_free_host:
1228         scsi_host_put(shost);
1229  out_disable_pdev:
1230         pci_disable_device(pdev);
1231  out:
1232         return error;
1233 }
1234
1235 static void aac_shutdown(struct pci_dev *dev)
1236 {
1237         struct Scsi_Host *shost = pci_get_drvdata(dev);
1238         scsi_block_requests(shost);
1239         __aac_shutdown((struct aac_dev *)shost->hostdata);
1240 }
1241
1242 static void __devexit aac_remove_one(struct pci_dev *pdev)
1243 {
1244         struct Scsi_Host *shost = pci_get_drvdata(pdev);
1245         struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1246
1247         scsi_remove_host(shost);
1248
1249         __aac_shutdown(aac);
1250         aac_fib_map_free(aac);
1251         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
1252                         aac->comm_phys);
1253         kfree(aac->queues);
1254
1255         aac_adapter_ioremap(aac, 0);
1256
1257         kfree(aac->fibs);
1258         kfree(aac->fsa_dev);
1259
1260         list_del(&aac->entry);
1261         scsi_host_put(shost);
1262         pci_disable_device(pdev);
1263         if (list_empty(&aac_devices)) {
1264                 unregister_chrdev(aac_cfg_major, "aac");
1265                 aac_cfg_major = -1;
1266         }
1267 }
1268
1269 static struct pci_driver aac_pci_driver = {
1270         .name           = AAC_DRIVERNAME,
1271         .id_table       = aac_pci_tbl,
1272         .probe          = aac_probe_one,
1273         .remove         = __devexit_p(aac_remove_one),
1274         .shutdown       = aac_shutdown,
1275 };
1276
1277 static int __init aac_init(void)
1278 {
1279         int error;
1280
1281         printk(KERN_INFO "Adaptec %s driver %s\n",
1282           AAC_DRIVERNAME, aac_driver_version);
1283
1284         error = pci_register_driver(&aac_pci_driver);
1285         if (error < 0)
1286                 return error;
1287
1288         aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops);
1289         if (aac_cfg_major < 0) {
1290                 printk(KERN_WARNING
1291                         "aacraid: unable to register \"aac\" device.\n");
1292         }
1293
1294         return 0;
1295 }
1296
1297 static void __exit aac_exit(void)
1298 {
1299         if (aac_cfg_major > -1)
1300                 unregister_chrdev(aac_cfg_major, "aac");
1301         pci_unregister_driver(&aac_pci_driver);
1302 }
1303
1304 module_init(aac_init);
1305 module_exit(aac_exit);