]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/pci/dmar.c
intel-iommu: IA64 support
[linux-2.6-omap-h63xx.git] / drivers / pci / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34
35 #undef PREFIX
36 #define PREFIX "DMAR:"
37
38 /* No locks are needed as DMA remapping hardware unit
39  * list is constructed at boot time and hotplug of
40  * these units are not supported by the architecture.
41  */
42 LIST_HEAD(dmar_drhd_units);
43
44 static struct acpi_table_header * __initdata dmar_tbl;
45
46 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
47 {
48         /*
49          * add INCLUDE_ALL at the tail, so scan the list will find it at
50          * the very end.
51          */
52         if (drhd->include_all)
53                 list_add_tail(&drhd->list, &dmar_drhd_units);
54         else
55                 list_add(&drhd->list, &dmar_drhd_units);
56 }
57
58 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
59                                            struct pci_dev **dev, u16 segment)
60 {
61         struct pci_bus *bus;
62         struct pci_dev *pdev = NULL;
63         struct acpi_dmar_pci_path *path;
64         int count;
65
66         bus = pci_find_bus(segment, scope->bus);
67         path = (struct acpi_dmar_pci_path *)(scope + 1);
68         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
69                 / sizeof(struct acpi_dmar_pci_path);
70
71         while (count) {
72                 if (pdev)
73                         pci_dev_put(pdev);
74                 /*
75                  * Some BIOSes list non-exist devices in DMAR table, just
76                  * ignore it
77                  */
78                 if (!bus) {
79                         printk(KERN_WARNING
80                         PREFIX "Device scope bus [%d] not found\n",
81                         scope->bus);
82                         break;
83                 }
84                 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
85                 if (!pdev) {
86                         printk(KERN_WARNING PREFIX
87                         "Device scope device [%04x:%02x:%02x.%02x] not found\n",
88                                 segment, bus->number, path->dev, path->fn);
89                         break;
90                 }
91                 path ++;
92                 count --;
93                 bus = pdev->subordinate;
94         }
95         if (!pdev) {
96                 printk(KERN_WARNING PREFIX
97                 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
98                 segment, scope->bus, path->dev, path->fn);
99                 *dev = NULL;
100                 return 0;
101         }
102         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
103                         pdev->subordinate) || (scope->entry_type == \
104                         ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
105                 pci_dev_put(pdev);
106                 printk(KERN_WARNING PREFIX
107                         "Device scope type does not match for %s\n",
108                          pci_name(pdev));
109                 return -EINVAL;
110         }
111         *dev = pdev;
112         return 0;
113 }
114
115 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
116                                        struct pci_dev ***devices, u16 segment)
117 {
118         struct acpi_dmar_device_scope *scope;
119         void * tmp = start;
120         int index;
121         int ret;
122
123         *cnt = 0;
124         while (start < end) {
125                 scope = start;
126                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
127                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
128                         (*cnt)++;
129                 else
130                         printk(KERN_WARNING PREFIX
131                                 "Unsupported device scope\n");
132                 start += scope->length;
133         }
134         if (*cnt == 0)
135                 return 0;
136
137         *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
138         if (!*devices)
139                 return -ENOMEM;
140
141         start = tmp;
142         index = 0;
143         while (start < end) {
144                 scope = start;
145                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
146                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
147                         ret = dmar_parse_one_dev_scope(scope,
148                                 &(*devices)[index], segment);
149                         if (ret) {
150                                 kfree(*devices);
151                                 return ret;
152                         }
153                         index ++;
154                 }
155                 start += scope->length;
156         }
157
158         return 0;
159 }
160
161 /**
162  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
163  * structure which uniquely represent one DMA remapping hardware unit
164  * present in the platform
165  */
166 static int __init
167 dmar_parse_one_drhd(struct acpi_dmar_header *header)
168 {
169         struct acpi_dmar_hardware_unit *drhd;
170         struct dmar_drhd_unit *dmaru;
171         int ret = 0;
172
173         dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
174         if (!dmaru)
175                 return -ENOMEM;
176
177         dmaru->hdr = header;
178         drhd = (struct acpi_dmar_hardware_unit *)header;
179         dmaru->reg_base_addr = drhd->address;
180         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
181
182         ret = alloc_iommu(dmaru);
183         if (ret) {
184                 kfree(dmaru);
185                 return ret;
186         }
187         dmar_register_drhd_unit(dmaru);
188         return 0;
189 }
190
191 static int __init
192 dmar_parse_dev(struct dmar_drhd_unit *dmaru)
193 {
194         struct acpi_dmar_hardware_unit *drhd;
195         static int include_all;
196         int ret;
197
198         drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
199
200         if (!dmaru->include_all)
201                 ret = dmar_parse_dev_scope((void *)(drhd + 1),
202                                 ((void *)drhd) + drhd->header.length,
203                                 &dmaru->devices_cnt, &dmaru->devices,
204                                 drhd->segment);
205         else {
206                 /* Only allow one INCLUDE_ALL */
207                 if (include_all) {
208                         printk(KERN_WARNING PREFIX "Only one INCLUDE_ALL "
209                                 "device scope is allowed\n");
210                         ret = -EINVAL;
211                 }
212                 include_all = 1;
213         }
214
215         if (ret || (dmaru->devices_cnt == 0 && !dmaru->include_all)) {
216                 list_del(&dmaru->list);
217                 kfree(dmaru);
218         }
219         return ret;
220 }
221
222 #ifdef CONFIG_DMAR
223 LIST_HEAD(dmar_rmrr_units);
224
225 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
226 {
227         list_add(&rmrr->list, &dmar_rmrr_units);
228 }
229
230
231 static int __init
232 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
233 {
234         struct acpi_dmar_reserved_memory *rmrr;
235         struct dmar_rmrr_unit *rmrru;
236
237         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
238         if (!rmrru)
239                 return -ENOMEM;
240
241         rmrru->hdr = header;
242         rmrr = (struct acpi_dmar_reserved_memory *)header;
243         rmrru->base_address = rmrr->base_address;
244         rmrru->end_address = rmrr->end_address;
245
246         dmar_register_rmrr_unit(rmrru);
247         return 0;
248 }
249
250 static int __init
251 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
252 {
253         struct acpi_dmar_reserved_memory *rmrr;
254         int ret;
255
256         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
257         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
258                 ((void *)rmrr) + rmrr->header.length,
259                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
260
261         if (ret || (rmrru->devices_cnt == 0)) {
262                 list_del(&rmrru->list);
263                 kfree(rmrru);
264         }
265         return ret;
266 }
267 #endif
268
269 static void __init
270 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
271 {
272         struct acpi_dmar_hardware_unit *drhd;
273         struct acpi_dmar_reserved_memory *rmrr;
274
275         switch (header->type) {
276         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
277                 drhd = (struct acpi_dmar_hardware_unit *)header;
278                 printk (KERN_INFO PREFIX
279                         "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
280                         drhd->flags, (unsigned long long)drhd->address);
281                 break;
282         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
283                 rmrr = (struct acpi_dmar_reserved_memory *)header;
284
285                 printk (KERN_INFO PREFIX
286                         "RMRR base: 0x%016Lx end: 0x%016Lx\n",
287                         (unsigned long long)rmrr->base_address,
288                         (unsigned long long)rmrr->end_address);
289                 break;
290         }
291 }
292
293
294 /**
295  * parse_dmar_table - parses the DMA reporting table
296  */
297 static int __init
298 parse_dmar_table(void)
299 {
300         struct acpi_table_dmar *dmar;
301         struct acpi_dmar_header *entry_header;
302         int ret = 0;
303
304         dmar = (struct acpi_table_dmar *)dmar_tbl;
305         if (!dmar)
306                 return -ENODEV;
307
308         if (dmar->width < PAGE_SHIFT - 1) {
309                 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
310                 return -EINVAL;
311         }
312
313         printk (KERN_INFO PREFIX "Host address width %d\n",
314                 dmar->width + 1);
315
316         entry_header = (struct acpi_dmar_header *)(dmar + 1);
317         while (((unsigned long)entry_header) <
318                         (((unsigned long)dmar) + dmar_tbl->length)) {
319                 dmar_table_print_dmar_entry(entry_header);
320
321                 switch (entry_header->type) {
322                 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
323                         ret = dmar_parse_one_drhd(entry_header);
324                         break;
325                 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
326 #ifdef CONFIG_DMAR
327                         ret = dmar_parse_one_rmrr(entry_header);
328 #endif
329                         break;
330                 default:
331                         printk(KERN_WARNING PREFIX
332                                 "Unknown DMAR structure type\n");
333                         ret = 0; /* for forward compatibility */
334                         break;
335                 }
336                 if (ret)
337                         break;
338
339                 entry_header = ((void *)entry_header + entry_header->length);
340         }
341         return ret;
342 }
343
344 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
345                           struct pci_dev *dev)
346 {
347         int index;
348
349         while (dev) {
350                 for (index = 0; index < cnt; index++)
351                         if (dev == devices[index])
352                                 return 1;
353
354                 /* Check our parent */
355                 dev = dev->bus->self;
356         }
357
358         return 0;
359 }
360
361 struct dmar_drhd_unit *
362 dmar_find_matched_drhd_unit(struct pci_dev *dev)
363 {
364         struct dmar_drhd_unit *drhd = NULL;
365
366         list_for_each_entry(drhd, &dmar_drhd_units, list) {
367                 if (drhd->include_all || dmar_pci_device_match(drhd->devices,
368                                                 drhd->devices_cnt, dev))
369                         return drhd;
370         }
371
372         return NULL;
373 }
374
375 int __init dmar_dev_scope_init(void)
376 {
377         struct dmar_drhd_unit *drhd;
378         int ret = -ENODEV;
379
380         for_each_drhd_unit(drhd) {
381                 ret = dmar_parse_dev(drhd);
382                 if (ret)
383                         return ret;
384         }
385
386 #ifdef CONFIG_DMAR
387         {
388                 struct dmar_rmrr_unit *rmrr;
389                 for_each_rmrr_units(rmrr) {
390                         ret = rmrr_parse_dev(rmrr);
391                         if (ret)
392                                 return ret;
393                 }
394         }
395 #endif
396
397         return ret;
398 }
399
400
401 int __init dmar_table_init(void)
402 {
403         static int dmar_table_initialized;
404         int ret;
405
406         if (dmar_table_initialized)
407                 return 0;
408
409         dmar_table_initialized = 1;
410
411         ret = parse_dmar_table();
412         if (ret) {
413                 if (ret != -ENODEV)
414                         printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
415                 return ret;
416         }
417
418         if (list_empty(&dmar_drhd_units)) {
419                 printk(KERN_INFO PREFIX "No DMAR devices found\n");
420                 return -ENODEV;
421         }
422
423 #ifdef CONFIG_DMAR
424         if (list_empty(&dmar_rmrr_units))
425                 printk(KERN_INFO PREFIX "No RMRR found\n");
426 #endif
427
428 #ifdef CONFIG_INTR_REMAP
429         parse_ioapics_under_ir();
430 #endif
431         return 0;
432 }
433
434 /**
435  * early_dmar_detect - checks to see if the platform supports DMAR devices
436  */
437 int __init early_dmar_detect(void)
438 {
439         acpi_status status = AE_OK;
440
441         /* if we could find DMAR table, then there are DMAR devices */
442         status = acpi_get_table(ACPI_SIG_DMAR, 0,
443                                 (struct acpi_table_header **)&dmar_tbl);
444
445         if (ACPI_SUCCESS(status) && !dmar_tbl) {
446                 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
447                 status = AE_NOT_FOUND;
448         }
449
450         return (ACPI_SUCCESS(status) ? 1 : 0);
451 }
452
453 void __init detect_intel_iommu(void)
454 {
455         int ret;
456
457         ret = early_dmar_detect();
458
459         {
460 #ifdef CONFIG_INTR_REMAP
461                 struct acpi_table_dmar *dmar;
462                 /*
463                  * for now we will disable dma-remapping when interrupt
464                  * remapping is enabled.
465                  * When support for queued invalidation for IOTLB invalidation
466                  * is added, we will not need this any more.
467                  */
468                 dmar = (struct acpi_table_dmar *) dmar_tbl;
469                 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
470                         printk(KERN_INFO
471                                "Queued invalidation will be enabled to support "
472                                "x2apic and Intr-remapping.\n");
473 #endif
474
475 #ifdef CONFIG_DMAR
476                 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
477                     !dmar_disabled)
478                         iommu_detected = 1;
479 #endif
480         }
481 }
482
483
484 int alloc_iommu(struct dmar_drhd_unit *drhd)
485 {
486         struct intel_iommu *iommu;
487         int map_size;
488         u32 ver;
489         static int iommu_allocated = 0;
490
491         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
492         if (!iommu)
493                 return -ENOMEM;
494
495         iommu->seq_id = iommu_allocated++;
496
497         iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
498         if (!iommu->reg) {
499                 printk(KERN_ERR "IOMMU: can't map the region\n");
500                 goto error;
501         }
502         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
503         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
504
505         /* the registers might be more than one page */
506         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
507                 cap_max_fault_reg_offset(iommu->cap));
508         map_size = VTD_PAGE_ALIGN(map_size);
509         if (map_size > VTD_PAGE_SIZE) {
510                 iounmap(iommu->reg);
511                 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
512                 if (!iommu->reg) {
513                         printk(KERN_ERR "IOMMU: can't map the region\n");
514                         goto error;
515                 }
516         }
517
518         ver = readl(iommu->reg + DMAR_VER_REG);
519         pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
520                 (unsigned long long)drhd->reg_base_addr,
521                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
522                 (unsigned long long)iommu->cap,
523                 (unsigned long long)iommu->ecap);
524
525         spin_lock_init(&iommu->register_lock);
526
527         drhd->iommu = iommu;
528         return 0;
529 error:
530         kfree(iommu);
531         return -1;
532 }
533
534 void free_iommu(struct intel_iommu *iommu)
535 {
536         if (!iommu)
537                 return;
538
539 #ifdef CONFIG_DMAR
540         free_dmar_iommu(iommu);
541 #endif
542
543         if (iommu->reg)
544                 iounmap(iommu->reg);
545         kfree(iommu);
546 }
547
548 /*
549  * Reclaim all the submitted descriptors which have completed its work.
550  */
551 static inline void reclaim_free_desc(struct q_inval *qi)
552 {
553         while (qi->desc_status[qi->free_tail] == QI_DONE) {
554                 qi->desc_status[qi->free_tail] = QI_FREE;
555                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
556                 qi->free_cnt++;
557         }
558 }
559
560 /*
561  * Submit the queued invalidation descriptor to the remapping
562  * hardware unit and wait for its completion.
563  */
564 void qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
565 {
566         struct q_inval *qi = iommu->qi;
567         struct qi_desc *hw, wait_desc;
568         int wait_index, index;
569         unsigned long flags;
570
571         if (!qi)
572                 return;
573
574         hw = qi->desc;
575
576         spin_lock_irqsave(&qi->q_lock, flags);
577         while (qi->free_cnt < 3) {
578                 spin_unlock_irqrestore(&qi->q_lock, flags);
579                 cpu_relax();
580                 spin_lock_irqsave(&qi->q_lock, flags);
581         }
582
583         index = qi->free_head;
584         wait_index = (index + 1) % QI_LENGTH;
585
586         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
587
588         hw[index] = *desc;
589
590         wait_desc.low = QI_IWD_STATUS_DATA(2) | QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
591         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
592
593         hw[wait_index] = wait_desc;
594
595         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
596         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
597
598         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
599         qi->free_cnt -= 2;
600
601         spin_lock(&iommu->register_lock);
602         /*
603          * update the HW tail register indicating the presence of
604          * new descriptors.
605          */
606         writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
607         spin_unlock(&iommu->register_lock);
608
609         while (qi->desc_status[wait_index] != QI_DONE) {
610                 /*
611                  * We will leave the interrupts disabled, to prevent interrupt
612                  * context to queue another cmd while a cmd is already submitted
613                  * and waiting for completion on this cpu. This is to avoid
614                  * a deadlock where the interrupt context can wait indefinitely
615                  * for free slots in the queue.
616                  */
617                 spin_unlock(&qi->q_lock);
618                 cpu_relax();
619                 spin_lock(&qi->q_lock);
620         }
621
622         qi->desc_status[index] = QI_DONE;
623
624         reclaim_free_desc(qi);
625         spin_unlock_irqrestore(&qi->q_lock, flags);
626 }
627
628 /*
629  * Flush the global interrupt entry cache.
630  */
631 void qi_global_iec(struct intel_iommu *iommu)
632 {
633         struct qi_desc desc;
634
635         desc.low = QI_IEC_TYPE;
636         desc.high = 0;
637
638         qi_submit_sync(&desc, iommu);
639 }
640
641 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
642                      u64 type, int non_present_entry_flush)
643 {
644
645         struct qi_desc desc;
646
647         if (non_present_entry_flush) {
648                 if (!cap_caching_mode(iommu->cap))
649                         return 1;
650                 else
651                         did = 0;
652         }
653
654         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
655                         | QI_CC_GRAN(type) | QI_CC_TYPE;
656         desc.high = 0;
657
658         qi_submit_sync(&desc, iommu);
659
660         return 0;
661
662 }
663
664 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
665                    unsigned int size_order, u64 type,
666                    int non_present_entry_flush)
667 {
668         u8 dw = 0, dr = 0;
669
670         struct qi_desc desc;
671         int ih = 0;
672
673         if (non_present_entry_flush) {
674                 if (!cap_caching_mode(iommu->cap))
675                         return 1;
676                 else
677                         did = 0;
678         }
679
680         if (cap_write_drain(iommu->cap))
681                 dw = 1;
682
683         if (cap_read_drain(iommu->cap))
684                 dr = 1;
685
686         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
687                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
688         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
689                 | QI_IOTLB_AM(size_order);
690
691         qi_submit_sync(&desc, iommu);
692
693         return 0;
694
695 }
696
697 /*
698  * Enable Queued Invalidation interface. This is a must to support
699  * interrupt-remapping. Also used by DMA-remapping, which replaces
700  * register based IOTLB invalidation.
701  */
702 int dmar_enable_qi(struct intel_iommu *iommu)
703 {
704         u32 cmd, sts;
705         unsigned long flags;
706         struct q_inval *qi;
707
708         if (!ecap_qis(iommu->ecap))
709                 return -ENOENT;
710
711         /*
712          * queued invalidation is already setup and enabled.
713          */
714         if (iommu->qi)
715                 return 0;
716
717         iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
718         if (!iommu->qi)
719                 return -ENOMEM;
720
721         qi = iommu->qi;
722
723         qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
724         if (!qi->desc) {
725                 kfree(qi);
726                 iommu->qi = 0;
727                 return -ENOMEM;
728         }
729
730         qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
731         if (!qi->desc_status) {
732                 free_page((unsigned long) qi->desc);
733                 kfree(qi);
734                 iommu->qi = 0;
735                 return -ENOMEM;
736         }
737
738         qi->free_head = qi->free_tail = 0;
739         qi->free_cnt = QI_LENGTH;
740
741         spin_lock_init(&qi->q_lock);
742
743         spin_lock_irqsave(&iommu->register_lock, flags);
744         /* write zero to the tail reg */
745         writel(0, iommu->reg + DMAR_IQT_REG);
746
747         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
748
749         cmd = iommu->gcmd | DMA_GCMD_QIE;
750         iommu->gcmd |= DMA_GCMD_QIE;
751         writel(cmd, iommu->reg + DMAR_GCMD_REG);
752
753         /* Make sure hardware complete it */
754         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
755         spin_unlock_irqrestore(&iommu->register_lock, flags);
756
757         return 0;
758 }