]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/regulator/core.c
2ff76349f392d364ced271af303004a602b8e0a3
[linux-2.6-omap-h63xx.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /*
33  * struct regulator_map
34  *
35  * Used to provide symbolic supply names to devices.
36  */
37 struct regulator_map {
38         struct list_head list;
39         struct device *dev;
40         const char *supply;
41         struct regulator_dev *regulator;
42 };
43
44 /*
45  * struct regulator
46  *
47  * One for each consumer device.
48  */
49 struct regulator {
50         struct device *dev;
51         struct list_head list;
52         int uA_load;
53         int min_uV;
54         int max_uV;
55         int enabled; /* count of client enables */
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284         return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 }
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288 static ssize_t regulator_status_show(struct device *dev,
289                                    struct device_attribute *attr, char *buf)
290 {
291         struct regulator_dev *rdev = dev_get_drvdata(dev);
292         int status;
293         char *label;
294
295         status = rdev->desc->ops->get_status(rdev);
296         if (status < 0)
297                 return status;
298
299         switch (status) {
300         case REGULATOR_STATUS_OFF:
301                 label = "off";
302                 break;
303         case REGULATOR_STATUS_ON:
304                 label = "on";
305                 break;
306         case REGULATOR_STATUS_ERROR:
307                 label = "error";
308                 break;
309         case REGULATOR_STATUS_FAST:
310                 label = "fast";
311                 break;
312         case REGULATOR_STATUS_NORMAL:
313                 label = "normal";
314                 break;
315         case REGULATOR_STATUS_IDLE:
316                 label = "idle";
317                 break;
318         case REGULATOR_STATUS_STANDBY:
319                 label = "standby";
320                 break;
321         default:
322                 return -ERANGE;
323         }
324
325         return sprintf(buf, "%s\n", label);
326 }
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329 static ssize_t regulator_min_uA_show(struct device *dev,
330                                     struct device_attribute *attr, char *buf)
331 {
332         struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334         if (!rdev->constraints)
335                 return sprintf(buf, "constraint not defined\n");
336
337         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 }
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341 static ssize_t regulator_max_uA_show(struct device *dev,
342                                     struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         if (!rdev->constraints)
347                 return sprintf(buf, "constraint not defined\n");
348
349         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 }
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353 static ssize_t regulator_min_uV_show(struct device *dev,
354                                     struct device_attribute *attr, char *buf)
355 {
356         struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358         if (!rdev->constraints)
359                 return sprintf(buf, "constraint not defined\n");
360
361         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 }
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365 static ssize_t regulator_max_uV_show(struct device *dev,
366                                     struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370         if (!rdev->constraints)
371                 return sprintf(buf, "constraint not defined\n");
372
373         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 }
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377 static ssize_t regulator_total_uA_show(struct device *dev,
378                                       struct device_attribute *attr, char *buf)
379 {
380         struct regulator_dev *rdev = dev_get_drvdata(dev);
381         struct regulator *regulator;
382         int uA = 0;
383
384         mutex_lock(&rdev->mutex);
385         list_for_each_entry(regulator, &rdev->consumer_list, list)
386             uA += regulator->uA_load;
387         mutex_unlock(&rdev->mutex);
388         return sprintf(buf, "%d\n", uA);
389 }
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392 static ssize_t regulator_num_users_show(struct device *dev,
393                                       struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         return sprintf(buf, "%d\n", rdev->use_count);
397 }
398
399 static ssize_t regulator_type_show(struct device *dev,
400                                   struct device_attribute *attr, char *buf)
401 {
402         struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404         switch (rdev->desc->type) {
405         case REGULATOR_VOLTAGE:
406                 return sprintf(buf, "voltage\n");
407         case REGULATOR_CURRENT:
408                 return sprintf(buf, "current\n");
409         }
410         return sprintf(buf, "unknown\n");
411 }
412
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414                                 struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 }
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421                 regulator_suspend_mem_uV_show, NULL);
422
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424                                 struct device_attribute *attr, char *buf)
425 {
426         struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 }
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431                 regulator_suspend_disk_uV_show, NULL);
432
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434                                 struct device_attribute *attr, char *buf)
435 {
436         struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 }
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441                 regulator_suspend_standby_uV_show, NULL);
442
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444                                 struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         return regulator_print_opmode(buf,
449                 rdev->constraints->state_mem.mode);
450 }
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452                 regulator_suspend_mem_mode_show, NULL);
453
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_disk.mode);
461 }
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463                 regulator_suspend_disk_mode_show, NULL);
464
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_standby.mode);
472 }
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474                 regulator_suspend_standby_mode_show, NULL);
475
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477                                    struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_state(buf,
482                         rdev->constraints->state_mem.enabled);
483 }
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485                 regulator_suspend_mem_state_show, NULL);
486
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_disk.enabled);
494 }
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496                 regulator_suspend_disk_state_show, NULL);
497
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_standby.enabled);
505 }
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507                 regulator_suspend_standby_state_show, NULL);
508
509
510 /*
511  * These are the only attributes are present for all regulators.
512  * Other attributes are a function of regulator functionality.
513  */
514 static struct device_attribute regulator_dev_attrs[] = {
515         __ATTR(name, 0444, regulator_name_show, NULL),
516         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
517         __ATTR(type, 0444, regulator_type_show, NULL),
518         __ATTR_NULL,
519 };
520
521 static void regulator_dev_release(struct device *dev)
522 {
523         struct regulator_dev *rdev = dev_get_drvdata(dev);
524         kfree(rdev);
525 }
526
527 static struct class regulator_class = {
528         .name = "regulator",
529         .dev_release = regulator_dev_release,
530         .dev_attrs = regulator_dev_attrs,
531 };
532
533 /* Calculate the new optimum regulator operating mode based on the new total
534  * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
536 {
537         struct regulator *sibling;
538         int current_uA = 0, output_uV, input_uV, err;
539         unsigned int mode;
540
541         err = regulator_check_drms(rdev);
542         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544         return;
545
546         /* get output voltage */
547         output_uV = rdev->desc->ops->get_voltage(rdev);
548         if (output_uV <= 0)
549                 return;
550
551         /* get input voltage */
552         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554         else
555                 input_uV = rdev->constraints->input_uV;
556         if (input_uV <= 0)
557                 return;
558
559         /* calc total requested load */
560         list_for_each_entry(sibling, &rdev->consumer_list, list)
561             current_uA += sibling->uA_load;
562
563         /* now get the optimum mode for our new total regulator load */
564         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565                                                   output_uV, current_uA);
566
567         /* check the new mode is allowed */
568         err = regulator_check_mode(rdev, mode);
569         if (err == 0)
570                 rdev->desc->ops->set_mode(rdev, mode);
571 }
572
573 static int suspend_set_state(struct regulator_dev *rdev,
574         struct regulator_state *rstate)
575 {
576         int ret = 0;
577
578         /* enable & disable are mandatory for suspend control */
579         if (!rdev->desc->ops->set_suspend_enable ||
580                 !rdev->desc->ops->set_suspend_disable) {
581                 printk(KERN_ERR "%s: no way to set suspend state\n",
582                         __func__);
583                 return -EINVAL;
584         }
585
586         if (rstate->enabled)
587                 ret = rdev->desc->ops->set_suspend_enable(rdev);
588         else
589                 ret = rdev->desc->ops->set_suspend_disable(rdev);
590         if (ret < 0) {
591                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592                 return ret;
593         }
594
595         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597                 if (ret < 0) {
598                         printk(KERN_ERR "%s: failed to set voltage\n",
599                                 __func__);
600                         return ret;
601                 }
602         }
603
604         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606                 if (ret < 0) {
607                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
608                         return ret;
609                 }
610         }
611         return ret;
612 }
613
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 {
617         if (!rdev->constraints)
618                 return -EINVAL;
619
620         switch (state) {
621         case PM_SUSPEND_STANDBY:
622                 return suspend_set_state(rdev,
623                         &rdev->constraints->state_standby);
624         case PM_SUSPEND_MEM:
625                 return suspend_set_state(rdev,
626                         &rdev->constraints->state_mem);
627         case PM_SUSPEND_MAX:
628                 return suspend_set_state(rdev,
629                         &rdev->constraints->state_disk);
630         default:
631                 return -EINVAL;
632         }
633 }
634
635 static void print_constraints(struct regulator_dev *rdev)
636 {
637         struct regulation_constraints *constraints = rdev->constraints;
638         char buf[80];
639         int count;
640
641         if (rdev->desc->type == REGULATOR_VOLTAGE) {
642                 if (constraints->min_uV == constraints->max_uV)
643                         count = sprintf(buf, "%d mV ",
644                                         constraints->min_uV / 1000);
645                 else
646                         count = sprintf(buf, "%d <--> %d mV ",
647                                         constraints->min_uV / 1000,
648                                         constraints->max_uV / 1000);
649         } else {
650                 if (constraints->min_uA == constraints->max_uA)
651                         count = sprintf(buf, "%d mA ",
652                                         constraints->min_uA / 1000);
653                 else
654                         count = sprintf(buf, "%d <--> %d mA ",
655                                         constraints->min_uA / 1000,
656                                         constraints->max_uA / 1000);
657         }
658         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659                 count += sprintf(buf + count, "fast ");
660         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661                 count += sprintf(buf + count, "normal ");
662         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663                 count += sprintf(buf + count, "idle ");
664         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665                 count += sprintf(buf + count, "standby");
666
667         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668 }
669
670 /**
671  * set_machine_constraints - sets regulator constraints
672  * @rdev: regulator source
673  * @constraints: constraints to apply
674  *
675  * Allows platform initialisation code to define and constrain
676  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677  * Constraints *must* be set by platform code in order for some
678  * regulator operations to proceed i.e. set_voltage, set_current_limit,
679  * set_mode.
680  */
681 static int set_machine_constraints(struct regulator_dev *rdev,
682         struct regulation_constraints *constraints)
683 {
684         int ret = 0;
685         const char *name;
686         struct regulator_ops *ops = rdev->desc->ops;
687
688         if (constraints->name)
689                 name = constraints->name;
690         else if (rdev->desc->name)
691                 name = rdev->desc->name;
692         else
693                 name = "regulator";
694
695         /* constrain machine-level voltage specs to fit
696          * the actual range supported by this regulator.
697          */
698         if (ops->list_voltage && rdev->desc->n_voltages) {
699                 int     count = rdev->desc->n_voltages;
700                 int     i;
701                 int     min_uV = INT_MAX;
702                 int     max_uV = INT_MIN;
703                 int     cmin = constraints->min_uV;
704                 int     cmax = constraints->max_uV;
705
706                 /* it's safe to autoconfigure fixed-voltage supplies */
707                 if (count == 1 && !cmin) {
708                         cmin = INT_MIN;
709                         cmax = INT_MAX;
710                 }
711
712                 /* voltage constraints are optional */
713                 if ((cmin == 0) && (cmax == 0))
714                         goto out;
715
716                 /* else require explicit machine-level constraints */
717                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
718                         pr_err("%s: %s '%s' voltage constraints\n",
719                                        __func__, "invalid", name);
720                         ret = -EINVAL;
721                         goto out;
722                 }
723
724                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
725                 for (i = 0; i < count; i++) {
726                         int     value;
727
728                         value = ops->list_voltage(rdev, i);
729                         if (value <= 0)
730                                 continue;
731
732                         /* maybe adjust [min_uV..max_uV] */
733                         if (value >= cmin && value < min_uV)
734                                 min_uV = value;
735                         if (value <= cmax && value > max_uV)
736                                 max_uV = value;
737                 }
738
739                 /* final: [min_uV..max_uV] valid iff constraints valid */
740                 if (max_uV < min_uV) {
741                         pr_err("%s: %s '%s' voltage constraints\n",
742                                        __func__, "unsupportable", name);
743                         ret = -EINVAL;
744                         goto out;
745                 }
746
747                 /* use regulator's subset of machine constraints */
748                 if (constraints->min_uV < min_uV) {
749                         pr_debug("%s: override '%s' %s, %d -> %d\n",
750                                        __func__, name, "min_uV",
751                                         constraints->min_uV, min_uV);
752                         constraints->min_uV = min_uV;
753                 }
754                 if (constraints->max_uV > max_uV) {
755                         pr_debug("%s: override '%s' %s, %d -> %d\n",
756                                        __func__, name, "max_uV",
757                                         constraints->max_uV, max_uV);
758                         constraints->max_uV = max_uV;
759                 }
760         }
761
762         rdev->constraints = constraints;
763
764         /* do we need to apply the constraint voltage */
765         if (rdev->constraints->apply_uV &&
766                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
767                 ops->set_voltage) {
768                 ret = ops->set_voltage(rdev,
769                         rdev->constraints->min_uV, rdev->constraints->max_uV);
770                         if (ret < 0) {
771                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
772                                        __func__,
773                                        rdev->constraints->min_uV, name);
774                                 rdev->constraints = NULL;
775                                 goto out;
776                         }
777         }
778
779         /* are we enabled at boot time by firmware / bootloader */
780         if (rdev->constraints->boot_on)
781                 rdev->use_count = 1;
782
783         /* do we need to setup our suspend state */
784         if (constraints->initial_state) {
785                 ret = suspend_prepare(rdev, constraints->initial_state);
786                 if (ret < 0) {
787                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
788                                __func__, name);
789                         rdev->constraints = NULL;
790                         goto out;
791                 }
792         }
793
794         if (constraints->initial_mode) {
795                 if (!ops->set_mode) {
796                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
797                                __func__, name);
798                         ret = -EINVAL;
799                         goto out;
800                 }
801
802                 ret = ops->set_mode(rdev, constraints->initial_mode);
803                 if (ret < 0) {
804                         printk(KERN_ERR
805                                "%s: failed to set initial mode for %s: %d\n",
806                                __func__, name, ret);
807                         goto out;
808                 }
809         }
810
811         /* if always_on is set then turn the regulator on if it's not
812          * already on. */
813         if (constraints->always_on && ops->enable &&
814             ((ops->is_enabled && !ops->is_enabled(rdev)) ||
815              (!ops->is_enabled && !constraints->boot_on))) {
816                 ret = ops->enable(rdev);
817                 if (ret < 0) {
818                         printk(KERN_ERR "%s: failed to enable %s\n",
819                                __func__, name);
820                         rdev->constraints = NULL;
821                         goto out;
822                 }
823         }
824
825         print_constraints(rdev);
826 out:
827         return ret;
828 }
829
830 /**
831  * set_supply - set regulator supply regulator
832  * @rdev: regulator name
833  * @supply_rdev: supply regulator name
834  *
835  * Called by platform initialisation code to set the supply regulator for this
836  * regulator. This ensures that a regulators supply will also be enabled by the
837  * core if it's child is enabled.
838  */
839 static int set_supply(struct regulator_dev *rdev,
840         struct regulator_dev *supply_rdev)
841 {
842         int err;
843
844         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
845                                 "supply");
846         if (err) {
847                 printk(KERN_ERR
848                        "%s: could not add device link %s err %d\n",
849                        __func__, supply_rdev->dev.kobj.name, err);
850                        goto out;
851         }
852         rdev->supply = supply_rdev;
853         list_add(&rdev->slist, &supply_rdev->supply_list);
854 out:
855         return err;
856 }
857
858 /**
859  * set_consumer_device_supply: Bind a regulator to a symbolic supply
860  * @rdev:         regulator source
861  * @consumer_dev: device the supply applies to
862  * @supply:       symbolic name for supply
863  *
864  * Allows platform initialisation code to map physical regulator
865  * sources to symbolic names for supplies for use by devices.  Devices
866  * should use these symbolic names to request regulators, avoiding the
867  * need to provide board-specific regulator names as platform data.
868  */
869 static int set_consumer_device_supply(struct regulator_dev *rdev,
870         struct device *consumer_dev, const char *supply)
871 {
872         struct regulator_map *node;
873
874         if (supply == NULL)
875                 return -EINVAL;
876
877         list_for_each_entry(node, &regulator_map_list, list) {
878                 if (consumer_dev != node->dev)
879                         continue;
880                 if (strcmp(node->supply, supply) != 0)
881                         continue;
882
883                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
884                                 dev_name(&node->regulator->dev),
885                                 node->regulator->desc->name,
886                                 supply,
887                                 dev_name(&rdev->dev), rdev->desc->name);
888                 return -EBUSY;
889         }
890
891         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
892         if (node == NULL)
893                 return -ENOMEM;
894
895         node->regulator = rdev;
896         node->dev = consumer_dev;
897         node->supply = supply;
898
899         list_add(&node->list, &regulator_map_list);
900         return 0;
901 }
902
903 static void unset_consumer_device_supply(struct regulator_dev *rdev,
904         struct device *consumer_dev)
905 {
906         struct regulator_map *node, *n;
907
908         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
909                 if (rdev == node->regulator &&
910                         consumer_dev == node->dev) {
911                         list_del(&node->list);
912                         kfree(node);
913                         return;
914                 }
915         }
916 }
917
918 static void unset_regulator_supplies(struct regulator_dev *rdev)
919 {
920         struct regulator_map *node, *n;
921
922         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
923                 if (rdev == node->regulator) {
924                         list_del(&node->list);
925                         kfree(node);
926                         return;
927                 }
928         }
929 }
930
931 #define REG_STR_SIZE    32
932
933 static struct regulator *create_regulator(struct regulator_dev *rdev,
934                                           struct device *dev,
935                                           const char *supply_name)
936 {
937         struct regulator *regulator;
938         char buf[REG_STR_SIZE];
939         int err, size;
940
941         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
942         if (regulator == NULL)
943                 return NULL;
944
945         mutex_lock(&rdev->mutex);
946         regulator->rdev = rdev;
947         list_add(&regulator->list, &rdev->consumer_list);
948
949         if (dev) {
950                 /* create a 'requested_microamps_name' sysfs entry */
951                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
952                         supply_name);
953                 if (size >= REG_STR_SIZE)
954                         goto overflow_err;
955
956                 regulator->dev = dev;
957                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
958                 if (regulator->dev_attr.attr.name == NULL)
959                         goto attr_name_err;
960
961                 regulator->dev_attr.attr.owner = THIS_MODULE;
962                 regulator->dev_attr.attr.mode = 0444;
963                 regulator->dev_attr.show = device_requested_uA_show;
964                 err = device_create_file(dev, &regulator->dev_attr);
965                 if (err < 0) {
966                         printk(KERN_WARNING "%s: could not add regulator_dev"
967                                 " load sysfs\n", __func__);
968                         goto attr_name_err;
969                 }
970
971                 /* also add a link to the device sysfs entry */
972                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
973                                  dev->kobj.name, supply_name);
974                 if (size >= REG_STR_SIZE)
975                         goto attr_err;
976
977                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
978                 if (regulator->supply_name == NULL)
979                         goto attr_err;
980
981                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
982                                         buf);
983                 if (err) {
984                         printk(KERN_WARNING
985                                "%s: could not add device link %s err %d\n",
986                                __func__, dev->kobj.name, err);
987                         device_remove_file(dev, &regulator->dev_attr);
988                         goto link_name_err;
989                 }
990         }
991         mutex_unlock(&rdev->mutex);
992         return regulator;
993 link_name_err:
994         kfree(regulator->supply_name);
995 attr_err:
996         device_remove_file(regulator->dev, &regulator->dev_attr);
997 attr_name_err:
998         kfree(regulator->dev_attr.attr.name);
999 overflow_err:
1000         list_del(&regulator->list);
1001         kfree(regulator);
1002         mutex_unlock(&rdev->mutex);
1003         return NULL;
1004 }
1005
1006 /**
1007  * regulator_get - lookup and obtain a reference to a regulator.
1008  * @dev: device for regulator "consumer"
1009  * @id: Supply name or regulator ID.
1010  *
1011  * Returns a struct regulator corresponding to the regulator producer,
1012  * or IS_ERR() condition containing errno.
1013  *
1014  * Use of supply names configured via regulator_set_device_supply() is
1015  * strongly encouraged.  It is recommended that the supply name used
1016  * should match the name used for the supply and/or the relevant
1017  * device pins in the datasheet.
1018  */
1019 struct regulator *regulator_get(struct device *dev, const char *id)
1020 {
1021         struct regulator_dev *rdev;
1022         struct regulator_map *map;
1023         struct regulator *regulator = ERR_PTR(-ENODEV);
1024
1025         if (id == NULL) {
1026                 printk(KERN_ERR "regulator: get() with no identifier\n");
1027                 return regulator;
1028         }
1029
1030         mutex_lock(&regulator_list_mutex);
1031
1032         list_for_each_entry(map, &regulator_map_list, list) {
1033                 if (dev == map->dev &&
1034                     strcmp(map->supply, id) == 0) {
1035                         rdev = map->regulator;
1036                         goto found;
1037                 }
1038         }
1039         printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
1040                id);
1041         mutex_unlock(&regulator_list_mutex);
1042         return regulator;
1043
1044 found:
1045         if (!try_module_get(rdev->owner))
1046                 goto out;
1047
1048         regulator = create_regulator(rdev, dev, id);
1049         if (regulator == NULL) {
1050                 regulator = ERR_PTR(-ENOMEM);
1051                 module_put(rdev->owner);
1052         }
1053
1054 out:
1055         mutex_unlock(&regulator_list_mutex);
1056         return regulator;
1057 }
1058 EXPORT_SYMBOL_GPL(regulator_get);
1059
1060 /**
1061  * regulator_put - "free" the regulator source
1062  * @regulator: regulator source
1063  *
1064  * Note: drivers must ensure that all regulator_enable calls made on this
1065  * regulator source are balanced by regulator_disable calls prior to calling
1066  * this function.
1067  */
1068 void regulator_put(struct regulator *regulator)
1069 {
1070         struct regulator_dev *rdev;
1071
1072         if (regulator == NULL || IS_ERR(regulator))
1073                 return;
1074
1075         mutex_lock(&regulator_list_mutex);
1076         rdev = regulator->rdev;
1077
1078         if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
1079                                regulator->supply_name))
1080                 _regulator_disable(rdev);
1081
1082         /* remove any sysfs entries */
1083         if (regulator->dev) {
1084                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1085                 kfree(regulator->supply_name);
1086                 device_remove_file(regulator->dev, &regulator->dev_attr);
1087                 kfree(regulator->dev_attr.attr.name);
1088         }
1089         list_del(&regulator->list);
1090         kfree(regulator);
1091
1092         module_put(rdev->owner);
1093         mutex_unlock(&regulator_list_mutex);
1094 }
1095 EXPORT_SYMBOL_GPL(regulator_put);
1096
1097 /* locks held by regulator_enable() */
1098 static int _regulator_enable(struct regulator_dev *rdev)
1099 {
1100         int ret = -EINVAL;
1101
1102         if (!rdev->constraints) {
1103                 printk(KERN_ERR "%s: %s has no constraints\n",
1104                        __func__, rdev->desc->name);
1105                 return ret;
1106         }
1107
1108         /* do we need to enable the supply regulator first */
1109         if (rdev->supply) {
1110                 ret = _regulator_enable(rdev->supply);
1111                 if (ret < 0) {
1112                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1113                                __func__, rdev->desc->name, ret);
1114                         return ret;
1115                 }
1116         }
1117
1118         /* check voltage and requested load before enabling */
1119         if (rdev->desc->ops->enable) {
1120
1121                 if (rdev->constraints &&
1122                         (rdev->constraints->valid_ops_mask &
1123                         REGULATOR_CHANGE_DRMS))
1124                         drms_uA_update(rdev);
1125
1126                 ret = rdev->desc->ops->enable(rdev);
1127                 if (ret < 0) {
1128                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1129                                __func__, rdev->desc->name, ret);
1130                         return ret;
1131                 }
1132                 rdev->use_count++;
1133                 return ret;
1134         }
1135
1136         return ret;
1137 }
1138
1139 /**
1140  * regulator_enable - enable regulator output
1141  * @regulator: regulator source
1142  *
1143  * Request that the regulator be enabled with the regulator output at
1144  * the predefined voltage or current value.  Calls to regulator_enable()
1145  * must be balanced with calls to regulator_disable().
1146  *
1147  * NOTE: the output value can be set by other drivers, boot loader or may be
1148  * hardwired in the regulator.
1149  */
1150 int regulator_enable(struct regulator *regulator)
1151 {
1152         struct regulator_dev *rdev = regulator->rdev;
1153         int ret = 0;
1154
1155         mutex_lock(&rdev->mutex);
1156         if (regulator->enabled == 0)
1157                 ret = _regulator_enable(rdev);
1158         else if (regulator->enabled < 0)
1159                 ret = -EIO;
1160         if (ret == 0)
1161                 regulator->enabled++;
1162         mutex_unlock(&rdev->mutex);
1163         return ret;
1164 }
1165 EXPORT_SYMBOL_GPL(regulator_enable);
1166
1167 /* locks held by regulator_disable() */
1168 static int _regulator_disable(struct regulator_dev *rdev)
1169 {
1170         int ret = 0;
1171
1172         /* are we the last user and permitted to disable ? */
1173         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1174
1175                 /* we are last user */
1176                 if (rdev->desc->ops->disable) {
1177                         ret = rdev->desc->ops->disable(rdev);
1178                         if (ret < 0) {
1179                                 printk(KERN_ERR "%s: failed to disable %s\n",
1180                                        __func__, rdev->desc->name);
1181                                 return ret;
1182                         }
1183                 }
1184
1185                 /* decrease our supplies ref count and disable if required */
1186                 if (rdev->supply)
1187                         _regulator_disable(rdev->supply);
1188
1189                 rdev->use_count = 0;
1190         } else if (rdev->use_count > 1) {
1191
1192                 if (rdev->constraints &&
1193                         (rdev->constraints->valid_ops_mask &
1194                         REGULATOR_CHANGE_DRMS))
1195                         drms_uA_update(rdev);
1196
1197                 rdev->use_count--;
1198         }
1199         return ret;
1200 }
1201
1202 /**
1203  * regulator_disable - disable regulator output
1204  * @regulator: regulator source
1205  *
1206  * Disable the regulator output voltage or current.  Calls to
1207  * regulator_enable() must be balanced with calls to
1208  * regulator_disable().
1209  *
1210  * NOTE: this will only disable the regulator output if no other consumer
1211  * devices have it enabled, the regulator device supports disabling and
1212  * machine constraints permit this operation.
1213  */
1214 int regulator_disable(struct regulator *regulator)
1215 {
1216         struct regulator_dev *rdev = regulator->rdev;
1217         int ret = 0;
1218
1219         mutex_lock(&rdev->mutex);
1220         if (regulator->enabled == 1) {
1221                 ret = _regulator_disable(rdev);
1222                 if (ret == 0)
1223                         regulator->uA_load = 0;
1224         } else if (WARN(regulator->enabled <= 0,
1225                         "unbalanced disables for supply %s\n",
1226                         regulator->supply_name))
1227                 ret = -EIO;
1228         if (ret == 0)
1229                 regulator->enabled--;
1230         mutex_unlock(&rdev->mutex);
1231         return ret;
1232 }
1233 EXPORT_SYMBOL_GPL(regulator_disable);
1234
1235 /* locks held by regulator_force_disable() */
1236 static int _regulator_force_disable(struct regulator_dev *rdev)
1237 {
1238         int ret = 0;
1239
1240         /* force disable */
1241         if (rdev->desc->ops->disable) {
1242                 /* ah well, who wants to live forever... */
1243                 ret = rdev->desc->ops->disable(rdev);
1244                 if (ret < 0) {
1245                         printk(KERN_ERR "%s: failed to force disable %s\n",
1246                                __func__, rdev->desc->name);
1247                         return ret;
1248                 }
1249                 /* notify other consumers that power has been forced off */
1250                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1251                         NULL);
1252         }
1253
1254         /* decrease our supplies ref count and disable if required */
1255         if (rdev->supply)
1256                 _regulator_disable(rdev->supply);
1257
1258         rdev->use_count = 0;
1259         return ret;
1260 }
1261
1262 /**
1263  * regulator_force_disable - force disable regulator output
1264  * @regulator: regulator source
1265  *
1266  * Forcibly disable the regulator output voltage or current.
1267  * NOTE: this *will* disable the regulator output even if other consumer
1268  * devices have it enabled. This should be used for situations when device
1269  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1270  */
1271 int regulator_force_disable(struct regulator *regulator)
1272 {
1273         int ret;
1274
1275         mutex_lock(&regulator->rdev->mutex);
1276         regulator->enabled = 0;
1277         regulator->uA_load = 0;
1278         ret = _regulator_force_disable(regulator->rdev);
1279         mutex_unlock(&regulator->rdev->mutex);
1280         return ret;
1281 }
1282 EXPORT_SYMBOL_GPL(regulator_force_disable);
1283
1284 static int _regulator_is_enabled(struct regulator_dev *rdev)
1285 {
1286         int ret;
1287
1288         mutex_lock(&rdev->mutex);
1289
1290         /* sanity check */
1291         if (!rdev->desc->ops->is_enabled) {
1292                 ret = -EINVAL;
1293                 goto out;
1294         }
1295
1296         ret = rdev->desc->ops->is_enabled(rdev);
1297 out:
1298         mutex_unlock(&rdev->mutex);
1299         return ret;
1300 }
1301
1302 /**
1303  * regulator_is_enabled - is the regulator output enabled
1304  * @regulator: regulator source
1305  *
1306  * Returns positive if the regulator driver backing the source/client
1307  * has requested that the device be enabled, zero if it hasn't, else a
1308  * negative errno code.
1309  *
1310  * Note that the device backing this regulator handle can have multiple
1311  * users, so it might be enabled even if regulator_enable() was never
1312  * called for this particular source.
1313  */
1314 int regulator_is_enabled(struct regulator *regulator)
1315 {
1316         return _regulator_is_enabled(regulator->rdev);
1317 }
1318 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1319
1320 /**
1321  * regulator_count_voltages - count regulator_list_voltage() selectors
1322  * @regulator: regulator source
1323  *
1324  * Returns number of selectors, or negative errno.  Selectors are
1325  * numbered starting at zero, and typically correspond to bitfields
1326  * in hardware registers.
1327  */
1328 int regulator_count_voltages(struct regulator *regulator)
1329 {
1330         struct regulator_dev    *rdev = regulator->rdev;
1331
1332         return rdev->desc->n_voltages ? : -EINVAL;
1333 }
1334 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1335
1336 /**
1337  * regulator_list_voltage - enumerate supported voltages
1338  * @regulator: regulator source
1339  * @selector: identify voltage to list
1340  * Context: can sleep
1341  *
1342  * Returns a voltage that can be passed to @regulator_set_voltage(),
1343  * zero if this selector code can't be used on this sytem, or a
1344  * negative errno.
1345  */
1346 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1347 {
1348         struct regulator_dev    *rdev = regulator->rdev;
1349         struct regulator_ops    *ops = rdev->desc->ops;
1350         int                     ret;
1351
1352         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1353                 return -EINVAL;
1354
1355         mutex_lock(&rdev->mutex);
1356         ret = ops->list_voltage(rdev, selector);
1357         mutex_unlock(&rdev->mutex);
1358
1359         if (ret > 0) {
1360                 if (ret < rdev->constraints->min_uV)
1361                         ret = 0;
1362                 else if (ret > rdev->constraints->max_uV)
1363                         ret = 0;
1364         }
1365
1366         return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1369
1370 /**
1371  * regulator_set_voltage - set regulator output voltage
1372  * @regulator: regulator source
1373  * @min_uV: Minimum required voltage in uV
1374  * @max_uV: Maximum acceptable voltage in uV
1375  *
1376  * Sets a voltage regulator to the desired output voltage. This can be set
1377  * during any regulator state. IOW, regulator can be disabled or enabled.
1378  *
1379  * If the regulator is enabled then the voltage will change to the new value
1380  * immediately otherwise if the regulator is disabled the regulator will
1381  * output at the new voltage when enabled.
1382  *
1383  * NOTE: If the regulator is shared between several devices then the lowest
1384  * request voltage that meets the system constraints will be used.
1385  * Regulator system constraints must be set for this regulator before
1386  * calling this function otherwise this call will fail.
1387  */
1388 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1389 {
1390         struct regulator_dev *rdev = regulator->rdev;
1391         int ret;
1392
1393         mutex_lock(&rdev->mutex);
1394
1395         /* sanity check */
1396         if (!rdev->desc->ops->set_voltage) {
1397                 ret = -EINVAL;
1398                 goto out;
1399         }
1400
1401         /* constraints check */
1402         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1403         if (ret < 0)
1404                 goto out;
1405         regulator->min_uV = min_uV;
1406         regulator->max_uV = max_uV;
1407         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1408
1409 out:
1410         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1411         mutex_unlock(&rdev->mutex);
1412         return ret;
1413 }
1414 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1415
1416 static int _regulator_get_voltage(struct regulator_dev *rdev)
1417 {
1418         /* sanity check */
1419         if (rdev->desc->ops->get_voltage)
1420                 return rdev->desc->ops->get_voltage(rdev);
1421         else
1422                 return -EINVAL;
1423 }
1424
1425 /**
1426  * regulator_get_voltage - get regulator output voltage
1427  * @regulator: regulator source
1428  *
1429  * This returns the current regulator voltage in uV.
1430  *
1431  * NOTE: If the regulator is disabled it will return the voltage value. This
1432  * function should not be used to determine regulator state.
1433  */
1434 int regulator_get_voltage(struct regulator *regulator)
1435 {
1436         int ret;
1437
1438         mutex_lock(&regulator->rdev->mutex);
1439
1440         ret = _regulator_get_voltage(regulator->rdev);
1441
1442         mutex_unlock(&regulator->rdev->mutex);
1443
1444         return ret;
1445 }
1446 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1447
1448 /**
1449  * regulator_set_current_limit - set regulator output current limit
1450  * @regulator: regulator source
1451  * @min_uA: Minimuum supported current in uA
1452  * @max_uA: Maximum supported current in uA
1453  *
1454  * Sets current sink to the desired output current. This can be set during
1455  * any regulator state. IOW, regulator can be disabled or enabled.
1456  *
1457  * If the regulator is enabled then the current will change to the new value
1458  * immediately otherwise if the regulator is disabled the regulator will
1459  * output at the new current when enabled.
1460  *
1461  * NOTE: Regulator system constraints must be set for this regulator before
1462  * calling this function otherwise this call will fail.
1463  */
1464 int regulator_set_current_limit(struct regulator *regulator,
1465                                int min_uA, int max_uA)
1466 {
1467         struct regulator_dev *rdev = regulator->rdev;
1468         int ret;
1469
1470         mutex_lock(&rdev->mutex);
1471
1472         /* sanity check */
1473         if (!rdev->desc->ops->set_current_limit) {
1474                 ret = -EINVAL;
1475                 goto out;
1476         }
1477
1478         /* constraints check */
1479         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1480         if (ret < 0)
1481                 goto out;
1482
1483         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1484 out:
1485         mutex_unlock(&rdev->mutex);
1486         return ret;
1487 }
1488 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1489
1490 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1491 {
1492         int ret;
1493
1494         mutex_lock(&rdev->mutex);
1495
1496         /* sanity check */
1497         if (!rdev->desc->ops->get_current_limit) {
1498                 ret = -EINVAL;
1499                 goto out;
1500         }
1501
1502         ret = rdev->desc->ops->get_current_limit(rdev);
1503 out:
1504         mutex_unlock(&rdev->mutex);
1505         return ret;
1506 }
1507
1508 /**
1509  * regulator_get_current_limit - get regulator output current
1510  * @regulator: regulator source
1511  *
1512  * This returns the current supplied by the specified current sink in uA.
1513  *
1514  * NOTE: If the regulator is disabled it will return the current value. This
1515  * function should not be used to determine regulator state.
1516  */
1517 int regulator_get_current_limit(struct regulator *regulator)
1518 {
1519         return _regulator_get_current_limit(regulator->rdev);
1520 }
1521 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1522
1523 /**
1524  * regulator_set_mode - set regulator operating mode
1525  * @regulator: regulator source
1526  * @mode: operating mode - one of the REGULATOR_MODE constants
1527  *
1528  * Set regulator operating mode to increase regulator efficiency or improve
1529  * regulation performance.
1530  *
1531  * NOTE: Regulator system constraints must be set for this regulator before
1532  * calling this function otherwise this call will fail.
1533  */
1534 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1535 {
1536         struct regulator_dev *rdev = regulator->rdev;
1537         int ret;
1538
1539         mutex_lock(&rdev->mutex);
1540
1541         /* sanity check */
1542         if (!rdev->desc->ops->set_mode) {
1543                 ret = -EINVAL;
1544                 goto out;
1545         }
1546
1547         /* constraints check */
1548         ret = regulator_check_mode(rdev, mode);
1549         if (ret < 0)
1550                 goto out;
1551
1552         ret = rdev->desc->ops->set_mode(rdev, mode);
1553 out:
1554         mutex_unlock(&rdev->mutex);
1555         return ret;
1556 }
1557 EXPORT_SYMBOL_GPL(regulator_set_mode);
1558
1559 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1560 {
1561         int ret;
1562
1563         mutex_lock(&rdev->mutex);
1564
1565         /* sanity check */
1566         if (!rdev->desc->ops->get_mode) {
1567                 ret = -EINVAL;
1568                 goto out;
1569         }
1570
1571         ret = rdev->desc->ops->get_mode(rdev);
1572 out:
1573         mutex_unlock(&rdev->mutex);
1574         return ret;
1575 }
1576
1577 /**
1578  * regulator_get_mode - get regulator operating mode
1579  * @regulator: regulator source
1580  *
1581  * Get the current regulator operating mode.
1582  */
1583 unsigned int regulator_get_mode(struct regulator *regulator)
1584 {
1585         return _regulator_get_mode(regulator->rdev);
1586 }
1587 EXPORT_SYMBOL_GPL(regulator_get_mode);
1588
1589 /**
1590  * regulator_set_optimum_mode - set regulator optimum operating mode
1591  * @regulator: regulator source
1592  * @uA_load: load current
1593  *
1594  * Notifies the regulator core of a new device load. This is then used by
1595  * DRMS (if enabled by constraints) to set the most efficient regulator
1596  * operating mode for the new regulator loading.
1597  *
1598  * Consumer devices notify their supply regulator of the maximum power
1599  * they will require (can be taken from device datasheet in the power
1600  * consumption tables) when they change operational status and hence power
1601  * state. Examples of operational state changes that can affect power
1602  * consumption are :-
1603  *
1604  *    o Device is opened / closed.
1605  *    o Device I/O is about to begin or has just finished.
1606  *    o Device is idling in between work.
1607  *
1608  * This information is also exported via sysfs to userspace.
1609  *
1610  * DRMS will sum the total requested load on the regulator and change
1611  * to the most efficient operating mode if platform constraints allow.
1612  *
1613  * Returns the new regulator mode or error.
1614  */
1615 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1616 {
1617         struct regulator_dev *rdev = regulator->rdev;
1618         struct regulator *consumer;
1619         int ret, output_uV, input_uV, total_uA_load = 0;
1620         unsigned int mode;
1621
1622         mutex_lock(&rdev->mutex);
1623
1624         regulator->uA_load = uA_load;
1625         ret = regulator_check_drms(rdev);
1626         if (ret < 0)
1627                 goto out;
1628         ret = -EINVAL;
1629
1630         /* sanity check */
1631         if (!rdev->desc->ops->get_optimum_mode)
1632                 goto out;
1633
1634         /* get output voltage */
1635         output_uV = rdev->desc->ops->get_voltage(rdev);
1636         if (output_uV <= 0) {
1637                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1638                         __func__, rdev->desc->name);
1639                 goto out;
1640         }
1641
1642         /* get input voltage */
1643         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1644                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1645         else
1646                 input_uV = rdev->constraints->input_uV;
1647         if (input_uV <= 0) {
1648                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1649                         __func__, rdev->desc->name);
1650                 goto out;
1651         }
1652
1653         /* calc total requested load for this regulator */
1654         list_for_each_entry(consumer, &rdev->consumer_list, list)
1655             total_uA_load += consumer->uA_load;
1656
1657         mode = rdev->desc->ops->get_optimum_mode(rdev,
1658                                                  input_uV, output_uV,
1659                                                  total_uA_load);
1660         ret = regulator_check_mode(rdev, mode);
1661         if (ret < 0) {
1662                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1663                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1664                         total_uA_load, input_uV, output_uV);
1665                 goto out;
1666         }
1667
1668         ret = rdev->desc->ops->set_mode(rdev, mode);
1669         if (ret < 0) {
1670                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1671                         __func__, mode, rdev->desc->name);
1672                 goto out;
1673         }
1674         ret = mode;
1675 out:
1676         mutex_unlock(&rdev->mutex);
1677         return ret;
1678 }
1679 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1680
1681 /**
1682  * regulator_register_notifier - register regulator event notifier
1683  * @regulator: regulator source
1684  * @nb: notifier block
1685  *
1686  * Register notifier block to receive regulator events.
1687  */
1688 int regulator_register_notifier(struct regulator *regulator,
1689                               struct notifier_block *nb)
1690 {
1691         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1692                                                 nb);
1693 }
1694 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1695
1696 /**
1697  * regulator_unregister_notifier - unregister regulator event notifier
1698  * @regulator: regulator source
1699  * @nb: notifier block
1700  *
1701  * Unregister regulator event notifier block.
1702  */
1703 int regulator_unregister_notifier(struct regulator *regulator,
1704                                 struct notifier_block *nb)
1705 {
1706         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1707                                                   nb);
1708 }
1709 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1710
1711 /* notify regulator consumers and downstream regulator consumers.
1712  * Note mutex must be held by caller.
1713  */
1714 static void _notifier_call_chain(struct regulator_dev *rdev,
1715                                   unsigned long event, void *data)
1716 {
1717         struct regulator_dev *_rdev;
1718
1719         /* call rdev chain first */
1720         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1721
1722         /* now notify regulator we supply */
1723         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1724           mutex_lock(&_rdev->mutex);
1725           _notifier_call_chain(_rdev, event, data);
1726           mutex_unlock(&_rdev->mutex);
1727         }
1728 }
1729
1730 /**
1731  * regulator_bulk_get - get multiple regulator consumers
1732  *
1733  * @dev:           Device to supply
1734  * @num_consumers: Number of consumers to register
1735  * @consumers:     Configuration of consumers; clients are stored here.
1736  *
1737  * @return 0 on success, an errno on failure.
1738  *
1739  * This helper function allows drivers to get several regulator
1740  * consumers in one operation.  If any of the regulators cannot be
1741  * acquired then any regulators that were allocated will be freed
1742  * before returning to the caller.
1743  */
1744 int regulator_bulk_get(struct device *dev, int num_consumers,
1745                        struct regulator_bulk_data *consumers)
1746 {
1747         int i;
1748         int ret;
1749
1750         for (i = 0; i < num_consumers; i++)
1751                 consumers[i].consumer = NULL;
1752
1753         for (i = 0; i < num_consumers; i++) {
1754                 consumers[i].consumer = regulator_get(dev,
1755                                                       consumers[i].supply);
1756                 if (IS_ERR(consumers[i].consumer)) {
1757                         dev_err(dev, "Failed to get supply '%s'\n",
1758                                 consumers[i].supply);
1759                         ret = PTR_ERR(consumers[i].consumer);
1760                         consumers[i].consumer = NULL;
1761                         goto err;
1762                 }
1763         }
1764
1765         return 0;
1766
1767 err:
1768         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1769                 regulator_put(consumers[i].consumer);
1770
1771         return ret;
1772 }
1773 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1774
1775 /**
1776  * regulator_bulk_enable - enable multiple regulator consumers
1777  *
1778  * @num_consumers: Number of consumers
1779  * @consumers:     Consumer data; clients are stored here.
1780  * @return         0 on success, an errno on failure
1781  *
1782  * This convenience API allows consumers to enable multiple regulator
1783  * clients in a single API call.  If any consumers cannot be enabled
1784  * then any others that were enabled will be disabled again prior to
1785  * return.
1786  */
1787 int regulator_bulk_enable(int num_consumers,
1788                           struct regulator_bulk_data *consumers)
1789 {
1790         int i;
1791         int ret;
1792
1793         for (i = 0; i < num_consumers; i++) {
1794                 ret = regulator_enable(consumers[i].consumer);
1795                 if (ret != 0)
1796                         goto err;
1797         }
1798
1799         return 0;
1800
1801 err:
1802         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1803         for (i = 0; i < num_consumers; i++)
1804                 regulator_disable(consumers[i].consumer);
1805
1806         return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1809
1810 /**
1811  * regulator_bulk_disable - disable multiple regulator consumers
1812  *
1813  * @num_consumers: Number of consumers
1814  * @consumers:     Consumer data; clients are stored here.
1815  * @return         0 on success, an errno on failure
1816  *
1817  * This convenience API allows consumers to disable multiple regulator
1818  * clients in a single API call.  If any consumers cannot be enabled
1819  * then any others that were disabled will be disabled again prior to
1820  * return.
1821  */
1822 int regulator_bulk_disable(int num_consumers,
1823                            struct regulator_bulk_data *consumers)
1824 {
1825         int i;
1826         int ret;
1827
1828         for (i = 0; i < num_consumers; i++) {
1829                 ret = regulator_disable(consumers[i].consumer);
1830                 if (ret != 0)
1831                         goto err;
1832         }
1833
1834         return 0;
1835
1836 err:
1837         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1838         for (i = 0; i < num_consumers; i++)
1839                 regulator_enable(consumers[i].consumer);
1840
1841         return ret;
1842 }
1843 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1844
1845 /**
1846  * regulator_bulk_free - free multiple regulator consumers
1847  *
1848  * @num_consumers: Number of consumers
1849  * @consumers:     Consumer data; clients are stored here.
1850  *
1851  * This convenience API allows consumers to free multiple regulator
1852  * clients in a single API call.
1853  */
1854 void regulator_bulk_free(int num_consumers,
1855                          struct regulator_bulk_data *consumers)
1856 {
1857         int i;
1858
1859         for (i = 0; i < num_consumers; i++) {
1860                 regulator_put(consumers[i].consumer);
1861                 consumers[i].consumer = NULL;
1862         }
1863 }
1864 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1865
1866 /**
1867  * regulator_notifier_call_chain - call regulator event notifier
1868  * @rdev: regulator source
1869  * @event: notifier block
1870  * @data: callback-specific data.
1871  *
1872  * Called by regulator drivers to notify clients a regulator event has
1873  * occurred. We also notify regulator clients downstream.
1874  * Note lock must be held by caller.
1875  */
1876 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1877                                   unsigned long event, void *data)
1878 {
1879         _notifier_call_chain(rdev, event, data);
1880         return NOTIFY_DONE;
1881
1882 }
1883 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1884
1885 /*
1886  * To avoid cluttering sysfs (and memory) with useless state, only
1887  * create attributes that can be meaningfully displayed.
1888  */
1889 static int add_regulator_attributes(struct regulator_dev *rdev)
1890 {
1891         struct device           *dev = &rdev->dev;
1892         struct regulator_ops    *ops = rdev->desc->ops;
1893         int                     status = 0;
1894
1895         /* some attributes need specific methods to be displayed */
1896         if (ops->get_voltage) {
1897                 status = device_create_file(dev, &dev_attr_microvolts);
1898                 if (status < 0)
1899                         return status;
1900         }
1901         if (ops->get_current_limit) {
1902                 status = device_create_file(dev, &dev_attr_microamps);
1903                 if (status < 0)
1904                         return status;
1905         }
1906         if (ops->get_mode) {
1907                 status = device_create_file(dev, &dev_attr_opmode);
1908                 if (status < 0)
1909                         return status;
1910         }
1911         if (ops->is_enabled) {
1912                 status = device_create_file(dev, &dev_attr_state);
1913                 if (status < 0)
1914                         return status;
1915         }
1916         if (ops->get_status) {
1917                 status = device_create_file(dev, &dev_attr_status);
1918                 if (status < 0)
1919                         return status;
1920         }
1921
1922         /* some attributes are type-specific */
1923         if (rdev->desc->type == REGULATOR_CURRENT) {
1924                 status = device_create_file(dev, &dev_attr_requested_microamps);
1925                 if (status < 0)
1926                         return status;
1927         }
1928
1929         /* all the other attributes exist to support constraints;
1930          * don't show them if there are no constraints, or if the
1931          * relevant supporting methods are missing.
1932          */
1933         if (!rdev->constraints)
1934                 return status;
1935
1936         /* constraints need specific supporting methods */
1937         if (ops->set_voltage) {
1938                 status = device_create_file(dev, &dev_attr_min_microvolts);
1939                 if (status < 0)
1940                         return status;
1941                 status = device_create_file(dev, &dev_attr_max_microvolts);
1942                 if (status < 0)
1943                         return status;
1944         }
1945         if (ops->set_current_limit) {
1946                 status = device_create_file(dev, &dev_attr_min_microamps);
1947                 if (status < 0)
1948                         return status;
1949                 status = device_create_file(dev, &dev_attr_max_microamps);
1950                 if (status < 0)
1951                         return status;
1952         }
1953
1954         /* suspend mode constraints need multiple supporting methods */
1955         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1956                 return status;
1957
1958         status = device_create_file(dev, &dev_attr_suspend_standby_state);
1959         if (status < 0)
1960                 return status;
1961         status = device_create_file(dev, &dev_attr_suspend_mem_state);
1962         if (status < 0)
1963                 return status;
1964         status = device_create_file(dev, &dev_attr_suspend_disk_state);
1965         if (status < 0)
1966                 return status;
1967
1968         if (ops->set_suspend_voltage) {
1969                 status = device_create_file(dev,
1970                                 &dev_attr_suspend_standby_microvolts);
1971                 if (status < 0)
1972                         return status;
1973                 status = device_create_file(dev,
1974                                 &dev_attr_suspend_mem_microvolts);
1975                 if (status < 0)
1976                         return status;
1977                 status = device_create_file(dev,
1978                                 &dev_attr_suspend_disk_microvolts);
1979                 if (status < 0)
1980                         return status;
1981         }
1982
1983         if (ops->set_suspend_mode) {
1984                 status = device_create_file(dev,
1985                                 &dev_attr_suspend_standby_mode);
1986                 if (status < 0)
1987                         return status;
1988                 status = device_create_file(dev,
1989                                 &dev_attr_suspend_mem_mode);
1990                 if (status < 0)
1991                         return status;
1992                 status = device_create_file(dev,
1993                                 &dev_attr_suspend_disk_mode);
1994                 if (status < 0)
1995                         return status;
1996         }
1997
1998         return status;
1999 }
2000
2001 /**
2002  * regulator_register - register regulator
2003  * @regulator_desc: regulator to register
2004  * @dev: struct device for the regulator
2005  * @init_data: platform provided init data, passed through by driver
2006  * @driver_data: private regulator data
2007  *
2008  * Called by regulator drivers to register a regulator.
2009  * Returns 0 on success.
2010  */
2011 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2012         struct device *dev, struct regulator_init_data *init_data,
2013         void *driver_data)
2014 {
2015         static atomic_t regulator_no = ATOMIC_INIT(0);
2016         struct regulator_dev *rdev;
2017         int ret, i;
2018
2019         if (regulator_desc == NULL)
2020                 return ERR_PTR(-EINVAL);
2021
2022         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2023                 return ERR_PTR(-EINVAL);
2024
2025         if (!regulator_desc->type == REGULATOR_VOLTAGE &&
2026             !regulator_desc->type == REGULATOR_CURRENT)
2027                 return ERR_PTR(-EINVAL);
2028
2029         if (!init_data)
2030                 return ERR_PTR(-EINVAL);
2031
2032         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2033         if (rdev == NULL)
2034                 return ERR_PTR(-ENOMEM);
2035
2036         mutex_lock(&regulator_list_mutex);
2037
2038         mutex_init(&rdev->mutex);
2039         rdev->reg_data = driver_data;
2040         rdev->owner = regulator_desc->owner;
2041         rdev->desc = regulator_desc;
2042         INIT_LIST_HEAD(&rdev->consumer_list);
2043         INIT_LIST_HEAD(&rdev->supply_list);
2044         INIT_LIST_HEAD(&rdev->list);
2045         INIT_LIST_HEAD(&rdev->slist);
2046         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2047
2048         /* preform any regulator specific init */
2049         if (init_data->regulator_init) {
2050                 ret = init_data->regulator_init(rdev->reg_data);
2051                 if (ret < 0)
2052                         goto clean;
2053         }
2054
2055         /* register with sysfs */
2056         rdev->dev.class = &regulator_class;
2057         rdev->dev.parent = dev;
2058         dev_set_name(&rdev->dev, "regulator.%d",
2059                      atomic_inc_return(&regulator_no) - 1);
2060         ret = device_register(&rdev->dev);
2061         if (ret != 0)
2062                 goto clean;
2063
2064         dev_set_drvdata(&rdev->dev, rdev);
2065
2066         /* set regulator constraints */
2067         ret = set_machine_constraints(rdev, &init_data->constraints);
2068         if (ret < 0)
2069                 goto scrub;
2070
2071         /* add attributes supported by this regulator */
2072         ret = add_regulator_attributes(rdev);
2073         if (ret < 0)
2074                 goto scrub;
2075
2076         /* set supply regulator if it exists */
2077         if (init_data->supply_regulator_dev) {
2078                 ret = set_supply(rdev,
2079                         dev_get_drvdata(init_data->supply_regulator_dev));
2080                 if (ret < 0)
2081                         goto scrub;
2082         }
2083
2084         /* add consumers devices */
2085         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2086                 ret = set_consumer_device_supply(rdev,
2087                         init_data->consumer_supplies[i].dev,
2088                         init_data->consumer_supplies[i].supply);
2089                 if (ret < 0) {
2090                         for (--i; i >= 0; i--)
2091                                 unset_consumer_device_supply(rdev,
2092                                         init_data->consumer_supplies[i].dev);
2093                         goto scrub;
2094                 }
2095         }
2096
2097         list_add(&rdev->list, &regulator_list);
2098 out:
2099         mutex_unlock(&regulator_list_mutex);
2100         return rdev;
2101
2102 scrub:
2103         device_unregister(&rdev->dev);
2104 clean:
2105         kfree(rdev);
2106         rdev = ERR_PTR(ret);
2107         goto out;
2108 }
2109 EXPORT_SYMBOL_GPL(regulator_register);
2110
2111 /**
2112  * regulator_unregister - unregister regulator
2113  * @rdev: regulator to unregister
2114  *
2115  * Called by regulator drivers to unregister a regulator.
2116  */
2117 void regulator_unregister(struct regulator_dev *rdev)
2118 {
2119         if (rdev == NULL)
2120                 return;
2121
2122         mutex_lock(&regulator_list_mutex);
2123         unset_regulator_supplies(rdev);
2124         list_del(&rdev->list);
2125         if (rdev->supply)
2126                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2127         device_unregister(&rdev->dev);
2128         mutex_unlock(&regulator_list_mutex);
2129 }
2130 EXPORT_SYMBOL_GPL(regulator_unregister);
2131
2132 /**
2133  * regulator_suspend_prepare - prepare regulators for system wide suspend
2134  * @state: system suspend state
2135  *
2136  * Configure each regulator with it's suspend operating parameters for state.
2137  * This will usually be called by machine suspend code prior to supending.
2138  */
2139 int regulator_suspend_prepare(suspend_state_t state)
2140 {
2141         struct regulator_dev *rdev;
2142         int ret = 0;
2143
2144         /* ON is handled by regulator active state */
2145         if (state == PM_SUSPEND_ON)
2146                 return -EINVAL;
2147
2148         mutex_lock(&regulator_list_mutex);
2149         list_for_each_entry(rdev, &regulator_list, list) {
2150
2151                 mutex_lock(&rdev->mutex);
2152                 ret = suspend_prepare(rdev, state);
2153                 mutex_unlock(&rdev->mutex);
2154
2155                 if (ret < 0) {
2156                         printk(KERN_ERR "%s: failed to prepare %s\n",
2157                                 __func__, rdev->desc->name);
2158                         goto out;
2159                 }
2160         }
2161 out:
2162         mutex_unlock(&regulator_list_mutex);
2163         return ret;
2164 }
2165 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2166
2167 /**
2168  * rdev_get_drvdata - get rdev regulator driver data
2169  * @rdev: regulator
2170  *
2171  * Get rdev regulator driver private data. This call can be used in the
2172  * regulator driver context.
2173  */
2174 void *rdev_get_drvdata(struct regulator_dev *rdev)
2175 {
2176         return rdev->reg_data;
2177 }
2178 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2179
2180 /**
2181  * regulator_get_drvdata - get regulator driver data
2182  * @regulator: regulator
2183  *
2184  * Get regulator driver private data. This call can be used in the consumer
2185  * driver context when non API regulator specific functions need to be called.
2186  */
2187 void *regulator_get_drvdata(struct regulator *regulator)
2188 {
2189         return regulator->rdev->reg_data;
2190 }
2191 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2192
2193 /**
2194  * regulator_set_drvdata - set regulator driver data
2195  * @regulator: regulator
2196  * @data: data
2197  */
2198 void regulator_set_drvdata(struct regulator *regulator, void *data)
2199 {
2200         regulator->rdev->reg_data = data;
2201 }
2202 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2203
2204 /**
2205  * regulator_get_id - get regulator ID
2206  * @rdev: regulator
2207  */
2208 int rdev_get_id(struct regulator_dev *rdev)
2209 {
2210         return rdev->desc->id;
2211 }
2212 EXPORT_SYMBOL_GPL(rdev_get_id);
2213
2214 struct device *rdev_get_dev(struct regulator_dev *rdev)
2215 {
2216         return &rdev->dev;
2217 }
2218 EXPORT_SYMBOL_GPL(rdev_get_dev);
2219
2220 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2221 {
2222         return reg_init_data->driver_data;
2223 }
2224 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2225
2226 static int __init regulator_init(void)
2227 {
2228         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2229         return class_register(&regulator_class);
2230 }
2231
2232 /* init early to allow our consumers to complete system booting */
2233 core_initcall(regulator_init);