]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/regulator/core.c
regulator: add get_status()
[linux-2.6-omap-h63xx.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /*
33  * struct regulator_dev
34  *
35  * Voltage / Current regulator class device. One for each regulator.
36  */
37 struct regulator_dev {
38         struct regulator_desc *desc;
39         int use_count;
40
41         /* lists we belong to */
42         struct list_head list; /* list of all regulators */
43         struct list_head slist; /* list of supplied regulators */
44
45         /* lists we own */
46         struct list_head consumer_list; /* consumers we supply */
47         struct list_head supply_list; /* regulators we supply */
48
49         struct blocking_notifier_head notifier;
50         struct mutex mutex; /* consumer lock */
51         struct module *owner;
52         struct device dev;
53         struct regulation_constraints *constraints;
54         struct regulator_dev *supply;   /* for tree */
55
56         void *reg_data;         /* regulator_dev data */
57 };
58
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         struct device *dev;
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         int uA_load;
80         int min_uV;
81         int max_uV;
82         int enabled; /* count of client enables */
83         char *supply_name;
84         struct device_attribute dev_attr;
85         struct regulator_dev *rdev;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94                                   unsigned long event, void *data);
95
96 /* gets the regulator for a given consumer device */
97 static struct regulator *get_device_regulator(struct device *dev)
98 {
99         struct regulator *regulator = NULL;
100         struct regulator_dev *rdev;
101
102         mutex_lock(&regulator_list_mutex);
103         list_for_each_entry(rdev, &regulator_list, list) {
104                 mutex_lock(&rdev->mutex);
105                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
106                         if (regulator->dev == dev) {
107                                 mutex_unlock(&rdev->mutex);
108                                 mutex_unlock(&regulator_list_mutex);
109                                 return regulator;
110                         }
111                 }
112                 mutex_unlock(&rdev->mutex);
113         }
114         mutex_unlock(&regulator_list_mutex);
115         return NULL;
116 }
117
118 /* Platform voltage constraint check */
119 static int regulator_check_voltage(struct regulator_dev *rdev,
120                                    int *min_uV, int *max_uV)
121 {
122         BUG_ON(*min_uV > *max_uV);
123
124         if (!rdev->constraints) {
125                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126                        rdev->desc->name);
127                 return -ENODEV;
128         }
129         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130                 printk(KERN_ERR "%s: operation not allowed for %s\n",
131                        __func__, rdev->desc->name);
132                 return -EPERM;
133         }
134
135         if (*max_uV > rdev->constraints->max_uV)
136                 *max_uV = rdev->constraints->max_uV;
137         if (*min_uV < rdev->constraints->min_uV)
138                 *min_uV = rdev->constraints->min_uV;
139
140         if (*min_uV > *max_uV)
141                 return -EINVAL;
142
143         return 0;
144 }
145
146 /* current constraint check */
147 static int regulator_check_current_limit(struct regulator_dev *rdev,
148                                         int *min_uA, int *max_uA)
149 {
150         BUG_ON(*min_uA > *max_uA);
151
152         if (!rdev->constraints) {
153                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154                        rdev->desc->name);
155                 return -ENODEV;
156         }
157         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158                 printk(KERN_ERR "%s: operation not allowed for %s\n",
159                        __func__, rdev->desc->name);
160                 return -EPERM;
161         }
162
163         if (*max_uA > rdev->constraints->max_uA)
164                 *max_uA = rdev->constraints->max_uA;
165         if (*min_uA < rdev->constraints->min_uA)
166                 *min_uA = rdev->constraints->min_uA;
167
168         if (*min_uA > *max_uA)
169                 return -EINVAL;
170
171         return 0;
172 }
173
174 /* operating mode constraint check */
175 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176 {
177         switch (mode) {
178         case REGULATOR_MODE_FAST:
179         case REGULATOR_MODE_NORMAL:
180         case REGULATOR_MODE_IDLE:
181         case REGULATOR_MODE_STANDBY:
182                 break;
183         default:
184                 return -EINVAL;
185         }
186
187         if (!rdev->constraints) {
188                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
189                        rdev->desc->name);
190                 return -ENODEV;
191         }
192         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
193                 printk(KERN_ERR "%s: operation not allowed for %s\n",
194                        __func__, rdev->desc->name);
195                 return -EPERM;
196         }
197         if (!(rdev->constraints->valid_modes_mask & mode)) {
198                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
199                        __func__, mode, rdev->desc->name);
200                 return -EINVAL;
201         }
202         return 0;
203 }
204
205 /* dynamic regulator mode switching constraint check */
206 static int regulator_check_drms(struct regulator_dev *rdev)
207 {
208         if (!rdev->constraints) {
209                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
210                        rdev->desc->name);
211                 return -ENODEV;
212         }
213         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
214                 printk(KERN_ERR "%s: operation not allowed for %s\n",
215                        __func__, rdev->desc->name);
216                 return -EPERM;
217         }
218         return 0;
219 }
220
221 static ssize_t device_requested_uA_show(struct device *dev,
222                              struct device_attribute *attr, char *buf)
223 {
224         struct regulator *regulator;
225
226         regulator = get_device_regulator(dev);
227         if (regulator == NULL)
228                 return 0;
229
230         return sprintf(buf, "%d\n", regulator->uA_load);
231 }
232
233 static ssize_t regulator_uV_show(struct device *dev,
234                                 struct device_attribute *attr, char *buf)
235 {
236         struct regulator_dev *rdev = dev_get_drvdata(dev);
237         ssize_t ret;
238
239         mutex_lock(&rdev->mutex);
240         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
241         mutex_unlock(&rdev->mutex);
242
243         return ret;
244 }
245 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
246
247 static ssize_t regulator_uA_show(struct device *dev,
248                                 struct device_attribute *attr, char *buf)
249 {
250         struct regulator_dev *rdev = dev_get_drvdata(dev);
251
252         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
253 }
254 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
255
256 static ssize_t regulator_name_show(struct device *dev,
257                              struct device_attribute *attr, char *buf)
258 {
259         struct regulator_dev *rdev = dev_get_drvdata(dev);
260         const char *name;
261
262         if (rdev->constraints->name)
263                 name = rdev->constraints->name;
264         else if (rdev->desc->name)
265                 name = rdev->desc->name;
266         else
267                 name = "";
268
269         return sprintf(buf, "%s\n", name);
270 }
271
272 static ssize_t regulator_print_opmode(char *buf, int mode)
273 {
274         switch (mode) {
275         case REGULATOR_MODE_FAST:
276                 return sprintf(buf, "fast\n");
277         case REGULATOR_MODE_NORMAL:
278                 return sprintf(buf, "normal\n");
279         case REGULATOR_MODE_IDLE:
280                 return sprintf(buf, "idle\n");
281         case REGULATOR_MODE_STANDBY:
282                 return sprintf(buf, "standby\n");
283         }
284         return sprintf(buf, "unknown\n");
285 }
286
287 static ssize_t regulator_opmode_show(struct device *dev,
288                                     struct device_attribute *attr, char *buf)
289 {
290         struct regulator_dev *rdev = dev_get_drvdata(dev);
291
292         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
293 }
294 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
295
296 static ssize_t regulator_print_state(char *buf, int state)
297 {
298         if (state > 0)
299                 return sprintf(buf, "enabled\n");
300         else if (state == 0)
301                 return sprintf(buf, "disabled\n");
302         else
303                 return sprintf(buf, "unknown\n");
304 }
305
306 static ssize_t regulator_state_show(struct device *dev,
307                                    struct device_attribute *attr, char *buf)
308 {
309         struct regulator_dev *rdev = dev_get_drvdata(dev);
310
311         return regulator_print_state(buf, _regulator_is_enabled(rdev));
312 }
313 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
314
315 static ssize_t regulator_status_show(struct device *dev,
316                                    struct device_attribute *attr, char *buf)
317 {
318         struct regulator_dev *rdev = dev_get_drvdata(dev);
319         int status;
320         char *label;
321
322         status = rdev->desc->ops->get_status(rdev);
323         if (status < 0)
324                 return status;
325
326         switch (status) {
327         case REGULATOR_STATUS_OFF:
328                 label = "off";
329                 break;
330         case REGULATOR_STATUS_ON:
331                 label = "on";
332                 break;
333         case REGULATOR_STATUS_ERROR:
334                 label = "error";
335                 break;
336         case REGULATOR_STATUS_FAST:
337                 label = "fast";
338                 break;
339         case REGULATOR_STATUS_NORMAL:
340                 label = "normal";
341                 break;
342         case REGULATOR_STATUS_IDLE:
343                 label = "idle";
344                 break;
345         case REGULATOR_STATUS_STANDBY:
346                 label = "standby";
347                 break;
348         default:
349                 return -ERANGE;
350         }
351
352         return sprintf(buf, "%s\n", label);
353 }
354 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
355
356 static ssize_t regulator_min_uA_show(struct device *dev,
357                                     struct device_attribute *attr, char *buf)
358 {
359         struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361         if (!rdev->constraints)
362                 return sprintf(buf, "constraint not defined\n");
363
364         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
365 }
366 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
367
368 static ssize_t regulator_max_uA_show(struct device *dev,
369                                     struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372
373         if (!rdev->constraints)
374                 return sprintf(buf, "constraint not defined\n");
375
376         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
377 }
378 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
379
380 static ssize_t regulator_min_uV_show(struct device *dev,
381                                     struct device_attribute *attr, char *buf)
382 {
383         struct regulator_dev *rdev = dev_get_drvdata(dev);
384
385         if (!rdev->constraints)
386                 return sprintf(buf, "constraint not defined\n");
387
388         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
389 }
390 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
391
392 static ssize_t regulator_max_uV_show(struct device *dev,
393                                     struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396
397         if (!rdev->constraints)
398                 return sprintf(buf, "constraint not defined\n");
399
400         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
401 }
402 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
403
404 static ssize_t regulator_total_uA_show(struct device *dev,
405                                       struct device_attribute *attr, char *buf)
406 {
407         struct regulator_dev *rdev = dev_get_drvdata(dev);
408         struct regulator *regulator;
409         int uA = 0;
410
411         mutex_lock(&rdev->mutex);
412         list_for_each_entry(regulator, &rdev->consumer_list, list)
413             uA += regulator->uA_load;
414         mutex_unlock(&rdev->mutex);
415         return sprintf(buf, "%d\n", uA);
416 }
417 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
418
419 static ssize_t regulator_num_users_show(struct device *dev,
420                                       struct device_attribute *attr, char *buf)
421 {
422         struct regulator_dev *rdev = dev_get_drvdata(dev);
423         return sprintf(buf, "%d\n", rdev->use_count);
424 }
425
426 static ssize_t regulator_type_show(struct device *dev,
427                                   struct device_attribute *attr, char *buf)
428 {
429         struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431         switch (rdev->desc->type) {
432         case REGULATOR_VOLTAGE:
433                 return sprintf(buf, "voltage\n");
434         case REGULATOR_CURRENT:
435                 return sprintf(buf, "current\n");
436         }
437         return sprintf(buf, "unknown\n");
438 }
439
440 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
441                                 struct device_attribute *attr, char *buf)
442 {
443         struct regulator_dev *rdev = dev_get_drvdata(dev);
444
445         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
446 }
447 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
448                 regulator_suspend_mem_uV_show, NULL);
449
450 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
451                                 struct device_attribute *attr, char *buf)
452 {
453         struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
456 }
457 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
458                 regulator_suspend_disk_uV_show, NULL);
459
460 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
461                                 struct device_attribute *attr, char *buf)
462 {
463         struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
466 }
467 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
468                 regulator_suspend_standby_uV_show, NULL);
469
470 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return regulator_print_opmode(buf,
476                 rdev->constraints->state_mem.mode);
477 }
478 static DEVICE_ATTR(suspend_mem_mode, 0444,
479                 regulator_suspend_mem_mode_show, NULL);
480
481 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
482                                 struct device_attribute *attr, char *buf)
483 {
484         struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486         return regulator_print_opmode(buf,
487                 rdev->constraints->state_disk.mode);
488 }
489 static DEVICE_ATTR(suspend_disk_mode, 0444,
490                 regulator_suspend_disk_mode_show, NULL);
491
492 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
493                                 struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497         return regulator_print_opmode(buf,
498                 rdev->constraints->state_standby.mode);
499 }
500 static DEVICE_ATTR(suspend_standby_mode, 0444,
501                 regulator_suspend_standby_mode_show, NULL);
502
503 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
504                                    struct device_attribute *attr, char *buf)
505 {
506         struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508         return regulator_print_state(buf,
509                         rdev->constraints->state_mem.enabled);
510 }
511 static DEVICE_ATTR(suspend_mem_state, 0444,
512                 regulator_suspend_mem_state_show, NULL);
513
514 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
515                                    struct device_attribute *attr, char *buf)
516 {
517         struct regulator_dev *rdev = dev_get_drvdata(dev);
518
519         return regulator_print_state(buf,
520                         rdev->constraints->state_disk.enabled);
521 }
522 static DEVICE_ATTR(suspend_disk_state, 0444,
523                 regulator_suspend_disk_state_show, NULL);
524
525 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
526                                    struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         return regulator_print_state(buf,
531                         rdev->constraints->state_standby.enabled);
532 }
533 static DEVICE_ATTR(suspend_standby_state, 0444,
534                 regulator_suspend_standby_state_show, NULL);
535
536
537 /*
538  * These are the only attributes are present for all regulators.
539  * Other attributes are a function of regulator functionality.
540  */
541 static struct device_attribute regulator_dev_attrs[] = {
542         __ATTR(name, 0444, regulator_name_show, NULL),
543         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
544         __ATTR(type, 0444, regulator_type_show, NULL),
545         __ATTR_NULL,
546 };
547
548 static void regulator_dev_release(struct device *dev)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551         kfree(rdev);
552 }
553
554 static struct class regulator_class = {
555         .name = "regulator",
556         .dev_release = regulator_dev_release,
557         .dev_attrs = regulator_dev_attrs,
558 };
559
560 /* Calculate the new optimum regulator operating mode based on the new total
561  * consumer load. All locks held by caller */
562 static void drms_uA_update(struct regulator_dev *rdev)
563 {
564         struct regulator *sibling;
565         int current_uA = 0, output_uV, input_uV, err;
566         unsigned int mode;
567
568         err = regulator_check_drms(rdev);
569         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
570             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
571         return;
572
573         /* get output voltage */
574         output_uV = rdev->desc->ops->get_voltage(rdev);
575         if (output_uV <= 0)
576                 return;
577
578         /* get input voltage */
579         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
580                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
581         else
582                 input_uV = rdev->constraints->input_uV;
583         if (input_uV <= 0)
584                 return;
585
586         /* calc total requested load */
587         list_for_each_entry(sibling, &rdev->consumer_list, list)
588             current_uA += sibling->uA_load;
589
590         /* now get the optimum mode for our new total regulator load */
591         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
592                                                   output_uV, current_uA);
593
594         /* check the new mode is allowed */
595         err = regulator_check_mode(rdev, mode);
596         if (err == 0)
597                 rdev->desc->ops->set_mode(rdev, mode);
598 }
599
600 static int suspend_set_state(struct regulator_dev *rdev,
601         struct regulator_state *rstate)
602 {
603         int ret = 0;
604
605         /* enable & disable are mandatory for suspend control */
606         if (!rdev->desc->ops->set_suspend_enable ||
607                 !rdev->desc->ops->set_suspend_disable) {
608                 printk(KERN_ERR "%s: no way to set suspend state\n",
609                         __func__);
610                 return -EINVAL;
611         }
612
613         if (rstate->enabled)
614                 ret = rdev->desc->ops->set_suspend_enable(rdev);
615         else
616                 ret = rdev->desc->ops->set_suspend_disable(rdev);
617         if (ret < 0) {
618                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
619                 return ret;
620         }
621
622         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
623                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
624                 if (ret < 0) {
625                         printk(KERN_ERR "%s: failed to set voltage\n",
626                                 __func__);
627                         return ret;
628                 }
629         }
630
631         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
632                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
633                 if (ret < 0) {
634                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
635                         return ret;
636                 }
637         }
638         return ret;
639 }
640
641 /* locks held by caller */
642 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
643 {
644         if (!rdev->constraints)
645                 return -EINVAL;
646
647         switch (state) {
648         case PM_SUSPEND_STANDBY:
649                 return suspend_set_state(rdev,
650                         &rdev->constraints->state_standby);
651         case PM_SUSPEND_MEM:
652                 return suspend_set_state(rdev,
653                         &rdev->constraints->state_mem);
654         case PM_SUSPEND_MAX:
655                 return suspend_set_state(rdev,
656                         &rdev->constraints->state_disk);
657         default:
658                 return -EINVAL;
659         }
660 }
661
662 static void print_constraints(struct regulator_dev *rdev)
663 {
664         struct regulation_constraints *constraints = rdev->constraints;
665         char buf[80];
666         int count;
667
668         if (rdev->desc->type == REGULATOR_VOLTAGE) {
669                 if (constraints->min_uV == constraints->max_uV)
670                         count = sprintf(buf, "%d mV ",
671                                         constraints->min_uV / 1000);
672                 else
673                         count = sprintf(buf, "%d <--> %d mV ",
674                                         constraints->min_uV / 1000,
675                                         constraints->max_uV / 1000);
676         } else {
677                 if (constraints->min_uA == constraints->max_uA)
678                         count = sprintf(buf, "%d mA ",
679                                         constraints->min_uA / 1000);
680                 else
681                         count = sprintf(buf, "%d <--> %d mA ",
682                                         constraints->min_uA / 1000,
683                                         constraints->max_uA / 1000);
684         }
685         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
686                 count += sprintf(buf + count, "fast ");
687         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
688                 count += sprintf(buf + count, "normal ");
689         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
690                 count += sprintf(buf + count, "idle ");
691         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
692                 count += sprintf(buf + count, "standby");
693
694         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
695 }
696
697 /**
698  * set_machine_constraints - sets regulator constraints
699  * @rdev: regulator source
700  * @constraints: constraints to apply
701  *
702  * Allows platform initialisation code to define and constrain
703  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
704  * Constraints *must* be set by platform code in order for some
705  * regulator operations to proceed i.e. set_voltage, set_current_limit,
706  * set_mode.
707  */
708 static int set_machine_constraints(struct regulator_dev *rdev,
709         struct regulation_constraints *constraints)
710 {
711         int ret = 0;
712         const char *name;
713         struct regulator_ops *ops = rdev->desc->ops;
714
715         if (constraints->name)
716                 name = constraints->name;
717         else if (rdev->desc->name)
718                 name = rdev->desc->name;
719         else
720                 name = "regulator";
721
722         rdev->constraints = constraints;
723
724         /* do we need to apply the constraint voltage */
725         if (rdev->constraints->apply_uV &&
726                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
727                 ops->set_voltage) {
728                 ret = ops->set_voltage(rdev,
729                         rdev->constraints->min_uV, rdev->constraints->max_uV);
730                         if (ret < 0) {
731                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
732                                        __func__,
733                                        rdev->constraints->min_uV, name);
734                                 rdev->constraints = NULL;
735                                 goto out;
736                         }
737         }
738
739         /* are we enabled at boot time by firmware / bootloader */
740         if (rdev->constraints->boot_on)
741                 rdev->use_count = 1;
742
743         /* do we need to setup our suspend state */
744         if (constraints->initial_state) {
745                 ret = suspend_prepare(rdev, constraints->initial_state);
746                 if (ret < 0) {
747                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
748                                __func__, name);
749                         rdev->constraints = NULL;
750                         goto out;
751                 }
752         }
753
754         /* if always_on is set then turn the regulator on if it's not
755          * already on. */
756         if (constraints->always_on && ops->enable &&
757             ((ops->is_enabled && !ops->is_enabled(rdev)) ||
758              (!ops->is_enabled && !constraints->boot_on))) {
759                 ret = ops->enable(rdev);
760                 if (ret < 0) {
761                         printk(KERN_ERR "%s: failed to enable %s\n",
762                                __func__, name);
763                         rdev->constraints = NULL;
764                         goto out;
765                 }
766         }
767
768         print_constraints(rdev);
769 out:
770         return ret;
771 }
772
773 /**
774  * set_supply - set regulator supply regulator
775  * @rdev: regulator name
776  * @supply_rdev: supply regulator name
777  *
778  * Called by platform initialisation code to set the supply regulator for this
779  * regulator. This ensures that a regulators supply will also be enabled by the
780  * core if it's child is enabled.
781  */
782 static int set_supply(struct regulator_dev *rdev,
783         struct regulator_dev *supply_rdev)
784 {
785         int err;
786
787         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
788                                 "supply");
789         if (err) {
790                 printk(KERN_ERR
791                        "%s: could not add device link %s err %d\n",
792                        __func__, supply_rdev->dev.kobj.name, err);
793                        goto out;
794         }
795         rdev->supply = supply_rdev;
796         list_add(&rdev->slist, &supply_rdev->supply_list);
797 out:
798         return err;
799 }
800
801 /**
802  * set_consumer_device_supply: Bind a regulator to a symbolic supply
803  * @rdev:         regulator source
804  * @consumer_dev: device the supply applies to
805  * @supply:       symbolic name for supply
806  *
807  * Allows platform initialisation code to map physical regulator
808  * sources to symbolic names for supplies for use by devices.  Devices
809  * should use these symbolic names to request regulators, avoiding the
810  * need to provide board-specific regulator names as platform data.
811  */
812 static int set_consumer_device_supply(struct regulator_dev *rdev,
813         struct device *consumer_dev, const char *supply)
814 {
815         struct regulator_map *node;
816
817         if (supply == NULL)
818                 return -EINVAL;
819
820         list_for_each_entry(node, &regulator_map_list, list) {
821                 if (consumer_dev != node->dev)
822                         continue;
823                 if (strcmp(node->supply, supply) != 0)
824                         continue;
825
826                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
827                                 dev_name(&node->regulator->dev),
828                                 node->regulator->desc->name,
829                                 supply,
830                                 dev_name(&rdev->dev), rdev->desc->name);
831                 return -EBUSY;
832         }
833
834         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
835         if (node == NULL)
836                 return -ENOMEM;
837
838         node->regulator = rdev;
839         node->dev = consumer_dev;
840         node->supply = supply;
841
842         list_add(&node->list, &regulator_map_list);
843         return 0;
844 }
845
846 static void unset_consumer_device_supply(struct regulator_dev *rdev,
847         struct device *consumer_dev)
848 {
849         struct regulator_map *node, *n;
850
851         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
852                 if (rdev == node->regulator &&
853                         consumer_dev == node->dev) {
854                         list_del(&node->list);
855                         kfree(node);
856                         return;
857                 }
858         }
859 }
860
861 #define REG_STR_SIZE    32
862
863 static struct regulator *create_regulator(struct regulator_dev *rdev,
864                                           struct device *dev,
865                                           const char *supply_name)
866 {
867         struct regulator *regulator;
868         char buf[REG_STR_SIZE];
869         int err, size;
870
871         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
872         if (regulator == NULL)
873                 return NULL;
874
875         mutex_lock(&rdev->mutex);
876         regulator->rdev = rdev;
877         list_add(&regulator->list, &rdev->consumer_list);
878
879         if (dev) {
880                 /* create a 'requested_microamps_name' sysfs entry */
881                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
882                         supply_name);
883                 if (size >= REG_STR_SIZE)
884                         goto overflow_err;
885
886                 regulator->dev = dev;
887                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
888                 if (regulator->dev_attr.attr.name == NULL)
889                         goto attr_name_err;
890
891                 regulator->dev_attr.attr.owner = THIS_MODULE;
892                 regulator->dev_attr.attr.mode = 0444;
893                 regulator->dev_attr.show = device_requested_uA_show;
894                 err = device_create_file(dev, &regulator->dev_attr);
895                 if (err < 0) {
896                         printk(KERN_WARNING "%s: could not add regulator_dev"
897                                 " load sysfs\n", __func__);
898                         goto attr_name_err;
899                 }
900
901                 /* also add a link to the device sysfs entry */
902                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
903                                  dev->kobj.name, supply_name);
904                 if (size >= REG_STR_SIZE)
905                         goto attr_err;
906
907                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
908                 if (regulator->supply_name == NULL)
909                         goto attr_err;
910
911                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
912                                         buf);
913                 if (err) {
914                         printk(KERN_WARNING
915                                "%s: could not add device link %s err %d\n",
916                                __func__, dev->kobj.name, err);
917                         device_remove_file(dev, &regulator->dev_attr);
918                         goto link_name_err;
919                 }
920         }
921         mutex_unlock(&rdev->mutex);
922         return regulator;
923 link_name_err:
924         kfree(regulator->supply_name);
925 attr_err:
926         device_remove_file(regulator->dev, &regulator->dev_attr);
927 attr_name_err:
928         kfree(regulator->dev_attr.attr.name);
929 overflow_err:
930         list_del(&regulator->list);
931         kfree(regulator);
932         mutex_unlock(&rdev->mutex);
933         return NULL;
934 }
935
936 /**
937  * regulator_get - lookup and obtain a reference to a regulator.
938  * @dev: device for regulator "consumer"
939  * @id: Supply name or regulator ID.
940  *
941  * Returns a struct regulator corresponding to the regulator producer,
942  * or IS_ERR() condition containing errno.  Use of supply names
943  * configured via regulator_set_device_supply() is strongly
944  * encouraged.
945  */
946 struct regulator *regulator_get(struct device *dev, const char *id)
947 {
948         struct regulator_dev *rdev;
949         struct regulator_map *map;
950         struct regulator *regulator = ERR_PTR(-ENODEV);
951
952         if (id == NULL) {
953                 printk(KERN_ERR "regulator: get() with no identifier\n");
954                 return regulator;
955         }
956
957         mutex_lock(&regulator_list_mutex);
958
959         list_for_each_entry(map, &regulator_map_list, list) {
960                 if (dev == map->dev &&
961                     strcmp(map->supply, id) == 0) {
962                         rdev = map->regulator;
963                         goto found;
964                 }
965         }
966         printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
967                id);
968         mutex_unlock(&regulator_list_mutex);
969         return regulator;
970
971 found:
972         if (!try_module_get(rdev->owner))
973                 goto out;
974
975         regulator = create_regulator(rdev, dev, id);
976         if (regulator == NULL) {
977                 regulator = ERR_PTR(-ENOMEM);
978                 module_put(rdev->owner);
979         }
980
981 out:
982         mutex_unlock(&regulator_list_mutex);
983         return regulator;
984 }
985 EXPORT_SYMBOL_GPL(regulator_get);
986
987 /**
988  * regulator_put - "free" the regulator source
989  * @regulator: regulator source
990  *
991  * Note: drivers must ensure that all regulator_enable calls made on this
992  * regulator source are balanced by regulator_disable calls prior to calling
993  * this function.
994  */
995 void regulator_put(struct regulator *regulator)
996 {
997         struct regulator_dev *rdev;
998
999         if (regulator == NULL || IS_ERR(regulator))
1000                 return;
1001
1002         mutex_lock(&regulator_list_mutex);
1003         rdev = regulator->rdev;
1004
1005         if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
1006                                regulator->supply_name))
1007                 _regulator_disable(rdev);
1008
1009         /* remove any sysfs entries */
1010         if (regulator->dev) {
1011                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1012                 kfree(regulator->supply_name);
1013                 device_remove_file(regulator->dev, &regulator->dev_attr);
1014                 kfree(regulator->dev_attr.attr.name);
1015         }
1016         list_del(&regulator->list);
1017         kfree(regulator);
1018
1019         module_put(rdev->owner);
1020         mutex_unlock(&regulator_list_mutex);
1021 }
1022 EXPORT_SYMBOL_GPL(regulator_put);
1023
1024 /* locks held by regulator_enable() */
1025 static int _regulator_enable(struct regulator_dev *rdev)
1026 {
1027         int ret = -EINVAL;
1028
1029         if (!rdev->constraints) {
1030                 printk(KERN_ERR "%s: %s has no constraints\n",
1031                        __func__, rdev->desc->name);
1032                 return ret;
1033         }
1034
1035         /* do we need to enable the supply regulator first */
1036         if (rdev->supply) {
1037                 ret = _regulator_enable(rdev->supply);
1038                 if (ret < 0) {
1039                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1040                                __func__, rdev->desc->name, ret);
1041                         return ret;
1042                 }
1043         }
1044
1045         /* check voltage and requested load before enabling */
1046         if (rdev->desc->ops->enable) {
1047
1048                 if (rdev->constraints &&
1049                         (rdev->constraints->valid_ops_mask &
1050                         REGULATOR_CHANGE_DRMS))
1051                         drms_uA_update(rdev);
1052
1053                 ret = rdev->desc->ops->enable(rdev);
1054                 if (ret < 0) {
1055                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1056                                __func__, rdev->desc->name, ret);
1057                         return ret;
1058                 }
1059                 rdev->use_count++;
1060                 return ret;
1061         }
1062
1063         return ret;
1064 }
1065
1066 /**
1067  * regulator_enable - enable regulator output
1068  * @regulator: regulator source
1069  *
1070  * Request that the regulator be enabled with the regulator output at
1071  * the predefined voltage or current value.  Calls to regulator_enable()
1072  * must be balanced with calls to regulator_disable().
1073  *
1074  * NOTE: the output value can be set by other drivers, boot loader or may be
1075  * hardwired in the regulator.
1076  */
1077 int regulator_enable(struct regulator *regulator)
1078 {
1079         struct regulator_dev *rdev = regulator->rdev;
1080         int ret = 0;
1081
1082         mutex_lock(&rdev->mutex);
1083         if (regulator->enabled == 0)
1084                 ret = _regulator_enable(rdev);
1085         else if (regulator->enabled < 0)
1086                 ret = -EIO;
1087         if (ret == 0)
1088                 regulator->enabled++;
1089         mutex_unlock(&rdev->mutex);
1090         return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(regulator_enable);
1093
1094 /* locks held by regulator_disable() */
1095 static int _regulator_disable(struct regulator_dev *rdev)
1096 {
1097         int ret = 0;
1098
1099         /* are we the last user and permitted to disable ? */
1100         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1101
1102                 /* we are last user */
1103                 if (rdev->desc->ops->disable) {
1104                         ret = rdev->desc->ops->disable(rdev);
1105                         if (ret < 0) {
1106                                 printk(KERN_ERR "%s: failed to disable %s\n",
1107                                        __func__, rdev->desc->name);
1108                                 return ret;
1109                         }
1110                 }
1111
1112                 /* decrease our supplies ref count and disable if required */
1113                 if (rdev->supply)
1114                         _regulator_disable(rdev->supply);
1115
1116                 rdev->use_count = 0;
1117         } else if (rdev->use_count > 1) {
1118
1119                 if (rdev->constraints &&
1120                         (rdev->constraints->valid_ops_mask &
1121                         REGULATOR_CHANGE_DRMS))
1122                         drms_uA_update(rdev);
1123
1124                 rdev->use_count--;
1125         }
1126         return ret;
1127 }
1128
1129 /**
1130  * regulator_disable - disable regulator output
1131  * @regulator: regulator source
1132  *
1133  * Disable the regulator output voltage or current.  Calls to
1134  * regulator_enable() must be balanced with calls to
1135  * regulator_disable().
1136  *
1137  * NOTE: this will only disable the regulator output if no other consumer
1138  * devices have it enabled, the regulator device supports disabling and
1139  * machine constraints permit this operation.
1140  */
1141 int regulator_disable(struct regulator *regulator)
1142 {
1143         struct regulator_dev *rdev = regulator->rdev;
1144         int ret = 0;
1145
1146         mutex_lock(&rdev->mutex);
1147         if (regulator->enabled == 1) {
1148                 ret = _regulator_disable(rdev);
1149                 if (ret == 0)
1150                         regulator->uA_load = 0;
1151         } else if (WARN(regulator->enabled <= 0,
1152                         "unbalanced disables for supply %s\n",
1153                         regulator->supply_name))
1154                 ret = -EIO;
1155         if (ret == 0)
1156                 regulator->enabled--;
1157         mutex_unlock(&rdev->mutex);
1158         return ret;
1159 }
1160 EXPORT_SYMBOL_GPL(regulator_disable);
1161
1162 /* locks held by regulator_force_disable() */
1163 static int _regulator_force_disable(struct regulator_dev *rdev)
1164 {
1165         int ret = 0;
1166
1167         /* force disable */
1168         if (rdev->desc->ops->disable) {
1169                 /* ah well, who wants to live forever... */
1170                 ret = rdev->desc->ops->disable(rdev);
1171                 if (ret < 0) {
1172                         printk(KERN_ERR "%s: failed to force disable %s\n",
1173                                __func__, rdev->desc->name);
1174                         return ret;
1175                 }
1176                 /* notify other consumers that power has been forced off */
1177                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1178                         NULL);
1179         }
1180
1181         /* decrease our supplies ref count and disable if required */
1182         if (rdev->supply)
1183                 _regulator_disable(rdev->supply);
1184
1185         rdev->use_count = 0;
1186         return ret;
1187 }
1188
1189 /**
1190  * regulator_force_disable - force disable regulator output
1191  * @regulator: regulator source
1192  *
1193  * Forcibly disable the regulator output voltage or current.
1194  * NOTE: this *will* disable the regulator output even if other consumer
1195  * devices have it enabled. This should be used for situations when device
1196  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1197  */
1198 int regulator_force_disable(struct regulator *regulator)
1199 {
1200         int ret;
1201
1202         mutex_lock(&regulator->rdev->mutex);
1203         regulator->enabled = 0;
1204         regulator->uA_load = 0;
1205         ret = _regulator_force_disable(regulator->rdev);
1206         mutex_unlock(&regulator->rdev->mutex);
1207         return ret;
1208 }
1209 EXPORT_SYMBOL_GPL(regulator_force_disable);
1210
1211 static int _regulator_is_enabled(struct regulator_dev *rdev)
1212 {
1213         int ret;
1214
1215         mutex_lock(&rdev->mutex);
1216
1217         /* sanity check */
1218         if (!rdev->desc->ops->is_enabled) {
1219                 ret = -EINVAL;
1220                 goto out;
1221         }
1222
1223         ret = rdev->desc->ops->is_enabled(rdev);
1224 out:
1225         mutex_unlock(&rdev->mutex);
1226         return ret;
1227 }
1228
1229 /**
1230  * regulator_is_enabled - is the regulator output enabled
1231  * @regulator: regulator source
1232  *
1233  * Returns positive if the regulator driver backing the source/client
1234  * has requested that the device be enabled, zero if it hasn't, else a
1235  * negative errno code.
1236  *
1237  * Note that the device backing this regulator handle can have multiple
1238  * users, so it might be enabled even if regulator_enable() was never
1239  * called for this particular source.
1240  */
1241 int regulator_is_enabled(struct regulator *regulator)
1242 {
1243         return _regulator_is_enabled(regulator->rdev);
1244 }
1245 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1246
1247 /**
1248  * regulator_set_voltage - set regulator output voltage
1249  * @regulator: regulator source
1250  * @min_uV: Minimum required voltage in uV
1251  * @max_uV: Maximum acceptable voltage in uV
1252  *
1253  * Sets a voltage regulator to the desired output voltage. This can be set
1254  * during any regulator state. IOW, regulator can be disabled or enabled.
1255  *
1256  * If the regulator is enabled then the voltage will change to the new value
1257  * immediately otherwise if the regulator is disabled the regulator will
1258  * output at the new voltage when enabled.
1259  *
1260  * NOTE: If the regulator is shared between several devices then the lowest
1261  * request voltage that meets the system constraints will be used.
1262  * Regulator system constraints must be set for this regulator before
1263  * calling this function otherwise this call will fail.
1264  */
1265 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1266 {
1267         struct regulator_dev *rdev = regulator->rdev;
1268         int ret;
1269
1270         mutex_lock(&rdev->mutex);
1271
1272         /* sanity check */
1273         if (!rdev->desc->ops->set_voltage) {
1274                 ret = -EINVAL;
1275                 goto out;
1276         }
1277
1278         /* constraints check */
1279         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1280         if (ret < 0)
1281                 goto out;
1282         regulator->min_uV = min_uV;
1283         regulator->max_uV = max_uV;
1284         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1285
1286 out:
1287         mutex_unlock(&rdev->mutex);
1288         return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1291
1292 static int _regulator_get_voltage(struct regulator_dev *rdev)
1293 {
1294         /* sanity check */
1295         if (rdev->desc->ops->get_voltage)
1296                 return rdev->desc->ops->get_voltage(rdev);
1297         else
1298                 return -EINVAL;
1299 }
1300
1301 /**
1302  * regulator_get_voltage - get regulator output voltage
1303  * @regulator: regulator source
1304  *
1305  * This returns the current regulator voltage in uV.
1306  *
1307  * NOTE: If the regulator is disabled it will return the voltage value. This
1308  * function should not be used to determine regulator state.
1309  */
1310 int regulator_get_voltage(struct regulator *regulator)
1311 {
1312         int ret;
1313
1314         mutex_lock(&regulator->rdev->mutex);
1315
1316         ret = _regulator_get_voltage(regulator->rdev);
1317
1318         mutex_unlock(&regulator->rdev->mutex);
1319
1320         return ret;
1321 }
1322 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1323
1324 /**
1325  * regulator_set_current_limit - set regulator output current limit
1326  * @regulator: regulator source
1327  * @min_uA: Minimuum supported current in uA
1328  * @max_uA: Maximum supported current in uA
1329  *
1330  * Sets current sink to the desired output current. This can be set during
1331  * any regulator state. IOW, regulator can be disabled or enabled.
1332  *
1333  * If the regulator is enabled then the current will change to the new value
1334  * immediately otherwise if the regulator is disabled the regulator will
1335  * output at the new current when enabled.
1336  *
1337  * NOTE: Regulator system constraints must be set for this regulator before
1338  * calling this function otherwise this call will fail.
1339  */
1340 int regulator_set_current_limit(struct regulator *regulator,
1341                                int min_uA, int max_uA)
1342 {
1343         struct regulator_dev *rdev = regulator->rdev;
1344         int ret;
1345
1346         mutex_lock(&rdev->mutex);
1347
1348         /* sanity check */
1349         if (!rdev->desc->ops->set_current_limit) {
1350                 ret = -EINVAL;
1351                 goto out;
1352         }
1353
1354         /* constraints check */
1355         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1356         if (ret < 0)
1357                 goto out;
1358
1359         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1360 out:
1361         mutex_unlock(&rdev->mutex);
1362         return ret;
1363 }
1364 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1365
1366 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1367 {
1368         int ret;
1369
1370         mutex_lock(&rdev->mutex);
1371
1372         /* sanity check */
1373         if (!rdev->desc->ops->get_current_limit) {
1374                 ret = -EINVAL;
1375                 goto out;
1376         }
1377
1378         ret = rdev->desc->ops->get_current_limit(rdev);
1379 out:
1380         mutex_unlock(&rdev->mutex);
1381         return ret;
1382 }
1383
1384 /**
1385  * regulator_get_current_limit - get regulator output current
1386  * @regulator: regulator source
1387  *
1388  * This returns the current supplied by the specified current sink in uA.
1389  *
1390  * NOTE: If the regulator is disabled it will return the current value. This
1391  * function should not be used to determine regulator state.
1392  */
1393 int regulator_get_current_limit(struct regulator *regulator)
1394 {
1395         return _regulator_get_current_limit(regulator->rdev);
1396 }
1397 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1398
1399 /**
1400  * regulator_set_mode - set regulator operating mode
1401  * @regulator: regulator source
1402  * @mode: operating mode - one of the REGULATOR_MODE constants
1403  *
1404  * Set regulator operating mode to increase regulator efficiency or improve
1405  * regulation performance.
1406  *
1407  * NOTE: Regulator system constraints must be set for this regulator before
1408  * calling this function otherwise this call will fail.
1409  */
1410 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1411 {
1412         struct regulator_dev *rdev = regulator->rdev;
1413         int ret;
1414
1415         mutex_lock(&rdev->mutex);
1416
1417         /* sanity check */
1418         if (!rdev->desc->ops->set_mode) {
1419                 ret = -EINVAL;
1420                 goto out;
1421         }
1422
1423         /* constraints check */
1424         ret = regulator_check_mode(rdev, mode);
1425         if (ret < 0)
1426                 goto out;
1427
1428         ret = rdev->desc->ops->set_mode(rdev, mode);
1429 out:
1430         mutex_unlock(&rdev->mutex);
1431         return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(regulator_set_mode);
1434
1435 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1436 {
1437         int ret;
1438
1439         mutex_lock(&rdev->mutex);
1440
1441         /* sanity check */
1442         if (!rdev->desc->ops->get_mode) {
1443                 ret = -EINVAL;
1444                 goto out;
1445         }
1446
1447         ret = rdev->desc->ops->get_mode(rdev);
1448 out:
1449         mutex_unlock(&rdev->mutex);
1450         return ret;
1451 }
1452
1453 /**
1454  * regulator_get_mode - get regulator operating mode
1455  * @regulator: regulator source
1456  *
1457  * Get the current regulator operating mode.
1458  */
1459 unsigned int regulator_get_mode(struct regulator *regulator)
1460 {
1461         return _regulator_get_mode(regulator->rdev);
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_get_mode);
1464
1465 /**
1466  * regulator_set_optimum_mode - set regulator optimum operating mode
1467  * @regulator: regulator source
1468  * @uA_load: load current
1469  *
1470  * Notifies the regulator core of a new device load. This is then used by
1471  * DRMS (if enabled by constraints) to set the most efficient regulator
1472  * operating mode for the new regulator loading.
1473  *
1474  * Consumer devices notify their supply regulator of the maximum power
1475  * they will require (can be taken from device datasheet in the power
1476  * consumption tables) when they change operational status and hence power
1477  * state. Examples of operational state changes that can affect power
1478  * consumption are :-
1479  *
1480  *    o Device is opened / closed.
1481  *    o Device I/O is about to begin or has just finished.
1482  *    o Device is idling in between work.
1483  *
1484  * This information is also exported via sysfs to userspace.
1485  *
1486  * DRMS will sum the total requested load on the regulator and change
1487  * to the most efficient operating mode if platform constraints allow.
1488  *
1489  * Returns the new regulator mode or error.
1490  */
1491 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1492 {
1493         struct regulator_dev *rdev = regulator->rdev;
1494         struct regulator *consumer;
1495         int ret, output_uV, input_uV, total_uA_load = 0;
1496         unsigned int mode;
1497
1498         mutex_lock(&rdev->mutex);
1499
1500         regulator->uA_load = uA_load;
1501         ret = regulator_check_drms(rdev);
1502         if (ret < 0)
1503                 goto out;
1504         ret = -EINVAL;
1505
1506         /* sanity check */
1507         if (!rdev->desc->ops->get_optimum_mode)
1508                 goto out;
1509
1510         /* get output voltage */
1511         output_uV = rdev->desc->ops->get_voltage(rdev);
1512         if (output_uV <= 0) {
1513                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1514                         __func__, rdev->desc->name);
1515                 goto out;
1516         }
1517
1518         /* get input voltage */
1519         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1520                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1521         else
1522                 input_uV = rdev->constraints->input_uV;
1523         if (input_uV <= 0) {
1524                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1525                         __func__, rdev->desc->name);
1526                 goto out;
1527         }
1528
1529         /* calc total requested load for this regulator */
1530         list_for_each_entry(consumer, &rdev->consumer_list, list)
1531             total_uA_load += consumer->uA_load;
1532
1533         mode = rdev->desc->ops->get_optimum_mode(rdev,
1534                                                  input_uV, output_uV,
1535                                                  total_uA_load);
1536         ret = regulator_check_mode(rdev, mode);
1537         if (ret < 0) {
1538                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1539                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1540                         total_uA_load, input_uV, output_uV);
1541                 goto out;
1542         }
1543
1544         ret = rdev->desc->ops->set_mode(rdev, mode);
1545         if (ret < 0) {
1546                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1547                         __func__, mode, rdev->desc->name);
1548                 goto out;
1549         }
1550         ret = mode;
1551 out:
1552         mutex_unlock(&rdev->mutex);
1553         return ret;
1554 }
1555 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1556
1557 /**
1558  * regulator_register_notifier - register regulator event notifier
1559  * @regulator: regulator source
1560  * @nb: notifier block
1561  *
1562  * Register notifier block to receive regulator events.
1563  */
1564 int regulator_register_notifier(struct regulator *regulator,
1565                               struct notifier_block *nb)
1566 {
1567         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1568                                                 nb);
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1571
1572 /**
1573  * regulator_unregister_notifier - unregister regulator event notifier
1574  * @regulator: regulator source
1575  * @nb: notifier block
1576  *
1577  * Unregister regulator event notifier block.
1578  */
1579 int regulator_unregister_notifier(struct regulator *regulator,
1580                                 struct notifier_block *nb)
1581 {
1582         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1583                                                   nb);
1584 }
1585 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1586
1587 /* notify regulator consumers and downstream regulator consumers */
1588 static void _notifier_call_chain(struct regulator_dev *rdev,
1589                                   unsigned long event, void *data)
1590 {
1591         struct regulator_dev *_rdev;
1592
1593         /* call rdev chain first */
1594         mutex_lock(&rdev->mutex);
1595         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1596         mutex_unlock(&rdev->mutex);
1597
1598         /* now notify regulator we supply */
1599         list_for_each_entry(_rdev, &rdev->supply_list, slist)
1600                 _notifier_call_chain(_rdev, event, data);
1601 }
1602
1603 /**
1604  * regulator_bulk_get - get multiple regulator consumers
1605  *
1606  * @dev:           Device to supply
1607  * @num_consumers: Number of consumers to register
1608  * @consumers:     Configuration of consumers; clients are stored here.
1609  *
1610  * @return 0 on success, an errno on failure.
1611  *
1612  * This helper function allows drivers to get several regulator
1613  * consumers in one operation.  If any of the regulators cannot be
1614  * acquired then any regulators that were allocated will be freed
1615  * before returning to the caller.
1616  */
1617 int regulator_bulk_get(struct device *dev, int num_consumers,
1618                        struct regulator_bulk_data *consumers)
1619 {
1620         int i;
1621         int ret;
1622
1623         for (i = 0; i < num_consumers; i++)
1624                 consumers[i].consumer = NULL;
1625
1626         for (i = 0; i < num_consumers; i++) {
1627                 consumers[i].consumer = regulator_get(dev,
1628                                                       consumers[i].supply);
1629                 if (IS_ERR(consumers[i].consumer)) {
1630                         dev_err(dev, "Failed to get supply '%s'\n",
1631                                 consumers[i].supply);
1632                         ret = PTR_ERR(consumers[i].consumer);
1633                         consumers[i].consumer = NULL;
1634                         goto err;
1635                 }
1636         }
1637
1638         return 0;
1639
1640 err:
1641         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1642                 regulator_put(consumers[i].consumer);
1643
1644         return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1647
1648 /**
1649  * regulator_bulk_enable - enable multiple regulator consumers
1650  *
1651  * @num_consumers: Number of consumers
1652  * @consumers:     Consumer data; clients are stored here.
1653  * @return         0 on success, an errno on failure
1654  *
1655  * This convenience API allows consumers to enable multiple regulator
1656  * clients in a single API call.  If any consumers cannot be enabled
1657  * then any others that were enabled will be disabled again prior to
1658  * return.
1659  */
1660 int regulator_bulk_enable(int num_consumers,
1661                           struct regulator_bulk_data *consumers)
1662 {
1663         int i;
1664         int ret;
1665
1666         for (i = 0; i < num_consumers; i++) {
1667                 ret = regulator_enable(consumers[i].consumer);
1668                 if (ret != 0)
1669                         goto err;
1670         }
1671
1672         return 0;
1673
1674 err:
1675         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1676         for (i = 0; i < num_consumers; i++)
1677                 regulator_disable(consumers[i].consumer);
1678
1679         return ret;
1680 }
1681 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1682
1683 /**
1684  * regulator_bulk_disable - disable multiple regulator consumers
1685  *
1686  * @num_consumers: Number of consumers
1687  * @consumers:     Consumer data; clients are stored here.
1688  * @return         0 on success, an errno on failure
1689  *
1690  * This convenience API allows consumers to disable multiple regulator
1691  * clients in a single API call.  If any consumers cannot be enabled
1692  * then any others that were disabled will be disabled again prior to
1693  * return.
1694  */
1695 int regulator_bulk_disable(int num_consumers,
1696                            struct regulator_bulk_data *consumers)
1697 {
1698         int i;
1699         int ret;
1700
1701         for (i = 0; i < num_consumers; i++) {
1702                 ret = regulator_disable(consumers[i].consumer);
1703                 if (ret != 0)
1704                         goto err;
1705         }
1706
1707         return 0;
1708
1709 err:
1710         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1711         for (i = 0; i < num_consumers; i++)
1712                 regulator_enable(consumers[i].consumer);
1713
1714         return ret;
1715 }
1716 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1717
1718 /**
1719  * regulator_bulk_free - free multiple regulator consumers
1720  *
1721  * @num_consumers: Number of consumers
1722  * @consumers:     Consumer data; clients are stored here.
1723  *
1724  * This convenience API allows consumers to free multiple regulator
1725  * clients in a single API call.
1726  */
1727 void regulator_bulk_free(int num_consumers,
1728                          struct regulator_bulk_data *consumers)
1729 {
1730         int i;
1731
1732         for (i = 0; i < num_consumers; i++) {
1733                 regulator_put(consumers[i].consumer);
1734                 consumers[i].consumer = NULL;
1735         }
1736 }
1737 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1738
1739 /**
1740  * regulator_notifier_call_chain - call regulator event notifier
1741  * @rdev: regulator source
1742  * @event: notifier block
1743  * @data: callback-specific data.
1744  *
1745  * Called by regulator drivers to notify clients a regulator event has
1746  * occurred. We also notify regulator clients downstream.
1747  */
1748 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1749                                   unsigned long event, void *data)
1750 {
1751         _notifier_call_chain(rdev, event, data);
1752         return NOTIFY_DONE;
1753
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1756
1757 /*
1758  * To avoid cluttering sysfs (and memory) with useless state, only
1759  * create attributes that can be meaningfully displayed.
1760  */
1761 static int add_regulator_attributes(struct regulator_dev *rdev)
1762 {
1763         struct device           *dev = &rdev->dev;
1764         struct regulator_ops    *ops = rdev->desc->ops;
1765         int                     status = 0;
1766
1767         /* some attributes need specific methods to be displayed */
1768         if (ops->get_voltage) {
1769                 status = device_create_file(dev, &dev_attr_microvolts);
1770                 if (status < 0)
1771                         return status;
1772         }
1773         if (ops->get_current_limit) {
1774                 status = device_create_file(dev, &dev_attr_microamps);
1775                 if (status < 0)
1776                         return status;
1777         }
1778         if (ops->get_mode) {
1779                 status = device_create_file(dev, &dev_attr_opmode);
1780                 if (status < 0)
1781                         return status;
1782         }
1783         if (ops->is_enabled) {
1784                 status = device_create_file(dev, &dev_attr_state);
1785                 if (status < 0)
1786                         return status;
1787         }
1788         if (ops->get_status) {
1789                 status = device_create_file(dev, &dev_attr_status);
1790                 if (status < 0)
1791                         return status;
1792         }
1793
1794         /* some attributes are type-specific */
1795         if (rdev->desc->type == REGULATOR_CURRENT) {
1796                 status = device_create_file(dev, &dev_attr_requested_microamps);
1797                 if (status < 0)
1798                         return status;
1799         }
1800
1801         /* all the other attributes exist to support constraints;
1802          * don't show them if there are no constraints, or if the
1803          * relevant supporting methods are missing.
1804          */
1805         if (!rdev->constraints)
1806                 return status;
1807
1808         /* constraints need specific supporting methods */
1809         if (ops->set_voltage) {
1810                 status = device_create_file(dev, &dev_attr_min_microvolts);
1811                 if (status < 0)
1812                         return status;
1813                 status = device_create_file(dev, &dev_attr_max_microvolts);
1814                 if (status < 0)
1815                         return status;
1816         }
1817         if (ops->set_current_limit) {
1818                 status = device_create_file(dev, &dev_attr_min_microamps);
1819                 if (status < 0)
1820                         return status;
1821                 status = device_create_file(dev, &dev_attr_max_microamps);
1822                 if (status < 0)
1823                         return status;
1824         }
1825
1826         /* suspend mode constraints need multiple supporting methods */
1827         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1828                 return status;
1829
1830         status = device_create_file(dev, &dev_attr_suspend_standby_state);
1831         if (status < 0)
1832                 return status;
1833         status = device_create_file(dev, &dev_attr_suspend_mem_state);
1834         if (status < 0)
1835                 return status;
1836         status = device_create_file(dev, &dev_attr_suspend_disk_state);
1837         if (status < 0)
1838                 return status;
1839
1840         if (ops->set_suspend_voltage) {
1841                 status = device_create_file(dev,
1842                                 &dev_attr_suspend_standby_microvolts);
1843                 if (status < 0)
1844                         return status;
1845                 status = device_create_file(dev,
1846                                 &dev_attr_suspend_mem_microvolts);
1847                 if (status < 0)
1848                         return status;
1849                 status = device_create_file(dev,
1850                                 &dev_attr_suspend_disk_microvolts);
1851                 if (status < 0)
1852                         return status;
1853         }
1854
1855         if (ops->set_suspend_mode) {
1856                 status = device_create_file(dev,
1857                                 &dev_attr_suspend_standby_mode);
1858                 if (status < 0)
1859                         return status;
1860                 status = device_create_file(dev,
1861                                 &dev_attr_suspend_mem_mode);
1862                 if (status < 0)
1863                         return status;
1864                 status = device_create_file(dev,
1865                                 &dev_attr_suspend_disk_mode);
1866                 if (status < 0)
1867                         return status;
1868         }
1869
1870         return status;
1871 }
1872
1873 /**
1874  * regulator_register - register regulator
1875  * @regulator_desc: regulator to register
1876  * @dev: struct device for the regulator
1877  * @driver_data: private regulator data
1878  *
1879  * Called by regulator drivers to register a regulator.
1880  * Returns 0 on success.
1881  */
1882 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1883         struct device *dev, void *driver_data)
1884 {
1885         static atomic_t regulator_no = ATOMIC_INIT(0);
1886         struct regulator_dev *rdev;
1887         struct regulator_init_data *init_data = dev->platform_data;
1888         int ret, i;
1889
1890         if (regulator_desc == NULL)
1891                 return ERR_PTR(-EINVAL);
1892
1893         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1894                 return ERR_PTR(-EINVAL);
1895
1896         if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1897             !regulator_desc->type == REGULATOR_CURRENT)
1898                 return ERR_PTR(-EINVAL);
1899
1900         if (!init_data)
1901                 return ERR_PTR(-EINVAL);
1902
1903         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1904         if (rdev == NULL)
1905                 return ERR_PTR(-ENOMEM);
1906
1907         mutex_lock(&regulator_list_mutex);
1908
1909         mutex_init(&rdev->mutex);
1910         rdev->reg_data = driver_data;
1911         rdev->owner = regulator_desc->owner;
1912         rdev->desc = regulator_desc;
1913         INIT_LIST_HEAD(&rdev->consumer_list);
1914         INIT_LIST_HEAD(&rdev->supply_list);
1915         INIT_LIST_HEAD(&rdev->list);
1916         INIT_LIST_HEAD(&rdev->slist);
1917         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1918
1919         /* preform any regulator specific init */
1920         if (init_data->regulator_init) {
1921                 ret = init_data->regulator_init(rdev->reg_data);
1922                 if (ret < 0)
1923                         goto clean;
1924         }
1925
1926         /* register with sysfs */
1927         rdev->dev.class = &regulator_class;
1928         rdev->dev.parent = dev;
1929         dev_set_name(&rdev->dev, "regulator.%d",
1930                      atomic_inc_return(&regulator_no) - 1);
1931         ret = device_register(&rdev->dev);
1932         if (ret != 0)
1933                 goto clean;
1934
1935         dev_set_drvdata(&rdev->dev, rdev);
1936
1937         /* set regulator constraints */
1938         ret = set_machine_constraints(rdev, &init_data->constraints);
1939         if (ret < 0)
1940                 goto scrub;
1941
1942         /* add attributes supported by this regulator */
1943         ret = add_regulator_attributes(rdev);
1944         if (ret < 0)
1945                 goto scrub;
1946
1947         /* set supply regulator if it exists */
1948         if (init_data->supply_regulator_dev) {
1949                 ret = set_supply(rdev,
1950                         dev_get_drvdata(init_data->supply_regulator_dev));
1951                 if (ret < 0)
1952                         goto scrub;
1953         }
1954
1955         /* add consumers devices */
1956         for (i = 0; i < init_data->num_consumer_supplies; i++) {
1957                 ret = set_consumer_device_supply(rdev,
1958                         init_data->consumer_supplies[i].dev,
1959                         init_data->consumer_supplies[i].supply);
1960                 if (ret < 0) {
1961                         for (--i; i >= 0; i--)
1962                                 unset_consumer_device_supply(rdev,
1963                                         init_data->consumer_supplies[i].dev);
1964                         goto scrub;
1965                 }
1966         }
1967
1968         list_add(&rdev->list, &regulator_list);
1969 out:
1970         mutex_unlock(&regulator_list_mutex);
1971         return rdev;
1972
1973 scrub:
1974         device_unregister(&rdev->dev);
1975 clean:
1976         kfree(rdev);
1977         rdev = ERR_PTR(ret);
1978         goto out;
1979 }
1980 EXPORT_SYMBOL_GPL(regulator_register);
1981
1982 /**
1983  * regulator_unregister - unregister regulator
1984  * @rdev: regulator to unregister
1985  *
1986  * Called by regulator drivers to unregister a regulator.
1987  */
1988 void regulator_unregister(struct regulator_dev *rdev)
1989 {
1990         if (rdev == NULL)
1991                 return;
1992
1993         mutex_lock(&regulator_list_mutex);
1994         list_del(&rdev->list);
1995         if (rdev->supply)
1996                 sysfs_remove_link(&rdev->dev.kobj, "supply");
1997         device_unregister(&rdev->dev);
1998         mutex_unlock(&regulator_list_mutex);
1999 }
2000 EXPORT_SYMBOL_GPL(regulator_unregister);
2001
2002 /**
2003  * regulator_suspend_prepare - prepare regulators for system wide suspend
2004  * @state: system suspend state
2005  *
2006  * Configure each regulator with it's suspend operating parameters for state.
2007  * This will usually be called by machine suspend code prior to supending.
2008  */
2009 int regulator_suspend_prepare(suspend_state_t state)
2010 {
2011         struct regulator_dev *rdev;
2012         int ret = 0;
2013
2014         /* ON is handled by regulator active state */
2015         if (state == PM_SUSPEND_ON)
2016                 return -EINVAL;
2017
2018         mutex_lock(&regulator_list_mutex);
2019         list_for_each_entry(rdev, &regulator_list, list) {
2020
2021                 mutex_lock(&rdev->mutex);
2022                 ret = suspend_prepare(rdev, state);
2023                 mutex_unlock(&rdev->mutex);
2024
2025                 if (ret < 0) {
2026                         printk(KERN_ERR "%s: failed to prepare %s\n",
2027                                 __func__, rdev->desc->name);
2028                         goto out;
2029                 }
2030         }
2031 out:
2032         mutex_unlock(&regulator_list_mutex);
2033         return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2036
2037 /**
2038  * rdev_get_drvdata - get rdev regulator driver data
2039  * @rdev: regulator
2040  *
2041  * Get rdev regulator driver private data. This call can be used in the
2042  * regulator driver context.
2043  */
2044 void *rdev_get_drvdata(struct regulator_dev *rdev)
2045 {
2046         return rdev->reg_data;
2047 }
2048 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2049
2050 /**
2051  * regulator_get_drvdata - get regulator driver data
2052  * @regulator: regulator
2053  *
2054  * Get regulator driver private data. This call can be used in the consumer
2055  * driver context when non API regulator specific functions need to be called.
2056  */
2057 void *regulator_get_drvdata(struct regulator *regulator)
2058 {
2059         return regulator->rdev->reg_data;
2060 }
2061 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2062
2063 /**
2064  * regulator_set_drvdata - set regulator driver data
2065  * @regulator: regulator
2066  * @data: data
2067  */
2068 void regulator_set_drvdata(struct regulator *regulator, void *data)
2069 {
2070         regulator->rdev->reg_data = data;
2071 }
2072 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2073
2074 /**
2075  * regulator_get_id - get regulator ID
2076  * @rdev: regulator
2077  */
2078 int rdev_get_id(struct regulator_dev *rdev)
2079 {
2080         return rdev->desc->id;
2081 }
2082 EXPORT_SYMBOL_GPL(rdev_get_id);
2083
2084 struct device *rdev_get_dev(struct regulator_dev *rdev)
2085 {
2086         return &rdev->dev;
2087 }
2088 EXPORT_SYMBOL_GPL(rdev_get_dev);
2089
2090 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2091 {
2092         return reg_init_data->driver_data;
2093 }
2094 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2095
2096 static int __init regulator_init(void)
2097 {
2098         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2099         return class_register(&regulator_class);
2100 }
2101
2102 /* init early to allow our consumers to complete system booting */
2103 core_initcall(regulator_init);