]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/zd1211rw/zd_usb.c
17cf29546f6a196fc9d276215aaa1a8647236b8d
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37         /* ZD1211 */
38         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57         /* ZD1211B */
58         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
59         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
60         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
61         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
62         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
63         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
64         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
65         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
66         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
67         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
72         /* "Driverless" devices that need ejecting */
73         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
74         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
75         {}
76 };
77
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
80 MODULE_AUTHOR("Ulrich Kunitz");
81 MODULE_AUTHOR("Daniel Drake");
82 MODULE_VERSION("1.0");
83 MODULE_DEVICE_TABLE(usb, usb_ids);
84
85 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
86 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
87
88 /* USB device initialization */
89
90 static int request_fw_file(
91         const struct firmware **fw, const char *name, struct device *device)
92 {
93         int r;
94
95         dev_dbg_f(device, "fw name %s\n", name);
96
97         r = request_firmware(fw, name, device);
98         if (r)
99                 dev_err(device,
100                        "Could not load firmware file %s. Error number %d\n",
101                        name, r);
102         return r;
103 }
104
105 static inline u16 get_bcdDevice(const struct usb_device *udev)
106 {
107         return le16_to_cpu(udev->descriptor.bcdDevice);
108 }
109
110 enum upload_code_flags {
111         REBOOT = 1,
112 };
113
114 /* Ensures that MAX_TRANSFER_SIZE is even. */
115 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
116
117 static int upload_code(struct usb_device *udev,
118         const u8 *data, size_t size, u16 code_offset, int flags)
119 {
120         u8 *p;
121         int r;
122
123         /* USB request blocks need "kmalloced" buffers.
124          */
125         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
126         if (!p) {
127                 dev_err(&udev->dev, "out of memory\n");
128                 r = -ENOMEM;
129                 goto error;
130         }
131
132         size &= ~1;
133         while (size > 0) {
134                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
135                         size : MAX_TRANSFER_SIZE;
136
137                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
138
139                 memcpy(p, data, transfer_size);
140                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
141                         USB_REQ_FIRMWARE_DOWNLOAD,
142                         USB_DIR_OUT | USB_TYPE_VENDOR,
143                         code_offset, 0, p, transfer_size, 1000 /* ms */);
144                 if (r < 0) {
145                         dev_err(&udev->dev,
146                                "USB control request for firmware upload"
147                                " failed. Error number %d\n", r);
148                         goto error;
149                 }
150                 transfer_size = r & ~1;
151
152                 size -= transfer_size;
153                 data += transfer_size;
154                 code_offset += transfer_size/sizeof(u16);
155         }
156
157         if (flags & REBOOT) {
158                 u8 ret;
159
160                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
161                         USB_REQ_FIRMWARE_CONFIRM,
162                         USB_DIR_IN | USB_TYPE_VENDOR,
163                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
164                 if (r != sizeof(ret)) {
165                         dev_err(&udev->dev,
166                                 "control request firmeware confirmation failed."
167                                 " Return value %d\n", r);
168                         if (r >= 0)
169                                 r = -ENODEV;
170                         goto error;
171                 }
172                 if (ret & 0x80) {
173                         dev_err(&udev->dev,
174                                 "Internal error while downloading."
175                                 " Firmware confirm return value %#04x\n",
176                                 (unsigned int)ret);
177                         r = -ENODEV;
178                         goto error;
179                 }
180                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
181                         (unsigned int)ret);
182         }
183
184         r = 0;
185 error:
186         kfree(p);
187         return r;
188 }
189
190 static u16 get_word(const void *data, u16 offset)
191 {
192         const __le16 *p = data;
193         return le16_to_cpu(p[offset]);
194 }
195
196 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
197                        const char* postfix)
198 {
199         scnprintf(buffer, size, "%s%s",
200                 device_type == DEVICE_ZD1211B ?
201                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
202                 postfix);
203         return buffer;
204 }
205
206 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
207         const struct firmware *ub_fw)
208 {
209         const struct firmware *ur_fw = NULL;
210         int offset;
211         int r = 0;
212         char fw_name[128];
213
214         r = request_fw_file(&ur_fw,
215                 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
216                 &udev->dev);
217         if (r)
218                 goto error;
219
220         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
221         if (r)
222                 goto error;
223
224         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
225         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
226                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
227
228         /* At this point, the vendor driver downloads the whole firmware
229          * image, hacks around with version IDs, and uploads it again,
230          * completely overwriting the boot code. We do not do this here as
231          * it is not required on any tested devices, and it is suspected to
232          * cause problems. */
233 error:
234         release_firmware(ur_fw);
235         return r;
236 }
237
238 static int upload_firmware(struct usb_device *udev, u8 device_type)
239 {
240         int r;
241         u16 fw_bcdDevice;
242         u16 bcdDevice;
243         const struct firmware *ub_fw = NULL;
244         const struct firmware *uph_fw = NULL;
245         char fw_name[128];
246
247         bcdDevice = get_bcdDevice(udev);
248
249         r = request_fw_file(&ub_fw,
250                 get_fw_name(fw_name, sizeof(fw_name), device_type,  "ub"),
251                 &udev->dev);
252         if (r)
253                 goto error;
254
255         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
256
257         if (fw_bcdDevice != bcdDevice) {
258                 dev_info(&udev->dev,
259                         "firmware version %#06x and device bootcode version "
260                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
261                 if (bcdDevice <= 0x4313)
262                         dev_warn(&udev->dev, "device has old bootcode, please "
263                                 "report success or failure\n");
264
265                 r = handle_version_mismatch(udev, device_type, ub_fw);
266                 if (r)
267                         goto error;
268         } else {
269                 dev_dbg_f(&udev->dev,
270                         "firmware device id %#06x is equal to the "
271                         "actual device id\n", fw_bcdDevice);
272         }
273
274
275         r = request_fw_file(&uph_fw,
276                 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
277                 &udev->dev);
278         if (r)
279                 goto error;
280
281         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
282         if (r) {
283                 dev_err(&udev->dev,
284                         "Could not upload firmware code uph. Error number %d\n",
285                         r);
286         }
287
288         /* FALL-THROUGH */
289 error:
290         release_firmware(ub_fw);
291         release_firmware(uph_fw);
292         return r;
293 }
294
295 #define urb_dev(urb) (&(urb)->dev->dev)
296
297 static inline void handle_regs_int(struct urb *urb)
298 {
299         struct zd_usb *usb = urb->context;
300         struct zd_usb_interrupt *intr = &usb->intr;
301         int len;
302
303         ZD_ASSERT(in_interrupt());
304         spin_lock(&intr->lock);
305
306         if (intr->read_regs_enabled) {
307                 intr->read_regs.length = len = urb->actual_length;
308
309                 if (len > sizeof(intr->read_regs.buffer))
310                         len = sizeof(intr->read_regs.buffer);
311                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
312                 intr->read_regs_enabled = 0;
313                 complete(&intr->read_regs.completion);
314                 goto out;
315         }
316
317         dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
318 out:
319         spin_unlock(&intr->lock);
320 }
321
322 static inline void handle_retry_failed_int(struct urb *urb)
323 {
324         struct zd_usb *usb = urb->context;
325         struct zd_mac *mac = zd_usb_to_mac(usb);
326         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
327
328         ieee->stats.tx_errors++;
329         ieee->ieee_stats.tx_retry_limit_exceeded++;
330         dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
331 }
332
333
334 static void int_urb_complete(struct urb *urb)
335 {
336         int r;
337         struct usb_int_header *hdr;
338
339         switch (urb->status) {
340         case 0:
341                 break;
342         case -ESHUTDOWN:
343         case -EINVAL:
344         case -ENODEV:
345         case -ENOENT:
346         case -ECONNRESET:
347         case -EPIPE:
348                 goto kfree;
349         default:
350                 goto resubmit;
351         }
352
353         if (urb->actual_length < sizeof(hdr)) {
354                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
355                 goto resubmit;
356         }
357
358         hdr = urb->transfer_buffer;
359         if (hdr->type != USB_INT_TYPE) {
360                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
361                 goto resubmit;
362         }
363
364         switch (hdr->id) {
365         case USB_INT_ID_REGS:
366                 handle_regs_int(urb);
367                 break;
368         case USB_INT_ID_RETRY_FAILED:
369                 handle_retry_failed_int(urb);
370                 break;
371         default:
372                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
373                         (unsigned int)hdr->id);
374                 goto resubmit;
375         }
376
377 resubmit:
378         r = usb_submit_urb(urb, GFP_ATOMIC);
379         if (r) {
380                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
381                 goto kfree;
382         }
383         return;
384 kfree:
385         kfree(urb->transfer_buffer);
386 }
387
388 static inline int int_urb_interval(struct usb_device *udev)
389 {
390         switch (udev->speed) {
391         case USB_SPEED_HIGH:
392                 return 4;
393         case USB_SPEED_LOW:
394                 return 10;
395         case USB_SPEED_FULL:
396         default:
397                 return 1;
398         }
399 }
400
401 static inline int usb_int_enabled(struct zd_usb *usb)
402 {
403         unsigned long flags;
404         struct zd_usb_interrupt *intr = &usb->intr;
405         struct urb *urb;
406
407         spin_lock_irqsave(&intr->lock, flags);
408         urb = intr->urb;
409         spin_unlock_irqrestore(&intr->lock, flags);
410         return urb != NULL;
411 }
412
413 int zd_usb_enable_int(struct zd_usb *usb)
414 {
415         int r;
416         struct usb_device *udev;
417         struct zd_usb_interrupt *intr = &usb->intr;
418         void *transfer_buffer = NULL;
419         struct urb *urb;
420
421         dev_dbg_f(zd_usb_dev(usb), "\n");
422
423         urb = usb_alloc_urb(0, GFP_KERNEL);
424         if (!urb) {
425                 r = -ENOMEM;
426                 goto out;
427         }
428
429         ZD_ASSERT(!irqs_disabled());
430         spin_lock_irq(&intr->lock);
431         if (intr->urb) {
432                 spin_unlock_irq(&intr->lock);
433                 r = 0;
434                 goto error_free_urb;
435         }
436         intr->urb = urb;
437         spin_unlock_irq(&intr->lock);
438
439         /* TODO: make it a DMA buffer */
440         r = -ENOMEM;
441         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
442         if (!transfer_buffer) {
443                 dev_dbg_f(zd_usb_dev(usb),
444                         "couldn't allocate transfer_buffer\n");
445                 goto error_set_urb_null;
446         }
447
448         udev = zd_usb_to_usbdev(usb);
449         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
450                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
451                          int_urb_complete, usb,
452                          intr->interval);
453
454         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
455         r = usb_submit_urb(urb, GFP_KERNEL);
456         if (r) {
457                 dev_dbg_f(zd_usb_dev(usb),
458                          "Couldn't submit urb. Error number %d\n", r);
459                 goto error;
460         }
461
462         return 0;
463 error:
464         kfree(transfer_buffer);
465 error_set_urb_null:
466         spin_lock_irq(&intr->lock);
467         intr->urb = NULL;
468         spin_unlock_irq(&intr->lock);
469 error_free_urb:
470         usb_free_urb(urb);
471 out:
472         return r;
473 }
474
475 void zd_usb_disable_int(struct zd_usb *usb)
476 {
477         unsigned long flags;
478         struct zd_usb_interrupt *intr = &usb->intr;
479         struct urb *urb;
480
481         spin_lock_irqsave(&intr->lock, flags);
482         urb = intr->urb;
483         if (!urb) {
484                 spin_unlock_irqrestore(&intr->lock, flags);
485                 return;
486         }
487         intr->urb = NULL;
488         spin_unlock_irqrestore(&intr->lock, flags);
489
490         usb_kill_urb(urb);
491         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
492         usb_free_urb(urb);
493 }
494
495 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
496                              unsigned int length)
497 {
498         int i;
499         struct zd_mac *mac = zd_usb_to_mac(usb);
500         const struct rx_length_info *length_info;
501
502         if (length < sizeof(struct rx_length_info)) {
503                 /* It's not a complete packet anyhow. */
504                 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
505                 ieee->stats.rx_errors++;
506                 ieee->stats.rx_length_errors++;
507                 return;
508         }
509         length_info = (struct rx_length_info *)
510                 (buffer + length - sizeof(struct rx_length_info));
511
512         /* It might be that three frames are merged into a single URB
513          * transaction. We have to check for the length info tag.
514          *
515          * While testing we discovered that length_info might be unaligned,
516          * because if USB transactions are merged, the last packet will not
517          * be padded. Unaligned access might also happen if the length_info
518          * structure is not present.
519          */
520         if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
521         {
522                 unsigned int l, k, n;
523                 for (i = 0, l = 0;; i++) {
524                         k = le16_to_cpu(get_unaligned(&length_info->length[i]));
525                         if (k == 0)
526                                 return;
527                         n = l+k;
528                         if (n > length)
529                                 return;
530                         zd_mac_rx_irq(mac, buffer+l, k);
531                         if (i >= 2)
532                                 return;
533                         l = (n+3) & ~3;
534                 }
535         } else {
536                 zd_mac_rx_irq(mac, buffer, length);
537         }
538 }
539
540 static void rx_urb_complete(struct urb *urb)
541 {
542         struct zd_usb *usb;
543         struct zd_usb_rx *rx;
544         const u8 *buffer;
545         unsigned int length;
546
547         switch (urb->status) {
548         case 0:
549                 break;
550         case -ESHUTDOWN:
551         case -EINVAL:
552         case -ENODEV:
553         case -ENOENT:
554         case -ECONNRESET:
555         case -EPIPE:
556                 return;
557         default:
558                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
559                 goto resubmit;
560         }
561
562         buffer = urb->transfer_buffer;
563         length = urb->actual_length;
564         usb = urb->context;
565         rx = &usb->rx;
566
567         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
568                 /* If there is an old first fragment, we don't care. */
569                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
570                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
571                 spin_lock(&rx->lock);
572                 memcpy(rx->fragment, buffer, length);
573                 rx->fragment_length = length;
574                 spin_unlock(&rx->lock);
575                 goto resubmit;
576         }
577
578         spin_lock(&rx->lock);
579         if (rx->fragment_length > 0) {
580                 /* We are on a second fragment, we believe */
581                 ZD_ASSERT(length + rx->fragment_length <=
582                           ARRAY_SIZE(rx->fragment));
583                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
584                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
585                 handle_rx_packet(usb, rx->fragment,
586                                  rx->fragment_length + length);
587                 rx->fragment_length = 0;
588                 spin_unlock(&rx->lock);
589         } else {
590                 spin_unlock(&rx->lock);
591                 handle_rx_packet(usb, buffer, length);
592         }
593
594 resubmit:
595         usb_submit_urb(urb, GFP_ATOMIC);
596 }
597
598 static struct urb *alloc_urb(struct zd_usb *usb)
599 {
600         struct usb_device *udev = zd_usb_to_usbdev(usb);
601         struct urb *urb;
602         void *buffer;
603
604         urb = usb_alloc_urb(0, GFP_KERNEL);
605         if (!urb)
606                 return NULL;
607         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
608                                   &urb->transfer_dma);
609         if (!buffer) {
610                 usb_free_urb(urb);
611                 return NULL;
612         }
613
614         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
615                           buffer, USB_MAX_RX_SIZE,
616                           rx_urb_complete, usb);
617         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
618
619         return urb;
620 }
621
622 static void free_urb(struct urb *urb)
623 {
624         if (!urb)
625                 return;
626         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
627                         urb->transfer_buffer, urb->transfer_dma);
628         usb_free_urb(urb);
629 }
630
631 int zd_usb_enable_rx(struct zd_usb *usb)
632 {
633         int i, r;
634         struct zd_usb_rx *rx = &usb->rx;
635         struct urb **urbs;
636
637         dev_dbg_f(zd_usb_dev(usb), "\n");
638
639         r = -ENOMEM;
640         urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
641         if (!urbs)
642                 goto error;
643         for (i = 0; i < URBS_COUNT; i++) {
644                 urbs[i] = alloc_urb(usb);
645                 if (!urbs[i])
646                         goto error;
647         }
648
649         ZD_ASSERT(!irqs_disabled());
650         spin_lock_irq(&rx->lock);
651         if (rx->urbs) {
652                 spin_unlock_irq(&rx->lock);
653                 r = 0;
654                 goto error;
655         }
656         rx->urbs = urbs;
657         rx->urbs_count = URBS_COUNT;
658         spin_unlock_irq(&rx->lock);
659
660         for (i = 0; i < URBS_COUNT; i++) {
661                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
662                 if (r)
663                         goto error_submit;
664         }
665
666         return 0;
667 error_submit:
668         for (i = 0; i < URBS_COUNT; i++) {
669                 usb_kill_urb(urbs[i]);
670         }
671         spin_lock_irq(&rx->lock);
672         rx->urbs = NULL;
673         rx->urbs_count = 0;
674         spin_unlock_irq(&rx->lock);
675 error:
676         if (urbs) {
677                 for (i = 0; i < URBS_COUNT; i++)
678                         free_urb(urbs[i]);
679         }
680         return r;
681 }
682
683 void zd_usb_disable_rx(struct zd_usb *usb)
684 {
685         int i;
686         unsigned long flags;
687         struct urb **urbs;
688         unsigned int count;
689         struct zd_usb_rx *rx = &usb->rx;
690
691         spin_lock_irqsave(&rx->lock, flags);
692         urbs = rx->urbs;
693         count = rx->urbs_count;
694         spin_unlock_irqrestore(&rx->lock, flags);
695         if (!urbs)
696                 return;
697
698         for (i = 0; i < count; i++) {
699                 usb_kill_urb(urbs[i]);
700                 free_urb(urbs[i]);
701         }
702         kfree(urbs);
703
704         spin_lock_irqsave(&rx->lock, flags);
705         rx->urbs = NULL;
706         rx->urbs_count = 0;
707         spin_unlock_irqrestore(&rx->lock, flags);
708 }
709
710 static void tx_urb_complete(struct urb *urb)
711 {
712         int r;
713
714         switch (urb->status) {
715         case 0:
716                 break;
717         case -ESHUTDOWN:
718         case -EINVAL:
719         case -ENODEV:
720         case -ENOENT:
721         case -ECONNRESET:
722         case -EPIPE:
723                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
724                 break;
725         default:
726                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
727                 goto resubmit;
728         }
729 free_urb:
730         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
731                         urb->transfer_buffer, urb->transfer_dma);
732         usb_free_urb(urb);
733         return;
734 resubmit:
735         r = usb_submit_urb(urb, GFP_ATOMIC);
736         if (r) {
737                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
738                 goto free_urb;
739         }
740 }
741
742 /* Puts the frame on the USB endpoint. It doesn't wait for
743  * completion. The frame must contain the control set.
744  */
745 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
746 {
747         int r;
748         struct usb_device *udev = zd_usb_to_usbdev(usb);
749         struct urb *urb;
750         void *buffer;
751
752         urb = usb_alloc_urb(0, GFP_ATOMIC);
753         if (!urb) {
754                 r = -ENOMEM;
755                 goto out;
756         }
757
758         buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
759                                   &urb->transfer_dma);
760         if (!buffer) {
761                 r = -ENOMEM;
762                 goto error_free_urb;
763         }
764         memcpy(buffer, frame, length);
765
766         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
767                           buffer, length, tx_urb_complete, NULL);
768         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
769
770         r = usb_submit_urb(urb, GFP_ATOMIC);
771         if (r)
772                 goto error;
773         return 0;
774 error:
775         usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
776                         urb->transfer_dma);
777 error_free_urb:
778         usb_free_urb(urb);
779 out:
780         return r;
781 }
782
783 static inline void init_usb_interrupt(struct zd_usb *usb)
784 {
785         struct zd_usb_interrupt *intr = &usb->intr;
786
787         spin_lock_init(&intr->lock);
788         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
789         init_completion(&intr->read_regs.completion);
790         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
791 }
792
793 static inline void init_usb_rx(struct zd_usb *usb)
794 {
795         struct zd_usb_rx *rx = &usb->rx;
796         spin_lock_init(&rx->lock);
797         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
798                 rx->usb_packet_size = 512;
799         } else {
800                 rx->usb_packet_size = 64;
801         }
802         ZD_ASSERT(rx->fragment_length == 0);
803 }
804
805 static inline void init_usb_tx(struct zd_usb *usb)
806 {
807         /* FIXME: at this point we will allocate a fixed number of urb's for
808          * use in a cyclic scheme */
809 }
810
811 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
812                  struct usb_interface *intf)
813 {
814         memset(usb, 0, sizeof(*usb));
815         usb->intf = usb_get_intf(intf);
816         usb_set_intfdata(usb->intf, netdev);
817         init_usb_interrupt(usb);
818         init_usb_tx(usb);
819         init_usb_rx(usb);
820 }
821
822 void zd_usb_clear(struct zd_usb *usb)
823 {
824         usb_set_intfdata(usb->intf, NULL);
825         usb_put_intf(usb->intf);
826         ZD_MEMCLEAR(usb, sizeof(*usb));
827         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
828 }
829
830 static const char *speed(enum usb_device_speed speed)
831 {
832         switch (speed) {
833         case USB_SPEED_LOW:
834                 return "low";
835         case USB_SPEED_FULL:
836                 return "full";
837         case USB_SPEED_HIGH:
838                 return "high";
839         default:
840                 return "unknown speed";
841         }
842 }
843
844 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
845 {
846         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
847                 le16_to_cpu(udev->descriptor.idVendor),
848                 le16_to_cpu(udev->descriptor.idProduct),
849                 get_bcdDevice(udev),
850                 speed(udev->speed));
851 }
852
853 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
854 {
855         struct usb_device *udev = interface_to_usbdev(usb->intf);
856         return scnprint_id(udev, buffer, size);
857 }
858
859 #ifdef DEBUG
860 static void print_id(struct usb_device *udev)
861 {
862         char buffer[40];
863
864         scnprint_id(udev, buffer, sizeof(buffer));
865         buffer[sizeof(buffer)-1] = 0;
866         dev_dbg_f(&udev->dev, "%s\n", buffer);
867 }
868 #else
869 #define print_id(udev) do { } while (0)
870 #endif
871
872 static int eject_installer(struct usb_interface *intf)
873 {
874         struct usb_device *udev = interface_to_usbdev(intf);
875         struct usb_host_interface *iface_desc = &intf->altsetting[0];
876         struct usb_endpoint_descriptor *endpoint;
877         unsigned char *cmd;
878         u8 bulk_out_ep;
879         int r;
880
881         /* Find bulk out endpoint */
882         endpoint = &iface_desc->endpoint[1].desc;
883         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
884             (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
885             USB_ENDPOINT_XFER_BULK) {
886                 bulk_out_ep = endpoint->bEndpointAddress;
887         } else {
888                 dev_err(&udev->dev,
889                         "zd1211rw: Could not find bulk out endpoint\n");
890                 return -ENODEV;
891         }
892
893         cmd = kzalloc(31, GFP_KERNEL);
894         if (cmd == NULL)
895                 return -ENODEV;
896
897         /* USB bulk command block */
898         cmd[0] = 0x55;  /* bulk command signature */
899         cmd[1] = 0x53;  /* bulk command signature */
900         cmd[2] = 0x42;  /* bulk command signature */
901         cmd[3] = 0x43;  /* bulk command signature */
902         cmd[14] = 6;    /* command length */
903
904         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
905         cmd[19] = 0x2;  /* eject disc */
906
907         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
908         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
909                 cmd, 31, NULL, 2000);
910         kfree(cmd);
911         if (r)
912                 return r;
913
914         /* At this point, the device disconnects and reconnects with the real
915          * ID numbers. */
916
917         usb_set_intfdata(intf, NULL);
918         return 0;
919 }
920
921 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
922 {
923         int r;
924         struct usb_device *udev = interface_to_usbdev(intf);
925         struct net_device *netdev = NULL;
926
927         print_id(udev);
928
929         if (id->driver_info & DEVICE_INSTALLER)
930                 return eject_installer(intf);
931
932         switch (udev->speed) {
933         case USB_SPEED_LOW:
934         case USB_SPEED_FULL:
935         case USB_SPEED_HIGH:
936                 break;
937         default:
938                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
939                 r = -ENODEV;
940                 goto error;
941         }
942
943         usb_reset_device(interface_to_usbdev(intf));
944
945         netdev = zd_netdev_alloc(intf);
946         if (netdev == NULL) {
947                 r = -ENOMEM;
948                 goto error;
949         }
950
951         r = upload_firmware(udev, id->driver_info);
952         if (r) {
953                 dev_err(&intf->dev,
954                        "couldn't load firmware. Error number %d\n", r);
955                 goto error;
956         }
957
958         r = usb_reset_configuration(udev);
959         if (r) {
960                 dev_dbg_f(&intf->dev,
961                         "couldn't reset configuration. Error number %d\n", r);
962                 goto error;
963         }
964
965         /* At this point the interrupt endpoint is not generally enabled. We
966          * save the USB bandwidth until the network device is opened. But
967          * notify that the initialization of the MAC will require the
968          * interrupts to be temporary enabled.
969          */
970         r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
971         if (r) {
972                 dev_dbg_f(&intf->dev,
973                          "couldn't initialize mac. Error number %d\n", r);
974                 goto error;
975         }
976
977         r = register_netdev(netdev);
978         if (r) {
979                 dev_dbg_f(&intf->dev,
980                          "couldn't register netdev. Error number %d\n", r);
981                 goto error;
982         }
983
984         dev_dbg_f(&intf->dev, "successful\n");
985         dev_info(&intf->dev,"%s\n", netdev->name);
986         return 0;
987 error:
988         usb_reset_device(interface_to_usbdev(intf));
989         zd_netdev_free(netdev);
990         return r;
991 }
992
993 static void disconnect(struct usb_interface *intf)
994 {
995         struct net_device *netdev = zd_intf_to_netdev(intf);
996         struct zd_mac *mac = zd_netdev_mac(netdev);
997         struct zd_usb *usb = &mac->chip.usb;
998
999         /* Either something really bad happened, or we're just dealing with
1000          * a DEVICE_INSTALLER. */
1001         if (netdev == NULL)
1002                 return;
1003
1004         dev_dbg_f(zd_usb_dev(usb), "\n");
1005
1006         zd_netdev_disconnect(netdev);
1007
1008         /* Just in case something has gone wrong! */
1009         zd_usb_disable_rx(usb);
1010         zd_usb_disable_int(usb);
1011
1012         /* If the disconnect has been caused by a removal of the
1013          * driver module, the reset allows reloading of the driver. If the
1014          * reset will not be executed here, the upload of the firmware in the
1015          * probe function caused by the reloading of the driver will fail.
1016          */
1017         usb_reset_device(interface_to_usbdev(intf));
1018
1019         zd_netdev_free(netdev);
1020         dev_dbg(&intf->dev, "disconnected\n");
1021 }
1022
1023 static struct usb_driver driver = {
1024         .name           = "zd1211rw",
1025         .id_table       = usb_ids,
1026         .probe          = probe,
1027         .disconnect     = disconnect,
1028 };
1029
1030 struct workqueue_struct *zd_workqueue;
1031
1032 static int __init usb_init(void)
1033 {
1034         int r;
1035
1036         pr_debug("%s usb_init()\n", driver.name);
1037
1038         zd_workqueue = create_singlethread_workqueue(driver.name);
1039         if (zd_workqueue == NULL) {
1040                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1041                 return -ENOMEM;
1042         }
1043
1044         r = usb_register(&driver);
1045         if (r) {
1046                 destroy_workqueue(zd_workqueue);
1047                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1048                        driver.name, r);
1049                 return r;
1050         }
1051
1052         pr_debug("%s initialized\n", driver.name);
1053         return 0;
1054 }
1055
1056 static void __exit usb_exit(void)
1057 {
1058         pr_debug("%s usb_exit()\n", driver.name);
1059         usb_deregister(&driver);
1060         destroy_workqueue(zd_workqueue);
1061 }
1062
1063 module_init(usb_init);
1064 module_exit(usb_exit);
1065
1066 static int usb_int_regs_length(unsigned int count)
1067 {
1068         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1069 }
1070
1071 static void prepare_read_regs_int(struct zd_usb *usb)
1072 {
1073         struct zd_usb_interrupt *intr = &usb->intr;
1074
1075         spin_lock_irq(&intr->lock);
1076         intr->read_regs_enabled = 1;
1077         INIT_COMPLETION(intr->read_regs.completion);
1078         spin_unlock_irq(&intr->lock);
1079 }
1080
1081 static void disable_read_regs_int(struct zd_usb *usb)
1082 {
1083         struct zd_usb_interrupt *intr = &usb->intr;
1084
1085         spin_lock_irq(&intr->lock);
1086         intr->read_regs_enabled = 0;
1087         spin_unlock_irq(&intr->lock);
1088 }
1089
1090 static int get_results(struct zd_usb *usb, u16 *values,
1091                        struct usb_req_read_regs *req, unsigned int count)
1092 {
1093         int r;
1094         int i;
1095         struct zd_usb_interrupt *intr = &usb->intr;
1096         struct read_regs_int *rr = &intr->read_regs;
1097         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1098
1099         spin_lock_irq(&intr->lock);
1100
1101         r = -EIO;
1102         /* The created block size seems to be larger than expected.
1103          * However results appear to be correct.
1104          */
1105         if (rr->length < usb_int_regs_length(count)) {
1106                 dev_dbg_f(zd_usb_dev(usb),
1107                          "error: actual length %d less than expected %d\n",
1108                          rr->length, usb_int_regs_length(count));
1109                 goto error_unlock;
1110         }
1111         if (rr->length > sizeof(rr->buffer)) {
1112                 dev_dbg_f(zd_usb_dev(usb),
1113                          "error: actual length %d exceeds buffer size %zu\n",
1114                          rr->length, sizeof(rr->buffer));
1115                 goto error_unlock;
1116         }
1117
1118         for (i = 0; i < count; i++) {
1119                 struct reg_data *rd = &regs->regs[i];
1120                 if (rd->addr != req->addr[i]) {
1121                         dev_dbg_f(zd_usb_dev(usb),
1122                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1123                                  le16_to_cpu(rd->addr),
1124                                  le16_to_cpu(req->addr[i]));
1125                         goto error_unlock;
1126                 }
1127                 values[i] = le16_to_cpu(rd->value);
1128         }
1129
1130         r = 0;
1131 error_unlock:
1132         spin_unlock_irq(&intr->lock);
1133         return r;
1134 }
1135
1136 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1137                      const zd_addr_t *addresses, unsigned int count)
1138 {
1139         int r;
1140         int i, req_len, actual_req_len;
1141         struct usb_device *udev;
1142         struct usb_req_read_regs *req = NULL;
1143         unsigned long timeout;
1144
1145         if (count < 1) {
1146                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1147                 return -EINVAL;
1148         }
1149         if (count > USB_MAX_IOREAD16_COUNT) {
1150                 dev_dbg_f(zd_usb_dev(usb),
1151                          "error: count %u exceeds possible max %u\n",
1152                          count, USB_MAX_IOREAD16_COUNT);
1153                 return -EINVAL;
1154         }
1155         if (in_atomic()) {
1156                 dev_dbg_f(zd_usb_dev(usb),
1157                          "error: io in atomic context not supported\n");
1158                 return -EWOULDBLOCK;
1159         }
1160         if (!usb_int_enabled(usb)) {
1161                  dev_dbg_f(zd_usb_dev(usb),
1162                           "error: usb interrupt not enabled\n");
1163                 return -EWOULDBLOCK;
1164         }
1165
1166         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1167         req = kmalloc(req_len, GFP_KERNEL);
1168         if (!req)
1169                 return -ENOMEM;
1170         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1171         for (i = 0; i < count; i++)
1172                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1173
1174         udev = zd_usb_to_usbdev(usb);
1175         prepare_read_regs_int(usb);
1176         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1177                          req, req_len, &actual_req_len, 1000 /* ms */);
1178         if (r) {
1179                 dev_dbg_f(zd_usb_dev(usb),
1180                         "error in usb_bulk_msg(). Error number %d\n", r);
1181                 goto error;
1182         }
1183         if (req_len != actual_req_len) {
1184                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1185                         " req_len %d != actual_req_len %d\n",
1186                         req_len, actual_req_len);
1187                 r = -EIO;
1188                 goto error;
1189         }
1190
1191         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1192                                               msecs_to_jiffies(1000));
1193         if (!timeout) {
1194                 disable_read_regs_int(usb);
1195                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1196                 r = -ETIMEDOUT;
1197                 goto error;
1198         }
1199
1200         r = get_results(usb, values, req, count);
1201 error:
1202         kfree(req);
1203         return r;
1204 }
1205
1206 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1207                       unsigned int count)
1208 {
1209         int r;
1210         struct usb_device *udev;
1211         struct usb_req_write_regs *req = NULL;
1212         int i, req_len, actual_req_len;
1213
1214         if (count == 0)
1215                 return 0;
1216         if (count > USB_MAX_IOWRITE16_COUNT) {
1217                 dev_dbg_f(zd_usb_dev(usb),
1218                         "error: count %u exceeds possible max %u\n",
1219                         count, USB_MAX_IOWRITE16_COUNT);
1220                 return -EINVAL;
1221         }
1222         if (in_atomic()) {
1223                 dev_dbg_f(zd_usb_dev(usb),
1224                         "error: io in atomic context not supported\n");
1225                 return -EWOULDBLOCK;
1226         }
1227
1228         req_len = sizeof(struct usb_req_write_regs) +
1229                   count * sizeof(struct reg_data);
1230         req = kmalloc(req_len, GFP_KERNEL);
1231         if (!req)
1232                 return -ENOMEM;
1233
1234         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1235         for (i = 0; i < count; i++) {
1236                 struct reg_data *rw  = &req->reg_writes[i];
1237                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1238                 rw->value = cpu_to_le16(ioreqs[i].value);
1239         }
1240
1241         udev = zd_usb_to_usbdev(usb);
1242         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1243                          req, req_len, &actual_req_len, 1000 /* ms */);
1244         if (r) {
1245                 dev_dbg_f(zd_usb_dev(usb),
1246                         "error in usb_bulk_msg(). Error number %d\n", r);
1247                 goto error;
1248         }
1249         if (req_len != actual_req_len) {
1250                 dev_dbg_f(zd_usb_dev(usb),
1251                         "error in usb_bulk_msg()"
1252                         " req_len %d != actual_req_len %d\n",
1253                         req_len, actual_req_len);
1254                 r = -EIO;
1255                 goto error;
1256         }
1257
1258         /* FALL-THROUGH with r == 0 */
1259 error:
1260         kfree(req);
1261         return r;
1262 }
1263
1264 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1265 {
1266         int r;
1267         struct usb_device *udev;
1268         struct usb_req_rfwrite *req = NULL;
1269         int i, req_len, actual_req_len;
1270         u16 bit_value_template;
1271
1272         if (in_atomic()) {
1273                 dev_dbg_f(zd_usb_dev(usb),
1274                         "error: io in atomic context not supported\n");
1275                 return -EWOULDBLOCK;
1276         }
1277         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1278                 dev_dbg_f(zd_usb_dev(usb),
1279                         "error: bits %d are smaller than"
1280                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1281                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1282                 return -EINVAL;
1283         }
1284         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1285                 dev_dbg_f(zd_usb_dev(usb),
1286                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1287                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1288                 return -EINVAL;
1289         }
1290 #ifdef DEBUG
1291         if (value & (~0UL << bits)) {
1292                 dev_dbg_f(zd_usb_dev(usb),
1293                         "error: value %#09x has bits >= %d set\n",
1294                         value, bits);
1295                 return -EINVAL;
1296         }
1297 #endif /* DEBUG */
1298
1299         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1300
1301         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1302         if (r) {
1303                 dev_dbg_f(zd_usb_dev(usb),
1304                         "error %d: Couldn't read CR203\n", r);
1305                 goto out;
1306         }
1307         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1308
1309         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1310         req = kmalloc(req_len, GFP_KERNEL);
1311         if (!req)
1312                 return -ENOMEM;
1313
1314         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1315         /* 1: 3683a, but not used in ZYDAS driver */
1316         req->value = cpu_to_le16(2);
1317         req->bits = cpu_to_le16(bits);
1318
1319         for (i = 0; i < bits; i++) {
1320                 u16 bv = bit_value_template;
1321                 if (value & (1 << (bits-1-i)))
1322                         bv |= RF_DATA;
1323                 req->bit_values[i] = cpu_to_le16(bv);
1324         }
1325
1326         udev = zd_usb_to_usbdev(usb);
1327         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1328                          req, req_len, &actual_req_len, 1000 /* ms */);
1329         if (r) {
1330                 dev_dbg_f(zd_usb_dev(usb),
1331                         "error in usb_bulk_msg(). Error number %d\n", r);
1332                 goto out;
1333         }
1334         if (req_len != actual_req_len) {
1335                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1336                         " req_len %d != actual_req_len %d\n",
1337                         req_len, actual_req_len);
1338                 r = -EIO;
1339                 goto out;
1340         }
1341
1342         /* FALL-THROUGH with r == 0 */
1343 out:
1344         kfree(req);
1345         return r;
1346 }