]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/regulator/core.c
regulator: Hoist struct regulator_dev out of core to fix notifiers
[linux-2.6-omap-h63xx.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /*
33  * struct regulator_map
34  *
35  * Used to provide symbolic supply names to devices.
36  */
37 struct regulator_map {
38         struct list_head list;
39         struct device *dev;
40         const char *supply;
41         struct regulator_dev *regulator;
42 };
43
44 /*
45  * struct regulator
46  *
47  * One for each consumer device.
48  */
49 struct regulator {
50         struct device *dev;
51         struct list_head list;
52         int uA_load;
53         int min_uV;
54         int max_uV;
55         int enabled; /* count of client enables */
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284         return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 }
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288 static ssize_t regulator_status_show(struct device *dev,
289                                    struct device_attribute *attr, char *buf)
290 {
291         struct regulator_dev *rdev = dev_get_drvdata(dev);
292         int status;
293         char *label;
294
295         status = rdev->desc->ops->get_status(rdev);
296         if (status < 0)
297                 return status;
298
299         switch (status) {
300         case REGULATOR_STATUS_OFF:
301                 label = "off";
302                 break;
303         case REGULATOR_STATUS_ON:
304                 label = "on";
305                 break;
306         case REGULATOR_STATUS_ERROR:
307                 label = "error";
308                 break;
309         case REGULATOR_STATUS_FAST:
310                 label = "fast";
311                 break;
312         case REGULATOR_STATUS_NORMAL:
313                 label = "normal";
314                 break;
315         case REGULATOR_STATUS_IDLE:
316                 label = "idle";
317                 break;
318         case REGULATOR_STATUS_STANDBY:
319                 label = "standby";
320                 break;
321         default:
322                 return -ERANGE;
323         }
324
325         return sprintf(buf, "%s\n", label);
326 }
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329 static ssize_t regulator_min_uA_show(struct device *dev,
330                                     struct device_attribute *attr, char *buf)
331 {
332         struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334         if (!rdev->constraints)
335                 return sprintf(buf, "constraint not defined\n");
336
337         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 }
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341 static ssize_t regulator_max_uA_show(struct device *dev,
342                                     struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         if (!rdev->constraints)
347                 return sprintf(buf, "constraint not defined\n");
348
349         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 }
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353 static ssize_t regulator_min_uV_show(struct device *dev,
354                                     struct device_attribute *attr, char *buf)
355 {
356         struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358         if (!rdev->constraints)
359                 return sprintf(buf, "constraint not defined\n");
360
361         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 }
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365 static ssize_t regulator_max_uV_show(struct device *dev,
366                                     struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370         if (!rdev->constraints)
371                 return sprintf(buf, "constraint not defined\n");
372
373         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 }
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377 static ssize_t regulator_total_uA_show(struct device *dev,
378                                       struct device_attribute *attr, char *buf)
379 {
380         struct regulator_dev *rdev = dev_get_drvdata(dev);
381         struct regulator *regulator;
382         int uA = 0;
383
384         mutex_lock(&rdev->mutex);
385         list_for_each_entry(regulator, &rdev->consumer_list, list)
386             uA += regulator->uA_load;
387         mutex_unlock(&rdev->mutex);
388         return sprintf(buf, "%d\n", uA);
389 }
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392 static ssize_t regulator_num_users_show(struct device *dev,
393                                       struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         return sprintf(buf, "%d\n", rdev->use_count);
397 }
398
399 static ssize_t regulator_type_show(struct device *dev,
400                                   struct device_attribute *attr, char *buf)
401 {
402         struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404         switch (rdev->desc->type) {
405         case REGULATOR_VOLTAGE:
406                 return sprintf(buf, "voltage\n");
407         case REGULATOR_CURRENT:
408                 return sprintf(buf, "current\n");
409         }
410         return sprintf(buf, "unknown\n");
411 }
412
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414                                 struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 }
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421                 regulator_suspend_mem_uV_show, NULL);
422
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424                                 struct device_attribute *attr, char *buf)
425 {
426         struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 }
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431                 regulator_suspend_disk_uV_show, NULL);
432
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434                                 struct device_attribute *attr, char *buf)
435 {
436         struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 }
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441                 regulator_suspend_standby_uV_show, NULL);
442
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444                                 struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         return regulator_print_opmode(buf,
449                 rdev->constraints->state_mem.mode);
450 }
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452                 regulator_suspend_mem_mode_show, NULL);
453
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_disk.mode);
461 }
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463                 regulator_suspend_disk_mode_show, NULL);
464
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_standby.mode);
472 }
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474                 regulator_suspend_standby_mode_show, NULL);
475
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477                                    struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_state(buf,
482                         rdev->constraints->state_mem.enabled);
483 }
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485                 regulator_suspend_mem_state_show, NULL);
486
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_disk.enabled);
494 }
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496                 regulator_suspend_disk_state_show, NULL);
497
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_standby.enabled);
505 }
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507                 regulator_suspend_standby_state_show, NULL);
508
509
510 /*
511  * These are the only attributes are present for all regulators.
512  * Other attributes are a function of regulator functionality.
513  */
514 static struct device_attribute regulator_dev_attrs[] = {
515         __ATTR(name, 0444, regulator_name_show, NULL),
516         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
517         __ATTR(type, 0444, regulator_type_show, NULL),
518         __ATTR_NULL,
519 };
520
521 static void regulator_dev_release(struct device *dev)
522 {
523         struct regulator_dev *rdev = dev_get_drvdata(dev);
524         kfree(rdev);
525 }
526
527 static struct class regulator_class = {
528         .name = "regulator",
529         .dev_release = regulator_dev_release,
530         .dev_attrs = regulator_dev_attrs,
531 };
532
533 /* Calculate the new optimum regulator operating mode based on the new total
534  * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
536 {
537         struct regulator *sibling;
538         int current_uA = 0, output_uV, input_uV, err;
539         unsigned int mode;
540
541         err = regulator_check_drms(rdev);
542         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544         return;
545
546         /* get output voltage */
547         output_uV = rdev->desc->ops->get_voltage(rdev);
548         if (output_uV <= 0)
549                 return;
550
551         /* get input voltage */
552         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554         else
555                 input_uV = rdev->constraints->input_uV;
556         if (input_uV <= 0)
557                 return;
558
559         /* calc total requested load */
560         list_for_each_entry(sibling, &rdev->consumer_list, list)
561             current_uA += sibling->uA_load;
562
563         /* now get the optimum mode for our new total regulator load */
564         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565                                                   output_uV, current_uA);
566
567         /* check the new mode is allowed */
568         err = regulator_check_mode(rdev, mode);
569         if (err == 0)
570                 rdev->desc->ops->set_mode(rdev, mode);
571 }
572
573 static int suspend_set_state(struct regulator_dev *rdev,
574         struct regulator_state *rstate)
575 {
576         int ret = 0;
577
578         /* enable & disable are mandatory for suspend control */
579         if (!rdev->desc->ops->set_suspend_enable ||
580                 !rdev->desc->ops->set_suspend_disable) {
581                 printk(KERN_ERR "%s: no way to set suspend state\n",
582                         __func__);
583                 return -EINVAL;
584         }
585
586         if (rstate->enabled)
587                 ret = rdev->desc->ops->set_suspend_enable(rdev);
588         else
589                 ret = rdev->desc->ops->set_suspend_disable(rdev);
590         if (ret < 0) {
591                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592                 return ret;
593         }
594
595         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597                 if (ret < 0) {
598                         printk(KERN_ERR "%s: failed to set voltage\n",
599                                 __func__);
600                         return ret;
601                 }
602         }
603
604         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606                 if (ret < 0) {
607                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
608                         return ret;
609                 }
610         }
611         return ret;
612 }
613
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 {
617         if (!rdev->constraints)
618                 return -EINVAL;
619
620         switch (state) {
621         case PM_SUSPEND_STANDBY:
622                 return suspend_set_state(rdev,
623                         &rdev->constraints->state_standby);
624         case PM_SUSPEND_MEM:
625                 return suspend_set_state(rdev,
626                         &rdev->constraints->state_mem);
627         case PM_SUSPEND_MAX:
628                 return suspend_set_state(rdev,
629                         &rdev->constraints->state_disk);
630         default:
631                 return -EINVAL;
632         }
633 }
634
635 static void print_constraints(struct regulator_dev *rdev)
636 {
637         struct regulation_constraints *constraints = rdev->constraints;
638         char buf[80];
639         int count;
640
641         if (rdev->desc->type == REGULATOR_VOLTAGE) {
642                 if (constraints->min_uV == constraints->max_uV)
643                         count = sprintf(buf, "%d mV ",
644                                         constraints->min_uV / 1000);
645                 else
646                         count = sprintf(buf, "%d <--> %d mV ",
647                                         constraints->min_uV / 1000,
648                                         constraints->max_uV / 1000);
649         } else {
650                 if (constraints->min_uA == constraints->max_uA)
651                         count = sprintf(buf, "%d mA ",
652                                         constraints->min_uA / 1000);
653                 else
654                         count = sprintf(buf, "%d <--> %d mA ",
655                                         constraints->min_uA / 1000,
656                                         constraints->max_uA / 1000);
657         }
658         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659                 count += sprintf(buf + count, "fast ");
660         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661                 count += sprintf(buf + count, "normal ");
662         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663                 count += sprintf(buf + count, "idle ");
664         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665                 count += sprintf(buf + count, "standby");
666
667         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668 }
669
670 /**
671  * set_machine_constraints - sets regulator constraints
672  * @rdev: regulator source
673  * @constraints: constraints to apply
674  *
675  * Allows platform initialisation code to define and constrain
676  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677  * Constraints *must* be set by platform code in order for some
678  * regulator operations to proceed i.e. set_voltage, set_current_limit,
679  * set_mode.
680  */
681 static int set_machine_constraints(struct regulator_dev *rdev,
682         struct regulation_constraints *constraints)
683 {
684         int ret = 0;
685         const char *name;
686         struct regulator_ops *ops = rdev->desc->ops;
687
688         if (constraints->name)
689                 name = constraints->name;
690         else if (rdev->desc->name)
691                 name = rdev->desc->name;
692         else
693                 name = "regulator";
694
695         rdev->constraints = constraints;
696
697         /* do we need to apply the constraint voltage */
698         if (rdev->constraints->apply_uV &&
699                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
700                 ops->set_voltage) {
701                 ret = ops->set_voltage(rdev,
702                         rdev->constraints->min_uV, rdev->constraints->max_uV);
703                         if (ret < 0) {
704                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
705                                        __func__,
706                                        rdev->constraints->min_uV, name);
707                                 rdev->constraints = NULL;
708                                 goto out;
709                         }
710         }
711
712         /* are we enabled at boot time by firmware / bootloader */
713         if (rdev->constraints->boot_on)
714                 rdev->use_count = 1;
715
716         /* do we need to setup our suspend state */
717         if (constraints->initial_state) {
718                 ret = suspend_prepare(rdev, constraints->initial_state);
719                 if (ret < 0) {
720                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
721                                __func__, name);
722                         rdev->constraints = NULL;
723                         goto out;
724                 }
725         }
726
727         /* if always_on is set then turn the regulator on if it's not
728          * already on. */
729         if (constraints->always_on && ops->enable &&
730             ((ops->is_enabled && !ops->is_enabled(rdev)) ||
731              (!ops->is_enabled && !constraints->boot_on))) {
732                 ret = ops->enable(rdev);
733                 if (ret < 0) {
734                         printk(KERN_ERR "%s: failed to enable %s\n",
735                                __func__, name);
736                         rdev->constraints = NULL;
737                         goto out;
738                 }
739         }
740
741         print_constraints(rdev);
742 out:
743         return ret;
744 }
745
746 /**
747  * set_supply - set regulator supply regulator
748  * @rdev: regulator name
749  * @supply_rdev: supply regulator name
750  *
751  * Called by platform initialisation code to set the supply regulator for this
752  * regulator. This ensures that a regulators supply will also be enabled by the
753  * core if it's child is enabled.
754  */
755 static int set_supply(struct regulator_dev *rdev,
756         struct regulator_dev *supply_rdev)
757 {
758         int err;
759
760         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
761                                 "supply");
762         if (err) {
763                 printk(KERN_ERR
764                        "%s: could not add device link %s err %d\n",
765                        __func__, supply_rdev->dev.kobj.name, err);
766                        goto out;
767         }
768         rdev->supply = supply_rdev;
769         list_add(&rdev->slist, &supply_rdev->supply_list);
770 out:
771         return err;
772 }
773
774 /**
775  * set_consumer_device_supply: Bind a regulator to a symbolic supply
776  * @rdev:         regulator source
777  * @consumer_dev: device the supply applies to
778  * @supply:       symbolic name for supply
779  *
780  * Allows platform initialisation code to map physical regulator
781  * sources to symbolic names for supplies for use by devices.  Devices
782  * should use these symbolic names to request regulators, avoiding the
783  * need to provide board-specific regulator names as platform data.
784  */
785 static int set_consumer_device_supply(struct regulator_dev *rdev,
786         struct device *consumer_dev, const char *supply)
787 {
788         struct regulator_map *node;
789
790         if (supply == NULL)
791                 return -EINVAL;
792
793         list_for_each_entry(node, &regulator_map_list, list) {
794                 if (consumer_dev != node->dev)
795                         continue;
796                 if (strcmp(node->supply, supply) != 0)
797                         continue;
798
799                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
800                                 dev_name(&node->regulator->dev),
801                                 node->regulator->desc->name,
802                                 supply,
803                                 dev_name(&rdev->dev), rdev->desc->name);
804                 return -EBUSY;
805         }
806
807         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
808         if (node == NULL)
809                 return -ENOMEM;
810
811         node->regulator = rdev;
812         node->dev = consumer_dev;
813         node->supply = supply;
814
815         list_add(&node->list, &regulator_map_list);
816         return 0;
817 }
818
819 static void unset_consumer_device_supply(struct regulator_dev *rdev,
820         struct device *consumer_dev)
821 {
822         struct regulator_map *node, *n;
823
824         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
825                 if (rdev == node->regulator &&
826                         consumer_dev == node->dev) {
827                         list_del(&node->list);
828                         kfree(node);
829                         return;
830                 }
831         }
832 }
833
834 #define REG_STR_SIZE    32
835
836 static struct regulator *create_regulator(struct regulator_dev *rdev,
837                                           struct device *dev,
838                                           const char *supply_name)
839 {
840         struct regulator *regulator;
841         char buf[REG_STR_SIZE];
842         int err, size;
843
844         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
845         if (regulator == NULL)
846                 return NULL;
847
848         mutex_lock(&rdev->mutex);
849         regulator->rdev = rdev;
850         list_add(&regulator->list, &rdev->consumer_list);
851
852         if (dev) {
853                 /* create a 'requested_microamps_name' sysfs entry */
854                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
855                         supply_name);
856                 if (size >= REG_STR_SIZE)
857                         goto overflow_err;
858
859                 regulator->dev = dev;
860                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
861                 if (regulator->dev_attr.attr.name == NULL)
862                         goto attr_name_err;
863
864                 regulator->dev_attr.attr.owner = THIS_MODULE;
865                 regulator->dev_attr.attr.mode = 0444;
866                 regulator->dev_attr.show = device_requested_uA_show;
867                 err = device_create_file(dev, &regulator->dev_attr);
868                 if (err < 0) {
869                         printk(KERN_WARNING "%s: could not add regulator_dev"
870                                 " load sysfs\n", __func__);
871                         goto attr_name_err;
872                 }
873
874                 /* also add a link to the device sysfs entry */
875                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
876                                  dev->kobj.name, supply_name);
877                 if (size >= REG_STR_SIZE)
878                         goto attr_err;
879
880                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
881                 if (regulator->supply_name == NULL)
882                         goto attr_err;
883
884                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
885                                         buf);
886                 if (err) {
887                         printk(KERN_WARNING
888                                "%s: could not add device link %s err %d\n",
889                                __func__, dev->kobj.name, err);
890                         device_remove_file(dev, &regulator->dev_attr);
891                         goto link_name_err;
892                 }
893         }
894         mutex_unlock(&rdev->mutex);
895         return regulator;
896 link_name_err:
897         kfree(regulator->supply_name);
898 attr_err:
899         device_remove_file(regulator->dev, &regulator->dev_attr);
900 attr_name_err:
901         kfree(regulator->dev_attr.attr.name);
902 overflow_err:
903         list_del(&regulator->list);
904         kfree(regulator);
905         mutex_unlock(&rdev->mutex);
906         return NULL;
907 }
908
909 /**
910  * regulator_get - lookup and obtain a reference to a regulator.
911  * @dev: device for regulator "consumer"
912  * @id: Supply name or regulator ID.
913  *
914  * Returns a struct regulator corresponding to the regulator producer,
915  * or IS_ERR() condition containing errno.  Use of supply names
916  * configured via regulator_set_device_supply() is strongly
917  * encouraged.
918  */
919 struct regulator *regulator_get(struct device *dev, const char *id)
920 {
921         struct regulator_dev *rdev;
922         struct regulator_map *map;
923         struct regulator *regulator = ERR_PTR(-ENODEV);
924
925         if (id == NULL) {
926                 printk(KERN_ERR "regulator: get() with no identifier\n");
927                 return regulator;
928         }
929
930         mutex_lock(&regulator_list_mutex);
931
932         list_for_each_entry(map, &regulator_map_list, list) {
933                 if (dev == map->dev &&
934                     strcmp(map->supply, id) == 0) {
935                         rdev = map->regulator;
936                         goto found;
937                 }
938         }
939         printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
940                id);
941         mutex_unlock(&regulator_list_mutex);
942         return regulator;
943
944 found:
945         if (!try_module_get(rdev->owner))
946                 goto out;
947
948         regulator = create_regulator(rdev, dev, id);
949         if (regulator == NULL) {
950                 regulator = ERR_PTR(-ENOMEM);
951                 module_put(rdev->owner);
952         }
953
954 out:
955         mutex_unlock(&regulator_list_mutex);
956         return regulator;
957 }
958 EXPORT_SYMBOL_GPL(regulator_get);
959
960 /**
961  * regulator_put - "free" the regulator source
962  * @regulator: regulator source
963  *
964  * Note: drivers must ensure that all regulator_enable calls made on this
965  * regulator source are balanced by regulator_disable calls prior to calling
966  * this function.
967  */
968 void regulator_put(struct regulator *regulator)
969 {
970         struct regulator_dev *rdev;
971
972         if (regulator == NULL || IS_ERR(regulator))
973                 return;
974
975         mutex_lock(&regulator_list_mutex);
976         rdev = regulator->rdev;
977
978         if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
979                                regulator->supply_name))
980                 _regulator_disable(rdev);
981
982         /* remove any sysfs entries */
983         if (regulator->dev) {
984                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
985                 kfree(regulator->supply_name);
986                 device_remove_file(regulator->dev, &regulator->dev_attr);
987                 kfree(regulator->dev_attr.attr.name);
988         }
989         list_del(&regulator->list);
990         kfree(regulator);
991
992         module_put(rdev->owner);
993         mutex_unlock(&regulator_list_mutex);
994 }
995 EXPORT_SYMBOL_GPL(regulator_put);
996
997 /* locks held by regulator_enable() */
998 static int _regulator_enable(struct regulator_dev *rdev)
999 {
1000         int ret = -EINVAL;
1001
1002         if (!rdev->constraints) {
1003                 printk(KERN_ERR "%s: %s has no constraints\n",
1004                        __func__, rdev->desc->name);
1005                 return ret;
1006         }
1007
1008         /* do we need to enable the supply regulator first */
1009         if (rdev->supply) {
1010                 ret = _regulator_enable(rdev->supply);
1011                 if (ret < 0) {
1012                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1013                                __func__, rdev->desc->name, ret);
1014                         return ret;
1015                 }
1016         }
1017
1018         /* check voltage and requested load before enabling */
1019         if (rdev->desc->ops->enable) {
1020
1021                 if (rdev->constraints &&
1022                         (rdev->constraints->valid_ops_mask &
1023                         REGULATOR_CHANGE_DRMS))
1024                         drms_uA_update(rdev);
1025
1026                 ret = rdev->desc->ops->enable(rdev);
1027                 if (ret < 0) {
1028                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1029                                __func__, rdev->desc->name, ret);
1030                         return ret;
1031                 }
1032                 rdev->use_count++;
1033                 return ret;
1034         }
1035
1036         return ret;
1037 }
1038
1039 /**
1040  * regulator_enable - enable regulator output
1041  * @regulator: regulator source
1042  *
1043  * Request that the regulator be enabled with the regulator output at
1044  * the predefined voltage or current value.  Calls to regulator_enable()
1045  * must be balanced with calls to regulator_disable().
1046  *
1047  * NOTE: the output value can be set by other drivers, boot loader or may be
1048  * hardwired in the regulator.
1049  */
1050 int regulator_enable(struct regulator *regulator)
1051 {
1052         struct regulator_dev *rdev = regulator->rdev;
1053         int ret = 0;
1054
1055         mutex_lock(&rdev->mutex);
1056         if (regulator->enabled == 0)
1057                 ret = _regulator_enable(rdev);
1058         else if (regulator->enabled < 0)
1059                 ret = -EIO;
1060         if (ret == 0)
1061                 regulator->enabled++;
1062         mutex_unlock(&rdev->mutex);
1063         return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(regulator_enable);
1066
1067 /* locks held by regulator_disable() */
1068 static int _regulator_disable(struct regulator_dev *rdev)
1069 {
1070         int ret = 0;
1071
1072         /* are we the last user and permitted to disable ? */
1073         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1074
1075                 /* we are last user */
1076                 if (rdev->desc->ops->disable) {
1077                         ret = rdev->desc->ops->disable(rdev);
1078                         if (ret < 0) {
1079                                 printk(KERN_ERR "%s: failed to disable %s\n",
1080                                        __func__, rdev->desc->name);
1081                                 return ret;
1082                         }
1083                 }
1084
1085                 /* decrease our supplies ref count and disable if required */
1086                 if (rdev->supply)
1087                         _regulator_disable(rdev->supply);
1088
1089                 rdev->use_count = 0;
1090         } else if (rdev->use_count > 1) {
1091
1092                 if (rdev->constraints &&
1093                         (rdev->constraints->valid_ops_mask &
1094                         REGULATOR_CHANGE_DRMS))
1095                         drms_uA_update(rdev);
1096
1097                 rdev->use_count--;
1098         }
1099         return ret;
1100 }
1101
1102 /**
1103  * regulator_disable - disable regulator output
1104  * @regulator: regulator source
1105  *
1106  * Disable the regulator output voltage or current.  Calls to
1107  * regulator_enable() must be balanced with calls to
1108  * regulator_disable().
1109  *
1110  * NOTE: this will only disable the regulator output if no other consumer
1111  * devices have it enabled, the regulator device supports disabling and
1112  * machine constraints permit this operation.
1113  */
1114 int regulator_disable(struct regulator *regulator)
1115 {
1116         struct regulator_dev *rdev = regulator->rdev;
1117         int ret = 0;
1118
1119         mutex_lock(&rdev->mutex);
1120         if (regulator->enabled == 1) {
1121                 ret = _regulator_disable(rdev);
1122                 if (ret == 0)
1123                         regulator->uA_load = 0;
1124         } else if (WARN(regulator->enabled <= 0,
1125                         "unbalanced disables for supply %s\n",
1126                         regulator->supply_name))
1127                 ret = -EIO;
1128         if (ret == 0)
1129                 regulator->enabled--;
1130         mutex_unlock(&rdev->mutex);
1131         return ret;
1132 }
1133 EXPORT_SYMBOL_GPL(regulator_disable);
1134
1135 /* locks held by regulator_force_disable() */
1136 static int _regulator_force_disable(struct regulator_dev *rdev)
1137 {
1138         int ret = 0;
1139
1140         /* force disable */
1141         if (rdev->desc->ops->disable) {
1142                 /* ah well, who wants to live forever... */
1143                 ret = rdev->desc->ops->disable(rdev);
1144                 if (ret < 0) {
1145                         printk(KERN_ERR "%s: failed to force disable %s\n",
1146                                __func__, rdev->desc->name);
1147                         return ret;
1148                 }
1149                 /* notify other consumers that power has been forced off */
1150                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1151                         NULL);
1152         }
1153
1154         /* decrease our supplies ref count and disable if required */
1155         if (rdev->supply)
1156                 _regulator_disable(rdev->supply);
1157
1158         rdev->use_count = 0;
1159         return ret;
1160 }
1161
1162 /**
1163  * regulator_force_disable - force disable regulator output
1164  * @regulator: regulator source
1165  *
1166  * Forcibly disable the regulator output voltage or current.
1167  * NOTE: this *will* disable the regulator output even if other consumer
1168  * devices have it enabled. This should be used for situations when device
1169  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1170  */
1171 int regulator_force_disable(struct regulator *regulator)
1172 {
1173         int ret;
1174
1175         mutex_lock(&regulator->rdev->mutex);
1176         regulator->enabled = 0;
1177         regulator->uA_load = 0;
1178         ret = _regulator_force_disable(regulator->rdev);
1179         mutex_unlock(&regulator->rdev->mutex);
1180         return ret;
1181 }
1182 EXPORT_SYMBOL_GPL(regulator_force_disable);
1183
1184 static int _regulator_is_enabled(struct regulator_dev *rdev)
1185 {
1186         int ret;
1187
1188         mutex_lock(&rdev->mutex);
1189
1190         /* sanity check */
1191         if (!rdev->desc->ops->is_enabled) {
1192                 ret = -EINVAL;
1193                 goto out;
1194         }
1195
1196         ret = rdev->desc->ops->is_enabled(rdev);
1197 out:
1198         mutex_unlock(&rdev->mutex);
1199         return ret;
1200 }
1201
1202 /**
1203  * regulator_is_enabled - is the regulator output enabled
1204  * @regulator: regulator source
1205  *
1206  * Returns positive if the regulator driver backing the source/client
1207  * has requested that the device be enabled, zero if it hasn't, else a
1208  * negative errno code.
1209  *
1210  * Note that the device backing this regulator handle can have multiple
1211  * users, so it might be enabled even if regulator_enable() was never
1212  * called for this particular source.
1213  */
1214 int regulator_is_enabled(struct regulator *regulator)
1215 {
1216         return _regulator_is_enabled(regulator->rdev);
1217 }
1218 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1219
1220 /**
1221  * regulator_set_voltage - set regulator output voltage
1222  * @regulator: regulator source
1223  * @min_uV: Minimum required voltage in uV
1224  * @max_uV: Maximum acceptable voltage in uV
1225  *
1226  * Sets a voltage regulator to the desired output voltage. This can be set
1227  * during any regulator state. IOW, regulator can be disabled or enabled.
1228  *
1229  * If the regulator is enabled then the voltage will change to the new value
1230  * immediately otherwise if the regulator is disabled the regulator will
1231  * output at the new voltage when enabled.
1232  *
1233  * NOTE: If the regulator is shared between several devices then the lowest
1234  * request voltage that meets the system constraints will be used.
1235  * Regulator system constraints must be set for this regulator before
1236  * calling this function otherwise this call will fail.
1237  */
1238 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1239 {
1240         struct regulator_dev *rdev = regulator->rdev;
1241         int ret;
1242
1243         mutex_lock(&rdev->mutex);
1244
1245         /* sanity check */
1246         if (!rdev->desc->ops->set_voltage) {
1247                 ret = -EINVAL;
1248                 goto out;
1249         }
1250
1251         /* constraints check */
1252         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1253         if (ret < 0)
1254                 goto out;
1255         regulator->min_uV = min_uV;
1256         regulator->max_uV = max_uV;
1257         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1258
1259 out:
1260         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1261         mutex_unlock(&rdev->mutex);
1262         return ret;
1263 }
1264 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1265
1266 static int _regulator_get_voltage(struct regulator_dev *rdev)
1267 {
1268         /* sanity check */
1269         if (rdev->desc->ops->get_voltage)
1270                 return rdev->desc->ops->get_voltage(rdev);
1271         else
1272                 return -EINVAL;
1273 }
1274
1275 /**
1276  * regulator_get_voltage - get regulator output voltage
1277  * @regulator: regulator source
1278  *
1279  * This returns the current regulator voltage in uV.
1280  *
1281  * NOTE: If the regulator is disabled it will return the voltage value. This
1282  * function should not be used to determine regulator state.
1283  */
1284 int regulator_get_voltage(struct regulator *regulator)
1285 {
1286         int ret;
1287
1288         mutex_lock(&regulator->rdev->mutex);
1289
1290         ret = _regulator_get_voltage(regulator->rdev);
1291
1292         mutex_unlock(&regulator->rdev->mutex);
1293
1294         return ret;
1295 }
1296 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1297
1298 /**
1299  * regulator_set_current_limit - set regulator output current limit
1300  * @regulator: regulator source
1301  * @min_uA: Minimuum supported current in uA
1302  * @max_uA: Maximum supported current in uA
1303  *
1304  * Sets current sink to the desired output current. This can be set during
1305  * any regulator state. IOW, regulator can be disabled or enabled.
1306  *
1307  * If the regulator is enabled then the current will change to the new value
1308  * immediately otherwise if the regulator is disabled the regulator will
1309  * output at the new current when enabled.
1310  *
1311  * NOTE: Regulator system constraints must be set for this regulator before
1312  * calling this function otherwise this call will fail.
1313  */
1314 int regulator_set_current_limit(struct regulator *regulator,
1315                                int min_uA, int max_uA)
1316 {
1317         struct regulator_dev *rdev = regulator->rdev;
1318         int ret;
1319
1320         mutex_lock(&rdev->mutex);
1321
1322         /* sanity check */
1323         if (!rdev->desc->ops->set_current_limit) {
1324                 ret = -EINVAL;
1325                 goto out;
1326         }
1327
1328         /* constraints check */
1329         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1330         if (ret < 0)
1331                 goto out;
1332
1333         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1334 out:
1335         mutex_unlock(&rdev->mutex);
1336         return ret;
1337 }
1338 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1339
1340 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1341 {
1342         int ret;
1343
1344         mutex_lock(&rdev->mutex);
1345
1346         /* sanity check */
1347         if (!rdev->desc->ops->get_current_limit) {
1348                 ret = -EINVAL;
1349                 goto out;
1350         }
1351
1352         ret = rdev->desc->ops->get_current_limit(rdev);
1353 out:
1354         mutex_unlock(&rdev->mutex);
1355         return ret;
1356 }
1357
1358 /**
1359  * regulator_get_current_limit - get regulator output current
1360  * @regulator: regulator source
1361  *
1362  * This returns the current supplied by the specified current sink in uA.
1363  *
1364  * NOTE: If the regulator is disabled it will return the current value. This
1365  * function should not be used to determine regulator state.
1366  */
1367 int regulator_get_current_limit(struct regulator *regulator)
1368 {
1369         return _regulator_get_current_limit(regulator->rdev);
1370 }
1371 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1372
1373 /**
1374  * regulator_set_mode - set regulator operating mode
1375  * @regulator: regulator source
1376  * @mode: operating mode - one of the REGULATOR_MODE constants
1377  *
1378  * Set regulator operating mode to increase regulator efficiency or improve
1379  * regulation performance.
1380  *
1381  * NOTE: Regulator system constraints must be set for this regulator before
1382  * calling this function otherwise this call will fail.
1383  */
1384 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1385 {
1386         struct regulator_dev *rdev = regulator->rdev;
1387         int ret;
1388
1389         mutex_lock(&rdev->mutex);
1390
1391         /* sanity check */
1392         if (!rdev->desc->ops->set_mode) {
1393                 ret = -EINVAL;
1394                 goto out;
1395         }
1396
1397         /* constraints check */
1398         ret = regulator_check_mode(rdev, mode);
1399         if (ret < 0)
1400                 goto out;
1401
1402         ret = rdev->desc->ops->set_mode(rdev, mode);
1403 out:
1404         mutex_unlock(&rdev->mutex);
1405         return ret;
1406 }
1407 EXPORT_SYMBOL_GPL(regulator_set_mode);
1408
1409 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1410 {
1411         int ret;
1412
1413         mutex_lock(&rdev->mutex);
1414
1415         /* sanity check */
1416         if (!rdev->desc->ops->get_mode) {
1417                 ret = -EINVAL;
1418                 goto out;
1419         }
1420
1421         ret = rdev->desc->ops->get_mode(rdev);
1422 out:
1423         mutex_unlock(&rdev->mutex);
1424         return ret;
1425 }
1426
1427 /**
1428  * regulator_get_mode - get regulator operating mode
1429  * @regulator: regulator source
1430  *
1431  * Get the current regulator operating mode.
1432  */
1433 unsigned int regulator_get_mode(struct regulator *regulator)
1434 {
1435         return _regulator_get_mode(regulator->rdev);
1436 }
1437 EXPORT_SYMBOL_GPL(regulator_get_mode);
1438
1439 /**
1440  * regulator_set_optimum_mode - set regulator optimum operating mode
1441  * @regulator: regulator source
1442  * @uA_load: load current
1443  *
1444  * Notifies the regulator core of a new device load. This is then used by
1445  * DRMS (if enabled by constraints) to set the most efficient regulator
1446  * operating mode for the new regulator loading.
1447  *
1448  * Consumer devices notify their supply regulator of the maximum power
1449  * they will require (can be taken from device datasheet in the power
1450  * consumption tables) when they change operational status and hence power
1451  * state. Examples of operational state changes that can affect power
1452  * consumption are :-
1453  *
1454  *    o Device is opened / closed.
1455  *    o Device I/O is about to begin or has just finished.
1456  *    o Device is idling in between work.
1457  *
1458  * This information is also exported via sysfs to userspace.
1459  *
1460  * DRMS will sum the total requested load on the regulator and change
1461  * to the most efficient operating mode if platform constraints allow.
1462  *
1463  * Returns the new regulator mode or error.
1464  */
1465 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1466 {
1467         struct regulator_dev *rdev = regulator->rdev;
1468         struct regulator *consumer;
1469         int ret, output_uV, input_uV, total_uA_load = 0;
1470         unsigned int mode;
1471
1472         mutex_lock(&rdev->mutex);
1473
1474         regulator->uA_load = uA_load;
1475         ret = regulator_check_drms(rdev);
1476         if (ret < 0)
1477                 goto out;
1478         ret = -EINVAL;
1479
1480         /* sanity check */
1481         if (!rdev->desc->ops->get_optimum_mode)
1482                 goto out;
1483
1484         /* get output voltage */
1485         output_uV = rdev->desc->ops->get_voltage(rdev);
1486         if (output_uV <= 0) {
1487                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1488                         __func__, rdev->desc->name);
1489                 goto out;
1490         }
1491
1492         /* get input voltage */
1493         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1494                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1495         else
1496                 input_uV = rdev->constraints->input_uV;
1497         if (input_uV <= 0) {
1498                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1499                         __func__, rdev->desc->name);
1500                 goto out;
1501         }
1502
1503         /* calc total requested load for this regulator */
1504         list_for_each_entry(consumer, &rdev->consumer_list, list)
1505             total_uA_load += consumer->uA_load;
1506
1507         mode = rdev->desc->ops->get_optimum_mode(rdev,
1508                                                  input_uV, output_uV,
1509                                                  total_uA_load);
1510         ret = regulator_check_mode(rdev, mode);
1511         if (ret < 0) {
1512                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1513                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1514                         total_uA_load, input_uV, output_uV);
1515                 goto out;
1516         }
1517
1518         ret = rdev->desc->ops->set_mode(rdev, mode);
1519         if (ret < 0) {
1520                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1521                         __func__, mode, rdev->desc->name);
1522                 goto out;
1523         }
1524         ret = mode;
1525 out:
1526         mutex_unlock(&rdev->mutex);
1527         return ret;
1528 }
1529 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1530
1531 /**
1532  * regulator_register_notifier - register regulator event notifier
1533  * @regulator: regulator source
1534  * @nb: notifier block
1535  *
1536  * Register notifier block to receive regulator events.
1537  */
1538 int regulator_register_notifier(struct regulator *regulator,
1539                               struct notifier_block *nb)
1540 {
1541         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1542                                                 nb);
1543 }
1544 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1545
1546 /**
1547  * regulator_unregister_notifier - unregister regulator event notifier
1548  * @regulator: regulator source
1549  * @nb: notifier block
1550  *
1551  * Unregister regulator event notifier block.
1552  */
1553 int regulator_unregister_notifier(struct regulator *regulator,
1554                                 struct notifier_block *nb)
1555 {
1556         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1557                                                   nb);
1558 }
1559 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1560
1561 /* notify regulator consumers and downstream regulator consumers.
1562  * Note mutex must be held by caller.
1563  */
1564 static void _notifier_call_chain(struct regulator_dev *rdev,
1565                                   unsigned long event, void *data)
1566 {
1567         struct regulator_dev *_rdev;
1568
1569         /* call rdev chain first */
1570         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1571
1572         /* now notify regulator we supply */
1573         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1574           mutex_lock(&_rdev->mutex);
1575           _notifier_call_chain(_rdev, event, data);
1576           mutex_unlock(&_rdev->mutex);
1577         }
1578 }
1579
1580 /**
1581  * regulator_bulk_get - get multiple regulator consumers
1582  *
1583  * @dev:           Device to supply
1584  * @num_consumers: Number of consumers to register
1585  * @consumers:     Configuration of consumers; clients are stored here.
1586  *
1587  * @return 0 on success, an errno on failure.
1588  *
1589  * This helper function allows drivers to get several regulator
1590  * consumers in one operation.  If any of the regulators cannot be
1591  * acquired then any regulators that were allocated will be freed
1592  * before returning to the caller.
1593  */
1594 int regulator_bulk_get(struct device *dev, int num_consumers,
1595                        struct regulator_bulk_data *consumers)
1596 {
1597         int i;
1598         int ret;
1599
1600         for (i = 0; i < num_consumers; i++)
1601                 consumers[i].consumer = NULL;
1602
1603         for (i = 0; i < num_consumers; i++) {
1604                 consumers[i].consumer = regulator_get(dev,
1605                                                       consumers[i].supply);
1606                 if (IS_ERR(consumers[i].consumer)) {
1607                         dev_err(dev, "Failed to get supply '%s'\n",
1608                                 consumers[i].supply);
1609                         ret = PTR_ERR(consumers[i].consumer);
1610                         consumers[i].consumer = NULL;
1611                         goto err;
1612                 }
1613         }
1614
1615         return 0;
1616
1617 err:
1618         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1619                 regulator_put(consumers[i].consumer);
1620
1621         return ret;
1622 }
1623 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1624
1625 /**
1626  * regulator_bulk_enable - enable multiple regulator consumers
1627  *
1628  * @num_consumers: Number of consumers
1629  * @consumers:     Consumer data; clients are stored here.
1630  * @return         0 on success, an errno on failure
1631  *
1632  * This convenience API allows consumers to enable multiple regulator
1633  * clients in a single API call.  If any consumers cannot be enabled
1634  * then any others that were enabled will be disabled again prior to
1635  * return.
1636  */
1637 int regulator_bulk_enable(int num_consumers,
1638                           struct regulator_bulk_data *consumers)
1639 {
1640         int i;
1641         int ret;
1642
1643         for (i = 0; i < num_consumers; i++) {
1644                 ret = regulator_enable(consumers[i].consumer);
1645                 if (ret != 0)
1646                         goto err;
1647         }
1648
1649         return 0;
1650
1651 err:
1652         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1653         for (i = 0; i < num_consumers; i++)
1654                 regulator_disable(consumers[i].consumer);
1655
1656         return ret;
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1659
1660 /**
1661  * regulator_bulk_disable - disable multiple regulator consumers
1662  *
1663  * @num_consumers: Number of consumers
1664  * @consumers:     Consumer data; clients are stored here.
1665  * @return         0 on success, an errno on failure
1666  *
1667  * This convenience API allows consumers to disable multiple regulator
1668  * clients in a single API call.  If any consumers cannot be enabled
1669  * then any others that were disabled will be disabled again prior to
1670  * return.
1671  */
1672 int regulator_bulk_disable(int num_consumers,
1673                            struct regulator_bulk_data *consumers)
1674 {
1675         int i;
1676         int ret;
1677
1678         for (i = 0; i < num_consumers; i++) {
1679                 ret = regulator_disable(consumers[i].consumer);
1680                 if (ret != 0)
1681                         goto err;
1682         }
1683
1684         return 0;
1685
1686 err:
1687         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1688         for (i = 0; i < num_consumers; i++)
1689                 regulator_enable(consumers[i].consumer);
1690
1691         return ret;
1692 }
1693 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1694
1695 /**
1696  * regulator_bulk_free - free multiple regulator consumers
1697  *
1698  * @num_consumers: Number of consumers
1699  * @consumers:     Consumer data; clients are stored here.
1700  *
1701  * This convenience API allows consumers to free multiple regulator
1702  * clients in a single API call.
1703  */
1704 void regulator_bulk_free(int num_consumers,
1705                          struct regulator_bulk_data *consumers)
1706 {
1707         int i;
1708
1709         for (i = 0; i < num_consumers; i++) {
1710                 regulator_put(consumers[i].consumer);
1711                 consumers[i].consumer = NULL;
1712         }
1713 }
1714 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1715
1716 /**
1717  * regulator_notifier_call_chain - call regulator event notifier
1718  * @rdev: regulator source
1719  * @event: notifier block
1720  * @data: callback-specific data.
1721  *
1722  * Called by regulator drivers to notify clients a regulator event has
1723  * occurred. We also notify regulator clients downstream.
1724  * Note lock must be held by caller.
1725  */
1726 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1727                                   unsigned long event, void *data)
1728 {
1729         _notifier_call_chain(rdev, event, data);
1730         return NOTIFY_DONE;
1731
1732 }
1733 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1734
1735 /*
1736  * To avoid cluttering sysfs (and memory) with useless state, only
1737  * create attributes that can be meaningfully displayed.
1738  */
1739 static int add_regulator_attributes(struct regulator_dev *rdev)
1740 {
1741         struct device           *dev = &rdev->dev;
1742         struct regulator_ops    *ops = rdev->desc->ops;
1743         int                     status = 0;
1744
1745         /* some attributes need specific methods to be displayed */
1746         if (ops->get_voltage) {
1747                 status = device_create_file(dev, &dev_attr_microvolts);
1748                 if (status < 0)
1749                         return status;
1750         }
1751         if (ops->get_current_limit) {
1752                 status = device_create_file(dev, &dev_attr_microamps);
1753                 if (status < 0)
1754                         return status;
1755         }
1756         if (ops->get_mode) {
1757                 status = device_create_file(dev, &dev_attr_opmode);
1758                 if (status < 0)
1759                         return status;
1760         }
1761         if (ops->is_enabled) {
1762                 status = device_create_file(dev, &dev_attr_state);
1763                 if (status < 0)
1764                         return status;
1765         }
1766         if (ops->get_status) {
1767                 status = device_create_file(dev, &dev_attr_status);
1768                 if (status < 0)
1769                         return status;
1770         }
1771
1772         /* some attributes are type-specific */
1773         if (rdev->desc->type == REGULATOR_CURRENT) {
1774                 status = device_create_file(dev, &dev_attr_requested_microamps);
1775                 if (status < 0)
1776                         return status;
1777         }
1778
1779         /* all the other attributes exist to support constraints;
1780          * don't show them if there are no constraints, or if the
1781          * relevant supporting methods are missing.
1782          */
1783         if (!rdev->constraints)
1784                 return status;
1785
1786         /* constraints need specific supporting methods */
1787         if (ops->set_voltage) {
1788                 status = device_create_file(dev, &dev_attr_min_microvolts);
1789                 if (status < 0)
1790                         return status;
1791                 status = device_create_file(dev, &dev_attr_max_microvolts);
1792                 if (status < 0)
1793                         return status;
1794         }
1795         if (ops->set_current_limit) {
1796                 status = device_create_file(dev, &dev_attr_min_microamps);
1797                 if (status < 0)
1798                         return status;
1799                 status = device_create_file(dev, &dev_attr_max_microamps);
1800                 if (status < 0)
1801                         return status;
1802         }
1803
1804         /* suspend mode constraints need multiple supporting methods */
1805         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1806                 return status;
1807
1808         status = device_create_file(dev, &dev_attr_suspend_standby_state);
1809         if (status < 0)
1810                 return status;
1811         status = device_create_file(dev, &dev_attr_suspend_mem_state);
1812         if (status < 0)
1813                 return status;
1814         status = device_create_file(dev, &dev_attr_suspend_disk_state);
1815         if (status < 0)
1816                 return status;
1817
1818         if (ops->set_suspend_voltage) {
1819                 status = device_create_file(dev,
1820                                 &dev_attr_suspend_standby_microvolts);
1821                 if (status < 0)
1822                         return status;
1823                 status = device_create_file(dev,
1824                                 &dev_attr_suspend_mem_microvolts);
1825                 if (status < 0)
1826                         return status;
1827                 status = device_create_file(dev,
1828                                 &dev_attr_suspend_disk_microvolts);
1829                 if (status < 0)
1830                         return status;
1831         }
1832
1833         if (ops->set_suspend_mode) {
1834                 status = device_create_file(dev,
1835                                 &dev_attr_suspend_standby_mode);
1836                 if (status < 0)
1837                         return status;
1838                 status = device_create_file(dev,
1839                                 &dev_attr_suspend_mem_mode);
1840                 if (status < 0)
1841                         return status;
1842                 status = device_create_file(dev,
1843                                 &dev_attr_suspend_disk_mode);
1844                 if (status < 0)
1845                         return status;
1846         }
1847
1848         return status;
1849 }
1850
1851 /**
1852  * regulator_register - register regulator
1853  * @regulator_desc: regulator to register
1854  * @dev: struct device for the regulator
1855  * @init_data: platform provided init data, passed through by driver
1856  * @driver_data: private regulator data
1857  *
1858  * Called by regulator drivers to register a regulator.
1859  * Returns 0 on success.
1860  */
1861 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1862         struct device *dev, struct regulator_init_data *init_data,
1863         void *driver_data)
1864 {
1865         static atomic_t regulator_no = ATOMIC_INIT(0);
1866         struct regulator_dev *rdev;
1867         int ret, i;
1868
1869         if (regulator_desc == NULL)
1870                 return ERR_PTR(-EINVAL);
1871
1872         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1873                 return ERR_PTR(-EINVAL);
1874
1875         if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1876             !regulator_desc->type == REGULATOR_CURRENT)
1877                 return ERR_PTR(-EINVAL);
1878
1879         if (!init_data)
1880                 return ERR_PTR(-EINVAL);
1881
1882         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1883         if (rdev == NULL)
1884                 return ERR_PTR(-ENOMEM);
1885
1886         mutex_lock(&regulator_list_mutex);
1887
1888         mutex_init(&rdev->mutex);
1889         rdev->reg_data = driver_data;
1890         rdev->owner = regulator_desc->owner;
1891         rdev->desc = regulator_desc;
1892         INIT_LIST_HEAD(&rdev->consumer_list);
1893         INIT_LIST_HEAD(&rdev->supply_list);
1894         INIT_LIST_HEAD(&rdev->list);
1895         INIT_LIST_HEAD(&rdev->slist);
1896         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1897
1898         /* preform any regulator specific init */
1899         if (init_data->regulator_init) {
1900                 ret = init_data->regulator_init(rdev->reg_data);
1901                 if (ret < 0)
1902                         goto clean;
1903         }
1904
1905         /* register with sysfs */
1906         rdev->dev.class = &regulator_class;
1907         rdev->dev.parent = dev;
1908         dev_set_name(&rdev->dev, "regulator.%d",
1909                      atomic_inc_return(&regulator_no) - 1);
1910         ret = device_register(&rdev->dev);
1911         if (ret != 0)
1912                 goto clean;
1913
1914         dev_set_drvdata(&rdev->dev, rdev);
1915
1916         /* set regulator constraints */
1917         ret = set_machine_constraints(rdev, &init_data->constraints);
1918         if (ret < 0)
1919                 goto scrub;
1920
1921         /* add attributes supported by this regulator */
1922         ret = add_regulator_attributes(rdev);
1923         if (ret < 0)
1924                 goto scrub;
1925
1926         /* set supply regulator if it exists */
1927         if (init_data->supply_regulator_dev) {
1928                 ret = set_supply(rdev,
1929                         dev_get_drvdata(init_data->supply_regulator_dev));
1930                 if (ret < 0)
1931                         goto scrub;
1932         }
1933
1934         /* add consumers devices */
1935         for (i = 0; i < init_data->num_consumer_supplies; i++) {
1936                 ret = set_consumer_device_supply(rdev,
1937                         init_data->consumer_supplies[i].dev,
1938                         init_data->consumer_supplies[i].supply);
1939                 if (ret < 0) {
1940                         for (--i; i >= 0; i--)
1941                                 unset_consumer_device_supply(rdev,
1942                                         init_data->consumer_supplies[i].dev);
1943                         goto scrub;
1944                 }
1945         }
1946
1947         list_add(&rdev->list, &regulator_list);
1948 out:
1949         mutex_unlock(&regulator_list_mutex);
1950         return rdev;
1951
1952 scrub:
1953         device_unregister(&rdev->dev);
1954 clean:
1955         kfree(rdev);
1956         rdev = ERR_PTR(ret);
1957         goto out;
1958 }
1959 EXPORT_SYMBOL_GPL(regulator_register);
1960
1961 /**
1962  * regulator_unregister - unregister regulator
1963  * @rdev: regulator to unregister
1964  *
1965  * Called by regulator drivers to unregister a regulator.
1966  */
1967 void regulator_unregister(struct regulator_dev *rdev)
1968 {
1969         if (rdev == NULL)
1970                 return;
1971
1972         mutex_lock(&regulator_list_mutex);
1973         list_del(&rdev->list);
1974         if (rdev->supply)
1975                 sysfs_remove_link(&rdev->dev.kobj, "supply");
1976         device_unregister(&rdev->dev);
1977         mutex_unlock(&regulator_list_mutex);
1978 }
1979 EXPORT_SYMBOL_GPL(regulator_unregister);
1980
1981 /**
1982  * regulator_suspend_prepare - prepare regulators for system wide suspend
1983  * @state: system suspend state
1984  *
1985  * Configure each regulator with it's suspend operating parameters for state.
1986  * This will usually be called by machine suspend code prior to supending.
1987  */
1988 int regulator_suspend_prepare(suspend_state_t state)
1989 {
1990         struct regulator_dev *rdev;
1991         int ret = 0;
1992
1993         /* ON is handled by regulator active state */
1994         if (state == PM_SUSPEND_ON)
1995                 return -EINVAL;
1996
1997         mutex_lock(&regulator_list_mutex);
1998         list_for_each_entry(rdev, &regulator_list, list) {
1999
2000                 mutex_lock(&rdev->mutex);
2001                 ret = suspend_prepare(rdev, state);
2002                 mutex_unlock(&rdev->mutex);
2003
2004                 if (ret < 0) {
2005                         printk(KERN_ERR "%s: failed to prepare %s\n",
2006                                 __func__, rdev->desc->name);
2007                         goto out;
2008                 }
2009         }
2010 out:
2011         mutex_unlock(&regulator_list_mutex);
2012         return ret;
2013 }
2014 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2015
2016 /**
2017  * rdev_get_drvdata - get rdev regulator driver data
2018  * @rdev: regulator
2019  *
2020  * Get rdev regulator driver private data. This call can be used in the
2021  * regulator driver context.
2022  */
2023 void *rdev_get_drvdata(struct regulator_dev *rdev)
2024 {
2025         return rdev->reg_data;
2026 }
2027 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2028
2029 /**
2030  * regulator_get_drvdata - get regulator driver data
2031  * @regulator: regulator
2032  *
2033  * Get regulator driver private data. This call can be used in the consumer
2034  * driver context when non API regulator specific functions need to be called.
2035  */
2036 void *regulator_get_drvdata(struct regulator *regulator)
2037 {
2038         return regulator->rdev->reg_data;
2039 }
2040 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2041
2042 /**
2043  * regulator_set_drvdata - set regulator driver data
2044  * @regulator: regulator
2045  * @data: data
2046  */
2047 void regulator_set_drvdata(struct regulator *regulator, void *data)
2048 {
2049         regulator->rdev->reg_data = data;
2050 }
2051 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2052
2053 /**
2054  * regulator_get_id - get regulator ID
2055  * @rdev: regulator
2056  */
2057 int rdev_get_id(struct regulator_dev *rdev)
2058 {
2059         return rdev->desc->id;
2060 }
2061 EXPORT_SYMBOL_GPL(rdev_get_id);
2062
2063 struct device *rdev_get_dev(struct regulator_dev *rdev)
2064 {
2065         return &rdev->dev;
2066 }
2067 EXPORT_SYMBOL_GPL(rdev_get_dev);
2068
2069 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2070 {
2071         return reg_init_data->driver_data;
2072 }
2073 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2074
2075 static int __init regulator_init(void)
2076 {
2077         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2078         return class_register(&regulator_class);
2079 }
2080
2081 /* init early to allow our consumers to complete system booting */
2082 core_initcall(regulator_init);